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“I knew it would take some time to get to that point.

And I worked hard to get there.”

C. Schuldiner
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Foreword

These notes contain the material covered by the 3rd/4th year course “Metodi Matematici per
l’Ingegneria ”, which I gave in the second semester of the Academic Years from 2015/2016 to
2018/2019 at the University of Ferrara. The course lasted 48 real hours during a period of 12 weeks
and was conceived for engineers. I used the following schedule:

• 3 weeks (i.e. 6 lectures) on Chapter 1

• 1 week (i.e. 2 lectures) on Chapter 2

• 1.5 week (i.e. 3 lectures) on Chapter 3

• 2 weeks (i.e. 4 lectures) on Chapter 4

• 2 weeks (i.e. 4 lectures) on Chapter 5

• 2.5 weeks (i.e. 5 lectures) on Chapter 6

Almost everything contained in these notes has been treated during the course, except for some
advanced proofs or some exercises (also, I did not have time to treat the part on Volterra equations,
which however is not part of the program). The contents of the course have been inherited from
those treated by Prof. Daniela Mari, who previously held the course for many years. I only
made some minor changes: for example, I enlarged the part on Lp spaces (Chapter 3), added a
brief treatment of linear finite difference equations (in Chapter 2) and proved the Sochocki-Plemelj
formula (in Chapter 6), which provides an elegant way to compute the Fourier transform of the
Heaviside function. I also added a treatment of band-limited signals and the proof of the Shannon-
Whittaker sampling formula, which is a beautiful result in the theory of Fourier transform.

The contents of the course aim at putting on a (reasonably) rigourous mathematical framework
some standard tools used by engineers in signal processing. These are essentially the 3 kind of
integral transforms presented in these notes:

• Z−transform

• Laplace transform

ix



x Foreword

• Fourier transform

as well as the modern theory of distributions. Time permetting, usually I also briefly treat the
bilateral Laplace transform, the Mellin transform and the Hilbert transform. As for the theory of
distributions, I only treat the case of tempered distributions, essentially because this is the natural
setting to define the Fourier transform in distributional sense.

Where possible, I tried to give a flavour of applications of these tools, mainly to differential
equations and finite difference equations. The students were not supposed to be familiar with these
two topics, but in the end this is not an issue. Indeed, by using the transforms one can offer a
self-contained presentation (at least in the constant coefficient linear case).

It would be a good idea to include Fourier series among the contents of the course, but essen-
tially there is no time to do it. For this reason, for completeness I added in Appendix C a brief
summary of the main facts about Fourier series that the students should know. There are essentially
two points where Fourier series enter in this course: in the proof of the Shannon-Whittaker formula
and in the proof of the Poisson summation formula. I also singled out the connection between the
singularities of the Laplace transform of a periodic function and its Fourier coefficients, see Remark
4.4.10.

I also added Appendix A and B about two standard facts in mathematical analysis, that usually
are not very familiar to the students attending the course: the definitions and properties of lim inf
and lim sup and a brief treatement of first order ordinary linear differential equations (possibly with
varying coefficients).

Appendix D is essentially a divertissement for students that want to know a little bit more
about harmonic functions in the plane. Even if they are not directly connected with the scopes
of the course, they naturally arise in connection with holomorphic functions. I give some basic
properties and construct some explicit examples.

Finally, in Appendix E one can find a summary of the main transforms computed throughout
the lecture notes (Z, Laplace, bilateral Laplace, Mellin, Fourier, Hilbert).

Acknowledgments. I take the occasion to thank Daniela Mari for many helpful suggestions during
the first preparation of the course in November 2015. I wish to express my gratitude to my friend
and colleague Michele Miranda, who carefully read these notes, while teaching this course in the
Academic Year 2019/2020. I also want to thank Mirko Ferracioli and Davide Zanellati, who spent
some time in reading these notes and pointed out some typos and misprints.



List of symbols

We list below some basic notations used throughout these lecture notes:

Symbol Meaning

i imaginary unit

C field of complex numbers

Re(z) real part of z ∈ C

Im(z) imaginary part of z ∈ C

Arg(z) principal argument of z ∈ C

C∗ C \ {0}

C∗∗ C \ {z ∈ C : Im(z) = 0 and Re(z) ≤ 0}

H Heaviside step function, defined by

H(t) =

®
1, if t ≥ 0,
0, if t < 0

SW sawtooth wave function, defined by

SW (t) =
∞∑
k=0

(t− k)
[
H(t− k)−H(t− k − 1)

]
R unitary ramp function, defined by

R(t) = tH(t) =

®
t, if t ≥ 0,
0, if t < 0
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xii List of symbols

Symbol Meaning

rect rectangular function, defined by

rect(t) =

 1, if − 1

2
≤ t ≤ 1

2
,

0, otherwise

tri triangular function, defined by

tri(t) =

®
1− |t|, if − 1 ≤ t ≤ 1,

0, otherwise

sinc cardinal sine function, defined by

sinc(t) =


sin(π t)

π t
, if t 6= 0,

1, if t = 0

� square wave signal, defined by

�(t) =
∑
n∈Z

ï
rect

Å
t− 1

2
+ 2n

ã
− rect

Å
t+

1

2
+ 2n

ãò
Z[{xn}] Z−transform of the sequence {xn}n∈N, defined by

Z[{xn}](z) =
∞∑
n=0

xn
zn

L[f ] Laplace transform of the causal signal f , defined by

L[f ](z) =

ˆ +∞

0
e−z t f(t) dt

σf abscissa of convergence of L[f ]

B[f ] bilateral Laplace transform of f , defined by

B[f ] =

ˆ +∞

−∞
e−z t f(t) dt

Σf upper abscissa of convergence of B[f ]

M[f ] Mellin transform of the causal signal f , defined by

M[f ](z) =

ˆ +∞

0
tz−1 f(t) dt

F [f ] Fourier transform of f , defined by

F [f ](ω) =

ˆ
R
e−i t ω f(t) dt

ωf band limit of the band-limited signal f



List of symbols xiii

Symbol Meaning

S Schwartz class

[ϕ]m,k sup
t∈R
|tm ϕ(k)(t)|, m, k ∈ N

ϕ
S−→ ϕ convergence in the Schwartz class S

S ′ the space of tempered distributions

Ff regular tempered distribution generated by f

δt0 Dirac delta centered at t0 ∈ R

P.V.
1

t
tempered distribution “principal value of 1/t”

Fn
S′−→ F convergence in S ′

OM multipliers of the class S

OC convolvers of the class S

Pτ Dirac comb (with time step τ > 0)

H[f ] Hilbert transform of f , defined by

H[f ] = f ∗ P.V.
1

t

f̂(n) n−th Fourier coefficient of f , defined by

f̂(n) =
1

T

ˆ T
2

−T
2

e−i n
2π
T
t f(t) dt

J [f ] Fourier series of f

Jk[f ] k−th partial Fourier sum





Chapter 1

Functions of one
complex variable

1. Notation

We denote by C the field of complex numbers. If z = x+ i y ∈ C is a complex number, we denote
by

Re(z) = x and Im(z) = y,

its real and imaginary parts. Observe that if z, w ∈ C, then

Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).

If z ∈ C, we indicate by z∗ its conjugate, which is defined by

z∗ = x− i y.

We recall that z z∗ = |z|2, where

|z| =
»
x2 + y2,

is the modulus of z. We recall that there holds

(1.1.1) |z + w| ≤ |z|+ |w|, for every z, w ∈ C.

We set

C∗ = C \ {0}, C∗∗ = C \ {z ∈ C : Im(z) = 0 and Re(z) ≤ 0}.
Every z ∈ C∗ can be written in polar coordinates as

z = |z| (cosϑ+ i sinϑ),

where ϑ ∈ R is called an argument of z. Of course, the argument is not unique, since any other
argument of the form ϑ+2 k π with k ∈ Z would correspond to the same complex number z, thanks
to the fact that

cos(ϑ+ 2 k π) = cosϑ, sin(ϑ+ 2 k π) = sinϑ.

We call principal argument of z the unique argument belonging to the interval (−π, π]. We will use
the symbol Arg(z) to denote the principal argument of z.

1



2 1. Functions of one complex variable

Finally, we recall that if

z = |z| (cosϑ+ i sinϑ) and w = |w| (cosϕ+ i sinϕ),

then

(1.1.2) z w = |z| |w|
(

cos(ϑ+ ϕ) + i sin(ϑ+ ϕ)
)
.

2. A bit of topology

Let z0 ∈ C and r > 0, we denote by Br(z0) the disk centered at z0 with radius r > 0, i.e.

Br(z0) = {z ∈ C : |z − z0| < r}.

We also introduce the notation Ḃr(z0) for the punctured disk centered at z0 with radius r > 0, i.e.

Ḃr(z0) = Br(z0) \ {z0}.

We say that a subset A ⊂ C is open if for every z0 ∈ A, there exists r > 0 such that Br(z0) ⊂ A.
We say that A is closed if C \ A is open. A point z0 ∈ C is said to be an accumulation point of a
set A ⊂ C if for every r > 0 we have

Ḃr(z0) ∩A 6= ∅.

We say that z0 is a boundary point of A if for every r > 0 we have

Br(z0) ∩A 6= ∅ and Br(z0) ∩ (C \A) 6= ∅.

Finally, for a subset A ⊂ C we denote by ∂A the collection of all boundary points of A. This set
is called boundary of A.

For a set A ⊂ C we denote by A its closure. By definition, this is the smallest closed set containing
A. For example, it is not difficult to see that

Br(z0) = {z ∈ C : |z − z0| ≤ r}.

We say that an open set A ⊂ C is connected if for every z, w ∈ A there exists a continuous polygonal
line γ ⊂ A connecting z and w.

Example 1.2.1. Let A = {z ∈ C : Re z ≥ 0} ∪ {−1 + i}, this is a closed set. It is easy to see that

∂A = {z ∈ C : Re z = 0} ∪ {−1 + i},

but {−1 + i} is not an accumulation point of A. Indeed, we have

Ḃ1/2(1 + i) ∩A = ∅,

since the only intersection point between B1/2(1 + i) and A is 1 + i. Finally, A is not connected,
since the point 1 + i and any point z ∈ C such that Re z ≥ 0 can not be connected by a polygonal
line entirely contained in A.



3. Functions of one complex variable 3

3. Functions of one complex variable

We recall a couple of definitions that will be useful. Let A,B ⊂ C two non-empty sets and f : A→ B
a function. We say that

• f is injective if

“for every w ∈ B, the equation f(z) = w has at most a solution z ∈ A′′.
• f is surjective if

“for every w ∈ B, the equation f(z) = w has at least a solution z ∈ A′′.
• f is bijective if it is injective and surjective. This means that

“for every w ∈ B, the equation f(z) = w has a unique solution z ∈ A′′.

When f : A → B is bijective, it is well-defined its inverse function f−1 : B → A. This is the
function given by

f−1 : B → A

w 7→ “the unique solution z ∈ A
of the equation f(z) = w′′

By construction, we have

f−1(f(z)) = z and f(f−1(w)) = w, for every z ∈ A, w ∈ B.

Definition 1.3.1 (Limits). Let A ⊂ C be an open set and f : A → C a function of one complex
variable. Let z0 ∈ C be an accumulation point of A, we say that f admits limit L ∈ C at z0 if

∀ε > 0, ∃δ > 0 such that if z ∈ Ḃδ(z0), then |f(z)− L| < ε.

In this case, we use the notation
lim
z→z0

f(z) = L.

Definition 1.3.2 (Continuity). Let A ⊂ C be an open set and f : A→ C a function of one complex
variable. We say that f is continuous at z0 ∈ A if

lim
z→z0

f(z) = f(z0).

We say that f is continuous on A if it is continuous at every z ∈ A.

Proposition 1.3.3. A function f of a complex variable is continuous at z0 ∈ C if and only if the
two functions Re f and Im f are continuous at z0.

Proof. We observe that

|f(z)− f(z0)| =
»
|Re f(z)− Re f(z0)|2 + |Im f(z)− Im f(z0)|2.

By using that (see Exercise 1.12.1 below)

|Re f(z)− Re f(z0)|+ |Im f(z)− Im f(z0)|√
2

≤ |f(z)− f(z0)|

≤ |Re f(z)− Re f(z0)|+ |Im f(z)− Im f(z0)|,
we obtain that

lim
z→z0

|f(z)− f(z0)| = 0 ⇐⇒


lim
z→z0

|Re f(z)− Re f(z0)| = 0

lim
z→z0

|Im f(z)− Im f(z0)| = 0,



4 1. Functions of one complex variable

which proves the claim. �

Example 1.3.4. The function principal argument Arg : C∗ → (−π, π] is continuous on C∗∗, but it
has a discontinuity across the semiaxis of the negative real numbers. Indeed, for x0 < 0 we have

lim
ϑ→π−

Arg
(
|x0| (cosϑ+ i sinϑ)

)
= π

6= −π = lim
ϑ→−π+

Arg
(
|x0| (cosϑ+ i sinϑ)

)
.

Figure 1. The graph of the function (x, y) 7→ Arg (x+ i y)

Lemma 1.3.5. Let A ⊂ C be an open set and let g : A → C be a function. Suppose that g is
continuous at z0 ∈ A and that

g(z0) 6= 0.

Then there exists r > 0 such that Br(z0) ⊂ A and

g(z) 6= 0, for z ∈ Br(z0).

Proof. By continuity, for every ε > 0 there exists r > 0 such that

|g(z)− g(z0)| < ε, for z ∈ Br(z0).

By using the triangle inequality (1.1.1) with the choices

z = g(z0)− g(z) and w = g(z)

we get

|g(z)− g(z0)|+ |g(z)| ≥ |g(z0)|,
thus in particular

(1.3.1) ε+ |g(z)| ≥ |g(z0)|, for z ∈ Br(z0).

We now observe that

|g(z0)| 6= 0,
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by hypothesis, thus we can choose

ε =
1

2
|g(z0)| > 0.

From (1.3.1), we get

|g(z)| > |g(z0)| − ε =
1

2
|g(z0)|, for z ∈ Br(z0).

This in turn implies that g can not vanish in Br(z0). �

4. Holomorphic functions

Definition 1.4.1. Let A ⊂ C be an open set and let f : A → C be a function. We say that f is
derivable at z0 ∈ A if the limit

lim
C3h→0

f(z0 + h)− f(z0)

h
,

exists in C. This means that there exists λ ∈ C such that

∀ε > 0, ∃δ > 0 such that if 0 < |h| < δ, then

∣∣∣∣∣f(z0 + h)− f(z0)

h
− λ

∣∣∣∣∣ < ε.

In this case λ is called derivative of f at z0 and we use one of the notations

f ′(z0),
df

dz
(z0).

Remark 1.4.2. As in the case of functions of one real variable, we have that if f is derivable at
z0, then it is continuous as well at this point. Indeed, by definition of derivative we have

f(z)− f(z0)

z − z0
= f ′(z0) + o(1), for |z − z0| → 0,

that is
f(z)− f(z0) = f ′(z0) (z − z0) + o(z − z0), for |z − z0| → 0.

This implies that

lim
z→z0

[
f(z)− f(z0)

]
= lim

z→z0

[
f ′(z0) (z − z0)

]
= 0.

The usual properties of derivatives hold true. We state the next three propositions without
proofs, which are left to the reader.

Proposition 1.4.3 (Sums & products). Let A ⊂ C be an open set. Let f : A→ C and g : A→ C
two functions. If f and g are derivable at z0 ∈ A, then we have:

• for every α, β ∈ C, the function z 7→ α f(z) + β g(z) is derivable at z0 and we have

d

dz

Ä
α f(z) + β g(z)

ä
|z=z0

= α f ′(z0) + β g′(z0);

• the product function f g is derivable at z0 and we have

d

dz

Ä
f(z) g(z)

ä
|z=z0

= f ′(z0) g(z0) + f(z0) g′(z0);

Proposition 1.4.4 (Compositions). Let A,B ⊂ C be two open sets and let f : A → C and
g : B → A be two functions of a complex variable. If g is derivable at z0 ∈ B and f is derivable at
g(z0) ∈ A, then the composition f ◦ g is derivable at z0 and we have

d

dz

Ä
f ◦ g(z)

ä
|z=z0

= f ′(g(z0)) g′(z0);
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Proposition 1.4.5 (Inverse function). Let A,B ⊂ C be two open sets and let us suppose that
f : A→ B is bijective. Let us assume that

• f ′(f−1(z0)) 6= 0;

• the inverse function f−1 : B → A is continuous at z0 ∈ B.

Then f−1 is derivable at z0 and we have

d

dz
f−1(z)|z=z0 =

1

f ′(f−1(z0))
.

Lemma 1.4.6. Let A ⊂ C be a connected open set and let f : A→ C be such that

f ′(z) = 0, for every z ∈ A.
Then f is constant.

Proof. Let us take z, w ∈ A, since A is connected we know that there exists a polygonal line γ
contained in A and joining z to w. If we prove that

f(z) = f(w),

we get the conclusion, by arbitrariness of z and w. In order to prove this, it is sufficient to prove
that f is constant on every segment of the polygonal line γ. Such a segment can be parametrized
by

η(t) = (1− t) pi + t pi+1, t ∈ [0, 1],

for a suitable choice of distinct points p1, . . . , pn ∈ C. Then the function of one real variable
g(t) = f(η(t)) defined on [0, 1] is such that

g′(t) = f ′(η(t)) η′(t) = 0, for every t ∈ [0, 1].

This implies that g is constant, as desired. �

The previous properties are similar to those for differentiable functions of one real variable. On
the contrary, the next important property is characteristic of functions of one complex variable.

Theorem 1.4.7. Let A ⊂ C be an open set and let f : A→ C be a function which is differentiable
as a function of the two real variables x and y. Then f is derivable as a function of the complex
variable z if and only if we have

(1.4.1)
∂f

∂x
=

1

i

∂f

∂y
.

In this case, we have

(1.4.2) f ′(z) =
∂f

∂x
=

1

i

∂f

∂y
.

Proof. Let us assume that f is derivable as a function of z. By definition of complex derivative,
we know that

f ′(z) = lim
R3h→0

f(z + h)− f(z)

h
= lim

h→0

f(x+ h, y)− f(x, y)

h
= fx,

and also

f ′(z) = lim
R3h→0

f(z + i h)− f(z)

i h
= lim

h→0

f(x, y + h)− f(x, y)

i h
=

1

i
fy.

Thus we immediately obtain (1.4.1).
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Let us now assume that (1.4.1) is verified. By using the fact that f is differentiable as a function
of x and y, for h = h1 + i h2 ∈ C we get

f(z + h)− f(z) = f(x+ h1, y + h2)− f(x, y)

= fx(x, y)h1 + fy(x, y)h2 + o(|h|)
= fx(x, y)h1 + i fx(x, y)h2 + o(|h|)
= fx(x, y)h+ o(|h|).

This implies that

lim
h→0

f(z + h)− f(z)

h
= fx(x, y) + lim

h→0

o(|h|)
h

= fx(x, y),

so that f is derivable as a function of z and (1.4.2) holds true. �

Remark 1.4.8. It is useful to recall that a sufficient condition for a function of two real variables
(x, y) 7→ f(x, y) to be differentiable is that the partial derivatives fx and fy exist and are continuous.

Corollary 1.4.9 (Cauchy-Riemann equations). Under the previous hypotheses, the function f(x+
i y) = u(x, y) + i v(x, y) is derivable as a function of z = x+ i y if and only if

(1.4.3)

®
ux = vy,
vx = −uy.

Proof. It is sufficient to observe that

fx = ux + i vx and
1

i
fy =

1

i
uy + vy = −i uy + vy,

then (1.4.1) becomes (1.4.3). �

Remark 1.4.10. The equation (1.4.1) will be called Cauchy-Riemann equations in complex form,
while (1.4.3) will be called Cauchy-Riemann equations in real form.

Example 1.4.11. We can now give an example of function which is not derivable in z, but it is
differentiable as a function of x and y. Let us take

f(z) = z∗,

as a (complex-valued) function of the variables x and y this is

f(x, y) = x− i y.
This is of course differentiable as a function of x and y, since the partial derivatives fx and fy exist
and are continuous (they are actually constant functions!). On the other hand

fx = 1 6= −1 =
1

i
fy,

thus (1.4.1) is not satisfied and f is not derivable as a function of the complex variable z.

Example 1.4.12. Another function of a complex variable which is not derivable in z is given by
f(z) = |z|. Indeed, observe that for x2 + y2 6= 0 we have

fx =
x√

x2 + y2
and fy =

y√
x2 + y2

.

Thus (1.4.1) is not satisfied.

Remark 1.4.13. More generally, every function f of one complex variable z which only takes real
values can not be derivable in z, unless it is constant.
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Remark 1.4.14 (Conjugate harmonic functions). Let us suppose that f : A → C is derivable on
some open set A ⊂ C. Then by writing

f(z) = u(x, y) + i v(x, y), z = x+ i y ∈ A,

We have seen that the real part u and the imaginary part v are linked to the system of Cauchy-
Riemann equations (1.4.3). If we suppose that u, v ∈ C2(A), then we can differentiate the equations
in (1.4.3), i.e.

ux = vy =⇒ uxy = vyy,

and

uy = −vx =⇒ uyx = −vxx,
By using that u ∈ C2(A), we obtain from Schwarz’s Theorem that

vyy = uxy = uyx = −vxx.

In other words, the imaginary part v satisfies the partial differential equation

vxx + vyy = 0, in A.

A function satisfying such an equation is called a harmonic function. By proceeding in a similar
way, we can also prove that

uxx + uyy = 0, in A.

Then the functions u and v are said to be conjugate harmonic functions. We refer to Appendix D
for more details on harmonic functions.

Definition 1.4.15 (Holomorphic function). Let A ⊂ C be open set, we say that f is holomorphic
in A if f is derivable for every z ∈ A and f ′ is a continuous function on A.

Definition 1.4.16 (Entire function). A function f : C → C which is holomorphic on the whole
complex plane C is called entire.

5. Some examples of holomorphic functions

We now present some remarkable holomorphic functions.

• Power functions. For n ∈ N, this is defined in the usual way by

zn = z · z · · · · · z︸ ︷︷ ︸
n

, z0 = 1.

This is derivable for every z ∈ C, the proof is the same as in the real case (use Newton’s bynomial
formula). We have

d

dz
zn = n zn−1, for every z ∈ C.

Since the latter is continuous, the function z 7→ zn is holomorphic. By writing a complex number
z ∈ C∗ in polar coordinates as

z = % (cosϑ+ i sinϑ), % > 0, ϑ ∈ (−π, π],

from (1.1.2) we have

zn = %n (cos(nϑ) + i sin(nϑ)).

This is not an injective function, unless we are in the trivial case n = 1. Indeed, for every point

z = % (cosϑ+ i sinϑ),
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Figure 2. The restriction of the function z 7→ zn on the region Sn is bijective (here n = 5).

such that

−π
n
< ϑ ≤ π

n
, z ∈ C,

we obtain that the points

zk = %

Å
cos

Å
ϑ+

2 k π

n

ã
+ i sin

Å
ϑ+

2 k π

n

ãã
, k = 1 . . . , n− 1,

are distinct and such that

zn1 = · · · = znn−1 = zn,

i.e. they have the same image. Indeed, we know that for every w ∈ C∗, the equation

(1.5.1) zn = w,

admits n distinct solutions, given by the formula

(1.5.2) zk = n
»
|w|

Å
cos

Å
ϑ

n
+

2 k π

n

ã
+ i sin

Å
ϑ

n
+

2 k π

n

ãã
, k = 0, 1 . . . , n− 1,

where ϑ is now an argument of w. On the other hand, if we take the restriction of the n−th power
function to the sector

Sn =

ß
z ∈ C∗ : −π

n
< Arg(z) ≤ π

n

™
∪ {0},

then this becomes injective. Moreover, since we showed that (1.5.1) always admits at least a
solution z ∈ Sn for every w ∈ C, this is surjective as well.

• Principal n−th root. We have seen that for every n ∈ N \ {0, 1}, the function

Sn → C
z 7→ zn

is bijective. Thus its inverse function is well-defined and called principale value n−th root. This is
the function

C → Sn
w 7→ “the unique solution z ∈ Sn to the equation zn = w ′′,
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which will be denoted by the usual symbol n
√
z. By construction is the function defined by

n
√
z = n

»
|z|
ñ
cos

Ç
Arg(z)

n

å
+ i sin

Ç
Arg(z)

n

åô
,

n
√

0 = 0.

We observe that for n ≥ 2 this function has a discontinuity along the semiaxis of negative real
numbers, due to the presence of the principal argument (recall Example 1.3.4). In other words, the
function z 7→ n

√
z is continuous only on C∗∗. Moreover, for every z0 ∈ C∗∗ we have

d

dz
(zn)| n√z0 = n ( n

√
z0)n−1 6= 0,

thus by using the formula for the derivative of the inverse function (see Proposition 1.4.5), we easily
get

d

dz
n
√
z =

1

n ( n
√
z)
n−1 =

1

n
z

1
n
−1, for every z ∈ C∗∗.

Such a function is continuous on C∗∗ and thus the principal n−th root is holomorphic on C∗∗.

• Complex exponential. This is defined by

ez = ex+i y := ex (cos y + i sin y) , z = x+ i y ∈ C.

By its definition, we immediately get

(1.5.3) |ez| = ex | cos y + i sin y| = ex,

thanks to the well-known trigonometric relation

cos2 y + sin2 y = 1, for every y ∈ R.

Observe that this is derivable for every z ∈ C, since

∂

∂y
ez = ex (− sin y + i cos y) = i ez = i

∂

∂x
ez,

thus by Proposition 1.4.7 we get
d

dz
ez = ez,

as for the usual exponential function. Moreover, since the derivative is continuous, we get that
the complex exponential is an entire function. Observe that from the previous formula for the
derivative, we get in particulat

1 = e0 =
d

dz
ez|z=0 = lim

z→0

ez − e0

z
,

that is

(1.5.4) lim
z→0

ez − 1

z
= 1.

Observe that we have

ez 6= 0, for every z ∈ C.
By definition, we have

ez+2π i = ez, for every z ∈ C,
thus the complex exponential is periodic, with (complex) period 2π i. In particular, the complex
exponential is not injective. We also observe that

(1.5.5)
“the complex exponential sends the vertical line {z : Re(z) = x}

into the circle of radius ex and center 0”
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On the other hand, the complex exponential is surjective as a function from C to C∗: indeed, for
every w ∈ C∗, we have

ez = w ⇐⇒ ex (cos y + i sin y) = |w|
(

cos(Arg)(w) + i sin(Arg)(w)
)

⇐⇒
®
ex = |w|,
y = Arg(w) + 2 k π, k ∈ Z

⇐⇒
®
x = log |w|,
y = Arg(w) + 2 k π, k ∈ Z

(1.5.6)

The complex exponential becomes bijective when restricted to

(1.5.7) S = {z ∈ C : −π < Im(z) ≤ π},

since for every w ∈ C∗ the set S contains one and one only of the solutions found in (1.5.6) (i.e.
the one corresponding to k = 0).

• Principal logarithm. As for the usual logarithm, roughly speaking this is defined as the
inverse function of the (complex) exponential. Once again, we should be careful, since the complex
exponential is not a bijective function and thus the concept of inverse function is not well-defined.
From the discussion above, we know that

S → C∗
z 7→ ez

is a bijective function. Thus we can define the inverse function

C∗ → S
w 7→ “ the unique solution z ∈ S to the equation ez = w ′′

We use the notation Logw for this function and call it principal logarithm. From (1.5.6), we know
that this function has an explicit expression, given by

Logw = log |w|+ iArg(w), for every w ∈ C∗.

Observe that we can now give a sense to expressions like Log (−7), since by definition of principal
logarithm we have

Log (−7) = log 7 + i π.

We observe that the principal logarithm is discontinuous across the semiaxis of negative real num-
bers, exactly like it happens for the principal value n−th root. Again, this is due to the presence
of the principal argument.

On the set C∗∗, the principal logarithm is a holomorphic function, with derivative (again, it is
sufficient to use the formula for the inverse function)

d

dz
Log z =

1

eLog z
=

1

z
, z ∈ C∗∗,

which is analogous to the case of the usual real logarithm.

• Complex trigonometric functions. We observe that by definition of complex exponential, we
have the identities for x real number

cosx =
ei x + e−i x

2
, sinx =

ei x − e−i x

2 i
, x ∈ R.
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It is then natural to extend the cosinus and sinus functions to the complex variable, by defining
them as

cos z =
ei z + e−i z

2
, sin z =

ei z − e−i z

2 i
, z ∈ C.

By the definition, we immediately get that these are entire functions, as sums of entire functions.
Moreover, we have

d

dz
cos z =

d

dz

ei z + e−i z

2
= i

ei z − e−i z

2
= −e

i z − e−i z

2 i
= − sin z,

and
d

dz
sin z =

d

dz

ei z − e−i z

2 i
=
ei z + e−i z

2
= cos z.

We also have

cos(z + 2π) = cos z and sin(z + 2π) = sin z,

thus these are still periodic functions, with (real) period 2π. By recalling that

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
, for x ∈ R,

with some elementary manipulations we obtain

cos(x+ i y) = cosx cosh y − i sinx sinh y,

(1.5.8) sin(x+ i y) = sinx cosh y + i cosx sinh y.

In particular, we obtain that1

cos z = 0 ⇐⇒
®

cosx cosh y = 0
sinx sinh y = 0

⇐⇒
®

cosx = 0
sinx = 0 or sinh y = 0

By observing that if sinh y 6= 0 the previous system does not admit solution and that sinh y vanishes
at y = 0 only, we finally get

cos z = 0 ⇐⇒ z =
π

2
(2 k + 1), k ∈ Z.

In other words, the zeros of the complex cosinus coincide with the zeros of its restriction to the real
axis. In a similar fashion, we can prove the same property for the sinus.

By appealing to the definition, it is not difficult to see that we still have the usual addition
formulas for every z, w ∈ C

cos(z + w) = cos z cosw − sin z sinw,

sin(z + w) = sin z cosw + cos z sinw.

We also have the fundamental relation

cos2 z + sin2 z = 1, z ∈ C.

This may be proved by observing that cos2 z + sin2 z is an entire function and

d

dz

Ä
cos2 z + sin2 z

ä
= −2 cos z sin z + 2 sin z cos z = 0.

1Recall that cosh y ≥ 1, for every y ∈ R. In particular cosh y never vanishes.
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By Lemma 1.4.6 we get that cos2 z + sin2 z has to be constant. In particular

cos2 z + sin2 z = cos2 0 + sin2 0 = 1, z ∈ C.

As in the case of one real variable, we have

(1.5.9) lim
z→0

sin z

z
= 1 and lim

z→0

1− cos z

z2
=

1

2
.

In order to prove the first one, it is sufficient to observe that by definition this coincides with the
derivative of sinus at z = 0. Thus we get

lim
z→0

sin z

z
=
d sin z

dz |z=0
= cos(0) = 1.

For the second limit we proceed as follows

lim
z→0

1− cos z

z2
= lim

z→0

1− cos z

z2

1 + cos z

1 + cos z
= lim

z→0

1

1 + cos z

1− cos2 z

z2

=
1

2
lim
z→0

sin2 z

z2
=

1

2
lim
z→0

Å
sin z

z

ã2

,

which gives the desired conclusion.

6. Integrals in the complex plane

Definition 1.6.1. Let a < b be two real numbers, a curve in the complex plane is a function
γ : [a, b]→ C. We will denote by

Γγ := {z ∈ C : ∃t ∈ [a, b] such that z = γ(t)},

the image of γ. We say that γ is regular if is C1 and

|γ′(t)| 6= 0, t ∈ [a, b].

We say that a continuous curve γ : [a, b]→ C is

• closed if γ(a) = γ(b);

• simple if γ is injective on [a, b);

• a loop if it is a closed simple curve (see figure below).

Definition 1.6.2 (Reparametrization). Let γ : [a, b]→ C be a regular curve. Let φ : [c, d]→ [a, b]
be a C1 strictly monotone surjective function, with φ′(t) 6= 0 for every t ∈ [c, d]. Then the new curve
γ̃ := γ ◦ φ : [c, d]→ C is said to be a reparametrization of γ. We say that the reparametrization is:

• orientation preserving if φ′(t) > 0 for every t ∈ [c, d];

• orientation reversing if φ′(t) < 0 for every t ∈ [c, d].

We use the notation γ− for the particular orientation reversing reparametrization γ− : [a, b] :→ C
defined by

(1.6.1) γ−(t) = γ(b− t+ a).

Roughly speaking, this is the curve γ “run in the opposite sense”.
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Figure 3. From left to right: the image of a closed curve which is not simple; the image of a simple
curve which is not closed; the image of a loop.

Example 1.6.3 (Circle). Let z0 ∈ C and r > 0. The curve γ : [0, 1]→ C defined by

γ(t) = z0 + r e2π i t, t ∈ [0, 1],

is a regular loop. Its image is the circle of radius r and center z0. The curve γ̃ : [0, 2π]→ C defined
by

γ̃(t) = z0 + r ei t, t ∈ [0, 2π],

is an orientation preserving reparametrization of γ. Indeed, we have γ̃ = γ ◦φ, with φ(t) = t/(2π).
We also observe that the orientation reversing reparametrization γ− is given by

γ−(t) = z0 + r e2π i (1−t) = z0 + r e−2π i t, t ∈ [0, 2π].

Definition 1.6.4 (Glueing of curves). Let γ1 : [a, b] → C and γ2 : [b, c] → C be two continuous
curves such that

γ1(b) = γ2(b).

Then we can glue the two curves together, by defining the new curve γ̆1 γ2 : [a, c]→ C through

γ̆1 γ2(t) =

®
γ1(t), if t ∈ [a, b],
γ2(t), if t ∈ [b, c].

We say that a curve γ : [a, b] → C is piecewise regular if it is obtained by gluing together a finite
number of regular curves.

Definition 1.6.5. Let f : A→ C be a continuous function on the open set A ⊂ C. Let γ : [a, b]→ C
be a piecewise regular curve such that Γγ ⊂ A. Then we set

ˆ
γ
f(z) dz =

ˆ b

a
f(γ(t)) γ′(t) dt.

Remark 1.6.6. The value of the integral does not change if we replace γ by an orientation preserv-
ing reparametrization. Indeed, let γ̃ = γ ◦φ : [c, d]→ C be such a reparametrization (by hypothesis
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φ′ > 0), then we haveˆ
γ̃
f(z) dz =

ˆ d

c
f(γ̃(t)) γ̃′(t) dt =

ˆ d

c
f(γ(φ(t))) γ′(φ(t))φ′(t) dt

=

ˆ b

a
f(γ(τ)) γ′(τ) dτ =

ˆ
γ
f(z) dz,

where we used the usual change of variable formula for integrals of one real variable. With similar
manipulations we obtain that if γ̃ = γ ◦ φ is orientation reversing (so that φ′ < 0), thenˆ

γ̃
f(z) dz = −

ˆ
γ
f(z) dz.

In particular, by recalling the definition (1.6.1), we have

(1.6.2)

ˆ
γ
f(z) dz +

ˆ
γ−
f(z) dz = 0,

for every piecewise regular curve γ.

The following simple result can be regarded as the fundamental Theorem of Calculus, in the
complex plane.

Lemma 1.6.7. Let A ⊂ C be a connected open set and let f : A→ C be an holomorphic function.
For every z0, z1 ∈ A we have

f(z1) = f(z0) +

ˆ
γ
f ′(z) dz,

where γ : [a, b]→ C is any piecewise regular curve such that Γγ ⊂ A and

γ(b) = z1 and γ(a) = z0.

Proof. It is sufficient to use the definition of integral, i.e.ˆ
γ
f ′(z) dz =

ˆ b

a
f ′(γ(t)) γ′(t) dt,

and observe that
d

dt
f(γ(t)) = f ′(γ(t)) γ′(t).

Thus, by the fundamental Theorem of Calculus for functions of one real variable, we getˆ
γ
f ′(z) dz =

ˆ b

a
f ′(γ(t)) γ′(t) dt = f(γ(b))− f(γ(a)) = f(z1)− f(z0),

as desired. �

Definition 1.6.8. Let γ : [a, b]→ C be a regular loop. We define its tangent versor by

Tγ(t) =
γ′(t)

|γ′(t)|
, t ∈ [a, b].

Its normal versor is defined by2

Nγ(t) = −iTγ(t), t ∈ [a, b].

2By recalling formula (1.1.2), the multiplication by −i geometrically corresponds to rotate the versor Tγ(t) clockwise of

an angle π/2.
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Definition 1.6.9. Let γ : [a, b]→ C be a piecewise regular loop. We denote by D the set entoured
by γ. We say that γ is positively oriented if for every t ∈ [a, b] the normal versor Nγ(t) is exiting
from D.

Example 1.6.10. Let z0 ∈ C and r > 0, then the regular loop

γ(t) = z0 + r e2π i t, for t ∈ [0, 1],

is positively oriented, while γ− is negatively oriented.

The following simple result will be useful.

Lemma 1.6.11. Let {gk}k∈N be a sequence of continuous functions on the open set A ⊂ C. Let
γ : [a, b] → C be a piecewise regular curve, whose image in contained in A. Assume that {gk}k∈N
converges uniformly on the image of γ to some continuous function g, i.e.

lim
k→∞

Ç
max
z∈Γγ

|gk(z)− g(z)|
å

= 0.

Then we have

lim
k→∞

ˆ
γ
gk(z) dz =

ˆ
γ
g(z) dz.

Proof. Let ε > 0, by definition of uniform convergence there exists k0 ∈ N such that

|gk(γ(t))− g(γ(t))| < ε, for every k ≥ k0 and t ∈ [a, b].

We thus obtain for every k ≥ k0∣∣∣∣∣
ˆ
γ
gk(z) dz −

ˆ
γ
g(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
ˆ b

a

[
gk(γ(t))− g(γ(t))

]
γ′(t) dt

∣∣∣∣∣
≤
ˆ b

a
|gk(γ(t))− g(γ(t))| |γ′(t)| dt

≤ ε
ˆ b

a
|γ′(t)| dt.

By the arbitrariness of ε > 0, we get the conclusion. �

Theorem 1.6.12 (Cauchy’s Theorem). Let A ⊂ C be a connected open set and let f : A → C be
an holomorphic function. For every positively oriented piecewise regular loop γ such that Γγ ⊂ A
and such that the region entoured by Γγ is contained in A, we have

ˆ
γ
f(z) dz = 0.

Proof. We write

f(z) = u(x, y) + i v(x, y), z = x+ i y,

and

γ(t) = γ1(t) + i γ2(t), t ∈ [a, b],
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with γ1, γ2 : [a, b]→ R piecewise C1 functions. We can write the integral of f on γ asˆ
γ
f(z) dz =

ˆ b

a

[
u(γ1(t), γ2(t)) + i v(γ1(t), γ2(t))

]
(γ′1(t) + i γ′2(t)) dt

=

ˆ b

a

[
u(γ1(t), γ2(t)) γ′1(t)− v(γ1(t), γ2(t)) γ′2(t)

]
dt

+ i

ˆ b

a

[
u(γ1(t), γ2(t)) γ′2(t) + v(γ1(t), γ2(t)) γ′1(t)

]
dt.

If we introduce the two vector fields

V(x, y) = (u(x, y),−v(x, y)) and W(x, y) = (v(x, y), u(x, y)),

we can rewrite the previous formulaˆ
γ
f(z) dz =

ˆ
γ
〈V,Tγ〉 d`+ i

ˆ
γ
〈W,Tγ〉 d`,

and the last two integrals represent the work of the two vector fields along the curve γ. Let us call
D ⊂ A the region entoured by γ, so that γ is a positively oriented parametrization of ∂D. Then
by using the Gauss-Green formula we know thatˆ

γ
〈V,Tγ〉 d` =

¨
D

ï
−∂v
∂x
− ∂u

∂y

ò
dx dy,

and ˆ
γ
〈W,Tγ〉 d` =

¨
D

ï
∂u

∂x
− ∂v

∂y

ò
dx dy.

We thus obtainedˆ
γ
f(z) dz =

¨
D

ï
−∂v
∂x
− ∂u

∂y

ò
dx dy + i

¨
D

ï
∂u

∂x
− ∂v

∂y

ò
dx dy.

We now get the conclusion by recalling that

∂v

∂x
= −∂u

∂y
and

∂u

∂x
=
∂v

∂y
,

which are the Cauchy-Riemann equations (1.4.3) in real form. �

Corollary 1.6.13 (Deformation of contour). Let A ⊂ C be a connected open set and let f : A→ C
be a holomorphic function. Let γ1 and γ2 be two piecewise regular loops contained in A, both
positively oriented. We indicate with D1 and D2 the regions entoured by Γγ1 and Γγ2 respectively.
We suppose that D2 ⊂ D1 and that D1 \D2 ⊂ A. Then we haveˆ

γ1

f(z) dz =

ˆ
γ2

f(z) dz.

Proof. We give an idea of the proof. We connect the images of γ1 and γ2 through two simple
curves ξ1 and ξ2, as in Figure 4. We thus obtain two new pairs of simple curves, that we call γN1 ,
γS1 and γS2 , γN2 . By construction, we have

(1.6.3) γ̇N1 γS1 = γ1 and γ̇N2 γS2 = γ2.

We now define two piecewise regular positively oriented loops as followsˇ�γN1 ξ2 (γN2 )− ξ1 and ˇ�γS1 (ξ1)− (γS2 )− (ξ2)−,
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Figure 4. An illustration of the hypotheses and the construction of Corollary 1.6.13. The integral
on γ1 of a function f is the same as that on γ2, provided that f is holomorphic in the annular
region in between the two curves.

i.e. they are both obtained by glueing 4 simple curves. By construction and thanks to the hypothe-
ses, we have that both loops entour a region on which f is holomorphic. Thus by Theorem 1.6.12,
we have ˆˇ�γN1 ξ2 (γN2 )− ξ1

f(z) dz = 0,

and ˆ ˇ�γS1 (ξ1)− (γS2 )− (ξ2)−
f(z) dz = 0.

By using the definition of glueing of curves and property (1.6.2), these equations becomeˆ
γN1

f(z) dz +

ˆ
ξ2

f(z) dz −
ˆ
γN2

f(z) dz +

ˆ
ξ1

f(z) dz = 0,

and ˆ
γS1

f(z) dz −
ˆ
ξ1

f(z) dz −
ˆ
γS2

f(z) dz −
ˆ
ξ2

f(z) dz = 0.

By summing these two equation and erasing the integrals over ξ1 and ξ2, we obtainˆ
γN1

f(z) dz +

ˆ
γS1

f(z) dz −
ˆ
γN2

f(z) dz −
ˆ
γS2

f(z) dz = 0.

By recallig (1.6.3), we get the desired conclusion. �

In turn, the deformation of contour implies the following remarkable result.

Theorem 1.6.14 (Cauchy’s integral formula). Let A ⊂ C be a connected open set and let f : A→ C
be a holomorphic function. Let γ be a positively oriented piecewise regular loop contained in A,
together with the region D entoured by γ. For every z ∈ D we have

(1.6.4) f(z) =
1

2π i

ˆ
γ

f(s)

s− z
ds.
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Proof. Let z ∈ D and let r > 0 be small enough, so that the disk Br(z) is contained in D. Let

γr(t) = r e2π i t + z, t ∈ [0, 1],

and observe that this is positively oriented. Then by applying Corollary 1.6.13 to the function
s 7→ f(s)/(s− z) (which is holomorphic in the open set A \ {z}), we obtainˆ

γ

f(s)

s− z
ds =

ˆ
γr

f(s)

s− z
ds = 2π i

ˆ 1

0

f(z + r e2π i t)

r e2π i t
r e2π i t dt

= 2π i

ˆ 1

0
f(z + r e2π i t) dt.

This identity implies in particular that the last integral is independent of r > 0. Thus we get

(1.6.5)

ˆ
γ

f(s)

s− z
ds = lim

r→0

ˆ 1

0
f(z + r e2π i t) dt

By using that the function of one real variable

t 7→ f(z + r e2π i t), t ∈ [0, 1],

converges uniformly to f(z), as r goes to 0, we get

lim
r→0

ˆ 1

0
f(z + r e2π i t) dt =

ˆ 1

0
f(z) dt = f(z),

i.e. we can pass the limit under the integral sign. By using this in (1.6.5), we get the conclusion. �

7. Intermezzo: complex power series

Let {an}n∈N ⊂ C be a sequence of complex numbers. For a fixed z0 ∈ C, we can consider the power
series centered at z0

∞∑
n=0

an (z − z0)n.

This is well-defined for every z ∈ C such that the sequence

(1.7.1) sk(z) :=
k∑

n=0

an (z − z0)n,

converges to a complex number λ ∈ C. This means that

∀ε > 0, ∃k0 ∈ N such that |sk(z)− λ| < ε for every k ≥ k0.

We observe that a power series is a particular case of the larger class of series of functions.

Definition 1.7.1. We say that the power series
∞∑
n=0

an (z − z0)n,

converges:

• absolutely if
∞∑
n=0

|an| |z − z0|n < +∞;

• uniformly on A ⊂ C if the sequence of functions {sk}k∈N defined by (1.7.1) converge
uniformly on A;
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• totally on A ⊂ C if
∞∑
n=0

sup
z∈A

(|an| |z − z0|n) < +∞.

Remark 1.7.2. We observe that if for some z1 6= z0 a power series is absolutely convergent, then
it is automatically totally convergent on the closed disk B%(z0), where % = |z1 − z0|. Indeed, for
every n ∈ N we have

sup
z∈B%(z0)

(|an| |z − z0|n) = |an| %n = |an| |z1 − z0|n,

and thus
∞∑
n=0

sup
z∈B%(z0)

(|an| |z − z0|n) =
∑
n=0

|an| |z1 − z0|n < +∞.

This property is of course a peculiarity of power series.

Theorem 1.7.3. Let
∑∞
n=0 an (z − z0)n be a power series with

(1.7.2) lim sup
n→∞

n
»
|an| = L < +∞.

i) The power series is totally convergent on every closed disk B%(z0) with radius % < 1/L
(with the convention that if L = 0, then 1/L = +∞).

ii) The power series does not converge for every z such that |z − z0| > 1/L.

Proof. In order to prove i), we first observe that by Remark 1.7.2 it is sufficient to prove that for
every % < 1/L, the power series

∞∑
n=0

an
(
(%+ z0)− z0

)n
=
∞∑
n=0

an %
n,

is absolutely convergent. From (1.7.2), we know that for every ε > 0, there exists nε ∈ N such that

n
»
|an| < L+ ε, for every n ≥ nε.

In particular, if we take

ε =
1

2

Å
1

%
− L

ã
> 0,

then there exists nε ∈ N such that

|an| < (L+ ε)n =

Å
L

2
+

1

2 %

ãn
, for every n ≥ nε.

Thus we get

|an| %n <
Å
L

2
+

1

2 %

ãn
%n =

Å
L%+ 1

2

ãn
, for every n ≥ nε.

Since by construction
L%+ 1

2
< 1,

we get the desired result by comparison with the geometric series.

Let us now prove ii). Still by (1.7.2), we know that for every ε > 0 there exists a subsequence
{ank}k∈N such that

nk

»
|ank | > L− ε, for every k.
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We pick z ∈ C such that |z − z0| = % > 1/L and choose

ε =
1

2

Å
L− 1

%

ã
> 0,

thus there exists a subsequence {ank}k∈N such that

|ank | |z − z0|nk > (L− ε)nk %nk =

Å
1

2 %
+
L

2

ãnk
%nk

=

Å
1 + L%

2

ãnk
> 1, for every k.

This implies that an (z−z0)n doest not converge to zero and thus the power series can not converge.
�

Definition 1.7.4. Let {an}n∈N ⊂ C be a sequence such that

lim sup
n→∞

n
»
|an| = L.

Then R = 1/L is called radius of convergence of the power series
∑∞
n=0 an (z − z0)n. We use the

following conventions:

R =
1

L
= +∞, if L = 0,

and

R =
1

L
= 0, if L = +∞.

Proposition 1.7.5. Let

s(z) =
∞∑
n=0

an (z − z0)n,

be a power series with radius of convergence R > 0. Then the new series
∑∞
n=1 nan (z− z0)n−1 has

the same radius of convergence R > 0.

Moreover, s is a holomorphic function on BR(z0), with

s′(z) =
∞∑
n=1

nan (z − z0)n−1, z ∈ BR(z0).

Proof. We first verify the first statement about the radius of convergence. We first rewrite
∞∑
n=1

nan (z − z0)n−1 =
1

z − z0

∞∑
n=1

nan (z − z0)n,

then the radius of convergence of this power series is given by

1

lim sup
n→∞

n
»
n |an|

.

It is then sufficient to observe that3

lim sup
n→∞

n
√
n = lim

n→∞
e

logn
n = 1,

thus we obtain

lim sup
n→∞

n
»
|an| = lim sup

n→∞
n
»
n |an|,

3We use that logn = o(n) for n→∞.
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as desired.

We now show that the function s can be differentiated in complex sense. We take z ∈ BR(z0)
and h ∈ C∗ such that we still have z + h ∈ BR(z0). For this, it is sufficient to take

(1.7.3) 0 < |h| < R− |z − z0|
2

.

We now write

s(z + h)− s(z)
h

=
∞∑
n=0

an

ñ
(z + h− z0)n − (z − z0)n

h

ô
= a1

(z − z0 + h)− (z − z0)

h
+
∞∑
n=2

an

ñ
(z + h− z0)n − (z − z0)n

h

ô
= a1 +

∞∑
n=2

an

ñ
(z + h− z0)n − (z − z0)n

h

ô
.

We take γ : [0, 1]→ BR(z0) to be the regular curve such that

γ(t) = z + t h, for t ∈ [0, 1].

We observe that each function

s 7→ (s− z0)n,

is holomorphic, thus by Exercise 1.13.1 for every n ≥ 2 we can infer

(z + h− z0)n = (z − z0)n + n (z − z0)n−1 h+

ˆ
γ
n (n− 1) (w − z0)n−2 (z + h− w) dw.

In other words, we haveñ
(z + h− z0)n − (z − z0)n

h

ô
= n (z − z0)n−1

+ n (n− 1)
1

h

ˆ
γ
(w − z0)n−2 (z + h− w) dw

= n (z − z0)n−1

+ n (n− 1)h

ˆ 1

0
(z + t h− z0)n−2 (1− t) dt.

(1.7.4)

We now observe that the last term is the n−th term of a converging series. More precisely, we have∣∣∣∣∣n (n− 1) |h|
ˆ 1

0
|z + t h− z0|n−2 (1− t) dt

∣∣∣∣∣ ≤ n (n− 1) |h|
ˆ 1

0
(|z − z0|+ t |h|)n−2 dt

≤ n (n− 1) |h|
ˆ 1

0

Ç
|z − z0|+ t

R− |z − z0|
2

ån−2

dt

≤ n (n− 1) |h|
Ç
R+ |z − z0|

2

ån−2

,

where we used (1.7.3), to estimate the integral from above. The claimed convergence above now
follows from the convergence of the power series

∞∑
n=2

n (n− 1) an

Ç
R+ |z − z0|

2

ån−2

.
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Indeed, we have

lim
n→∞

n
»
n (n− 1) |an| = lim

n→∞
n
»
|an| =

1

R
,

and
R+ |z − z0|

2
< R.

If we now set for simplicity

g(z) =
∞∑
n=2

n (n− 1)

ˆ 1

0
(z + t h− z0)n−2 (1− t) dt,

this is a finite quantity, by the previous discussion. We have obtained from (1.7.4)

s(z + h)− s(z)
h

= a1 +
∞∑
n≥2

nan (z − z0)n−1 + h g(z)

=
∞∑
n=1

nan (z − z0)n−1 + h g(z).

By taking the limit as h goes to 0, we finally obtain that the function s is derivable in every
z ∈ BR(z0) and

s′(z) =
∞∑
n=1

nan (z − z0)n−1.

By Theorem 1.7.3, the convergence of the last series is uniform on every B%(z0) with % < R. As

every function z 7→ (z − z0)n−1 is continuous, we get that s′ is continuous as well on B%(z0), for
every % < R. This finally shows that s is holomorphic on BR(z0). �

By iterating the previous result, we obtain the following.

Corollary 1.7.6. Let

s(z) =
∞∑
n=0

an (z − z0)n,

be a power series with radius of convergence R > 0. Then s is derivable infinitely many times in
BR(z0) and we have

(1.7.5) s(k)(z) =
∞∑
n=k

n (n− 1) . . . (n− k + 1) an (z − z0)n−k, for z ∈ BR(z0).

Remark 1.7.7. We observe that by taking z = z0 in (1.7.5), we get

s(k)(z0) = k (k − 1) . . . 1 ak = k! ak.

Thus s can be rewritten as

s(z) =
∞∑
n=0

s(n)(z0)

n!
(z − z0)n.

In other words, a power series centered at z0 with positive radius of convergence is a C∞ function
which coincides with its Taylor series centered at z0.

The following result is useful. It states that a power series can be “integrated” term by term.
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Corollary 1.7.8 (Integrating a power series). Let

s(z) =
∞∑
n=0

an (z − z0)n,

be a power series with radius of convergence R > 0. Then for every c ∈ C, the new series

S(z) = c+
∞∑
n=0

an
n+ 1

(z − z0)n+1,

have the same radius of convergence R > 0.

Moreover, S is a holomorphic function on BR(z0) such that

S′(z) =
∞∑
n=0

an (z − z0)n = s(z), for z ∈ BR(z0).

Proof. We can rewrite the second power series as

c+
∞∑
n=0

an
n+ 1

(z − z0)n+1 =
∞∑
n=0

ãn (z − z0)n,

where

ãn =


c, if n = 0,

an−1

n
, if n ≥ 1.

We then observe that

lim sup
n→∞

n
»
|ãn| = lim sup

n→∞

n

 
|an−1|
n

= lim sup
n→∞

n
»
|an−1|
n
√
n

= lim sup
n→∞

n
»
|an−1|

= lim sup
n→∞

n
»
|an|,

thus the two power series have the same radius of convergence. The second part of the statement
now follows by appyling Proposition 1.7.5 to the power series

∞∑
n=0

ãn (z − z0)n.

This concludes the proof. �

Example 1.7.9. We can use the previous results to compute explicitly the sum of some remarkable
power series. For example, we know that

∞∑
n=0

zn =
1

1− z
, for |z| < 1.

Then the two power series

f(z) =
∞∑
n=1

n zn−1 and g(z) = c+
∞∑
n=0

1

n+ 1
zn+1,

still have radius of convergence 1 and they are holomorphic functions on the open disk B1(0).
Moreover, we know by Proposition 1.7.5 and Corollary 1.7.8 that

f(z) =
d

dz

1

1− z
=

1

(1− z)2
, for |z| < 1,
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and

g′(z) =
1

1− z
, for |z| < 1.

In other words, g is a primitive of 1/(1− z) in B1(0). Such a primitive can be computed explicitly,
by observing that the function h(z) = Log(1− z) is holomorphic on

A := C \ {z ∈ C : Re z ≥ 1 and Im z = 0},

with

h′(z) = − 1

1− z
, z ∈ A.

We thus obtain that

g′(z) = −h′(z) for z ∈ A ∩B1(0) = B1(0).

Since B1(0) is a connected open set, this means that g and −h coincides on B1(0) up to a constant
(thanks to Lemma 1.4.6). Finally, since g(0) = c and −h(0) = 0, this implies that

g(z) = c− h(z), for |z| < 1

and thus

c+
∞∑
n=0

1

n+ 1
zn+1 = c− Log(1− z), |z| < 1.

Observe that we get in particular

∞∑
n=1

zn

n
= −Log(1− z), |z| < 1.

8. Properties of holomorphic functions

Definition 1.8.1. Let A ⊂ C be an open connected set, we say that f : A→ C is analytic in A if
for every z0 ∈ A it admits the Taylor series expansion in every Br(z0) ⊂ A, i.e.

f(z) =
∞∑
n=0

cn (z − z0)n, z ∈ Br(z0),

with cn = f (n)(z0)/n!

Holomorphic functions have the following striking property.

Theorem 1.8.2 (Holomorphic = analytic). Let A ⊂ C be a connected open set and let f : A→ C
be a holomorphic function. Then f is analytic, i.e. for every z0 ∈ A we have

f(z) =
∞∑
n=0

cn (z − z0)n, for |z − z0| < dist(z0, ∂A).

Moreover, each coefficient cn has the following expression

(1.8.1) cn =
f (n)(z0)

n!
=

1

2π i

ˆ
γ

f(s)

(s− z0)n+1
ds,

where γ is any positively oriented piecewise regular loop such that Γγ ⊂ A and such that, if we call
D the domain entoured by Γγ, we have z0 ∈ D ⊂ A.
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Proof. Let z ∈ A be such that |z − z0| < dist(z0, ∂A). We set r = |z − z0| and set

R =
r + dist(z0, ∂A)

2
.

We take the positively oriented loop

γR(t) = z0 +Re2π i t, t ∈ [0, 1],

whose image is the circle ∂BR(z0) centered at z0 with radius R. By construction, we have z ∈
BR(z0) ⊂ A, thus we can apply Cauchy’s formula (1.6.4). This gives

f(z) =
1

2π i

ˆ
γR

f(s)

s− z
ds =

1

2π i

ˆ
γR

f(s)

s− z0 − (z − z0)
ds

=
1

2π i

ˆ
γR

f(s)

s− z0

1

1− z − z0

s− z0

ds.

We now observe that by construction

(1.8.2)

∣∣∣∣z − z0

s− z0

∣∣∣∣ =
r

R
< 1, for every s ∈ ΓγR ,

thus we have
1

1− z − z0

s− z0

=
∞∑
n=0

Å
z − z0

s− z0

ãn
,

and the convergence of the series is uniform for s ∈ ΓγR , thanks to (1.8.2). We thus obtain

f(z) =
1

2π i

ˆ
γR

∞∑
n=0

Å
z − z0

s− z0

ãn f(s)

s− z0
ds

=
1

2π i

∞∑
n=0

Çˆ
γR

f(s)

(s− z0)n+1
ds

å
(z − z0)n,

where the exchange between the summation and integral sign has been possible thanks to the
uniform convergence of the series4. This shows that f is analytic, with coefficients given by (1.8.1)
and γR the curve whose image is the circle ∂BR(z0).

On the other hand, by observing that the function

s 7→ f(s)

(s− z0)n+1
,

is holomorphic in A \ {z0}, by Corollary 1.6.13 the integralˆ
γR

f(s)

(s− z0)n+1
ds,

is unchanged if γR is replaced by the positively oriented loop

γ%(t) = z0 + % e2π i t, t ∈ [0, 1],

4In other words, we can use Lemma 1.6.11 with the choices

gk(s) =

k∑
n=0

(
z − z0
s− z0

)n
, g(s) =

∞∑
n=0

(
z − z0
s− z0

)n
.
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where % > 0 is any radius such that
% < dist(z0, ∂A).

Thus, if γ is any positively oriented piecewise regular loop as in the statement, by choosing % > 0
sufficiently small we get that γ and γ% satisfy the hypotheses of Corollary 1.6.13. In conclusion we
get ˆ

γR

f(s)

(s− z0)n+1
ds =

ˆ
γ%

f(s)

(s− z0)n+1
ds =

ˆ
γ

f(s)

(s− z0)n+1
ds,

and this concludes the proof. �

Remark 1.8.3 (Taylor expansion of the exponential). From the previous result, we get that the
entire function f(z) = ez is analytic in C and there holds

ez =
∞∑
n=0

zn

n!
, for z ∈ C.

We now have a closer look at the zeros of a holomorphic function. First of all, we need the
following

Definition 1.8.4. Let f : A→ C be a holomorphic function, we say that z0 ∈ A is a zero of order
m ∈ N \ {0} if

f(z0) = f ′(z0) = · · · = f (m−1)(z0) = 0 and f (m)(z0) 6= 0.

Observe that since f is analytic (Theorem 1.8.2), if it has a zero of order m at z0, then in a
neighborhood of z0 it admits the Taylor expansion

f(z) =
∞∑
k=m

f (k)(z0)

k!
(z − z0)k.

Proposition 1.8.5 (Unique continuation principle). Let A ⊂ C be an open connected set and let
f : A→ C be a holomorphic function. The following three facts are equivalent:

1. there exists z0 ∈ A such that f (n)(z0) = 0, for every n ∈ N;

2. f vanishes identically in Br(z0) for some r > 0;

3. f vanishes identically in A.

Proof. Of course, we easily have 3. =⇒ 2. =⇒ 1. Also, by using the fact that f is analytic by
Theorem 1.8.2, we easily get that 1. =⇒ 2. In order to conclude the proof, it is left to prove that
2. =⇒ 3. This point is delicate and we omit it, the reader can find the proof in [1] or [2]. �

Remark 1.8.6. The previous result asserts in particular that a holomorphic function can not have
a zero of infinite order, unless it is the trivial function f ≡ 0. This is a peculiarity of functions of
one complex variable, since for functions of one real variable this could happen. For example, the
function

f(x) =

 exp

Å
−1

x

ã
, for x > 0,

0, for x ≤ 0.

is such that f (n)(0) = 0 for every n ∈ N, but it does not reduce to the function identically vanishing
on R.

Corollary 1.8.7. Let A ⊂ C be an open connected set. Let f, g : A → C be two holomorphic
functions such that one of the following properties is satisfied:
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• there exists z0 ∈ A and r > 0 such that f = g on Br(z0);

• there exists z0 ∈ A such that f (n)(z0) = g(n)(z0) for every n ∈ N.

Then f and g coincide on A.

Proof. It is sufficient to apply Proposition 1.8.5 to the function f − g. �

Proposition 1.8.8. Let A ⊂ C be an open connected set and let f : A → C be a holomorphic
function, not identically vanishing. The set

Kf = {z ∈ A : f(z) = 0},

is either empty or discrete and made of isolated points, i.e. for every z0 ∈ Kf there exists r > 0
such that

f(z) 6= 0, for every z ∈ Ḃr(z0).

Moreover, Kf can not contain any infinite sequence {zn}n∈N such that zn → w ∈ A.

Proof. Let us suppose that Kf 6= ∅, then there exists z0 ∈ A such that f(z0) = 0. This zero
has finite order m ∈ N \ {0}, otherwise by Proposition 1.8.5 we would have f ≡ 0 on A. In a
neighborhood of z0 we thus have

f(z) = cm (z − z0)m + cm+1 (z − z0)m+1 + . . .

= (z − z0)m [cm + cm+1 (z − z0) + . . . ] = (z − z0)m g(z),

where we set

g(z) =
∞∑
n=0

cn+m (z − z0)n.

which is holomorphic in the relevant neighborhood of z0. We observe that by construction g(z0) =
cm 6= 0 and that g is continuous (since it is holomorphic). By Lemma 1.3.5, there exists r > 0 such
that in Br(z0) we still have g(z) 6= 0. This implies that

f(z) = (z − z0)m g(z) 6= 0, for every z ∈ Ḃr(z0),

as desired.

To prove the last assertion, let us assume that there exists a sequence of zeros {zn}n∈N ⊂ Kf

converging to some w ∈ A. By continuity of f , we would get

0 = lim
n→∞

f(zn) = f(w),

and thus w ∈ Kf . Since zn ∈ Kf is converging to w ∈ Kf , this contradicts the fact that Kf

contains only isolated points. �

Remark 1.8.9. We already know that

cos2 z + sin2 z = 1, for every z ∈ C.

Let us reprove this formula by using Proposition 1.8.8. We consider the entire function f(z) =
cos2 z + sin2 z − 1. By usual trigonometric formulas, we know that

f(x) = cos2 x+ sin2 x− 1 = 0, for every x ∈ R.

This implies that the set of its zeros Kf is not discrete and thus by Proposition 1.8.8 the function
f must vanish identically.
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Definition 1.8.10 (Analytic continuation). Let I ⊂ R be an interval with non-empty interior and
let f : I → R a real function of one real variable. We say that f admits an analytic continuation
to the complex plane if there exist an open set A ⊂ C and a holomorphic function F : A→ C such
that:

• I ⊂ A ∩ {z ∈ C : Im(z) = 0};

• F (x) = f(x), for every x ∈ I.

Remark 1.8.11 (Uniqueness of the analytic continuation). It is easy to see that the analytic
continuation is unique, provided it exists. Indeed, let us suppose that f : I → R admits two
different analytic continuation F1 : A→ C and F2 : A→ C. Then we would get that the difference
F1 − F2 would be a holomorphic function, identically vanishing on the interval I. Since the latter
is not discrete, we get F1 = F2 by Proposition 1.8.8.

Remark 1.8.12 (Existence of the analytic continuation?). We give a sufficient condition for a
function f : I → R to admit the analytic continuation. Let us suppose that f admits the Taylor
expansion on I = (x0 − L, x0 + L)

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n, |x− x0| < L,

If we set

F (z) =
∞∑
n=0

f (n)(x0)

n!
(z − x0)n, z ∈ BL(x0),

this defines the analytic continuation of f on BL(x0). For example, this gives another way to
construct the functions exponential, cosinus, sinus and so on.

Example 1.8.13. The functions

z 7→ ez, z 7→ cos z, z 7→ sin z,

are the analytic continuations of the respective ordinary functions defined on R. The function

z 7→ Log z,

is the analytic continuation of the ordinary logarithm function defined on (0,+∞).

9. Some remarkable consequences

Theorem 1.9.1 (Liouville’s Theorem). Let f be an entire function. If f is bounded, i.e. if there
exists C > 0 such that

|f(z)| ≤ C, for every z ∈ C,
then f is constant.

Proof. We know by Theorem 1.8.2 that f is analytic, i.e.

(1.9.1) f(z) =
∞∑
n=0

cn z
n, for every z ∈ C.

Moreover, we have the following formula for the coefficients cn

cn =
1

2π i

ˆ
γR

f(s)

sn+1
ds,
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where γR is given by
γR(t) = Rei t, t ∈ [0, 2π].

Observe that since f is entire, the radius R can be chosen arbitrarily large. Since f is bounded, we
have

|cn| =
∣∣∣∣∣ 1

2π i

ˆ
γR

f(s)

sn+1
ds

∣∣∣∣∣ =

∣∣∣∣∣ 1

2π

ˆ 2π

0

f(Rei t)

Rn+1 ei (n+1) t
Rei t dt

∣∣∣∣∣
≤ 1

2π

ˆ 2π

0

∣∣∣∣∣ f(Rei t)

Rn+1 ei n t

∣∣∣∣∣ Rdt
≤ C

2π Rn

ˆ 2π

0
dt =

C

Rn
, for every n ∈ N.

By taking the limit as R goes to +∞, we get

cn = 0, for every n ≥ 1,

Thus from the Taylor series expansion (1.9.1) of f we get the conclusion

f(z) = c0, for every z ∈ C,
as desired. �

As a remarkable consequence of Liouville’s Theorem, we have the following

Theorem 1.9.2 (Fundamental Theorem of Algebra). Let

P (z) = a0 + a1 z + · · ·+ an z
n, z ∈ C.

be a non-constant polynomial. Then P has at least a root z0 ∈ C.

Proof. We can assume without loss of generality that an 6= 0. The proof is by contradiction. Let
us suppose that P (z) 6= 0, for every z ∈ C. Then the function

f(z) =
1

P (z)
, z ∈ C,

is an entire function. Moreover, f is bounded: indeed, we observe that

|f(z)| = 1

|z|n
∣∣∣∣a0

zn
+

a1

zn−1
+ · · ·+ an

∣∣∣∣ ,
so that

lim
z→∞

|f(z)| = 0.

This means that there exists R > 0 large enough so that

|f(z)| ≤ 1, for every |z| > R.

On the other hand, by setting
BR(0) = {z ∈ C : |z| ≤ R},

for every5 z ∈ BR(0) we have

|f(z)| ≤ max
s∈BR(0)

1

|P (s)|
=

1

min
s∈BR(0)

|P (s)|
= C.

5The set {z ∈ C : |z| ≤ R} is compact and |P (z)| is a continuous function, thus existence of a minimum point is assured

by Weierstrass’ Theorem.
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In conclusion, we obtain

|f(z)| ≤ max{1, C}, for every z ∈ C.
By using Liouville’s Theorem, we obtain that f is constant. This in turn implies that P itself is
constant, contradicting the hypothesis. �

10. Singularities and the Residue Theorem

Definition 1.10.1. Let A ⊂ C be an open set and let f : A→ C be a holomorphic function. We
say that z0 is an isolated singularity for f if

• z0 6∈ A;

• there exists r > 0 such that Ḃr(z0) ⊂ A.

Example 1.10.2. The function f(z) = 1/z has an isolated singulatity at z = 0. The function
g(z) = 1/((z − 1) (z − 2)) has two isolated singularities at z = 1 and z = 2.

Example 1.10.3. By recalling that the function f(z) = Log z is defined on C∗ and holomorphic
on C∗∗, we get that f has a singularity at every point of the semiaxis of real negative numbers.
Observe that these are not isolated singularities.

Definition 1.10.4. Let f : A→ C be an holomorphic function and z0 an isolated singularity. We
say that

• z0 is removable if
lim
z→z0

f(z) = λ ∈ C;

• z0 is a pole of order m ∈ N \ {0} if

lim
z→z0

(z − z0)m f(z) = λ ∈ C∗;

• z0 is an essential singularity if it is neither removable nor a pole of finite order.

In the case of a pole of order 1, we will also call it simple pole.

Example 1.10.5. The function

f(z) =
z

sin z
, z ∈ A = C \ {k π : k ∈ Z},

is holomorphic in A, with isolated singularities at the points k π, for k ∈ Z. We observe that the
singularity at z = 0 is removable, since (recall (1.5.9))

lim
z→0

z

sin z
= 1.

On the other hand, any point of the form k π with k ∈ Z is a simple pole. Indeed, by observing
that

sin(z) = sin(z − k π + k π) = sin(z − k π) cos(k π) + cos(z − k π) sin(k π)

= sin(z − k π) cos(k π),

we have

lim
z→k π

(z − k π)
z

sin z
=

k π

cos(k π)
lim
z→k π

z − k π
sin(z − k π)

=

®
−k π, k odd,
k π, k even.
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Proposition 1.10.6. Let f : A→ C be a holomorphic function with a removable singularity at z0.
If we set

λ = lim
z→z0

f(z),

then the function

f̃(z) =

®
λ, if z = z0,

f(z), if z ∈ A,
is holomorphic in the new open set A′ = A ∪ {z0}.

Corollary 1.10.7. Let f : A → C be a holomorphic function with a pole of order m ∈ N \ {0} at
z0. We set

λ = lim
z→z0

(z − z0)m f(z),

then the function

F (z) =

®
λ, if z = z0,

(z − z0)m f(z), if z ∈ A,
is holomorphic in the new open set A′ = A ∪ {z0}.

Definition 1.10.8. Let f : A→ C be a holomorphic function and let z0 be an isolated singularity
of f . We call residue of f at z0 the quantity

res(f, z0) =
1

2π i

ˆ
γ
f(z) dz,

where γ is a positively oriented piecewise regular loop contained in A, whose image entours z0 (but
not other singularities of f).

Remark 1.10.9. By Corollary 1.6.13 we know that this definition is well-posed, since it does not
depend on γ.

Example 1.10.10. Let z0 ∈ C and take f(z) = (z − z0)−n with n ∈ N \ {0}. This is holomorphic
in C \ {z0} with an isolated singularity (indeed, a pole) at z = z0. We take γ : [0, 2π]→ C defined
by

γ(t) = z0 + ei t, t ∈ [0, 2π],

then

res(f, z0) =
1

2π i

ˆ
γ

1

(z − z0)n
dz =

1

2π i

ˆ 2π

0

1

(z0 + ei t − z0)n
i ei t dt

=
1

2π

ˆ 2π

0
e−i t (n−1) dt.

We now distinguish two cases: if n = 1, then we get

res(f, z0) =
1

2π

ˆ 2π

0
dt = 1.

On the other hand, if n ≥ 2, we obtain

res(f, z0) =
1

2π

ˆ 2π

0
e−i t (n−1) dt =

1

2π

ñ
e−i t (n−1)

−i (n− 1)

ô2π

0

= 0.

In conclusion, we obtained

res

Ç
1

(z − z0)n
, z0

å
=

®
1, if n = 1,
0, if n ≥ 2.
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The following is a remarkable consequence of Cauchy’s formula. It permits to compute a residue
at a pole just by differentiating a suitable function.

Proposition 1.10.11. Let f be a holomorphic function with a pole of order m at z0. Then we
have

(1.10.1) res(f, z0) =
1

(m− 1)!
lim
z→z0

Ç
dm−1

dzm−1
((z − z0)m f(z))

å
.

Proof. We define g(z) = (z − z0)m f(z) and observe that this is holomorphic (and thus analytic)
in a neighborhood of z0. We then compute

res(f, z0) =
1

2π i

ˆ
γ
f(z) dz =

1

2π i

ˆ
γ

f(z) (z − z0)m

(z − z0)m
dz

=
1

2π i

ˆ
γ

g(z)

(z − z0)m
dz

=
g(m−1)(z0)

(m− 1)!
,

where in the last equality we used formula (1.8.1) for the function g. �

Remark 1.10.12. By recalling the definition of residue, under the previous assumptions formula
(1.10.1) can be written as

1

2π i

ˆ
γ
f(z) dz =

1

(m− 1)!
lim
z→z0

Ç
dm−1

dzm−1
((z − z0)m f(z))

å
.

In other words, we obtained a simple way to compute a line integral, just by differentiating a
function!

Corollary 1.10.13. Let f, g be two holomorphic functions, such that g has a simple zero at z0 and
f(z0) 6= 0. Then f/g has a simple pole at z0 and we have

(1.10.2) res

Å
f

g
, z0

ã
=
f(z0)

g′(z0)
.

Proof. We apply (1.10.1) to the function f/g with m = 1. We get

res

Å
f

g
, z0

ã
= lim

z→z0
(z − z0)

f(z)

g(z)
,

then we observe that since g(z0) = 0, the limit can be rewritten as

lim
z→z0

Ç
z − z0

g(z)− g(z0)
f(z)

å
.

The conclusion now follows from the continuity of f and the definition of complex derivative. �

We conclude this section with the following

Theorem 1.10.14 (Residue Theorem). Let A ⊂ C be an open connected set and let f : A → C
be a holomorphic function. For γ a positively oriented piecewise regular loop, we indicate by D
the region entoured by Γγ. Let z1, . . . , zk be the singularities of f contained in D and suppose that
D \ {z1, . . . , zk} ⊂ A. Then we have

1

2π i

ˆ
γ
f(z) dz =

k∑
m=1

res(f, zm).
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11. Laurent’s series expansions

Let {an}n∈Z be a sequence indexed over Z and let z0 ∈ C. We call bylateral series the expression∑
n∈Z

an (z − z0)n.

We say that the bylateral series converges if the two series

∞∑
n=0

an (z − z0)n and
n=−1∑
−∞

an (z − z0)n,

converge. The first series is called regular part, while the second one is called singular part.

The following convergence result is analogous to the one for power series, see Theorem 1.7.3.

Theorem 1.11.1. Let
∑
n∈Z an (z − z0)n be a bylateral series with

lim sup
n→+∞

n
»
|an| = L1 < +∞ and lim sup

n→+∞
n
»
|a−n| = L2.

Let us suppose that L2 < 1/L1.

i) The power series is totally convergent on every closed annulus

{z ∈ C : %2 ≤ |z − z0| ≤ %1}

with radii %1 < 1/L1 and %2 > L2 (with the usual convention that if L1 = 0, then 1/L1 =
+∞).

ii) The power series does not converge for every z such that |z− z0| > 1/L1 or |z− z0| < L2.

Proof. The proof is the same as that of Theorem 1.7.3, it is sufficient to discuss separately the
regular and singular parts, i.e.

∞∑
n=0

an (z − z0)n and
n=−1∑
−∞

an (z − z0)n.

For the regular part we can apply directly Theorem 1.7.3, while for the second one we introduce
the change of variable

w =
1

z − z0
.

Then the singular part becomes

n=−1∑
−∞

an (z − z0)n =
∞∑
n=1

a−nw
n,

which is an ordinary power series, in the new complex variable w. By Theorem 1.7.3, we know that
we have total convergence if

|w| ≤ r, with r <
1

L2
,

that is

|z − z0| =
1

|w|
≥ 1

r
, with

1

r
> L2.

Similarly we prove point ii). We leave the details to the reader. �
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Definition 1.11.2 (Inner and outer radius). Let {an}n∈Z ⊂ C be a sequence such that

lim sup
n→+∞

n
»
|an| = L1 and lim sup

n→+∞
n
»
|a−n| = L2,

and

L2 <
1

L1
.

Then R1 = 1/L1 is called outer radius of convergence of the bylateral series
∑
n∈Z an (z − z0)n,

while R2 = L2 is called inner radius of convergence. We use the usual conventions:

R1 =
1

L1
= +∞, if L1 = 0,

and

R1 =
1

L1
= 0, if L1 = +∞.

Remark 1.11.3. We observe that in the region of convergence, the series

∞∑
n=1

a−nw
n, with w =

1

z − z0
,

is a holomorphic function of the variable w, thanks to the results of Subsection 7. Since the function

z 7→ 1

z − z0
= w,

is holomorphic in C \ {z0}, we get that the singular part

n=−1∑
−∞

an (z − z0)n,

is holomorphic as well, as a composition of holomorphic functions. In conclusion, a bylateral series
is a holomorphic function in the annular region

{z ∈ C : R2 < |z − z0| < R1}.

The following important result is a sort of converse.

Theorem 1.11.4 (Laurent’s Theorem). Let f : A→ C be an holomorphic function on the annular
region

A = {z ∈ C : 0 ≤ R2 < |z − z0| < R1 ≤ +∞}.
For every z ∈ A we have

f(z) =
∑
n∈Z

cn (z − z0)n,

with the coefficient cn given by

(1.11.1) cn =
1

2π i

ˆ
γ

f(s)

(s− z0)n+1
ds, for every n ∈ Z.

Here γ is any positively oriented piecewise regular loop such that Γγ ⊂ A and such that the region
D entoured by Γγ contains BR2(z0).

Proof. The proof is similar to that of Theorem 1.8.2 and we omit it. The interested reader can
find it in [1, Proposizione 4.7-2]. �
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We observe that if f has an isolated singularity at z0, then R2 = 0 and we have the Laurent
expansion

f(z) =
∑
n∈Z

cn (z − z0)n,

in a sufficiently small punctured disk centered at z0 and from (1.11.1) we get

(1.11.2) c−1 =
1

2π i

ˆ
γ
f(z) dz = res(f, z0).

Remark 1.11.5. The previous formula also explain the reason for the terminology residue. Indeed,
if f has an isolated singularity at z0 and

f(z) =
∑
n∈Z

cn (z − z0)n,

then by Theorem 1.6.12 we have

1

2π i

ˆ
γ
(z − z0)n dz = 0, for every n ∈ N,

while by Example 1.10.10 we have

1

2π i

ˆ
γ
(z − z0)n dz = 0, for every n ≤ −2.

Thus by integrating term by term the Laurent series expansion, the term corresponding to n = −1
is the only one giving a non-zero integral.

Proposition 1.11.6. Let f : A → C be an holomorphic function and let z0 be an isolated singu-
larity. Let

f(z) =
∑
n∈Z

cn (z − z0)n,

be its Laurent series in a punctured disk centered at z0. Then we have:

• z0 is removable if and only if cn = 0 for every n ≤ −1;

• z0 is a pole of order m if and only if c−m 6= 0 and cn = 0 for every n ≤ −m− 1;

• z0 is essential if and only if the singular part of the Laurent series has infinitely many
terms different from 0.

Proof. If cn = 0 for every n ≤ −1, then

f(z) =
∞∑
n=0

cn (z − z0)n,

and thus the limit

lim
z→z0

f(z) = c0,

exists, which means that z0 is removable. Viceversa, if z0 is removable then the Laurent series
must reduce to the Taylor series, i.e. cn = 0 for every n ≤ −1.

If z0 is a pole of order m, then by Corollary 1.10.7 the function z 7→ (z− z0)m f(z) is homolorphic.
By Theorem 1.8.2, we thus get

(z − z0)m f(z) =
∞∑
n=0

an (z − z0)n, with a0 6= 0,
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that is for z 6= z0

f(z) =
∞∑
n=0

an (z − z0)n−m =
∞∑

n=−m
ãn (z − z0)n,

where ãn = an+m for every n ≥ −m. This shows that the singular part of the Laurent expansion
of f contains only the first m terms (and ã−m = a0 6= 0). Viceversa, if

f(z) =
∞∑

n=−m
an (z − z0)n, with a−m 6= 0.

then we clearly have

lim
z→z0

(z − z0)m f(z) = lim
z→z0

∞∑
n=−m

an (z − z0)n+m = a−m ∈ C∗,

as desired.

By exclusion, we get the case of an essential singularity. �

Theorem 1.11.7 (Partial fraction decomposition). Let P,Q : C→ C be two polynomials such that

n = deg (P ) < deg(Q) = m.

Let us call z1, . . . , zk the zeros of Q, each one having order m1, . . . ,mk (recall Definition 1.8.4), so
that

m1 + · · ·+mk = m.

Then the function f = P/Q coincides with the sum of the singular parts of the Laurent series
centered at the zeros z1, . . . , zk. In other words, we have

(1.11.3) f(z) :=
P (z)

Q(z)
=

k∑
j=1

(mj∑
h=1

aj,h
(z − zj)h

)
.

Moreover, each coefficient aj,h is given by

(1.11.4) aj,h = res

Ç
(z − zj)h−1 P (z)

Q(z)
, zj

å
.

Proof. We give a sketch of the proof. Let us set

σj(z) =

mj∑
h=1

aj,h
(z − zj)h

, z ∈ C \ {zj},

then the function

F (z) := f(z)−
k∑
j=1

σj(z),

is entire, i.e. holomorphic on the whole C. Indeed, in the neighborhood of each pole zj , the function
f can be written as

f(z) = σj(z) +
∞∑
n=0

cn (z − zj)n,

thanks to Proposition 1.11.6. Moreover, the function F is vanishing at infinity, i.e.

(1.11.5) lim
|z|→+∞

F (z) = 0.
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By Theorem 1.9.1 (Liouville’s Theorem), F is constant. By using this information in conjunction
with (1.11.5), we finally obtain

F (z) = 0, i. e. f(z) =
k∑
j=1

σj(z).

This concludes the proof of (1.11.3).

We now show formula (1.11.4) for the coefficients: for every ` = 1, . . . , k, we take γ` to be the
positively oriented regular loop

γ`(t) = z` +Rei t, t ∈ [0, 2π],

where the radius R > 0 is chosen small enough, in order that all the other zeros of Q falls “outside”
the circle ∂BR(z`). For every n = 1, . . . ,m`, we thus obtain

res

Å
(z − z`)n−1P

Q
, z`

ã
=

1

2π i

ˆ
γj

(z − z`)n−1 P (z)

Q(z)
dz

=
k∑
j=1

mj∑
h=1

1

2π i

ˆ
γ`

(z − z`)n−1 aj,h
(z − zj)h

dz

=
1

2π i

ˆ
γ`

a`,n
(z − z`)

dz +
∑
h6=n

1

2π i

ˆ
γ`

a`,h
(z − z`)h−n+1

dz

+
∑
j 6=`

mj∑
h=1

1

2π i

ˆ
γ`

(z − z`)n−1 aj,h
(z − zj)h

dz.

We now observe that for every j 6= `, the function

z 7→ (z − z`)n−1 aj,h
(z − zj)h

,

is holomorphic inside the region entoured by Γγ` , thus by Theorem 1.6.12 (Cauchy’s Theorem), we
have

1

2π i

ˆ
γ`

(z − z`)n−1 aj,h
(z − zj)h

dz = 0, for j 6= `.

On the other hand, by recalling Example 1.10.10, we have

1

2π i

ˆ
γ`

a`,n
(z − z`)

dz = a`,n res

Å
1

z − z`
, z`

ã
= a`,n.

Finally, for h 6= n we have two possibilities:

• if h < n, then n− 1 ≥ h and thus we have again that the function

z 7→ (z − z`)n−1 a`,h
(z − z`)h

,

is holomorphic inside the region entoured by Γγ` . As before, by Theorem 1.6.12 (Cauchy’s
Theorem), we have

1

2π i

ˆ
γ`

(z − z`)n−1 a`,h
(z − z`)h

dz = 0;



12. Exercises 39

• if h > n, then h− n+ 1 ≥ 2 and thus

1

2π i

ˆ
γ`

(z − z`)n−1 a`,h
(z − z`)h

dz = a`,h res

Ç
1

(z − z`)h−n+1
, z`

å
= 0,

again by Example 1.10.10, by keeping into account that h− n+ 1 ≥ 2 in this case.

By spending these informations in the chain of equalities above, we get

res

Å
(z − z`)n−1 P

Q
, z`

ã
= a`,n,

as desired. �

Corollary 1.11.8. Let P,Q : C→ C be two polynomials such that

n = deg (P ) < deg(Q) = m.

Let us suppose that all the zeros z1, . . . , zm have order 1. Then the formula (1.11.3) above becomes

f(z) :=
P (z)

Q(z)
=

m∑
j=1

aj
(z − zj)

,

and each aj is given by

(1.11.6) aj = res

Å
P

Q
, zj

ã
, j = 1, . . . ,m.

Proof. It is sufficient to observe that each zj have order 1, thus in formula (1.11.3) we have mk = 1
for every k. �

12. Exercises

Exercise 1.12.1. Show that for every z ∈ C we have

|Re (z)|+ |Im (z)|√
2

≤ |z| ≤ |Re (z)|+ |Im (z)|.

Solution. Let us write z = x+ i y, then we have to prove that

(1.12.1)
|x|+ |y|√

2
≤
»
x2 + y2 ≤ |x|+ |y|.

Let us prove the first inequality. For this, it is sufficient to recall that the function of one real
variabile t 7→

√
t is concave, that is»

(1− λ) t0 + λ t1 ≥ (1− λ)
√
t0 + λ

√
t1, for every t0, t1 ≥ 0 and 0 ≤ λ ≤ 1.

By using this inequality with

t0 = x2, t1 = y2 and λ =
1

2
,

we obtain  
x2 + y2

2
≥ |x|+ |y|

2
.

After a simplification, we get the first inequality in (1.12.1).

In order to prove the second inequality in (1.12.1), we observe that

|x|+ |y| =
»

(|x|+ |y|)2 =
»
x2 + 2 |x| |y|+ y2 ≥

»
x2 + y2,
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where we used that the square rooth is a monotone function and |x| |y| ≥ 0. This gives the desired
inequality. �

Exercise 1.12.2. Let u : R2 → R be the function defined by

u(x, y) = x2 − y2.

Verify that this is a harmonic function and find v such that u and v are conjugate harmonic
functions.

Write the corresponding holomorphic function f(z) = u(x, y) + i v(x, y).

Solution. We first observe that

uxx = 2 and uyy = −2,

thus the function is harmonic. In order to find v, we need to solve the system

vy = ux = 2x and vx = −uy = 2 y.

It is not difficult to see that the choice

v(x, y) = 2x y,

is feasible. The corresponding holomorphic function is given by

f(z) = (x2 − y2) + 2 i x y = x2 + 2 i x y + (i y)2 = (x+ i y)2 = z2.

This concludes the exercise. �

Exercise 1.12.3. Let u : R2 → R be the function defined by

u(x, y) = x3 − 3x y2.

Verify that this is a harmonic function and find v such that u and v are conjugate harmonic
functions.

Write the corresponding holomorphic function f(z) = u(x, y) + i v(x, y).

Solution. By direct computation, we have

uxx + uyy = 6x− 6x = 0.

In order to find v, we argue in an indirect way: we observe that

u(x, y) = x3 − 3x y2 = Re(z3).

Indeed, we have

z3 = (x+ i y)3 = x3 + 3 i x2 y − 3x y2 − i y3 = (x3 − 3x y2) + i (3x2 y − y3).

Then we can choose
v(x, y) = Im(z3) = 3x2 y − y3.

By Corollary (1.4.9) we know that u and v are conjugate harmonic functions. Of course, by
construction we have

f(z) = u(x, y) + i v(x, y) = Re(z3) + i Im(z3) = z3.

This concludes the exercise. �

Exercise 1.12.4. Find the partial fraction decomposition of the rational function

f(z) =
z

z2 + z − 6
.
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Solution. By writing P (z) = z and Q(z) = z2 + z − 6, we have

f(z) =
P (z)

Q(z)
,

and the function has two simple poles at z1 = −3 and z2 = 2. By using Corollary 1.11.8, we know
that

z

z2 + z − 6
=

res(f,−3)

z + 3
+

res(f, 2)

z − 2
.

Observe that we have

Q(−3) = 0, Q′(−3) 6= 0 and P (−3) 6= 0,

thus we can use formula (1.10.2) and obtain

res(f,−3) =
P (−3)

Q′(−3)
=

3

5
.

Similarly, we get

res(f, 2) =
P (2)

Q′(2)
=

2

5
.

In conclusion, we get
z

z2 + z − 6
=

3

5

1

z + 3
+

2

5

1

z − 2
,

as desired. �

Exercise 1.12.5. Find the partial fraction decomposition of the rational function

f(z) =
z

(z − 1)2 (z − 2)
.

Solution. By writing P (z) = z and Q(z) = (z − 1)2 (z − 2), we have

f(z) =
P (z)

Q(z)
,

and the function has one simple pole at z1 = 2 an a pole of order 2 at z2 = 1. By using formula
(1.11.3), we have

z

(z − 1)2 (z − 2)
=

a1,1

z − 2
+

a2,1

(z − 1)
+

a2,2

(z − 1)2
,

where the coefficients a1,1, a2,1 and a2,2 are given by formula (1.11.4). Thus we have

a1,1 = res

Ç
z

(z − 1)2 (z − 2)
, 2

å
,

a2,1 = res

Ç
z

(z − 1)2 (z − 2)
, 1

å
,

and

a2,2 = res

Ç
(z − 1)

z

(z − 1)2 (z − 2)
, 1

å
= res

Ç
z

(z − 1) (z − 2)
, 1

å
.

We are left with computing these residues. For a1,1 we can use formula (1.10.2) and obtain

a1,1 = res

Ç
z

(z − 1)2 (z − 2)
, 2

å
=

2

1
= 2.
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Similarly, for a2,2 we can still use (1.10.2) and get

a2,2 = res

Ç
z

(z − 1) (z − 2)
, 1

å
=

1

−1
= −1.

Finally, in order to compute a2,1 we use the formula (1.10.1) of Proposition 1.10.11, with m = 2.
Thus we get

a2,1 = lim
z→1

d

dz

Ç
(z − 1)2 z

(z − 1)2 (z − 2)

å
= lim

z→1

−2

(z − 2)2
= −2.

This concludes the exercise. �

13. Advanced exercises

Exercise 1.13.1. Let A ⊂ C be a connected open set and let f : A→ C be an holomorphic function.
For every z0, z1 ∈ A we have

f(z1) = f(z0) + f ′(z0) (z1 − z0) +

ˆ
γ
f ′′(z) (z1 − z) dz,

where γ : [a, b]→ C is any piecewise regular curve such that Γγ ⊂ A and

γ(b) = z1 and γ(a) = z0.

Proof. We first observe that, since f is holomorphic, by Theorem 1.8.2 it can de differentiated as
many times as we wish. In particular, f ′′ is well-defined. We now use the definition of curvilinear
integral in the complex plane, i.e.ˆ

γ
f ′′(z) (z1 − z) dz =

ˆ b

a
f ′′(γ(t)) (z1 − γ(t)) γ′(t) dt.

Observe that

f ′′(γ(t)) γ′(t) =
d

dt
f ′(γ(t)),

thus we can use an integration by partsˆ b

a
f ′′(γ(t)) (z1 − γ(t)) γ′(t) dt =

[
f ′(γ(t)) (z1 − γ(t))

]b
a

+

ˆ b

a
f ′(γ(t)) γ′(t) dt

= −f ′(z0) (z1 − z0) +

ˆ
γ
f ′(z) dz.

Thus, up to now, we obtained

f ′(z0) (z1 − z0) +

ˆ
γ
f ′′(z) (z1 − z) dz =

ˆ
γ
f ′(z) dz.

We can now apply Lemma 1.6.7 to the last integral and obtained the desired conclusion. �

Exercise 1.13.2. Show that the function

tan z =
sin z

cos z
, for z ∈ C \

ß
k
π

2
: k ∈ Z

™
,

is invertible on the set S = {z ∈ C : −π/2 < Re(z) < π/2}. Then compute its inverse function

z 7→ Arctanz,

by paying attention to its domain of definition.
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Exercise 1.13.3. By using the Residue Theorem, verify thatˆ 2π

0
cos2 t dt = π.

Solution. We start by recalling that

cos2 t =

Ç
ei t + e−i t

2

å2

,

thus we get ˆ 2π

0
cos2 t dt =

ˆ 2π

0

(ei t + e−i t)2

4
dt =

ˆ 2π

0

(ei t + e−i t)2

4 i ei t
i ei t dt.

We now observe that if we introduce the positively oriented curve

γ(t) = ei t, t ∈ [0, 2π],

this is a parametrization of the boundary ∂B1(0) of the disk of radius 1, centered at the origin andˆ 2π

0
cos2 t dt =

ˆ 2π

0

(ei t + e−i t)2

4 i ei t
i ei t dt =

ˆ
γ

(z + 1/z)2

4 i z
dz

=

ˆ
γ

(z2 + 1)2

4 i z3
dz.

We now observe that the function

f(z) :=
(z2 + 1)2

4 i z3
, z 6= 0,

has an isolated singularity at z = 0 inside B1(0). More precisely, z = 0 is a pole of order 3 and by
observing that

f(z) =
z

4 i
+

1

2 i z
+

1

4 i z3
,

we get from (1.11.2) that

res(f, 0) =
1

2 i
.

By appealing to the Residue Theorem, we finally obtainˆ 2π

0
cos2 t dt = 2π i res(f, 0) = π,

thus concluding the exercise. �

Exercise 1.13.4 (Fresnel’s integrals). By using Cauchy’s Theorem, verify thatˆ +∞

0
cos(t2) dt =

ˆ +∞

0
sin(t2) dt =

1

2

…
π

2
.

Solution. We first observe that both integrals have to be intended as followsˆ +∞

0
cos(t2) dt = lim

R→+∞

ˆ R

0
cos(t2) dt,

ˆ +∞

0
sin(t2) dt = lim

R→+∞

ˆ R

0
sin(t2) dt.

Let us consider the positively oriented piecewise regular loop Γ obtained by gluing

γ1(t) = t t ∈ [0, R],

γ2(t) = Rei t, t ∈ [0, π/4],

γ3(t) = (R− t) ei
π
4 , t ∈ [0, R].
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By Cauchy’s Theorem (Theorem 1.6.12) for the holomorphic function f(z) = e−z
2

we obtain

0 =

ˆ
Γ
f(z) dz =

ˆ R

0
e−t

2
dt+R i

ˆ π
4

0
e−R

2 e2 i t ei t dt−
ˆ R

0
e−(R−t)2 i ei

π
4 dt

=

ˆ R

0
e−t

2
dt+R i

ˆ π
4

0
e−R

2 e2 i t ei t dt−
ˆ R

0
e−i t

2
ei

π
4 dt.

We now observe that

e−i t
2
ei

π
4 = ei

π
4

Ä
cos(t2)− i sin(t2)

ä
,

and

lim
R→∞

ˆ R

0
e−t

2
dt =

ˆ +∞

0
e−t

2
dt =

√
π

2
.

Thus from the previous identity we get

ei
π
4 lim
R→∞

ˆ R

0

Ä
cos(t2)− i sin(t2)

ä
dt =

√
π

2
+ lim
R→∞

∣∣∣∣∣R i
ˆ π

4

0
e−R

2 e2 i t ei t dt

∣∣∣∣∣ .
In order to conclude, we only need to compute the last limit. We start by observing that∣∣∣∣∣R i

ˆ π
4

0
e−R

2 e2 i t ei t dt

∣∣∣∣∣ ≤ R
ˆ π

4

0
|e−R2 e2 i t | dt = R

ˆ π
4

0
e−R

2 cos(2 t) dt.

On the interval [0, π/4], the function t 7→ cos(2 t) is concave, thus there exists c > 0 such that6

cos(2 t) ≥ 1− 4

π
t, for t ∈ [0, π/4].

We obtain

R

ˆ π
4

0
e−R

2 cos(2 t) dt ≤ R
ˆ π

4

0
e−R

2 (1− 4
π
t) dt = R

π

4

1

R2

[
e−R

2 (1− 4
π
t)
]π

4

0

=
π

4

1

R

î
1− e−R2ó

,

and the latter converges to 0 as R goes to ∞. We thus obtained

ei
π
4 lim
R→∞

ˆ R

0

Ä
cos(t2)− i sin(t2)

ä
dt =

√
π

2
.

By multiplying both sides by e−i π/4, we get

lim
R→∞

ˆ R

0

Ä
cos(t2)− i sin(t2)

ä
dt = e−i

π
4

√
π

2
.

This gives the desired conclusion. �

Exercise 1.13.5. By using the Residue Theorem, verify thatˆ 2π

0

dt

1 + sin2 t
=
√

2π.

6It is easy to see that

c =
4

π
.
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Solution. By using that

sin2 t =

Ç
ei t − e−i t

2 i

å2

,

we get ˆ 2π

0

dt

1 + sin2 t
=

ˆ 2π

0

1

1− (ei t − e−i t)2

4

dt =

ˆ 2π

0

4

4− (ei t − e−i t)2
dt

=

ˆ 2π

0

4 i ei t

i ei t (4− (ei t − e−i t)2)
dt

=
4

i

ˆ
γ

1

z

Ç
4−

Å
z − 1

z

ã2
å dz,

where now

γ(t) = ei t, t ∈ [0, 2π].

In other words, γ parametrize the boundary of the disk of radius 1, centered at the origin (with
positive orientation, as usual). The function

f(z) :=
1

z

Ç
4−

Å
z − 1

z

ã2
å =

z

4 z2 − (z2 − 1)2
= − z

z4 − 6 z2 + 1
,

has isolated singularities at the zeros of 6 z2 − z4 − 1. These are given by

z1,2 = ±
»

3 + 2
√

2 and z3,4 = ±
»

3− 2
√

2,

and they are simple poles. We are only interested in those poles which fall inside B1(0). We observe
that

|z1,2| > 1 and |z3,4| < 1.

By the Residue Theorem, we thus obtain

(1.13.1)

ˆ 2π

0

dt

1 + sin2 t
=

4

i
2π i

(
res(f, z3) + res(f, z4)

)
= 8π

(
res(f, z3) + res(f, z4)

)
.

We need to compute the residues. We have

res(f, z3) = lim
z→z3

(z − z3) f(z) = − lim
z→z3

z

(z2 − 3− 2
√

2) (z − z4)

= − z3

(z2
3 − 3− 2

√
2) (z3 − z4)

=
1

4
√

2

z3

z3 − z4
,

and

res(f, z4) = lim
z→z4

(z − z4) f(z) = − lim
z→z4

z

(z2 − 3− 2
√

2) (z − z3)

= − z4

(z2
4 − 3− 2

√
2) (z4 − z3)

=
1

4
√

2

z4

(z4 − z3)
.
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We thus get

res(f, z3) + res(f, z4) =
1

4
√

2

z3 − z4

z3 − z4
=

1

4
√

2
.

By spending this information in (1.13.1), we get
ˆ 2π

0

dt

1 + sin2 t
=

4

i
2π i

(
res(f, z3) + res(f, z4)

)
=

2√
2
π,

as desired. �

Exercise 1.13.6. By using the Residue Theorem, verify that for every a > 1 we have
ˆ 2π

0

dt

a+ cos t
=

2π√
a2 − 1

.

Solution. By proceeding as above, we have
ˆ 2π

0

dt

a+ cos t
=

ˆ 2π

0

dt

a+
ei t + e−i t

2

=

ˆ 2π

0

2 i ei t

(2 a+ ei t + e−i t) i ei t
dt

=

ˆ
γ

2

i z (2 a+ z + 1/z)
dz,

where as above we set

γ(t) = ei t, t ∈ [0, 2π].

The integrated function is

f(z) :=
2

i (2 a z + z2 + 1)
,

which is analytic, except that at the singularities

z1 = −a+
√
a2 − 1 and z2 = −a−

√
a2 − 1,

which are simple poles. We observe that

|z1| = a−
√
a2 − 1 < 1 and |z2| = a+

√
a2 − 1 > a > 1,

thus only the first pole z1 falls inside the region delimited by γ (which is again the disk of radius
1 and center the origin). We thus obtain

ˆ 2π

0

dt

a+ cos t
= 2π i res(f, z1) = 2π i lim

z→z1

2 (z − z1)

i (2 a z + z2 + 1)

= 2π i lim
z→z1

2 (z − z1)

i (z − z2) (z − z1)

= 4π
1

z1 − z2
=

2π√
a2 − 1

,

as desired. �

Exercise 1.13.7. By using the Residue Theorem, verify that we have
ˆ 2π

0

dt

2 + sin t cos t
=

4π√
15
.
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Solution. We haveˆ 2π

0

dt

2 + sin t cos t
=

ˆ 2π

0

dt

2 +
e2 i t − e−2 i t

4 i

= 4 i

ˆ 2π

0

i ei t dt

(8 i+ e2 i t − e−2 i t) i ei t

= 4

ˆ
γ

dz

z (8 i+ z2 − 1/z2)
,

where γ(t) = ei t, for t ∈ [0, 2π]. We study the singularities of the function

f(z) =
1

z (8 i+ z2 − 1/z2)
=

z

z4 + 8 i z2 − 1
.

This has four simple poles at the roots of z4 + 8 i z2 − 1, i.e.

z1 =
»

4 +
√

15 e−
π
4
i and z2 =

»
4 +
√

15 e
3π
4
i,

z3 =
»

4−
√

15 e−
π
4
i and z4 =

»
4−
√

15 e
3π
4
i.

It is not difficult to see that only the second ones fall inside the disk B1(0) delimited by γ. Indeed,

|z3| = |z4| =
»

4−
√

15 <
»

4−
√

9 = 1.

We thus obtain ˆ 2π

0

dt

2 + sin t cos t
= 4 · 2π i

(
res(f, z3) + res(f, z4)

)
= 8π i lim

z→z3

z

(z − z1) (z − z2) (z − z4)

+ 8π i lim
z→z4

z

(z − z1) (z − z2) (z − z3)

= 8π i
z3

(z3 − z1) (z3 − z2) (z3 − z4)

− 8π i
z4

(z4 − z1) (z4 − z2) (z3 − z4)
.

We observe that for every z 6= z1, z2, we have

(z − z1) (z − z2) = z2 + (4 +
√

15) i,

thus by observing that z2
3 = z2

4 we obtain

z3

(z3 − z1) (z3 − z2) (z3 − z4)
− z4

(z4 − z1) (z4 − z2) (z3 − z4)

=
z3

(z2
3 + (4 +

√
15) i) (z3 − z4)

− z4

(z2
4 + (4 +

√
15) i) (z3 − z4)

=
z3 − z4

(z2
3 + (4 +

√
15) i) (z3 − z4)

=
1

z2
3 + (4 +

√
15) i

=
1

2
√

15 i
.

This gives the conclusion. �
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Exercise 1.13.8. By using the Residue Theorem, verify that for every n ∈ N \ {0, 1} we have
ˆ +∞

0

dx

1 + xn
=
π

n

1

sin

Å
π

n

ã .
Solution. We consider the function

f(z) =
1

1 + zn
, z 6∈ {z0, . . . , zn−1},

which is analytic in C \ {z0, . . . , zn−1}, with

zk = ei (
π
n

+ 2π
n
k), k = 0, . . . , n− 1.

Each zi is a simple pole and we have

res(f, z0) =
1

(1 + zn)′|z=z0
=

1

n e
n−1
n

π i
.

We now fix R� 1 and integrate the function f on the piecewise C1 loop ΓR obtained by joining

γ1(t) = t, t ∈ [0, R],

γ2(t) = Re
2π
n
i t, t ∈ [0, 1],

γ3(t) = (R− t) e
2π
n
i, t ∈ [0, R].

It is not difficult that the interior of ΓR contains only the pole z0, thus from the Residue Theorem
we obtain

2π i

n e
n−1
n

π i
=

ˆ
ΓR

f(z) dz =

ˆ
γ1

f(z) dz +

ˆ
γ2

f(z) dz +

ˆ
γ3

f(z) dz

=

ˆ R

0

dt

1 + tn
+

2π

n

ˆ 1

0

R i e
2π
n
i t

1 +Rn e2π i t
dt

−
ˆ R

0

e
2π
n
i

1 + (R− t)n
dt.

We now observe that ∣∣∣∣∣∣
ˆ 1

0

R i e
2π
n
i t

1 +Rn e2π i t
dt

∣∣∣∣∣∣ ≤
ˆ 1

0

R

|1 +Rn e2π i t|
dt ≤ R

Rn − 1
,

and

−
ˆ R

0

e
2π
n
i

1 + (R− t)n
dt = −

ˆ R

0

e
2π
n
i

1 + sn
ds.

Thus we obtain (
1− e

2π
n
i
) ˆ +∞

0

1

1 + tn
dt = lim

R→∞

ˆ
ΓR

1

1 + zn
dz =

2π i

n e
n−1
n

π i
,

that is ˆ +∞

0

1

1 + tn
dt =

2π i

n e
n−1
n

π i

1

1− e
2π
n
i
.



13. Advanced exercises 49

In order to conclude, we observe that

e
n−1
n

π i
(
1− e

2π
n
i
)

= e
n−1
n

π i − e
n+1
n

π i

=

ï
cos

Å
n− 1

n
π

ã
− cos

Å
n+ 1

n
π

ãò
+ i

ï
sin

Å
n− 1

n
π

ã
− sin

Å
n+ 1

n
π

ãò
= 2 sinπ sin

Å
π

n

ã
+ 2 i cosπ sin

Å
−π
n

ã
= 2 i sin

Å
π

n

ã
.

This gives the desired conclusion. �

Exercise 1.13.9. By using the previous exercise, computeˆ +∞

0

dx

8 + x3
.

Solution. It is sufficient to use a simple change of variable to reduce the integral to the one
computed in the previous exercise. We haveˆ +∞

0

dx

8 + x3
=

1

8

ˆ +∞

0

dx

1 +

Å
x

2

ã3 =
1

4

ˆ +∞

0

dt

1 + t3
.

Since we already knows that ˆ +∞

0

dt

1 + t3
=
π

3

2√
3
,

we can conclude. �

Exercise 1.13.10. By using the Residue Theorem, verify thatˆ +∞

−∞

e
x
3

1 + ex
dx =

2π√
3
.

Solution. We consider the piecewise regular loop Γ obtained by linking the segments

γ1(t) = 2R t−R, t ∈ [0, 1],

γ2(t) = R+ 2π i t, t ∈ [0, 1],

γ3(t) = 2π i+R− 2R t, t ∈ [0, 1],

γ4(t) = −R+ 2π i t, t ∈ [0, 1].

Since the function
e
z
3

1 + ez
,

has a simple pole at z0 = i π and the latter is contained in the bounded region entoured by Γ, we
get

(1.13.2)

ˆ
Γ

e
z
3

1 + ez
dz = 2π i res

Ç
e
z
3

1 + ez
, i π

å
= 2π i

e
i π
3

ei π
= −π i+

√
3π.
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We now analyze the integral on the left-hand side. We haveˆ
Γ

e
z
3

1 + ez
dz =

4∑
i=1

ˆ
γi

e
z
3

1 + ez
dz

= 2R

ˆ 1

0

e
2R t−R

3

1 + e2R t−R dt+ 2π i

ˆ 1

0

e
R+2π i t

3

1 + eR+2π i t
dt

− 2R

ˆ 1

0

e
2π i+R−2R t

3

1 + e2π i+R−2R t
dt− 2π i

ˆ 1

0

e−
R+2π i t

3

1 + e−R−2π i t
dt

=

ˆ R

−R

e
s
3

1 + es
ds− 2R

ˆ 1

0

e
R−2R t

3

1 + eR−2R t
dt

+ 2π i

ˆ 1

0

e
R+2π i t

3

1 + eR+2π i t
dt− 2π i

ˆ 1

0

e−
R+2π i t

3

1 + e−R−2π i t
dt

=

ˆ R

−R

e
s
3

1 + es
ds− 2Re

2π i
3

ˆ 1

0

e
R−2R t

3

1 + eR−2R t
dt

+ 2π i

ˆ 1

0

e
R+2π i t

3

1 + eR+2π i t
dt− 2π i

ˆ 1

0

e−
R+2π i t

3

1 + e−R−2π i t
dt.

We now observe that

2Re
2π i
3

ˆ 1

0

e
R−2R t

3

1 + eR−2R t
dt = e

2π i
3

ˆ R

−R

e
s
3

1 + es
ds,

while for R large we have∣∣∣∣∣∣
ˆ 1

0

e
R+2π i t

3

1 + eR+2π i t
dt

∣∣∣∣∣∣+
∣∣∣∣∣∣
ˆ 1

0

e−
R+2π i t

3

1 + e−R−2π i t
dt

∣∣∣∣∣∣ ≤ e
R
3

eR − 1
+

e−
R
3

1− e−R
,

and the last quantity goes to 0 as R goes to +∞. By using these informations in (1.13.2), we obtain

−π i+
√

3π =
(
1− e

2π i
3

)
lim
R→∞

ˆ R

−R

e
s
3

1 + es
ds.

This gives ˆ +∞

−∞

e
s
3

1 + es
ds = π

√
3− i

3

2
− i
√

3

2

=
2π√

3
,

as desired. �



Chapter 2

The Z−transform

1. Definitions and examples

Definition 2.1.1. Let {xn}n∈N ⊂ C be a sequence. We say that this is Z−transformable if

(2.1.1) R := lim sup
n→∞

n
»
|xn| < +∞.

Definition 2.1.2. Let {xn}n∈N ⊂ C be a Z−transformable sequence. We define its Z−transform
by

Z[{xn}](z) =
∞∑
n=0

xn
zn
.

By Remark 1.11.3, we know that this is an analytic function on the region {z ∈ C : |z| > R}, with
R defined by (2.1.1).

Remark 2.1.3 (Bounded sequences). We observe that if {xn}n∈N ⊂ C is bounded, i.e. there exists
M > 0 such that

|xn| ≤M, for every n ∈ N,
then the region of convergence of its Z−transform Z[{xn}] contains the set {z ∈ C : |z| > 1}.
Indeed, it is sufficient to observe that in this case R defined in (2.1.1) is smaller than 1, since

lim sup
n→∞

n
»
|xn| ≤ lim

n→∞
n
√
M = 1.

Let us compute some basic Z−transforms.

Example 2.1.4. Let {xn}n∈N be the constant sequence xn = 1 for every n ∈ N. This is of course
Z−transformable, with

R = lim sup
n→∞

n
√

1 = 1.

By recalling the expression for the sum of the geometric series, its Z−transform is given by

Z[{1}](z) =
∞∑
n=0

1

zn
=

1

1− 1

z

=
z

z − 1
, for |z| > 1.

51
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Example 2.1.5 (Delta sequence). We fix j ∈ N and consider the sequence {δj,n}n∈N defined by

δj,n =

®
1, if n = j,
0, otherwise.

This is of course Z−transformable, with

R = lim sup
n→∞

n
»
|δj,n| = 0.

Its Z−transform is then given by

Z[{δj,n}](z) =
∞∑
n=0

δj,n
zn

=
1

zj
, for |z| > 0.

Observe that for the particular case j = 0, we get

Z[{δ0,n}](z) = 1, for z ∈ C.

Example 2.1.6. Let {xn}n∈N be the sequence

x0 = 0 and xn =
1

n
, for every n ≥ 1.

We have

R = lim sup
n→∞

n

 
1

n
= 1.

By recalling Example 1.7.9, we have
∞∑
n=1

sn

n
= −Log(1− s), |s| < 1,

and using this formula with s = 1/z, we get

Z[{1/n}](z) =
∞∑
n=1

1

n

1

zn
= −Log

Å
1− 1

z

ã
, |z| > 1.

Example 2.1.7. Let {xn}n∈N be the sequence xn = 1/n!, for every n ∈ N. We have1

R = lim sup
n→∞

n

 
1

n!
= 0,

thus the Z−transform is now a holomorphic function in C∗. By recalling that (see Remark 1.8.3)

∞∑
n=0

sn

n!
= es, for s ∈ C,

and using this formula with s = 1/z, we get

Z[{1/n!}](z) =
∞∑
n=1

1

n!

1

zn
= e

1
z , z ∈ C∗.

Observe that this function has an isolated singularity at z = 0, which is an essential singularity
thanks to Proposition 1.11.6.

1We use here that
n
√
n! ∼

n

e
, for n→∞.
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2. Basic properties

We collect here some important properties of the Z−transform. In what follows {xn}n∈N ⊂ C and
{yn}n∈N ⊂ C are two Z−transformable sequences.

Proposition 2.2.1 (Linearity). Let {xn}n∈N and {yn}n∈N be two Z−transformable sequences, with

r = lim sup
n→∞

n
»
|xn| and % = lim sup

n→∞
n
»
|yn|.

For every α, β ∈ C, the sequence {αxn+β, yn}n∈N is Z−transformable with a radius of convergence

R ≤ max{r, %}.

Moreover, we have

Z[{αxn + β yn}](z) = αZ[{xn}](z) + β Z[{yn}](z), for |z| > max{r, %}.

Proposition 2.2.2 (Time delay). For every k ∈ N \ {0}

(2.2.1) Z[{xn+k}](z) = zk
Å
Z[{xn}](z)− x0 −

x1

z
− · · · − xk−1

zk−1

ã
.

Proof. We have

Z[{xn+k}](z) =
∞∑
n=0

xn+k

zn
= zk

∞∑
n=0

xn+k

zn+k
= zk

∞∑
n=k

xn
zn

= zk
( ∞∑
n=0

xn
zn
−

k−1∑
n=0

xn
zn

)
,

which gives the desired conclusion. �

Definition 2.2.3. Let {xn}n∈N and {yn}n∈N two sequences. We define their convolution as the
new sequence {xn ∗ yn}n∈N such that

xn ∗ yn =
n∑
k=0

xk yn−k =
n∑
k=0

xn−k yk, for every n ∈ N.

Proposition 2.2.4 (Convolution). Let {xn}n∈N and {yn}n∈N be two Z−transformable sequences,
with

r = lim sup
n→∞

n
»
|xn| and % = lim sup

n→∞
n
»
|yn|.

Then the convolution {xn ∗ yn}n∈N is Z−transformable and we have

Z[{xn ∗ yn}](z) = Z[{xn}](z)Z[{yn}](z), for |z| > max{r, %}.

Proof. By definition of convolution, we have

xn ∗ yn =
n∑
k=0

xk yn−k, for every n ∈ N.

It is known that if
∑∞
n=0 xn and

∑∞
n=0 yn are absolutely convergent, then

∑∞
n=0 xn ∗yn is absolutely

convergent as well and we have

(2.2.2)
∞∑
n=0

xn ∗ yn =

( ∞∑
n=0

xn

) ( ∞∑
n=0

yn

)
,
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see Exercise 2.8.1 below. Thus we get

Z[{xn ∗ yn}](z) =
∞∑
n=0

xn ∗ yn
zn

=
∞∑
n=0

n∑
k=0

xk yn−k
zn

=
∞∑
n=0

xn
zn
∗ yn
zn
.

We observe that if we take |z| > max{r, %}, then
∞∑
n=0

xn
zn

and
∞∑
n=0

yn
zn
,

are absolutely convergent (and totally, indeed). We can apply (2.2.2) and get the conclusion. �

Proposition 2.2.5 (Derivative). If {xn}n∈N is Z−transformable, then {nxn}n∈N is Z−transformable
as well, with

lim sup
n→∞

n
»
n |xn| = lim sup

n→∞
n
»
|xn|.

Moreover, we have

(2.2.3) Z[{nxn}](z) = −z d

dz
Z[{xn}](z).

Proof. We first observe that if {xn}n∈N is Z−transformable, then {nxn}n∈N is Z−transformable
as well, since

lim sup
n→∞

n
»
n |xn| = lim sup

n→∞
n
»
|xn| < +∞,

where we used that
lim
n→∞

n
√
n = 1.

We then compute

Z[{nxn}](z) =
∞∑
n=0

nxn
zn

= z
∞∑
n=1

nxn z
−n−1 = z

∞∑
n=1

d

dz

Ä
−xn z−n

ä
= z

d

dz

(
−
∞∑
n=1

xn z
−n
)
,

as desired. In order to exchange the summation and the differentiation, we used the fact that a
power series is an analytic function on its region of convergence, whose derivative can be computed
by differentiating term by term (see Proposition 1.7.5). �

Proposition 2.2.6 (Scaling). For every q ∈ C∗, we have

(2.2.4) Z[{qn xn}](z) = Z[{xn}]
Å
z

q

ã
.

Proof. This is by direct computation, we first have to observe that

lim sup
n→∞

n
»
|q|n |xn| = |q| lim sup

n→∞
n
»
|xn| =: |q|R.

Then for |z| > |q|R we get

Z[{qn xn}](z) =
∞∑
n=0

qn xn
zn

=
∞∑
n=0

xn
(z/q)n

= Z[{xn}]
Å
z

q

ã
,

as desired. �
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Example 2.2.7. As a particular case of the previous result, if we take q = ei ϑ for some ϑ ∈ (−π, π],
we obtain

Z[{ei n ϑ xn}](z) = Z[{xn}](z e−i ϑ), for |z| > 1.

If xn = 1 for every n ∈ N, we thus get from Example 2.1.4

Z[{ei n ϑ}](z) =
z e−i ϑ

z e−i ϑ − 1
=

z

z − ei ϑ
, for |z| > 1.

Proposition 2.2.8 (Periodic sequences). Let us suppose that there exists m ∈ N \ {0} such that

xn+m = xn, for every n ∈ N.

In this case we say that the sequence is m−periodic. We have

(2.2.5) Z[{xn}](z) =
zm

zm − 1

m−1∑
n=0

xn
zn
, for |z| > 1.

Proof. We first observe that a periodic sequence is bounded, thus by Remark 2.1.3 is Z−transformable
and its Z−transform is well-defined for |z| > 1. By appealing to the definition, we have

Z[{xn}](z) =
∞∑
n=0

xn
zn

=
∞∑
k=0

(k+1)m−1∑
n=km

xn
zn

=
∞∑
k=0

m−1∑
`=0

x`+km
z`+km

=
∞∑
k=0

m−1∑
`=0

x`
z`+km

=
∞∑
k=0

(
1

zkm

m−1∑
`=0

x`
z`

)
.

In order to conclude, we only need to compute the sum of the geometric series

∞∑
j=0

1

zj m
=

1

1− 1

zm

=
zm

zm − 1
, |z| > 1.

This concludes the proof. �

Remark 2.2.9. From formula (2.2.5), we can easily see that the Z−transform of a m−periodic
sequence {xn}n∈N can be extended to the whole

C∗ \ {z0, . . . , zm−1},

where z0, . . . , zm−1 are the solutions (which are all distinct) of zm = 1. By using formula (1.5.2)
with w = 1, these are given by

zj = e
2 j π
m

i =

Å
cos

Å
2 j π

m

ã
+ i sin

Å
2 j π

m

ãã
, j = 0, 1 . . . ,m− 1.

In other words, the function

Z[{xn}](z) =
zm

zm − 1

m−1∑
n=0

xn
zn
,

has simple poles at z = e
2 j π
n

i, for j = 0, . . . ,m− 1, and it is otherwise holomorphic for z 6= 0.
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3. Inversion formula

We now face the problem of how to recover the sequence {xn}n∈N ⊂ C from the knowledge of its
Z−transform

z 7→ Z[{xn}](z), |z| > R.

For this, we need to recall that for a holomorphic function f defined in {z ∈ C : R < |z|}, by
Laurent’s Theorem (see Theorem 1.11.4), we have

f(z) =
∞∑
k=0

ak z
k +

∞∑
k=1

bk
zk
,

and the coefficients ak, bk are given by

ak =
1

2π i

ˆ
γ

f(z)

zk+1
dz and bk =

1

2π i

ˆ
γ
f(z) zk−1 dz,

thanks to formula (1.11.1). In particular, by using this information for the function

Z[{xn}](z) =
∞∑
k=0

xk
zk

= x0 +
∞∑
k=1

xk
zk
,

we obtain the following relation between a Z−transformable sequence {xn}n∈N and its Z−transform

(2.3.1) xk =
1

2π i

ˆ
γ
Z[{xn}](z) zk−1 dz, k ∈ N.

Here γ is any positively oriented piecewise regular loop entirely contained in {z ∈ C : |z| > R} and
entouring the origin. Formula (2.3.1) can be referred to as inversion formula for the Z−transform.

Proposition 2.3.1 (Injectivity of the Z−transform). Let {xn}n∈N ⊂ C and {yn}n∈N ⊂ C be two
Z−transformable sequences, with

R1 = lim sup
n→∞

n
»
|xn| and R2 = lim sup

n→∞
n
»
|yn|.

If there exists |z0| > max{R1, R2} and a radius % > 0 such that

B%(z0) ⊂
{
z ∈ C : |z| > max{R1, R2}

}
,

and

Z[{xn}](z) = Z[{yn}](z), for every z ∈ B%(z0),

then we have

xn = yn for every n ∈ N.

Proof. We first observe that if Z[{xn}] and Z[{yn}] coincide on the open disk B%(z0), then they
actually coincide on the whole set{

z ∈ C : |z| > max{R1, R2}
}
,

thanks to Corollary 1.8.7. If we now take γ a positively oriented parametrization of the circle
centered at the origin and with radius r > max{R1, R2}, by the inversion formula (2.3.1) we get

xk =
1

2π i

ˆ
γ
Z[{xn}](z) zk−1 dz =

1

2π i

ˆ
γ
Z[{yn}](z) zk−1 dz = yk,

for every k ∈ N. This gives the desired conclusion (and observe that this also proves that R1 =
R2). �
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Remark 2.3.2 (Exploiting the Residue Theorem). In the applications, very often we can com-
pute the inverse Z−trasform by joining (2.3.1) and the Residue Theorem, i.e. Theorem 1.10.14.
Indeed, let us suppose that the Z−transform Z[{xn}] admits an extension to the whole C, with
the exception of a finite number of singularities z1, . . . , z` inside the region entoured by γ. Then
we obtain

(2.3.2) xk =
1

2π i

ˆ
γ
Z[{xn}](z) zk−1 dz =

∑̀
j=1

res(Z[{xn}] zk−1, zj), k ∈ N \ {0},

and

(2.3.3) x0 =
1

2π i

ˆ
γ

Z[{xn}](z)
z

dz = res

Ç
Z[{xn}]

z
, 0

å
+
∑̀
j=1

res

Ç
Z[{xn}]

z
, zj

å
.

These formulas are particularly useful in the case all the singularities zj and 0 are poles. Indeed,
in this case

res(Z[{xn}] zk−1, zj),

can be easily computed, by appealing to formula (1.10.1) of Proposition 1.10.11. In this situation,
by denoting with mj the multiplicity of the pole zj , formulas (2.3.2) and (2.3.3) reduce to

xk =
∑̀
j=1

1

(mj − 1)!
lim
z→zj

Ç
dmj−1

dzmj−1

Ä
(z − zj)mj Z[{xn}] zk−1

äå
, k ∈ N \ {0}.

and

x0 =
1

(m0 − 1)!
lim
z→0

Ç
dm0−1

dzm0−1

Ç
zm0
Z[{xn}]

z

åå
+
∑̀
j=1

1

(mj − 1)!
lim
z→zj

Ç
dmj−1

dzmj−1

Ç
(z − zj)mj

Z[{xn}]
z

åå
.

Example 2.3.3 (Fibonacci’s numbers). We want to use the Z−transform, in order to determine
the sequence {xn}n∈N ⊂ C inductively defined by

xn+2 = xn+1 + xn,
x0 = 1,
x1 = 1.

We introduce the Z−transform

X(z) =
∞∑
n=0

xn z
−n

then from the relation defining {xn}n∈N and by using property (2.2.1) of the Z−transform, we get
the relation

z2X(z)− z2 − z = z X(z)− z +X(z),

that is

X(z) (z2 − z − 1) = z2.

This finally gives

X(z) =
z2

z2 − z − 1
,
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which is a holomorphic function on C \ {z0, z1}, with two simple poles in

z0 =
1−
√

5

2
and z1 =

1 +
√

5

2
.

From the inversion formula, for n ≥ 2 we get

xn =
1

2π i

ˆ
γ
X(z) zn−1 dz =

1

2π i

ˆ
γ

zn+1

z2 − z − 1
dz,

where γ is a positively oriented loop, whose image entours z0 and z1. In order to compute the last
integral and conclude, it is sufficient to use the Residue Theorem, i.e. formula (2.3.2)

1

2π i

ˆ
γ

zn+1

z2 − z − 1
dz = res

Ç
zn+1

z2 − z − 1
, z0

å
+ res

Ç
zn+1

z2 − z − 1
, z1

å
=

zn+1
1

z1 − z0
− zn+1

0

z1 − z0
.

Observe that we used the formula of Corollary 1.10.13, in order to compute the residues. This
finally gives

xn =
1√
5

[Ç
1 +
√

5

2

ån+1

−
Ç

1−
√

5

2

ån+1]
, for every n ∈ N.

We refer the reader to Section 7 for some further examples.

4. The Initial and Final Value Theorems

Theorem 2.4.1 (Initial value). Let {xn}n∈N ⊂ C be Z−transformable, then we have

(2.4.1) x0 = lim
|z|→+∞

Z[{xn}](z).

Proof. Let R < +∞ be the radius of convergence, then for every |z| > R+ 1 we have∣∣∣∣Z[{xn}](z)− x0

∣∣∣∣ =

∣∣∣∣∣ ∞∑
n=1

xn
zn

∣∣∣∣∣ ≤ ∞∑
n=1

|xn|
|z|n

=
∞∑
n=1

|xn|
|z|n−1

1

|z|

≤ 1

|z|

∞∑
n=1

|xn|
(R+ 1)n−1

=
R+ 1

|z|

∞∑
n=1

|xn|
(R+ 1)n

.

By assumption, the last series converges and thus by taking the limit as |z| goes to +∞

lim
|z|→+∞

∣∣∣∣Z[{xn}](z)− x0

∣∣∣∣ ≤
( ∞∑
n=1

|xn|
(R+ 1)n

)
lim

|z|→+∞

R+ 1

|z|
= 0,

we get the desired conclusion �

Remark 2.4.2. The previous result implies in particular that the Z−transform is a bounded
function at infinity. Observe that this is not in contradiction with Liouville Theorem, since a
Z−transform is never an entire function (i.e. analytic on the whole C), unless in the trivial case

xn = 0, for n ∈ N \ {0}.
In this case, we clearly have Z[{xn}](z) = x0 for every z ∈ C.
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Theorem 2.4.3 (Final value, non-tangential version). Let {xn}n∈N ⊂ C be Z−transformable such
that

(2.4.2) lim
n→∞

xn = x∞ ∈ C.

Then we have

(2.4.3) x∞ = lim
R3x→1+

(x− 1)Z[{xn}](x).

Proof. We first recall that by Remark 2.1.3, the function Z[{xn}] is holomorphic for |z| > 1. We
now write

xn = x∞ + (xn − x∞),

then taking the Z−transform and using its linearity we obtain

Z[{xn}](z) = x∞Z[{1}](z) + Z[{xn − x∞}](z)

= x∞
z

z − 1
+ Z[{xn − x∞}](z),

(2.4.4)

where we used Example 2.1.4. We thus obtain

lim
x→1+

(x− 1)Z[{xn}](x) = x∞ + lim
x→1+

(x− 1)Z[{xn − x∞}](x).

Finally, by using Lemma 2.4.4 below with the choice yn = xn − x∞, we get that the last limit is
zero. This gives the desired conclusion. �

Lemma 2.4.4. Let {yn}n∈N ⊂ C be such that

lim
n→∞

yn = 0.

Then Z[{yn}] is holomorphic for |z| > 1 and

(2.4.5) lim
R3x→1+

(x− 1)Z[{yn}](x) = 0.

Proof. We first observe that by hypothesis, we have

lim sup
n→∞

n
»
|yn| ≤ 1.

Thus z 7→ Z[{yn}](z) is holomorphic for |z| > 1. In order to prove (2.4.5), we observe that for
every ε > 0 there exists nε ∈ N such that

|yn| < ε, for every n ≥ nε,

since yn converges to 0. Thus we obtain for z = x ∈ R with2 x > 1∣∣∣∣(x− 1)Z[{yn}](x)

∣∣∣∣ ≤ |x− 1|

∣∣∣∣∣∣
nε−1∑
n=0

yn
xn

∣∣∣∣∣∣+ ε |x− 1|
∞∑

n=nε

1

xn

≤ (x− 1)

∣∣∣∣∣∣
nε−1∑
n=0

yn
xn

∣∣∣∣∣∣+ ε (x− 1)
x

x− 1
.

2In the second inequality we use that
∞∑

n=nε+1

1

xn
≤
∞∑
n=0

1

xn
=

x

x− 1
.
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By taking the limit as x goes to 1, we thus get

lim
x→1+

∣∣∣∣(x− 1)Z[{yn}](x)

∣∣∣∣ ≤ ε.
By arbitrariness of ε > 0, we get the desired conclusion. �

Remark 2.4.5. If we remove the assumption (2.4.2), Theorem 2.4.3 does not hold anymore.
Indeed, if we take the sequence

xn = (−1)n,

we get

Z[{xn}](z) =
∞∑
n=0

(−1)n

zn
=
∞∑
n=0

Å−1

z

ãn
=

1

1−
Å
−1

z

ã =
z

z + 1
.

Thus we have

lim
R3x→1+

(1− x)Z[{xn}](x) = 0.

On the other hand, the sequence {xn}n∈N does not converge.

Remark 2.4.6 (Periodic sequences and the Final Value Theorem). Let us consider a m−periodic
sequence {xn}n∈N ⊂ C. Thus we have

xn+m = xn, for every n ∈ N.

Such a sequence can not converge, unless it is constant. Thus in this case we can not apply Theorem
2.4.3. However, by recalling the formula (2.2.5) for its Z−transform, we have

Z[{xn}](z) =
zm

zm − 1

m−1∑
n=0

xn
zn
, for |z| > 1.

In particular, by evaluating this function for R 3 x > 1, multiplying by the factor (x − 1) and
taking the limit, we get

lim
R3x→1+

(x− 1)Z[{xn}](z) = lim
R3x→1+

xm (x− 1)

xm − 1

m−1∑
n=0

xn
zn

=
1

m

m−1∑
n=0

xn.

Observe that we used that

lim
x→1

xm − 1

x− 1
= m.

In other words, for a m−periodic sequence, we get

lim
R3x→1+

(x− 1)Z[{xn}](z) =
1

m

m−1∑
n=0

xn,

and observe that the sum on the right-hand side is the average of the values assumed by the periodic
sequence {xn}n∈N.
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5. Relations with Fourier series expansions

Let {xn}nN ⊂ C be a Z−transformable sequence, with

lim sup
n→∞

n
»
|xn| = R < +∞.

We have seen that its Z−transform is holomorphic in |z| > R. In particular, for every % > R the
following function of one real variable is well-defined

f(t) := Z[{xn}](% ei t), t ∈ [0, 2π],

and can be periodically extended to the whole R. By definition of Z−transform, this is nothing
but

(2.5.1) f(t) =
∞∑
n=0

xn
%n

e−i n t, t ∈ [0, 2π].

On the other hand, by appealing to the inversion formula (2.3.1) and taking γ = % ei t for t ∈ [0, 2π],
we have

xk =
1

2π i

ˆ
∂B%(0)

Z[{xn}](z) zk−1 dz

=
1

2π i

ˆ 2π

0
Z[{xn}](% ei t) %k−1 ei (k−1) t i % ei t dt

=
%k

2π

ˆ 2π

0
f(t) ei k t dt.

By inserting this information in (2.5.1), we finally obtain

(2.5.2) f(t) =
∞∑
n=0

Ç
1

2π

ˆ 2π

0
f(t) ei n t dt

å
e−i n t, t ∈ [0, 2π],

which is the Fourier expansion of the periodic function3 f . We recall that the latter is the restriction
of the Z−transform on the circle ∂B%(0).

6. Applications to signal processing

The main application of the Z−transform is in signal processing. It can be used to solve finite
difference linear equations. These are important since they provide an approximation to solve
numerically ordinary differential equations. We try to explain the idea with a simple example.

Example 2.6.1 (First order finite differences). Let us consider the linear ordinary differential
equation with constant coefficients®

y′(t) + a y(t) = b(t), t ≥ 0,
y(0) = y0

3We recall that the Fourier expansion of a (2π)−periodic function g is given by

g(t) =
∑
n∈Z

ĝ(n) ei n t, t ∈ [0, 2π], with ĝ(n) =
1

2π

ˆ 2π

0
g(t) e−i n t dt,

see the Appendix C. Then formula (2.5.2) implies that in this particular case ĝ(n) = 0 for n ≥ 1.
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The idea of the finite difference method is to replace derivatives by incremental ratios, since by
Taylor formula

y′(t) =
y(t+ h)− y(t)

h
+ o(1), for 0 < h� 1,

and discretize the problem. In a nutshell, we fix a time step τ > 0 and look at values of the
functions on the regular grid {0, τ, 2 τ, . . . , n τ, . . . }. By setting

xn = y(n τ), bn = b(n τ), n ∈ N,
the initial first order differential equation is replaced by

xn+1 − xn
τ

+ a xn = bn, n ∈ N,
x0 = y0

that is

(2.6.1)

®
xn+1 = τ bn + (1− a τ)xn, n ∈ N,
x0 = y0

The unknown of the problem is now the sequence {xn}n∈N, which by construction is a regular
sampling of the values of the original solution y (more precisely, a regular sampling of the values
of an approximation of y). If we are able to determine these coefficients, then the graph of an
approximate solution of the original problem can be obtained by interpolating the points

(0, x0), (τ, x1), . . . , (n τ, xn), . . .

In order to solve (2.6.1), we can employ the Z−transform. Indeed, from (2.6.1), by linearity of the
Z−transform we get

Z[{xn+1}](z) = τ Z[{bn}](z) + (1− a τ)Z[{xn}](z).
By recalling the translation relation (2.2.1) and taking into account the initial condition, the pre-
vious identity becomes

zZ[{xn}](z) = z y0 + τ Z[{bn}](z) + (1− a τ)Z[{xn}](z),
that is

Z[{xn}](z) =
z y0

z − 1 + a τ
+

τ

z − 1 + a τ
Z[{bn}](z).

Thus we found the explicit expression of the Z−transform. In order to find the coefficients {xn}n∈N,
we now have to use the inversion formula (2.3.1).

Example 2.6.2 (Second order finite differences). In the case of
y′′(t) + c y′(t) + a y(t) = b(t), t ≥ 0,

y(0) = y0

y′(0) = y1

we can discretize this problem by observing that

y′′(t) ' y′(t+ h)− y′(t)
h

'

y(t+ 2h)− y(t+ h)

h
− y(t+ h)− y(t)

h
h

=
y(t+ 2h)− 2 y(t+ h) + y(t)

h2
,

and

y′(0) ' y(h)− y(0)

h
.
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By introducing the time step τ > 0 and setting as before

xn = y(n τ) and bn = b(n τ),

the initial problem can be approximated by
xn+2 − 2xn+1 + xn

τ2
+ c

xn+1 − xn
τ

+ a xn = bn, n ∈ N,
x0 = y0

x1 − x0

τ
= y1

This can be also rewritten as

(2.6.2)


xn+2 = (2− c τ)xn+1 + (c τ − 1− τ2 a)xn + τ2 bn, n ∈ N,
x0 = y0

x1 = y0 + τ y1

In this case as well, one could employ the Z−transform in order to solve this initial value problem
for the second order finite differences equation.

Let f : R→ C be a causal signal, i.e. a function such that f(t) ≡ 0 for t < 0. If we fix a time
step τ > 0, we can consider its regular sampling

{f(n τ)}n∈N ⊂ C.

Definition 2.6.3. Let τ > 0, we say that f is Z−transformable with time step τ if the sequence
{f(n τ)}n∈N is Z−transformable, i.e. if

lim sup
n→∞

n
»
|f(n τ)| < +∞.

Then we call Z[{f(n τ)}] the Z−transform of f with time step τ .

Remark 2.6.4 (A sufficient condition for transformability). It is easy to see that if the signal f
has exponential growth, then it is Z−transformable with every time step τ > 0. More precisely, if

|f(t)| ≤ C eα t,

for some C > 0 and α ≥ 0, then it is Z−transformable. Indeed, in this case for every time step
τ > 0 we have

lim sup
n→∞

n
»
|f(n τ)| ≤ eα τ lim sup

n→∞

n
√
C = eα τ .

Observe that this also gives the following estimate for the radius of convergence

R ≤ eα τ .

Example 2.6.5 (Heaviside step function). Let H(t) be the Heaviside step function, defined by

H(t) =

®
1, for t ≥ 0,
0, for t < 0.

For every given time step τ we have H(n τ) = 1. Thus it is Z−transformable and we have

Z[H(n τ)](z) = Z[{1}](z) =
∞∑
n=0

z−n =
1

1− 1

z

=
z

z − 1
, |z| > 1.
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Example 2.6.6 (Ramp function). Let t 7→ R(t) be the ramp function, defined by

R(t) = tH(t) =

®
t, for t ≥ 0,
0, for t < 0.

Given the time step τ > 0 we have R(n τ) = n τ . Thus it is Z−transformable with every time step
τ > 0 and we have

Z[{R(n τ)}](z) = Z[{τ n}](z) = τ Z[{n}](z).
In order to compute the last transform, we observe that by using (2.2.3), we have

Z[{n}](z) = Z[{n · 1}](z) = −z d

dz
Z[{1}](z).

In conclusion, for the ramp function we get

Z[{R(n τ)}](z) =
τ z

(z − 1)2
, for |z| > 1.

Example 2.6.7 (Periodic signals). Let f : R → C be a positively periodic causal signal, with
period T > 0. In other words, we have

f(t+ T ) = f(t), for t ≥ 0.

We fix m ∈ N \ {0} and take the time step τ = T/m. Then the regular sampling {f(n τ)}n∈N is a
periodic sequence, with period m. Indeed, we have

f(n τ +mτ) = f(n τ + T ) = f(n τ), for every n ∈ N.

By using (2.2.5), we thus get

Z[{f(n τ)}](z) =
zm

zm − 1

m−1∑
n=0

f(n τ)

zn
.

7. Exercises

Exercise 2.7.1. Compute the Z−transform of the sequence {n}n∈N.

Solution. We first observe that the sequence is Z−transformable, since

lim
n→∞

n
√
n = 1.

Thus Z[{n}] is an analytic function on {z ∈ C : |z| > 1}, defined by

Z[{n}](z) =
∞∑
n=0

n z−n.

By (2.2.3), we know that

Z[{n}](z) = Z[{n · 1}](z) = −z d

dz
Z[{1}](z),

thus we only need to compute the Z−transform of the constant sequence xn = 1. We have

(2.7.1) Z[{1}](z) =
∞∑
n=0

z−n =
1

1− z−1
=

z

z − 1
.

We thus obtain

(2.7.2) Z[{n}](z) = −z d

dz

z

z − 1
=

z

(z − 1)2
, |z| > 1.
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This concludes the exercise. �

Exercise 2.7.2. Let us consider the two sequences

xn = n and yn = 1, for every n ∈ N.

Compute the convolution {xn ∗ yn}n∈N and its Z−transform.

Solution. By definition of convolution, we have

xn ∗ yn =
n∑
k=0

xk yn−k =
n∑
k=0

k =
n (n+ 1)

2
.

By using Proposition 2.2.4, we then obtain

Z
ñ®

n (n+ 1)

2

´ô
(z) = Z[{n}](z)Z[{1}](z).

By recalling that (see previous exercise)

Z[{n}](z) =
z

(z − 1)2
, |z| > 1,

and (see Example 2.1.4)

Z[{1}](z) =
z

z − 1
, |z| > 1,

we finally obtain

Z
ñ®

n (n+ 1)

2

´ô
(z) =

z2

(z − 1)3
, |z| > 1,

thus concluding the exercise. �

Exercise 2.7.3. Compute the Z−transform of the sequence {n2}n∈N.

Solution. We first observe that the sequence is Z−transformable, since

lim
n→∞

n
√
n2 = 1.

Thus Z[{n}] is an analytic function on {z ∈ C : |z| > 1}. We can proceed as in the previous
exercise, by exploiting (2.2.3). Indeed, we have

Z[{n2}](z) = Z[{n · n}](z) = −z d

dz
Z[{n}](z),

thus we only need to use previous Exercise to compute the Z−transform of {n}n∈N. We thus obtain

Z[{n2}](z) = −z d

dz

z

(z − 1)2
=
z (1 + z)

(z − 1)3
, |z| > 1.

This concludes the exercise. �

Exercise 2.7.4. Let us consider the causal signal f(t) = cos(t)H(t). Given a time step τ > 0, let
us compute the Z−transform of f with time step τ .

Solution. We first observe that the sequence

{f(n τ)}n∈N = {cos(n τ)}n∈N,
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is bounded, thus by Remark 2.1.3 it is Z−transformable and the Z−transform is well-defined for
|z| > 1. In order to compute the Z−transform, we observe that

cos(n τ) =
ei n τ + e−i n τ

2
,

thus by linearity of the Z−transform we get

Z[{cos(n τ)}](z) =
1

2
Z[{ei n τ}](z) +

1

2
Z[{e−i n τ}](z).

By recalling Example 2.2.7, we get

Z[{ei n τ}](z) =
z

z − ei τ
and Z[{e−i n τ}](z) =

z

z − e−i τ
.

Thus we obtain

Z[{cos(n τ)}](z) =
1

2

z

z − ei τ
+

1

2

z

z − e−i τ
=

1

2

2 z2 − z (ei τ + e−i τ )

(z − ei τ ) (z − e−i τ )
.

With simple manipulations, we finally obtain

(2.7.3) Z[{cos(n τ)}](z) =
z (z − cos τ)

z2 − 2 z cos τ + 1
.

We observe that

lim
τ→0+

cos(n τ) = 1 and lim
τ→0+

z (z − cos τ)

z2 − 2 z cos τ + 1
=

z

z − 1
,

which agrees with (2.7.1). �

Remark 2.7.5. We point out that even if the causal signal f(t) = cos tH(t) is positively periodic,
with period 2π, its regular sampling

f(n τ),

in general is not periodic. This is the case if we take the time step τ = 2π/k, then the sequence
{f(n τ)}n∈N is k−periodic. Thus from (2.2.5) we would get

Z
ïß
f

Å
n

2π

k

ã™ò
(z) =

zk

zk − 1

k−1∑
n=0

cos

Å
n

2π

k

ã
z−n, |z| > 1.

By comparing (2.7.3) and the previous expression, we get in particular (for k ≥ 1)

k−1∑
n=0

cos

Å
n

2π

k

ã
z−n =

zk − 1

zk−1

z − cos

Å
2π

k

ã
z2 − 2 z cos

Å
2π

k

ã
+ 1

, |z| > 1.

Observe that for k ≥ 2, we can take the limit z → 1 on both sides and obtain the well-known
relation

k−1∑
n=0

cos

Å
n

2π

k

ã
= 0.

Exercise 2.7.6. By using the Z−transform, determine the sequence {xn}n∈N ⊂ C inductively
defined by 

xn+2 = 2xn+1 − xn,
x0 = 0,
x1 = 1.
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Solution. We introduce the Z−transform

X(z) =
∞∑
n=0

xn z
−n,

then from the relation defining {xn}n∈N and by using property (2.2.1) of the Z−transform, we get
the relation

z2X(z)− z = 2 z X(z)−X(z),

that is

X(z) [z2 − 2 z + 1] = z.

This finally gives

X(z) =
z

(z − 1)2
,

which is an analytic function on C \ {1}, with a pole of order 2 in z = 1. From formulas (2.3.2)
and (2.3.3), for n ≥ 1 we get

xn =
1

2π i

ˆ
γ
X(z) zn−1 dz =

1

2π i

ˆ
∂Br(0)

zn

(z − 1)2
dz

= res

Ç
zn

(z − 1)2
, 1

å
= lim

z→1

d

dz

Ç
(z − 1)2 zn

(z − 1)2

å
= n.

We used the formula of Proposition 1.10.11, in order to compute the residue. This finally gives
xn = n for n ≥ 1. �

Exercise 2.7.7. By using the Z−transform, determine the sequence {xn}n∈N ⊂ C inductively
defined by 

xn+2 = −xn,
x0 = 0,
x1 = 2.

Solution. We introduce the Z−transform

X(z) =
∞∑
n=0

xn z
−n

then from the relation defining {xn}n∈N and by using property (2.2.1) of the Z−transform, we get
the relation

z2X(z)− 2 z = −X(z),

that is

X(z) [z2 + 1] = 2 z.

This finally gives

X(z) =
2 z

z2 + 1
,
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which is an analytic function on C \ {−i, i}, with two simple poles in s = ±i. From the inversion
formula and Remark 2.3.2, for n ≥ 2 we get

xn =
1

2π i

ˆ
γ
X(z) zn−1 dz =

1

2π i

ˆ
γ

2 zn

z2 + 1
dz

= res

Å
2 zn

z2 + 1
, i

ã
+ res

Å
2 zn

z2 + 1
,−i

ã
= [1 + (−1)n+1] in−1.

We used the formula of Corollary 1.10.13, in order to compute the residue. This finally gives

xn =


0, if n is even,
2, if n = 2 k + 1 with k even,
−2, if n = 2 k + 1 with k odd,

thus concluding the exercise. �

8. Advanced exercises

Exercise 2.8.1. Let us suppose that
∑∞
n=0 xn and

∑∞
n=0 yn are absolutely convergent. Then

(2.8.1)
∞∑
n=0

|xn ∗ yn| < +∞,

and we have

(2.8.2)
∞∑
n=0

xn ∗ yn =

( ∞∑
n=0

xn

) ( ∞∑
n=0

yn

)
,

Solution. By hypothesis, we have

∞∑
n=0

|xn| < +∞ and
∞∑
n=0

|yn| < +∞.

This means that the sequences of the associated partial sums are converging, i. e.

lim
M→∞

M∑
n=0

|xn| < +∞ and lim
M→∞

M∑
n=0

|yn| < +∞.

We first prove (2.8.1). We fix M ∈ N and consider the partial sum

(2.8.3)
M∑
n=0

|xn ∗ yn| =
M∑
n=0

∣∣∣∣∣∣
n∑
k=0

xk yn−k

∣∣∣∣∣∣ ≤
M∑
n=0

n∑
k=0

|xk| |ynk |.

Now, we would like to exchange the order of the two sums above. At this aim, we observe that the
set of indices n, k in the sums can be rewritten as

{(n, k) ∈ N× N : 0 ≤ n ≤M and 0 ≤ k ≤ n} = {(n, k) ∈ N× N : 0 ≤ k ≤M and k ≤ n ≤M}.

This implies that

M∑
n=0

n∑
k=0

|xk| |ynk | =
M∑
k=0

M∑
n=k

|xk| |ynk | =
M∑
k=0

|xk|
(

M∑
n=k

|yn−k|
)
.
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In the last sum, we make the change of index m = n− k, thus from (2.8.3) we obtain

M∑
n=0

|xn ∗ yn| ≤
M∑
k=0

|xk|
(
M−k∑
m=0

|ym|
)
≤

M∑
k=0

|xk|
(

M∑
m=0

|ym|
)

=

(
M∑
k=0

|xk|
) (

M−k∑
m=0

|ym|
)
.

(2.8.4)

Observe that |xn ∗ yn| is positive, thus the sequence

sM =
M∑
n=0

|xn ∗ yn|,

is monotone increasing and it admits limit. By estimate (2.8.4), we get that such a limit is finite,
i.e. we proved (2.8.1).

The proof of (2.8.2) can be accomplished by using the same trick of exchanging the order of
the sums, we leave the details to the reader (see also [2, Teorema 14.15]). �

Exercise 2.8.2. Let us consider the Cauchy problem
y′′(t) + y(t) = 0,

y(0) = 0,
y′(0) = 1.

Discretize the problem and find an approximate solution, with the aid of the Z−transform.

Solution. Let y be the solution of the Cauchy problem (we consider it to be equal to 0 for t < 0),
we fix a time step 0 < τ and consider the regular sampling

{xn}n∈N := {y(n τ)}n∈N.

From formula (2.6.2) with

y0 = 0, y1 = 1, c = 0 b = 0 and a = 1,

we get 
xn+2 = 2xn+1 − (1 + τ2)xn, n ∈ N,
x0 = 0
x1 = τ

We introduce the Z−transform

X(z) =
∞∑
n=0

xn z
−n,

by using property (2.2.1) of the Z−transform, we get the relation

z2
Å
X(z)− τ

z

ã
= 2 z X(z)− (1 + τ2)X(z).

With some manipulations, we get

X(z) =
τ z

z2 − 2 z + 1 + τ2
.

We observe that X is an olomorphic function on C \ {s1, s2}, where

s1 = 1 + τ i and s2 = 1− τ i.
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The function X has two simple poles at this points. By using the inversion formula (2.3.1) and
Remark 2.3.2, we obtain

xn =
1

2π i

ˆ
γ
X(z) zn−1 ds =

1

2π i

ˆ
γ

τ zn

z2 − 2 z + 1 + τ2
dz

= res

Å
τ zn

z2 − 2 z + 1 + τ2
, s1

ã
+ res

Å
τ zn

z2 − 2 z + 1 + τ2
, s2

ã
=
τ

2

Å
sn1

s1 − 1
+

sn2
s2 − 1

ã
=
τ

2

ñ
(1 + τ i)n

τ i
− (1− τ i)n

τ i

ô
=

(1 + τ i)n − (1− τ i)n

2 i
.

Observe that we used the formula of Corollary 1.10.13, in order to compute the residue. Notice
that for n = 0 and n = 1 we are back with

x0 = 0 and x1 = τ.

By using Newton’s formula, we get for n ≥ 2

(1 + τ i)n − (1− τ i)n

2 i
=

1

2 i

[
n∑
k=0

Ç
n

k

å
τk ik −

n∑
k=0

Ç
n

k

å
(−1)k τk ik

]

=
n∑
k=1

Ç
n

k

å ñ
1− (−1)k

2

ô
τk ik−1.

We observe that 1− (−1)k = 0 for k even and ik−1 ∈ R for k odd. Thus xn ∈ R and we have

xn =
n∑
k=1

Ç
n

k

å ñ
1− (−1)k

2

ô
τk ik−1

Let us compute the first terms

x0 = 0, x1 = τ, x2 = 2 τ, x3 = 3 τ − τ3, x4 = 4 τ − 4 τ3

x5 = 5 τ − 10 τ3 + τ5, x6 = 6 τ − 20 τ3 + 6 τ5.

see the figure below. �

Exercise 2.8.3. Let {bn}n∈N ⊂ C be a given sequence and let {δ0,n}n∈N be the Delta sequence
centered at 0, i.e.

δ0,n =

®
1, if n = 0,
0, if n ≥ 1.

Prove that if {yn}n∈N solves

(2.8.5)


yn+2 +Ayn+1 +B yn = δ0,n,

y0 = 0,
y1 = 0,

then the convolution {bn ∗ yn}n∈N solves

(2.8.6)


xn+2 +Axn+1 +B xn = bn,

x0 = 0,
x1 = 0.
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Figure 1. The blue line corresponds to the linear interpolation of the first 7 terms of the se-
quence {(n τ, y(n τ))}n∈N computed in Exercise 2.8.2, with time step τ = (2π)/100. The black line
corresponds to the graph of the exact solution of the ODE, i.e. y(t) = sin t.

Solution. We observe that if {yn}n∈N is solution of (2.8.5), then its Z−transform satisfies

z2Z[{yn}](z) +AzZ[{yn}](z) +BZ[{yn}](z) = 1,

where we also used that (see Example 2.1.5)

Z[{δ0,n}](z) = 1.

In other words, we find

Z[{yn}](z) =
1

z2 +Az +B
.

By using Proposition 2.2.4, we have

(2.8.7) Z[{bn ∗ yn}](z) = Z[{bn}](z)Z[{yn}](z) =
Z[{bn}](z)
z2 +Az +B

.

On the other hand, if {xn}n∈N solves (2.8.6), then its Z−transform must satisfy

z2Z[{xn}](z) +AzZ[{xn}](z) +BZ[{xn}](z) = Z[{bn}](z),

that is

Z[{xn}](z) =
Z[{bn}](z)
z2 +Az +B

.

By comparing this with (2.8.7), we get

Z[{xn}](z) = Z[{bn ∗ yn}](z).

Thus we get the desired conclusion by Proposition 2.3.1. �

Remark 2.8.4. The sequence {yn}n∈N in the previous exercise is called impulse response for the
problem (2.8.6). Observe that it can be explicitly determined, in terms of the coefficients A,B.
Indeed, we have

Z[{yn}](z) =
1

z2 +Az +B
,
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thus by the inversion formula

yn =
1

2π i

ˆ
γ

zn−1

z2 +Az +B
dz, for n ≥ 1.

Here γ is a positively oriented circle, entouring the two singularities

z0 =
−A−

√
A2 − 4B

2
and z1 =

−A+
√
A2 − 4B

2
.

Thus, as always, the integral above can be computed by using the Residue Theorem. However, we
have to distinguish two cases:

• if A2 6= 4B, then z0 6= z1 are two simple poles. Accordingly, we get

yn = res

Ç
zn−1

z2 +Az +B
, z0

å
+ res

Ç
zn−1

z2 +Az +B
, z1

å
=

zn−1
0

2 z0 +A
+

zn−1
1

2 z1 +A
,

where we used Corollary 1.10.13, in order to compute the residues;

• if A2 = 4B, then z0 = z1 = −A/2 and this is a pole with multiplicity 2. The integrand
now rewrites

zn−1

z2 +Az +B
=

zn−1Å
z +

A

2

ã2 .

Accordingly, we get

yn = res

á
zn−1Å
z +

A

2

ã2 ,−
A

2

ë
= lim

z→−A
2

d

dz

áÅ
z +

A

2

ã2 zn−1Å
z +

A

2

ã2

ë
= (n− 1)

Å
−A

2

ãn−2

.

Exercise 2.8.5 (Bessel’s equation of order 0). Find a solution of the following Cauchy problem
y′′(t) +

1

t
y′(t) + y(t) = 0, for t ≥ 0,

y(0) = 1,
y′(0) = 0.

Solution. We look for a solution which can be written as a power series centered at 0, i.e.

(2.8.8) y(t) =
∞∑
k=0

xk t
k, with x0 = y(0) = 1, x1 = y′(0) = 0.

By Corollary 1.7.6, we know that such a function can be differentiated infinitely many times for

|t| < R, where R =
1

lim supk→∞
k
»
|xk|

.
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We now proceed formally to identify the coefficients xk and then compute the radius of convergence
and justify a posteriori the computations we will make.

By inserting (2.8.8) in the equation, we get

y′′(t) +
1

t
y′(t) + y(t) =

∞∑
k=2

xk k (k − 1) tk−2 +
∞∑
k=1

xk k t
k−2 +

∞∑
k=0

xk t
k

=
∞∑
k=2

xk k (k − 1) tk−2 +
∞∑
k=2

xk k t
k−2 +

∞∑
k=0

xk t
k

=
∞∑
m=0

[
xm+2 (m+ 2) (m+ 1) + xm+2 (m+ 2) + xm

]
tm

=
∞∑
m=0

[
xm+2 (m+ 2)2 + xm

]
tm.

Thus, if we want y to be a solution, we need to impose that

∞∑
m=0

[
xm+2 (m+ 2)2 + xm

]
tm = 0, for t ≥ 0,

that is we want 
xm+2 (m+ 2)2 + xm = 0

x0 = 1
x1 = 0.

This means that we are lead to solve a linear recurrence, similar to those already previously solved
by means of the Z−transform. However, the use of the Z−transform now would not give easily
the solution. We proceed to determine the sequence {xm}m∈N directly “by hand”.

We first prove that

x2n+1 = 0 for n ∈ N.

This can be proved by induction: indeed, for n = 0 this is true by the initial condition. Let us not
suppose that x2n+1 = 0 for an index n ∈ N, we need to prove that this entails that x2n+3 = 0, as
well. However, this follows directly from the relation which defines the sequence, indeed

x2n+3 (2n+ 3)2 + x2n+1 = 0 that is x2n+3 (2n+ 3)2 = 0,

which proves x2n+3 = 0, as desired.

We now prove that

x2n =
(−1)n

(2n · (n!))2
, for n ∈ N,

We argue again by induction. For n = 0, this is true since x0 = 1 by constuction. We now assume
that for an index n ∈ N, we have

x2n =
(−1)n

(2n · (n!))2
,

then by using the recursive relation

x2n+2 = − 1

(2n+ 2)2
x2n = − 1

(2 · (n+ 1))2
· (−1)n

(2n · (n)!)2
=

(−1)n+1

(2n+1 · (n+ 1)!)2
,



74 2. The Z−transform

as desired. In conclusion, we get that a solution y to the initial Cauchy problem is given by

y(t) =
∞∑
n=0

(−1)n

(2n · (n)!)2
t2n.

By using that4

lim
n→∞

n

Ã∣∣∣∣∣ (−1)n

(2n · (n!))2

∣∣∣∣∣ = 0,

we have from Theorem 1.7.3 that the power series above totally converges in [−r, r], for every
r > 0. �

4We use again that
n
√
n! ∼

n

e
, for n→∞.



Chapter 3

Lebesgue integral and
Lp spaces

1. A flavour of Lebesgue measure and integration

The construction of the Riemann integral is quite simple and intuitive, but unfortunately it produces
a theory which is not “sufficiently rich”. Two typical problems are that:

• the class of integrable functions is too narrow;

• the theorems on the exchange between limit and integral signs are quite rigid.

Let us stick for the moment to the case of a positive function f : [a, b] → [0,+∞). The idea of
Riemann integral is to define ˆ b

a
f(x) dx,

by partioning the interval [a, b] through points t0 = a < t1 < t2 < · · · < tn = b and approximating
the area of the subgraph {(x, y) : 0 ≤ y ≤ f(x)} with rectangles. Roughly speaking, by taking this
process to the limit, this is like saying that we are computing the area of the subgraph by summing
up the lengths of all its “vertical slices”, i.e. the vertical segments in R × R connecting (x, 0) to
(x, f(x)).

The idea of Lebesgue integration is to change the point of view and compute the area of the
subgraph by summing up its “horizontal slices” in correspondence of the values y of the function.
These slices are given by the sets

{x ∈ [a, b] : f(x) > y} × {y},

and observe that, differently from the previous case, these sets are not segments (see Figure 1).
Indeed, if the function f is very “wild”, these sets may be very nasty.

Thus, first of all we need a way to quantify the “length” of these general sets, which extends
the ordinary notion of length of a segment (if we are in dimension 1; in general this would be a
generalization of the notion of area, volume and so on). This way of measuring is the Lebesgue

75
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Figure 1. Vertical slices (Riemann) VS. horizontal ones (Lebesgue)

measure of a set: roughly speaking, this is defined through inner and outer approximations through
countable unions of intervals.

We do not give here the detailed construction of the k−dimensional Lebesgue measure on Rk,
we just recall some of its fundamental properties that will be used in what follows. If a set A ⊂ Rk
is measurable with respect to the k−dimensional Lebesgue measure, we will indicate by |A| its
measure (this could be +∞). We then have:

• the empty set ∅ is measurable and |∅| = 0;

• if A ⊂ Rk is measurable, then Rk \A is measurable as well;

• {Ai}i∈N ⊂ Rk is a countable collection of measurable sets, then their union ∪i∈NAi is
measurable and ∣∣∣∣∣∣⋃i∈NAi

∣∣∣∣∣∣ ≤∑i∈N |Ai|;
• if {Ai}i∈N ⊂ Rk is a countable collection of measurable disjoint sets, we have∣∣∣∣∣∣⋃i∈NAi

∣∣∣∣∣∣ =
∑
i∈N
|Ai|;

• if A ⊂ B ⊂ Rk are measurable sets, then

|A| ≤ |B|;

• A = [a1, b1]× [a2, b2]× · · · × [ak, bk] is measurable and

|A| = (b1 − a1) (b2 − a2) . . . (bk − ak);

• for a ball Br(x0) = {x ∈ Rk : |x−x0| < r}, then |Br(x0)| coincides with its k−dimensional
volume. Thus for example

|Br(x0)| = π r2 for k = 2 and |Br(x0)| = 4

3
π r3 for k = 3;

• any affine subspace of dimension 0 ≤ ` ≤ k − 1 (i.e. a point, a line, a plane etc.) in Rk is
measurable, with measure 0.
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Definition 3.1.1 (Measurability). We say that f : Rk → R is measurable if for every λ ∈ R the
set

Ef (λ) = {x ∈ Rk : f(x) > λ},
is (Lebesgue) measurable.

If f is complex-valued, i.e. f : Rk → C, then we say that it is measurable if the two real-valued
functions Re(f) : Rk → R and Im(f) : Rk → R are measurable in the sense precised above.

Definition 3.1.2. We say that a positive measurable function f : Rk → R+ is summable ifˆ +∞

0
|Ef (λ)| dλ < +∞,

where the last integral is intended in the Riemann sense. Indeed, observe that the function λ 7→
|Ef (λ)| is monotone decreasing, as Ef (λ1) ⊂ Ef (λ2) if λ1 ≥ λ2. In this case, we set

(3.1.1)

ˆ
Rk
f dx :=

ˆ +∞

0
|Ef (λ)| dλ.

If f is sign-changing, then we say that it is summable if f+ = max{f, 0} and f− = max{−f, 0}
are summable and in this case we setˆ

Rk
f dx =

ˆ
Rk
f+ dx−

ˆ
Rk
f− dx.

Finally, if f is complex-valued we say that it is summable if both real-valued functions Re(f) and
Im(f) are summable. In this case, we setˆ

Rk
f dx =

ˆ
Rk

Re(f) dx+ i

ˆ
Rk

Im(f) dx.

Remark 3.1.3 (“Much ado about nothing”). If a function f : Rk → [0,∞) is Riemann integrable,
then it is Lebesgue integrable as well and the value of the integral is unchanged. This is based
on the fact that for the case of the Riemann integral one can prove the validity of formula (3.1.1)
(which goes under the name of Cavalieri’s principle).

Remark 3.1.4. If f : Rk → R is summable, then we have that |f | is summable as well, since
|f | = f+ + f−. Moreover, we have the simple but useful inequality∣∣∣∣ˆ

Rk
f dx

∣∣∣∣ =

∣∣∣∣ˆ
Rk
f+ dx−

ˆ
Rk
f− dx

∣∣∣∣ ≤ ˆ
Rk
f+ dx+

ˆ
Rk
f− dx =

ˆ
Rk
|f | dx.

The vice versa is true as well, i.e. if |f | is summable, then f is summable. Indeed, observe that for
every λ ≥ 0 we have

{|f | > λ} = {f > λ} ∪ {f < −λ},
and the two sets are measurable and disjoints. Thus we get

|{|f | > λ}| = |{f > λ}|+ |{f < −λ}|,
and

+∞ >

ˆ +∞

0
|{|f | > λ}| dλ =

ˆ +∞

0
|{f > λ}| dλ+

ˆ +∞

0
|{−f > λ}| dλ

=

ˆ +∞

0
|{f+ > λ}| dλ+

ˆ +∞

0
|{f− > λ}| dλ

=

ˆ
Rk
f+ dx+

ˆ
Rk
f− dx.
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This shows that ˆ
Rk
f+ dx < +∞ and

ˆ
Rk
f− dx < +∞,

thus f is summable.

By using this, we can also show that f : Rk → C is summable if and only if |f | : Rk → [0,∞)
is summable, we leave the details to the reader.

Definition 3.1.5 (Characteristic function). Let Ω ⊂ Rk be a measurable set, we define its char-
acteristic function 1Ω : Rk → R as the function such that

1Ω(x) =

®
1, if x ∈ Ω,
0, otherwise.

Remark 3.1.6 (Summability of characteristic functions). It is not difficult to see that Ω measurable
entails that 1Ω is a measurable function. Indeed, we have

Eλ(1Ω) =


∅, if λ ≥ 1,
Ω, if 0 ≤ λ < 1,
Rk, if λ < 0.

thus Eλ(1Ω) is measurable for every λ ∈ R. Moreover, we have that

1Ω summable ⇐⇒
ˆ +∞

0
|Eλ(1Ω)| dλ < +∞

⇐⇒
ˆ 1

0
|Eλ(1Ω)| dλ < +∞

⇐⇒ |Ω| =
ˆ 1

0
|Ω| dλ < +∞

Remark 3.1.7. For example, the Heaviside function t 7→ H(t) coincides with the characteristic
function of the set [0,+∞). The latter has not finite measure, thus H is not summable.

Definition 3.1.8 (Integral on a set). Let E ⊂ Rk be a measurable set, we say that f : E → C is
measurable if its extension by 0 to Rk, i.e.

f̃ =

®
f(x), if x ∈ E,
0 otherwise,

is measurable. We say that f is summable on E if f̃ is summable. In this case, we setˆ
E
f dx =

ˆ
Rk
f̃ dx.

2. Some results on Lebesgue integration

One of the main advantages of the Lebesgue integral is the greater flexibility in exchanging the
limit and integral signs. However, some care is needed in any case. We first need a definition.

Definition 3.2.1. Let {fn}n∈N be a suquence of (possibly complex-valued) measurable functions
defined on a measurable set E ⊂ Rk. We say that the sequence converges pointwisely almost every
where if

lim
n→∞

fn(x) = f(x), for almost every x ∈ E.
This means that the set of points x ∈ E for which the convergence above does not hold has Lebesgue
measure zero.
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In general, if we only have almost everywhere pointwise convergence, we can not take the limit
under the integral sign.

Example 3.2.2. Let {fn}n∈N be the sequence of measurable functions defined on [0, 1] by

fn(x) =

®
n, if 0 ≤ x ≤ 1/n,
0, if 1/n < x ≤ 1.

Then we have

lim
n→∞

fn(x) = 0, for a. e. x ∈ [0, 1],

while on the other hand

lim
n→∞

ˆ 1

0
fn dx = lim

n→∞
n

ˆ 1
n

0
dx = 1 > 0.

However, we have at least an inequality. This is the content of the first result.

Lemma 3.2.3 (Fatou Lemma). Let E ⊂ Rk be a measurable set and {fn}n∈R a sequence of non-
negative summable functions defined on E. Let us suppose that

lim
n→∞

fn(x) = f(x), for a. e. x ∈ E.

Then we have ˆ
E
f dx ≤ lim inf

n→∞

ˆ
E
fn dx.

Theorem 3.2.4 (Monotone Convergence Theorem). Let E ⊂ Rk be a measurable set and {fn}n∈R
a monotone increasing sequence of non-negative summable functions defined on E, i.e.

0 ≤ f0(x) ≤ f1(x) ≤ f2(x) ≤ . . . , for a. e. x ∈ E.
Let us suppose that

lim
n→∞

fn(x) = f(x), for a. e. x ∈ E.
Then we have ˆ

E
f dx = lim

n→∞

ˆ
E
fn dx.

The following result will be extremely important. The hypothesis (3.2.1) below is crucial.

Theorem 3.2.5 (Lebesgue Dominated Convergence Theorem). Let E ⊂ Rk be a measurable set
and {fn}n∈R a sequence of complex-valued measurable functions defined on E. Let us suppose that

lim
n→∞

fn(x) = f(x), for a. e. x ∈ E,

and that there exists a positive summable function g : E → R such that

(3.2.1) |fn(x)| ≤ g(x), for every n ∈ N, for a. e. x ∈ E,
Then we have ˆ

E
f dx = lim

n→∞

ˆ
E
fn dx.

We now present a couple of results that will be useful in order to exchange the order of inte-
gration.

Theorem 3.2.6 (Fubini). Let f : Rk × Rm → C be a summable function on Rk × Rm. Then:

(A) for a. e. y ∈ Rm the function x 7→ f(x, y) is summable on Rk;
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(B) the function y 7→
´
Rk f(x, y) dx is summable on Rm;

(C) there holds ˆ
Rk×Rm

f(x, y) dx dy =

ˆ
Rk

Åˆ
Rm

f(x, y) dx

ã
dy.

Theorem 3.2.7 (Tonelli). Let f : Rk × Rm → R be a positive measurable function, i.e.

f(x, y) ≥ 0, for a e. (x, y) ∈ Rk × Rm.

Let us suppose that

(A) for a. e. y ∈ Rm the function x 7→ f(x, y) is summable on Rk;

(B) the function y 7→
´
Rk f(x, y) dx is summable on Rm.

Then f is summable on Rk × Rm.

3. Lp spaces

Starting with this section, we will confine ourselves to consider subsets of R only. However, all the
statements that will follow can be easily generalized to Rk.

Let 1 < p < +∞, we define its conjugate exponent p′ by

1

p
+

1

p′
= 1, that is p′ =

p

p− 1
.

In the extremal cases p = 1 or p = +∞, we define the conjugate exponent by p′ = +∞ and p′ = 1,
respectively.

Definition 3.3.1. Let E ⊂ R be a measurable set and 1 ≤ p < +∞, we define the space of
p−summable functions on E by

Lp(E) =

ß
f : E → C measurable :

ˆ
E
|f |p dx < +∞

™
.

In the limit case p = +∞, we define

L∞(E) =
{
f : E → C measurable : ∃M ≥ 0 s. t. |f(x)| ≤M for a. e. x ∈ E

}
.

The functions of L∞(E) are called essentially bounded functions on E.

Let E ⊂ R be a measurable set and f ∈ Lp(E), for 1 ≤ p < +∞ we define its Lp norm

‖f‖Lp(E) =

Åˆ
E
|f |p dx

ã 1
p

.

In the limit case p = +∞, we set

‖f‖L∞(E) = inf
{
M : |f(x)| ≤M for a. e. x ∈ E

}
.

We first need a couple of basic results on convex functions.

Lemma 3.3.2 (Young’s inequality). Let 1 < p < +∞, then for every a, b ∈ R we have

(3.3.1) |a b| ≤ |a|
p

p
+
|b|p′

p′
.
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Proof. Without loss of generality, we can suppose that a and b are both positive. Moreover, if
a = 0 or b = 0, then (3.3.1) holds true. Thus, let us assume a > 0 and b > 0. We fix b > 0 and
consider the function

f(a) = a b− ap

p
, a > 0.

By direct computation we see

f ′(a) ≥ 0 ⇐⇒ b ≥ ap−1 ⇐⇒ b
1
p−1 ≥ a.

This implies that f is increasing on the interval (0, b1/(p−1)] and decreasing on (b1/(p−1),+∞). In
other words, we obtain

f(a) ≤ f
(
b

1
p−1

)
, for every a > 0.

By using the definition of f , this is the same as

a b− ap

p
≤ b b

1
p−1 − 1

p
b

p
p−1 =

Å
1− 1

p

ã
b

p
p−1 =

bp
′

p′
, for every a > 0,

which is (3.3.1). �

Lemma 3.3.3. Let f : R→ R be a C2 function, such that

f ′′(t) ≥ 0, for every t ∈ R.

Then for every t0, t1 ∈ R we have

f

Å
t0 + t1

2

ã
≤ 1

2
f(t0) +

1

2
f(t1).

Proof. We recall that for a C2 function, we have the following Taylor formula with integral re-
mainder term

f(t) = f(s) + f ′(s) (t− s) +

ˆ t

s
f ′′(τ) (t− τ) dτ.

This can be directly verified, by using an integration by parts in the last integral. By using this
formula with

t = t0 and s =
t0 + t1

2
,

we then get

(3.3.2) f(t0) = f

Å
t0 + t1

2

ã
+ f ′

Å
t0 + t1

2

ã
t0 − t1

2
+

ˆ t0

t0+t1
2

f ′′(τ) (t0 − τ) dτ.

We can also use the formula above, with the choices

t = t1 and s =
t0 + t1

2
,

so to get this time

(3.3.3) f(t1) = f

Å
t0 + t1

2

ã
+ f ′

Å
t0 + t1

2

ã
t1 − t0

2
+

ˆ t1

t0+t1
2

f ′′(τ) (t1 − τ) dτ.

By summing up (3.3.2) and (3.3.3), we then get

(3.3.4) f(t1) + f(t0) = 2 f

Å
t0 + t1

2

ã
+

ˆ t0

t0+t1
2

f ′′(τ) (t0 − τ) dτ +

ˆ t1

t0+t1
2

f ′′(τ) (t1 − τ) dτ.
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We now suppose without loss of generality that t0 ≤ t1. This entails

t0 ≤
t0 + t1

2
≤ t1,

and thus ˆ t0

t0+t1
2

f ′′(τ) (t0 − τ) dτ +

ˆ t1

t0+t1
2

f ′′(τ) (t1 − τ) dτ

= −
ˆ t0+t1

2

t0

f ′′(τ) (t0 − τ) dτ +

ˆ t1

t0+t1
2

f ′′(τ) (t1 − τ) dτ

=

ˆ t0+t1
2

t0

f ′′(τ) (τ − t0) dτ +

ˆ t1

t0+t1
2

f ′′(τ) (t1 − τ) dτ.

By recalling that f ′′(τ) ≥ 0 for every τ ∈ R, we obtain that the sum of these two integrals is
non-negative. By using this in (3.3.4), we thus get

f(t1) + f(t0) ≥ 2 f

Å
t0 + t1

2

ã
,

as desired. �

Remark 3.3.4 (A property of convex powers). By using the previous result, we can prove that
for every 1 < p < +∞ we have

(3.3.5)

∣∣∣∣x+ y

2

∣∣∣∣p ≤ |x|p2
+
|y|p

2
, for every x, y ∈ R.

Indeed, when p ≥ 2 this follows by using directly Lemma 3.3.3 with f(t) = |t|p. Indeed, this is a
C2 function such that f ′′ ≥ 0. For 1 < p < 2, this function is not C2, but we can circumvent this
problem as follows: we consider fε(τ) = (ε2 + t2)p/2, which is now a C2 function if ε > 0. Moreover,
it is easy to see that

f ′′ε (τ) ≥ 0, for every τ ∈ R.
By applying Lemma 3.3.3, we then get

fε

Å
x+ y

2

ã
≤ 1

2
fε(x) +

1

2
fε(y), for every x, y ∈ R.

By recalling the definition of fε, this is the same asÇ
ε2 +

Å
x+ y

2

ã2
å p

2

≤ (ε2 + x2)
p
2

2
+

(ε2 + y2)
p
2

2
, for every x, y ∈ R, ε > 0.

If we now take the limit as ε goes to 0, we get (3.3.5) in the case 1 < p < 2, as well.

Proposition 3.3.5 (Hölder’s inequality). Let E ⊂ R be a measurable set and let 1 ≤ p ≤ +∞.

For every f ∈ Lp(E) and g ∈ Lp′(E) we have, f · g ∈ L1(E). Moreover, it holds

(3.3.6)

∣∣∣∣ˆ
E
f(x) g(x) dx

∣∣∣∣ ≤ ˆ
E
|f(x)| |g(x)| dx ≤ ‖f‖Lp(E) ‖g‖Lp′ (E).

Proof. Let us consider the case 1 < p < +∞, the remaining cases being simpler. If f = 0 or g = 0
almost everywhere in E, then there is nothing to prove. Thus let us assume that

|{x ∈ E : f(x) 6= 0}| > 0 and |{x ∈ E : g(x) 6= 0}| > 0.
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By (3.3.1) with the choices

a =
|f(x)|
‖f‖Lp(E)

and b =
|g(x)|
‖g‖Lp′ (E)

,

we obtain ∣∣∣∣∣ |f(x)|
‖f‖Lp(E)

|g(x)|
‖g‖Lp′ (E)

∣∣∣∣∣ ≤ 1

p

|f(x)|pˆ
E
|f(x)|p dx

+
1

p′
|g(x)|p′ˆ

E
|g(x)|p′ dx

,

which is valid for almost every x ∈ E. By taking the integral over E, the previous givesˆ
E
|f(x) g(x)| dx

‖f‖Lp(E) ‖g‖Lp′ (E)

≤ 1

p

ˆ
E
|f(x)|p dx

ˆ
E
|f(x)|p dx

+
1

p′

ˆ
E
|g(x)|p′ dx

ˆ
E
|g(x)|p′ dx

= 1.

This finally shows that ˆ
E
|f(x) g(x)| dx ≤ ‖f‖Lp(E) ‖g‖Lp′ (E).

In order to conclude, we have to show that∣∣∣∣ˆ
E
f(x) g(x) dx

∣∣∣∣ ≤ ˆ
E
|f(x) g(x)| dx.

If f and g are real-valued, then this follows from Remark 3.1.4. If f or g is complex valued, let us
set F = f g = u+ i v, with u and v real-valued. By definition of modulus of a complex number, we
have

(3.3.7)

∣∣∣∣ˆ
E
F dx

∣∣∣∣2 =

∣∣∣∣ˆ
E
u dx

∣∣∣∣2 +

∣∣∣∣ˆ
E
v dx

∣∣∣∣2 .
We can now use Hölder’s inequality for real-valued functions as follows:∣∣∣∣ˆ

E
u dx

∣∣∣∣2 =

∣∣∣∣∣∣
ˆ
E

u»
|F |

»
|F | dx

∣∣∣∣∣∣
2

≤
ˆ
E

u2

|F |
dx

ˆ
E
|F | dx,

and ∣∣∣∣ˆ
E
v dx

∣∣∣∣2 =

∣∣∣∣∣∣
ˆ
E

v»
|F |

»
|F | dx

∣∣∣∣∣∣
2

≤
ˆ
E

v2

|F |
dx

ˆ
E
|F | dx.

By using these in (3.3.7), we get∣∣∣∣ˆ
E
F dx

∣∣∣∣2 ≤ ˆ
E
|F | dx

Çˆ
E

u2

|F |
dx+

ˆ
E

v2

|F |
dx

å
=

Åˆ
E
|F | dx

ã2

.

By recalling that F = f g and taking the square root, we get the desired conclusion. �

Remark 3.3.6. Observe that in the previous result we proved that if F is a complex-valued
summable function, then ∣∣∣∣ˆ

E
F dx

∣∣∣∣ ≤ ˆ
E
|F | dx,

which generalizes the estimate of Remark 3.1.4 to complex-valued functions.
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Proposition 3.3.7 (Minkowski’s inequality). Let E ⊂ R be a measurable set and 1 ≤ p ≤ +∞.
For every f, g ∈ Lp(E) we have f + g ∈ Lp(E) and

(3.3.8) ‖f + g‖Lp(E) ≤ ‖f‖Lp(E) + ‖g‖Lp(E).

Proof. Let us focus on the case 1 ≤ p < +∞, the extremal case p = +∞ being simpler. We first
prove that

f + g ∈ Lp(E).

At this aim, we observe that

(3.3.9) |f(x) + g(x)|p ≤
(
|f(x)|+ |g(x)|

)p
≤ 2p−1 (|f(x)|p + |g(x)|p),

thanks to the inequality (3.3.5). By integrating (3.3.9) and using that f, g ∈ Lp(E), we thus getˆ
E
|f(x) + g(x)|p dx < +∞,

i.e. f + g ∈ Lp(E).

We now come to the proof of (3.3.8). By using that

|z|p = |z|p−2 |z|2 = |z|p−2 z z∗, for z ∈ C,

and Hölder’s inequality (3.3.6), we have

‖f + g‖pLp(E) =

ˆ
E
|f + g|p−2 (f + g) (f + g)∗ dx

=

ˆ
E
|f + g|p−2 (f + g) f∗ dx+

ˆ
E
|f + g|p−2 (f + g) g∗ dx

≤
Åˆ

E
|f + g|(p−1) p′ dx

ã 1
p′
Åˆ

E
|f |p dx

ã 1
p

+

Åˆ
E
|f + g|(p−1) p′ dx

ã 1
p′
Åˆ

E
|g|p dx

ã 1
p

= ‖f + g‖p−1
Lp(E)

Ä
‖f‖Lp(E) + ‖g‖Lp(E)

ä
,

where we used that (p− 1) p′ = p. By simplyfing on both sides the term ‖f + g‖p−1
Lp(E), we get the

conclusion. �

Remark 3.3.8. The previous result permits to infer that f 7→ ‖f‖Lp(E) is a norm1 on the vector
space Lp(E).

Definition 3.3.9 (Compactly supported functions). We say that a measurable function f : R→ C
has compact support if there exists a bounded closed interval [a, b] ⊂ R such that

|f(x)| = 0, for a. e. x ∈ R \ [a, b].

1This is not fully correct, there is a subtility here. Indeed, the fact that

‖f‖Lp(E) = 0,

only implies that f = 0 almost everywhere and not everywhere. The issue is easily fixed by considering Lp(E) as a collection

of equivalence classes of functions coinciding on E almost everywhere. We will not enter into these details here, which are

beyond the scopes of these notes.
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Proposition 3.3.10 (Inclusion properties). Let E ⊂ R be a measurable set with finite measure.
Let 1 ≤ p < q ≤ +∞, then we have

Lq(E) ⊂ Lp(E).

More precisely, we have

‖f‖Lp(E) ≤ |E|
1
p
− 1
q ‖f‖Lq(E), for every f ∈ Lq(E).

Proof. Let us start with the case q < +∞. We observe that if f ∈ Lq(E), then

|f |p ∈ L
q
p (E).

We can now use Hölder’s inequality (3.3.6) with conjugate exponents

q

p
and

Å
q

p

ã′
=

q

q − p
,

so to get

ˆ
E
|f |p dx =

ˆ
E

1 · |f |p dx ≤
Åˆ

E
1 dx

ã q−p
p
Åˆ

E
|f |q

ã p
q

≤ |E|
q−p
p ‖f‖pLq(E).

By taking the power 1/p on both sides, we get the conclusion.

If f ∈ L∞(E) the proof is even simpler, it is sufficient to observe that

|f(x)| ≤ ‖f‖L∞(E), for almost every x ∈ E,

thus we get Åˆ
E
|f |p dx

ã 1
p

≤ |E|
1
p ‖f‖L∞(E).

This concludes the proof. �

Remark 3.3.11. The previous inclusion Lq(E) ⊂ Lp(E) is false if |E| = +∞. Indeed, let us take
E = [1,+∞) and consider the function

f(x) =
1

x
.

Then it is easy to see that f ∈ Lq(E) for every q > 1, but f 6∈ L1(E). Indeed, we have
ˆ
E
|f |q dx =

ˆ +∞

1

1

|x|q
dx =

ñ
|x|1−q

q − 1

ô+∞

1

=
1

q − 1
,

and ˆ
E
|f | dx =

ˆ +∞

1

1

|x|
dx = lim

M→+∞

[
log x

]M
1

= lim
M→+∞

logM = +∞.

The following two simple technical results will be useful in the sequel.

Lemma 3.3.12. Let g ∈ L1(R) be such that

lim
x→+∞

g(x) = L.

Then we necessarily have L = 0.
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Proof. Let us assume by contradiction that L 6= 0. By assumption, if we fix ε = |L|/2 > 0 there
exists Λ > 0 such that

|g(x)− L| < |L|
2
, for every x > Λ.

In particular, by triangle inequality we get

|L|
2

= |L| − |L|
2
< |g(x)|, for every x > Λ.

By using that g ∈ L1(R), we would getˆ
R
|g(x)| dx ≥

ˆ +∞

Λ
|g(x)| dx > |L|

2

ˆ +∞

Λ
dt = +∞,

which is a contradiction with the fact that g ∈ L1(R). �

Definition 3.3.13 (Local Lebesgue space). We say that a measurable function f : R→ C is locally
summable if

f ∈ L1([a, b]),

for every couple of real numbers a < b. The collection of all locally summable functions will be
denoted by L1

loc(R).

Example 3.3.14. Of course, we have

L1(R) ⊂ L1
loc(R),

but the two spaces does not coincide. For example, the function x 7→ x2 is in L1
loc(R), sinceˆ b

a
x2 dx =

b3 − a3

3
< +∞,

but of course this does not belong to L1(R).

Example 3.3.15. Another important example of L1
loc(R) function is the cardinal sine function

sinc (x) =


sin(π x)

π x
, if x 6= 0

1, if x = 0.

Indeed, this is continuous function on R, thus we have sinc ∈ L∞([a, b]) ⊂ L1([a, b]), for every
a < b. On the other side

lim
L→∞

ˆ L

−L

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx = +∞,

thus sinc 6∈ L1(R), see Exercise 3.7.3. On the other hand, by using the Cauchy’s Theorem for
holomorphic functions (see Exercise 3.7.4) one can prove that

lim
L→∞

ˆ L

−L

sin(π x)

π x
dx = 1.

Finally, observe that sinc ∈ Lp(R) for p > 1, sinceˆ
R

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣
p

dx = 2

ˆ 1

0

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣
p

dx+ 2

ˆ ∞
1

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣
p

dx

≤ 2 +
2

πp

ˆ ∞
1

1

xp
dx = 2 +

2

(p− 1)πp
,

where we used that sinc is an even function, smaller than 1.
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4. Finer properties of Lp spaces

Definition 3.4.1 (Cauchy sequence). Let E ⊂ R be a measurable set and let 1 ≤ p ≤ +∞. We
say that {fn}n∈N ⊂ Lp(E) is a Cauchy sequence if:

∀ε, ∃n0 ∈ N such that for every n,m ≥ n0 we have ‖fn − fm‖Lp(E) < ε.

Theorem 3.4.2 (Riesz-Fischer). Let E ⊂ R be a measurable set. Then for 1 ≤ p ≤ +∞ the space
Lp(E) is a Banach space. In other words, Lp(E) is a normed vector space such that every Cauchy
sequence {fn}n∈N ⊂ Lp(E) is convergent, i.e. there exists f ∈ Lp(E) such that

lim
n→∞

‖fn − f‖Lp(E) = 0.

In what follows, we denote

C0(R) = {f : R→ C continuous : f compactly supported},

and more generally for k ∈ N \ {0}

Ck0 (R) = {f : R→ C derivable k times : f, f ′, . . . , f (k) continuous compactly supported}.

Finally, we also set

C∞0 (R) =
⋂
k∈N

Ck0 (R).

We then have the following remarkable result (which is not true for p = +∞). We omit the proof.

Theorem 3.4.3 (Density Theorem). Let 1 ≤ p < +∞ and f ∈ Lp(R). For every ε > 0, there
exists gε ∈ C0(R) such that

‖f − gε‖Lp(R) < ε.

Thus for every f ∈ Lp(R), there exists a sequence {gn}n∈N ⊂ C0(R) such that

lim
n→∞

‖f − gn‖Lp(R) = 0.

Remark 3.4.4. The previous result asserts that even if elements of Lp(R) may be very irregular
functions, we can always approximate them (in the sense of Lp norm!) with more regular functions.
We will see that we can do definitely better and approximate with C∞ functions, see Theorem 3.5.13
below.

Proposition 3.4.5 (Translations are continuous in Lp). Let 1 ≤ p < +∞ and f ∈ Lp(R), for
every h ∈ R we define the translated function

Thf(x) = f(x+ h), x ∈ R.

Then we have

lim
h→0
‖Thf − f‖Lp(R) = 0.

Proof. By using the Density Theorem (i.e. Theorem 3.4.3), we know that for every ε > 0 there
exists gε ∈ C0(R) such that

(3.4.1) ‖f − gε‖Lp(R) < ε.

By using Minkowski inequality, we have

(3.4.2) ‖Thf − f‖Lp(R) ≤ ‖f − gε‖Lp(R) + ‖Thgε − gε‖Lp(R) + ‖Thgε − Thf‖Lp(R).
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We now observe that by a simple change of variable we have

‖Thgε − Thf‖Lp(R) =

Åˆ
R
|gε(x+ h)− f(x+ h)|p dx

ã 1
p

=

Åˆ
R
|gε(y)− f(y)|p dy

ã 1
p

= ‖gε − f‖Lp(R) < ε,

where in the last inequality we used (3.4.1). By using these information in (3.4.2), we obtained

‖Thf − f‖Lp(R) ≤ 2 ε+ ‖Thgε − gε‖Lp(R).

We are left with estimating the last term. By continuity we have

lim
h→0
|Thgε(x)− gε(x)| = 0, for every x ∈ R.

Moreover, since gε is compactly supported, there exists an interval [a, b] such that gε identically
vanishes outside [a, b]. Then for every |h| < 1 the function Thgε − gε identically vanishes outside
[a− 1, b+ 1]. We can thus infer2

|Thgε(x)− gε(x)|p ≤ 2p ‖gε‖pL∞(R) 1[a−1,b+1](x) ∈ L1(R), for every |h| < 1.

We can apply Lebesgue Dominated Convergence Theorem 3.2.5 and get

lim
h→0
‖Thgε − gε‖Lp(R) = 0.

In conclusion, this gives

lim
h→0
‖Thf − f‖Lp(R) ≤ 2 ε.

By arbitrariness of ε > 0, we conclude. �

Remark 3.4.6. The previous result is false for p = +∞. Let us take the Heaviside function H(x),
for h > 0 then we have

ThH(x)−H(x) =

®
1, if − h ≤ x < 0,
0, otherwise.

In particular, we get

‖ThH −H‖L∞(R) = 1, for every h > 0,

and this does not converge to 0.

5. Convolutions

Definition 3.5.1. Let f, g ∈ L1(R), we define their convolution f ∗ g by

f ∗ g(x) =

ˆ
R
f(x− y) g(y) dy, for a. e. x ∈ R.

Observe that by making the change of variable y = x−t, the previous definition can also be written
as

f ∗ g(x) =

ˆ
R
f(t) g(x− t) dt, for a. e. x ∈ R.

2We used that |a− b|p ≤ (|a|+ |b|)p ≤ 2p−1 (|a|p + |b|p), which follows from (3.3.5).
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Remark 3.5.2 (Causal signals). We observe that if f, g ∈ L1(R) are causal, i.e. identically
vanishing for x < 0, then

f ∗ g(x) =

ˆ x

0
f(x− y) g(y) dy.

It is sufficient to observe that by causality

g(y) = 0 for y < 0 and f(x− y) = 0 for x− y < 0 i. e. for y > x.

Moreover, f ∗ g is still causal (exercise: prove the last assertion!).

Remark 3.5.3 (Convolution of sequences). We have seen in Chapter 2 that the convolution of
two sequences {xn}n∈N ⊂ C and {yn}n∈N ⊂ C is defined by

xn ∗ yn =
n∑
k=0

xn−k yk.

We now take two causal signals f, g ∈ L1(R) and fix a time step τ > 0. Then we consider the
regular samplings

xn = f(n τ) and yn = g(n τ),

and observe that

f ∗ g(n τ) =

ˆ n τ

0
f(n τ − y) g(y) dy ∼ τ

n∑
k=0

f(n τ − k τ) g(k τ)

= τ
n∑
k=0

xn−k yk = τ (xn ∗ yn).

Here we (formally) replaced the integral by a Riemann sum. Thus the convolution of sequences
can be seen as a discretized version of the integral definition for causal signals.

It is not difficult to see that for f, g ∈ L1(R), the convolution is well-defined and we have
f ∗ g ∈ L1(R). This follows from the following more general result (just take p = q = 1 below).

Proposition 3.5.4 (Young’s inequality for convolutions, part I). Let f ∈ Lq(R) and g ∈ Lp(R),
for 1 ≤ p, q ≤ ∞. Let us suppose that

1

p
+

1

q
> 1.

Then their convolution f ∗ g is well-defined and we have f ∗ g ∈ Lr(R), with

1

r
=

1

p
+

1

q
− 1.

Moreover, there holds

(3.5.1) ‖f ∗ g‖Lr(R) ≤ ‖f‖Lq(R) ‖g‖Lp(R).

Proof. We first observe that by definition of r, we have r ≥ q and r ≥ p. Indeed

1

r
=

1

p
+

1

q
− 1 ≤ 1

p
and

1

r
=

1

p
− 1 +

1

q
≤ 1

q
.

Moreover, we have

r = p ⇐⇒ q = 1 and r = q ⇐⇒ p = 1.
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For almost evey x ∈ R we have

|f ∗ g(x)| =
∣∣∣∣ˆ

R
f(y) g(x− y) dy

∣∣∣∣ ≤ ˆ
R
|f(y)| |g(x− y)| dy

=

ˆ
R
|f(y)|

q
r |g(x− y)|

p
r |f(y)|1−

q
r |g(x− y)|1−

p
r dy

≤
Åˆ

R
|f(y)|q |g(x− y)|p dy

ã 1
r
Åˆ

R
|f(y)|

r−q
r−1 |g(x− y)|

r−p
r−1 dy

ã r−1
r

,

thanks to Hölder’s inequality (3.3.6) with exponents r and r′ = r/(r− 1). We now observe that by
definition of r, we have

r − q
q (r − 1)

+
r − p

p (r − 1)
=

1

r − 1

Å
r

q
− 1 +

r

p
− 1

ã
=

1

r − 1
(r − 1) = 1,

thus we can further use Hölder’s inequality in the last integral, i.e.Åˆ
R
|f(y)|

r−q
r−1 |g(x− y)|

r−p
r−1 dy

ã r−1
r

≤
Åˆ

R
|f(y)|q dy

ã r−q
q r

Åˆ
R
|g(x− y)|p dy

ã r−p
p r

.

By resuming, we obtained

|f ∗ g(x)|r ≤
ˆ
R
|f(y)|q |g(x− y)|p dy ‖f‖r−qLq(R) ‖g‖

r−p
Lp(R).

We now integrate with respect to x and getˆ
R
|f ∗ g(x)|r dx ≤ ‖f‖r−qLp(R) ‖g‖

r−p
Lp(R)

ˆ
R

ˆ
R
|f(y)|q |g(x− y)|p dy dx.

Observe that the function (x, y) 7→ F (x, y) = |f(y)|q |g(x − y)|p is positive on R2 and satisfies the
hypotheses of Tonelli’s Theorem: indeed, for almost every y ∈ R, the function

x 7→ |f(y)|q |g(x− y)|p,

is summable, since g ∈ Lp(R); moreover, the function

y 7→
ˆ
R
|f(y)|q |g(x− y)|p dx = ‖g‖pLp(R) |f(y)|q,

is summable, since f ∈ Lq(R) by hypothesis. This implies that F ∈ L1(R × R) and by Fubini’s
Theorem we can exchange the order of integration, i.e.ˆ

R
|f ∗ g(x)|r dx ≤ ‖f‖r−qLq(R) ‖g‖

r−p
Lp(R)

ˆ
R
|f(y)|p

Åˆ
R
|g(x− y)|p dx

ã
dy

By changing variable in the integral of g, we thus getˆ
R
|g(x− y)|p dx = ‖g‖p

Lp(RN )
,

and finally ˆ
R
|f ∗ g(x)|r dx ≤ ‖f‖r−qLq(R) ‖g‖

r−p
Lp(R) ‖f‖

q
Lq(R) ‖g‖

p
Lp(R) = ‖f‖rLq(R) ‖g‖

r
Lp(R).

By raising to the power 1/r, we finally get (3.5.1). �
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Remark 3.5.5. Very often, we will use the previous result with f ∈ L1(R) and g ∈ Lp(R), for
some 1 ≤ p ≤ +∞. Accordingly, by taking q = 1 in the previous result, we get r = p and thus we
have

f ∗ g ∈ Lp(R).

When p and q are conjugate, the convolution is a bounded continuous function. This is the
content of the next result.

Proposition 3.5.6 (Young’s inequality for convolutions, part II). Let f ∈ Lp(R) and g ∈ Lp′(R),
for 1 ≤ p ≤ +∞. Then their convolution f ∗ g is well-defined and we have f ∗ g ∈ L∞(R) ∩ C(R).
Moreover, there holds

(3.5.2) ‖f ∗ g‖L∞(R) ≤ ‖f‖Lp(R) ‖g‖Lp′ (R).

Proof. We start with the case 1 < p <∞. For almost every x ∈ R, we have

|f ∗ g(x)| =
∣∣∣∣ˆ

R
f(y) g(x− y) dy

∣∣∣∣ ≤ Åˆ
R
|f(y)|p dy

ã 1
p
Åˆ

R
|g(x− y)|p′ dy

ã 1
p′
,

thanks to Hölder’s inequality (3.3.6). By observing that with a simple change of variable we haveÅˆ
R
|g(x− y)|p′ dy

ã 1
p′

=

Åˆ
R
|g(y)|p′ dy

ã 1
p′
,

we thus obtain

|f ∗ g(x)| ≤ ‖f‖Lp(R) ‖g‖Lp′ (R), for a. e. x ∈ R.
This shows at the same time that f ∗g ∈ L∞(R) and (3.5.2). We now prove that f ∗g is continuous.
We take x ∈ R and h ∈ R, then we have

|f ∗ g(x+ h)− f ∗ g(x)| =
∣∣∣∣ˆ

R
f(y) g(x+ h− y) dy −

ˆ
R
f(y) g(x− y) dy

∣∣∣∣
=

∣∣∣∣ˆ
R
f(y) [g(x+ h− y)− g(x− y)] dy

∣∣∣∣
≤
Åˆ

R
|f(y)|p dy

ã 1
p
Åˆ

R
|g(x+ h− y)− g(x− y)|p′ dy

ã 1
p′
.

As above, with a simple change of variable we getÅˆ
R
|g(x+ h− y)− g(x− y)|p′ dy

ã 1
p′

=

Åˆ
R
|g(h+ t)− g(t)|p′ dt

ã 1
p′

= ‖Thg − g‖Lp′ (R).

In conclusion, we get

lim
h→0
|f ∗ g(x+ h)− f ∗ g(x)| ≤ ‖f‖Lp(R) lim

h→0
‖Thg − g‖Lp′ (R) = 0,

thanks to Proposition 3.4.5.

The cases p = 1 or p =∞ are even simpler. For example, if p = 1 then g ∈ L∞(R) and we have

|f ∗ g(x)| =
∣∣∣∣ˆ

R
f(y) g(x− y) dy

∣∣∣∣ ≤ ‖g‖L∞(R)

ˆ
R
|f(y)| dy,

which gives again the desired conclusion. The continuity is proved as above, we leave the details
to the reader. �

Corollary 3.5.7. The convolution of two L2(R) functions is in L∞(R) ∩ C(R).
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Figure 2. The graphs of the functions x 7→ rect(x) and x 7→ tri(x) = rect ∗ rect(x).

Example 3.5.8 (Rectangular and triangular functions). Let us consider the rectangular function
defined by

rect(x) =

 1, if x ∈
ï
−1

2
,
1

2

ò
,

0, otherwise ,

i.e. this is the characteristic function of the interval [−1/2, 1/2]. We want to compute the con-
volution rect ∗ rect. Observe that rect is comptacly supported and belongs to Lp(R) for every
1 ≤ p ≤ ∞. Thus we already know that rect∗ rect is a bounded continuous function by Proposition
3.5.6.

By using the definition of convolution and a change of variable, we have

rect ∗ rect(x) =

ˆ 1
2

− 1
2

rect(x− y) dy =

ˆ x+ 1
2

x− 1
2

rect(y) dy

=


0, if x ≥ 1,

1− x, if 0 ≤ x < 1,
1 + x, if − 1 ≤ x < 0,

0, if x ≤ −1,

Observe that this function is indeed continuous. The convolution rect ∗ rect can be written in
compact form

rect ∗ rect(x) =

®
0, if |x| ≥ 1,

1− |x|, if |x| < 1.

This function is called triangular function, we use the notation x 7→ tri(x).

From the previous result, we get in particular that the convolution between f ∈ L1(R) and
g ∈ L∞(R) is a continuous bounded function. We can define the convolution also for functions
f ∈ L1

loc, by enforcing a bit the hypotheses on the second function g. Rather than giving the most
general result, we give some particular cases which will be particularly useful.
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Proposition 3.5.9 (A first regularization result). Let f ∈ L1
loc(R) and g ∈ L∞(R). Let us suppose

that g has compact support, i.e. there exists a bounded closed interval [a, b] such that

|g| = 0, for a. e. x ∈ R \ [a, b].

Then the convolution f ∗ g is well-defined and is a continuous function. Moreover, we have the
estimate

(3.5.3) |f ∗ g(x)| ≤ ‖g‖L∞(R)

ˆ x−a

x−b
|f | dy, for a. e. x ∈ R.

Proof. We first show that the convolution is well-defined. By definition of convolution and thanks
to the hypothesis on g, for almost every x ∈ R we have

|f(x− y) g(y)| ≤ ‖g‖L∞(R) |f(x− y)| 1[a,b](y), y ∈ R,

and the last function is in L1(R), since f is locally integrable. This also shows the validity of the
estimate (3.5.3).

Let x ∈ R, we want to show that

lim
h→0
|f ∗ g(x+ h)− f ∗ g(x)| = 0.

For every |h| < (b− a) we have

|f ∗ g(x+ h)− f ∗ g(x)| =
∣∣∣∣ˆ

R
f(x+ h− y) g(y) dy −

ˆ
R
f(x− y) g(y) dy

∣∣∣∣
=

∣∣∣∣ˆ
R

(
f(x+ h− y)− f(x− y)

)
g(y) dy

∣∣∣∣
≤
ˆ
R

∣∣∣∣f(x+ h− y)− f(x− y)

∣∣∣∣ |g(y)| dy

≤ ‖g‖L∞(R)

ˆ b

a

∣∣∣∣f(x+ h− y)− f(x− y)

∣∣∣∣ dy.
With a simple change of variable x− y = t, this gives

|f ∗ g(x+ h)− f ∗ g(x)| ≤ ‖g‖L∞(R)

ˆ x−a

x−b

∣∣∣∣f(t+ h)− f(t)

∣∣∣∣ dt.
We now introduce the new function F (t) = f(t) 1[x+a−2 b,x+b−2 a](t), this is in L1(R) by hypothesis.
Observe that by construction

[x− b− h, x− a− h] ⊂ [x+ a− 2 b, x+ b− 2 a], for every |h| < b− a,

thus in particular for every |h| < b− a we get

F (t+ h)− F (t) = f(t+ h)− f(t), t ∈ [x− b, x− a].

Thus we getˆ x−a

x−b

∣∣∣∣f(t+ h)− f(t)

∣∣∣∣ dt =

ˆ x−a

x−b

∣∣∣∣F (t+ h)− F (t)

∣∣∣∣ dt ≤ ˆ
R

∣∣∣∣F (t+ h)− F (t)

∣∣∣∣ dt.
Thus in particular we obtained

|f ∗ g(x+ h)− f ∗ g(x)| ≤ ‖g‖L∞(R)

ˆ
R

∣∣∣∣F (t+ h)− F (t)

∣∣∣∣ dt.
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If we now pass to the limit as h goes to 0 and use Proposition 3.4.5 in the right-hand side, we get
the conclusion. �

Remark 3.5.10. Under the assumptions of Proposition 3.5.9, the convolution f ∗ g in general is
not in Lp(R), for any 1 ≤ p ≤ ∞. Indeed, if we take f(x) = x and g(x) = rect(x), then we have

f ∗ g(x) =

ˆ
R
f(x− y) g(y) dy =

ˆ 1
2

− 1
2

(x− y) dy

=
1

2

î
−(x− y)2

ó 1
2

− 1
2

=
1

2

ñÅ
x+

1

2

ã2

−
Å
x− 1

2

ã2
ô

= x 6∈ Lp(R).

Proposition 3.5.11. Let f ∈ L1
loc(R) and let g ∈ C1

0 (R). Then the convolution f ∗ g is a C1

function. Moreover, we have

(3.5.4)
d

dx
(f ∗ g) = f ∗ d

dx
g.

Proof. By the previous result, we already know that f ∗g is well-defined and is continuous (indeed,
observe that g has compact support and C1

0 (R) ⊂ L∞(R)). We only need to show that f ∗ g
is derivable and formula (3.5.4) holds, then continuity of its derivative will follow again from
Proposition 3.5.9, since g′ is L∞(R) with compact support.

Let x ∈ R, for every |h| < 1 we have

f ∗ g(x+ h)− f ∗ g(x)

h
=

ˆ
R
f(y)

g(x+ h− y)− g(x− y)

h
dy.

We have

lim
h→0

g(x+ h− y)− g(x− y)

h
= g′(x− y),

in order to pass the limit under the integral sign, we need to find a domination with an L1 function.
We first observe that by the Mean Value Theorem3∣∣∣∣∣g(x+ h− y)− g(x− y)

h

∣∣∣∣∣ = |g′(ξ)| ≤ ‖g′‖L∞(R),

where ξ in a point belonging to interval (x− y, x− y + h). Moreover, if g is supported in [a, b], for
every |h| < 1 the function

g(x+ h− y)− g(x− y)

h
,

has compact support contained in [x− 1− b, x+ 1− a]. In conclusion, for every |h| < 1 we get∣∣∣∣∣f(y)
g(x+ h− y)− g(x− y)

h

∣∣∣∣∣ ≤ ‖g′‖L∞(R) |f(y)| 1[x−1−b,x+1−a] ∈ L1(R).

We can apply Lebesgue Dominated Convergence Theorem and obtain

lim
h→0

f ∗ g(x+ h)− f ∗ g(x)

h
=

ˆ
R
f(y) g′(x− y) dy = f ∗ g′(x).

This shows at the same time that f ∗ g is derivable and that formula (3.5.4) holds. �

3In italian “Teorema di Lagrange ”.
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By iterating the previous result, we get the following.

Corollary 3.5.12. Let f ∈ L1
loc(R) and let g ∈ Ck0 (R) for some k ≥ 1. Then the convolution f ∗ g

is a Ck function. Moreover, we have

dm

dxm
(f ∗ g) = f ∗ dm

dxm
g, for every m = 1, . . . , k.

Theorem 3.5.13 (Smooth approximations by convolution). Let k ≥ 1 and let g ∈ Ck0 (R) be a
function such that

´
R g dx = 1. For every ε > 0, we define

gε(x) =
1

ε
g

Å
x

ε

ã
.

If f ∈ Lp(R) for some 1 ≤ p <∞, we have fε = f ∗ gε ∈ Ck(R) ∩ Lp(R) ∩ L∞(R) and

lim
ε→0+

‖fε − f‖Lp(R) = 0.

Proof. Since Lp(R) ⊂ L1
loc(R), from the previous Corollary we already know that fε ∈ Ck(R).

Moreover, since

gε ∈ Ck0 (R) ⊂ L1(R) ∩ Lp′(R),

we can apply Propositions 3.5.4 and 3.5.6 and get fε ∈ L∞(R) ∩ Lp(R) as well, with

‖fε‖Lp(R) ≤ ‖f‖Lp(R) ‖gε‖L1(R),

and

‖fε‖L∞(R) ≤ ‖f‖Lp(R) ‖gε‖Lp′ (R).

We now compute

‖fε − f‖pLp(R) =

ˆ
R
|f ∗ gε − f |p dx =

ˆ
R

∣∣∣∣ˆ
R
f(x− y)gε(y) dy − f(x)

∣∣∣∣p dx
=

ˆ
R

∣∣∣∣ˆ
R

[
f(x− y)− f(x)

]
gε(y) dy

∣∣∣∣p dx
≤
ˆ
R

Åˆ
R

∣∣∣∣f(x− y)− f(x)

∣∣∣∣ |gε(y)| dy
ãp

dx

where we used that ˆ
R
gε(y) dy =

1

ε

ˆ
R
g

Å
y

ε

ã
dy =

ˆ
R
g dy = 1.

Moreover, by using Hölder’s inequalityˆ
R

∣∣∣∣f(x− y)− f(x)

∣∣∣∣ |gε(y)| dy =

ˆ
R

∣∣∣∣f(x− y)− f(x)

∣∣∣∣ |gε(y)|
1
p |gε(y)|

1
p′ dy

≤ ‖gε‖
1
p′

L1(R)

Åˆ
R

∣∣∣∣f(x− y)− f(x)

∣∣∣∣p |gε(y)| dy
ã 1
p

.

By observing that

‖gε‖L1(R) = ‖g‖L1(R)

we thus obtain

‖fε − f‖pLp(R) ≤ ‖g‖
p−1
L1(R)

ˆ
R

ˆ
R

∣∣∣∣f(x− y)− f(x)

∣∣∣∣p |gε(y)| dy dx

= ‖g‖p−1
L1(R)

ˆ
R
‖T−ε t f − f‖pLp(R) |g(t)| dt.
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Finally, by Proposition 3.4.5 we know that

lim
ε→0
‖T−ε t f − f‖pLp(R) = 0,

and

‖T−ε t f − f‖pLp(R) |g(t)| ≤ 2p ‖f‖pLp(R) |g(t)| ∈ L1(R).

We thus conclude by applying Lebesgue Dominated Convergence Theorem and taking the limit
under the integral sign. �

Remark 3.5.14. Of course, if in the previous Theorem we take g ∈ C∞0 (R), then fε = f ∗ gε is
C∞ as well. An important instance of function g ∈ C∞0 (R) which is used very often is the standard
mollifier

g(x) =

 c exp

Å
− 1

1− x2

ã
, if |x| < 1,

0, otherwise,

where the constant c > 0 is chosen so that
´
R g dx = 1. Observe that g ∈ C∞0 (R).

The following simple result will be useful in the sequel.

Lemma 3.5.15. Let us that f, g ∈ L1(R) both have compact support. Then f ∗ g has compact
support as well.

Proof. Let us assume that

|f(x)| = 0, for a. e. x ∈ R \ [a, b],

and

|g(x)| = 0, for a. e. x ∈ R \ [c, d].

By definition of convolution, we have

f ∗ g(x) =

ˆ
R
f(x− y) g(y) dy =

ˆ d

c
f(x− y) g(y) dy.

We now observe that

|f(x− y)| = 0, for a. e. y ∈ R \ [x− b, x− a].

This implies that for every x ∈ R such that

x− a ≤ c or x− b ≥ d,

we have f(x− y) = 0 for almost every y ∈ [c, d] and thus

f ∗ g(x) =

ˆ
R
f(x− y) g(y) dy =

ˆ d

c
f(x− y) g(y) dy = 0,

in this case. Thus we proved that

|f ∗ g(x)| = 0, for a. e. x ≤ c+ a or x ≥ b+ d.

In other words, f ∗ g vanishes almost everywhere in R \ [a+ c, b+ d]. �
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6. Exercises

Exercise 3.6.1. Let us take a < b and consider the generalized rectangular function 1[a,b]. Compute
the convolution 1[a,b] ∗ 1[a,b] and verify that we have

(3.6.1) 1[a,b] ∗ 1[a,b](x) = (b− a) tri

Å
x− a− b
b− a

ã
.

Solution. In order to do this, we first observe that

(3.6.2) 1[a,b](x) = rect

Å
x− a
b− a

− 1

2

ã
,

thus we obtain

1[a,b] ∗ 1[a,b](x) =

ˆ
R

1[a,b](x− y) 1[a,b](y) dy

=

ˆ
R

rect

Å
x− y − a
b− a

− 1

2

ã
rect

Å
y − a
b− a

− 1

2

ã
dy

=

ˆ
R

rect

Å
x− 2 a

b− a
− 1−

Å
y − a
b− a

+
1

2

ãã
rect

Å
y − a
b− a

− 1

2

ã
dy.

If we now perform the change of variable

y′ =
y − a
b− a

− 1

2
,

the previous chain of identities gives

1[a,b] ∗ 1[a,b](x) = (b− a)

ˆ
R

rect

Å
x− 2 a

b− a
− 1− y′

ã
rect

(
y′
)
dy′

= (b− a) rect ∗ rect

Å
x− a− b
b− a

ã
= (b− a) tri

Å
x− a− b
b− a

ã
,

where in the last identity we used Example 3.5.8. �

Remark 3.6.2. For example, if in (3.6.1) we take a = 0 and b > 0, we get

1[0,b] ∗ 1[0,b](x) = b tri

Å
x− b
b

ã
=

®
b− |x− b|, if 0 < x < 2 b.

0, otherwise.

If instead a = −L and b = L, then

1[−L,L] ∗ 1[−L,L](x) = 2L tri

Å
x

2L

ã
.

Exercise 3.6.3. Let a < b and c < d be real numbers. Generalize the previous exercise and compute
the convolution 1[a,b] ∗ 1[c,d].

Exercise 3.6.4. Compute the convolution tri ∗ tri.

Proof. By using that tri vanishes outside the interval [−1, 1], it is easily seen that for |x| > 2 we
have

tri(x− t) tri(t) = 0, for every t ∈ R.
Thus we have

tri ∗ tri(x) = 0, for every |x| > 2.
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We also observe that by using tri(−t) = tri(t), we have

tri ∗ tri(−x) =

ˆ
R

tri(−x− t) tri(t) dt =

ˆ
R

tri(x+ t) tri(−t) dt

=

ˆ
R

tri(x− s) tri(s) ds = tri ∗ tri(x),

where we used the change of variable −t = s. The last identity shows that tri ∗ tri is an even
function. Finally, we take x ∈ [0, 2], observe that

tri(x− t) 6= 0 ⇐⇒ |x− t| < 1 ⇐⇒ t ∈ [−1 + x, 1 + x]

and compute the convolution:

tri ∗ tri(x) =

ˆ
R

tri(x− t) tri(t) dt =

ˆ
[−1,1]∩[−1+x,1+x]

(1− |x− t|) (1− |t|) dt

=

ˆ 1

−1+x
(1− |x− t|) (1− |t|) dt.

We now distinguish two cases: x ∈ [0, 1] and x ∈ [1, 2]. In the first case, we have −1 + x ≤ 0, thusˆ 1

−1+x
(1− |x− t|) (1− |t|) dt =

ˆ 0

−1+x
(1− x+ t) (1 + t) dt+

ˆ x

0
(1− x+ t) (1− t) dt

+

ˆ 1

x
(1− t+ x) (1− t) dt

=

ñ
(1− x) t+ (2− x)

t2

2
+
t3

3

ô0

−1+x

+

ñ
(1− x) t+ x

t2

2
− t3

3

ôx
0

+

ñ
(1 + x) t− (2 + x)

t2

2
+
t3

3

ô1

x

= (1− x)2 − (2− x)
(x− 1)2

2
− (x− 1)3

3
+ (1− x)x+

x3

2
− x3

3

+ (1 + x)− (2 + x)

2
+

1

3
− (1 + x)x+ (2 + x)

x2

2
− x3

3
.

After some simplifications, we get

tri ∗ tri(x) =
2

3
− x2 +

x3

2
, for x ∈ [0, 1].

In the second case, we have 1 ≥ −1 + x ≥ 0 and thusˆ 1

−1+x
(1− |x− t|) (1− |t|) dt =

ˆ 1

−1+x
(1− x+ t) (1− t) dt

=

ñ
(1− x) t+ x

t2

2
− t3

3

ô1

−1+x

= (1− x) +
x

2
− 1

3
+ (x− 1)2 − x (x− 1)2

2
+

(x− 1)3

3
.

With some algebraic manipulations, we then get

tri ∗ tri(x) =
4

3
− 2x+ x2 − x3

6
, for x ∈ [1, 2].

By putting all the informations together, we thus finally found
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Figure 3. The graph of the convolution tri ∗ tri

tri ∗ tri(x) =



2

3
− x2 +

|x|3

2
, if |x| ≤ 1,

4

3
− 2 |x|+ x2 − |x|

3

6
, if 1 ≤ |x| ≤ 2,

0, otherwise.

This concludes the exercise. �

Exercise 3.6.5. Let H be the Heaviside function and g(x) = e−|x|, justify that the convolution
H ∗ g is well-defined and prove that

H ∗ g(x) =

®
ex, if x < 0,
2− e−x, if x ≥ 0.

Solution. We observe that H ∈ L∞(R) and g ∈ L1(R), sinceˆ
R
e−|x| dx = 2

ˆ +∞

0
e−x dx = 2 < +∞.

Then H ∗ g is well-defined and H ∗ g ∈ L∞(R), by Proposition 3.5.6. We now compute the
convolution: we have

H ∗ g(x) =

ˆ
R
H(x− y) g(y) dy =

ˆ x

−∞
e−|y| dy,

thus if x < 0 ˆ x

−∞
e−|y| dy =

ˆ x

−∞
ey dy = ex,

while for x ≥ 0 ˆ x

−∞
e−|y| dy =

ˆ 0

−∞
ey dy +

ˆ x

0
e−y dy = 1 + (−e−x + 1) = 2− e−x,

as desired. �
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7. Advanced exercises

Exercise 3.7.1. Let a < b be two real numbers and let f ∈ L∞([a, b]). Prove that

lim
p↗+∞

‖f‖Lp([a,b]) = ‖f‖L∞([a,b]).

Solution. We first observe that

‖f‖Lp([a,b]) ≤ (b− a)
1
p ‖f‖L∞([a,b]),

which follows from Proposition 3.3.10, with q = +∞. This implies that

lim sup
p→+∞

‖f‖Lp([a,b]) ≤ ‖f‖L∞([a,b]) lim sup
p→+∞

(b− a)
1
p = ‖f‖L∞([a,b]).

On the other hand, by definition of L∞ norm, for every ε > 0 the set

Eε =
{
x ∈ [a, b] : |f(x)| ≥ ‖f‖L∞([a,b]) − ε

}
,

has positive measure. Thus we get

‖f‖Lp([a,b]) =

Çˆ b

a
|f(x)|p dx

å 1
p

≥
Çˆ

Eε

|f(x)|p dx
å 1
p

≥
Ä
‖f‖L∞([a,b]) − ε

ä Çˆ
Eε

dx

å 1
p

= |Eε|
1
p

Ä
‖f‖L∞([a,b]) − ε

ä
.

This implies

lim inf
p→+∞

‖f‖Lp([a,b]) ≥
Ä
‖f‖L∞([a,b]) − ε

ä
lim inf
p→+∞

|Eε|
1
p

= ‖f‖L∞([a,b]) − ε.

By arbitrariness of ε > 0, we obtain

lim inf
p→+∞

‖f‖Lp([a,b]) ≥ ‖f‖L∞([a,b]).

This concludes the proof. �

Exercise 3.7.2 (Interpolation inequality). Let f ∈ Lq(R) ∩ Lp(R), for 1 ≤ q < p ≤ +∞. Prove
that f ∈ Lr(R) for every q < r < p and we have

(3.7.1) ‖f‖Lr(R) ≤ ‖f‖1−ϑLp(R) ‖f‖
ϑ
Lq(R),

where the exponent ϑ ∈ (0, 1) is given by

ϑ =


q

r

p− r
p− q

, if p < +∞,

q

r
, if p = +∞.

Solution. We first consider the case p = +∞, which is simpler. In this case we haveˆ
R
|f(x)|r dx =

ˆ
R
|f(x)|r−q |f(x)|q dx ≤ ‖f‖r−qL∞(R)

ˆ
R
|f(x)|q dx,
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which implies

‖f‖Lr(R) =

Åˆ
R
|f(x)|r dx

ã 1
r

≤ ‖f‖
r−q
r

L∞(R)

Åˆ
R
|f(x)|q dx

ã 1
r

= ‖f‖
r−q
r

L∞(R) ‖f‖
q
r

Lq(R).

This proves (3.7.1) for p = +∞.

We now suppose p < +∞. We observe that if q < r < p then there exists α ∈ (0, 1) such that

r = q + α (p− q).

With a simple computation, we find

α =
r − q
p− q

.

We now write ˆ
R
|f(x)|r dx =

ˆ
R
|f(x)|αp |f(x)|q (1−α) dx,

then we use Hölder inequality with conjugate exponents

1

α
and

1

1− α
.

This gives ˆ
R
|f(x)|r dx ≤

Åˆ
R
|f(x)|p dx

ãα Åˆ
R
|f(x)|q dx

ã1−α
.

By taking the power 1/r on both sides and recalling the definition of α, we get the desired conclusion
(3.7.1) for p < +∞, as well. �

Exercise 3.7.3. Show that the function

x 7→ sin(π x)

π x
,

does not belong to L1(R).

Solution. We show that

lim
k→∞

ˆ k

−k

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx = +∞.

Since the integrand is even, this is the same as

lim
k→∞

ˆ k

0

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx = +∞.

We now write for every k ≥ 1

ˆ k

0

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx =
k∑

n=0

ˆ n

n−1

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx,
and observe that

1

|π x|
≥ 1

π n
, for x ∈ [n− 1, n].

Thus we get ˆ k

0

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx ≥ 1

π

k∑
n=0

1

n

ˆ n

n−1
| sin(π x)| dx.
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Figure 4. The positively oriented loop ΓR of Exercise 3.7.4.

On the other hand, since the function x 7→ | sin(π x)| is π−periodic, we have

ˆ n

n−1
| sin(π x)| dx =

ˆ 1

0
| sin(π x)| dx =

ˆ 1

0
sin(π x) dx =

ñ
−cos(π x)

π

ô1

0

=
2

π
.

In conclusion, we get ˆ k

0

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx ≥ 2

π2

k∑
n=0

1

n
.

By recalling that the harmonic series is divergent, we obtain

lim
k→∞

ˆ k

0

∣∣∣∣∣sin(π x)

π x

∣∣∣∣∣ dx ≥ 2

π2
lim
k→∞

k∑
n=0

1

n
= +∞,

as desired. �

Exercise 3.7.4. Show that ˆ
R

sin(π x)

π x
dx = 1.

Solution. We first observe that if we change variable π x = t, we can equivalently prove thatˆ
R

sin t

t
dx = π.

We fix 0 < ε � 1 and R � 1. We consider the positively oriented piecewise regular loop ΓR
obtained by glueing the following regular simple curves

γ1(t) = t, t ∈ [ε,R],

γ2(t) = Rei t, t ∈ [0, π],

γ3(t) = t, t ∈ [−R,−ε],

γ4(t) = −ε e−i t, t ∈ [0, π],

We then consider the function of a complex variable f(z) = ei z/z, which is holomorphic in C∗,
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with a simple pole at z = 0. The region entoured by ΓR does not contain the origin, thus by
Cauchy’s Theorem (see Theorem 1.6.12) we have

0 =

ˆ
ΓR

ei z

z
dz =

ˆ R

ε

ei t

t
dt+ i

ˆ π

0
ei R e

i t
dt

+

ˆ −ε
−R

ei t

t
dt− i

ˆ π

0
e−i ε e

−i t
dt.

(3.7.2)

We now recall that ei t = cos t+ i sin t, thus the first and third integral above giveˆ R

ε

ei t

t
dt+

ˆ −ε
−R

ei t

t
dt =

ˆ R

ε

cos t

t
dt+ i

ˆ R

ε

sin t

t
dt

+

ˆ −ε
−R

cos t

t
dt+ i

ˆ −ε
−R

sin t

t
dt

= 2 i

ˆ R

ε

sin t

t
dt,

thanks to the fact that sin t/t is even, while cos t/t is odd, thus we have a cancellation. From (3.7.2)
we thus obtained

2

ˆ R

ε

sin t

t
dt = −

ˆ π

0
ei R e

i t
dt+

ˆ π

0
e−i ε e

−i t
dt

= −
ˆ π

0
ei R cos t e−R sin t dt+

ˆ π

0
e−i ε cos t e−ε t dt.

We now pass to the limit as ε goes to 0. Observe that

|e−i ε cos t e−ε t| = e−ε t ≤ 1, t ∈ [0, π]

and

lim
ε→0

e−i ε cos t e−ε t = 1, for t ∈ [0, 1],

thus by using Lebesgue Dominated Convergence Theorem we obtain

2

ˆ R

0

sin t

t
dt = −

ˆ π

0
ei R cos t e−R sin t dt+ π.(3.7.3)

Finally, we want to take the limit as R goes to +∞. Observe that∣∣∣∣ˆ π

0
ei R cos t e−R sin t dt

∣∣∣∣ ≤ ˆ π

0
e−R sin t dt,

and

lim
R→∞

e−R sin t = 0, for a. e. t ∈ [0, π],

e−R sin t ≤ 1, t ∈ [0, π].

Thus again by Lebesgue Dominated Convergence Theorem

lim
R→+∞

∣∣∣∣ˆ π

0
ei R cos t e−R sin t dt

∣∣∣∣ ≤ lim
R→+∞

ˆ π

0
e−R sin t dt = 0.

By (3.7.3) we thus get

lim
R→+∞

ˆ R

0

sin t

t
dt =

π

2
.

By recalling that sin t/t is an even function, we get the desired conclusion. �
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Remark 3.7.5. In the previous exercise the use of the Lebesgue Dominated Convergence Theorem
could be avoided. We prefer to use it, in order to shorten the presentation.

Exercise 3.7.6. Let f ∈ L∞(R) be a compactly supported function. Show that for every α < 0,
there exists Cα > 0 such that

|f(t)| ≤ Cα eα |t|, for every t ∈ R.

Solution. In order to show the claimed estimate, we set

M = ‖f‖L∞(R),

and we suppose that

|f(t)| = 0, for a. e. t ∈ R \ [−T, T ].

We then observe that by definition

|f(t)| ≤M, for a. e. t ∈ [0, T ].

On the other hand, by using that for α < 0 the function t 7→ eα t is decreasing, we have

eα t ≥ eαT , for t ∈ [0, T ].

We then obtain

|f(t)| ≤M =
M

eαT
eαT ≤

Å
M

eαT

ã
eα t, for a. e. t ∈ [0, T ].

By recalling that |f(t)| = 0 for t > T , we then conclude that

(3.7.4) |f(t)| ≤
Å
M

eαT

ã
eα t, for a. e. t ≥ 0.

We are left to prove the upper bound for t ≤ 0. However, this is similar: indeed, for α < 0 the
function t 7→ e−α t is increasing, thus we get

e−α t ≥ eαT , for t ∈ [−T, 0].

As above, this entails

|f(t)| ≤M =
M

eαT
eαT ≤

Å
M

eαT

ã
e−α t, for a. e. t ∈ [−T, 0]

By recalling that |f(t)| = 0 for t < −T , we then conclude that

(3.7.5) |f(t)| ≤
Å
M

eαT

ã
e−α t, for a. e. t ≤ 0.

By keeping together (3.7.4), (3.7.5) and defining Cα = M/eα ,T , we finally get the desired estimate.
�

Exercise 3.7.7 (The Kallman-Rota inequality). Let 1 ≤ p ≤ +∞ and let f ∈ C2(R) be such that
f, f ′′ ∈ Lp(R). Prove that we have f ′ ∈ Lp(R), as well. Moreover, show that we have the inequality

(3.7.6) ‖f ′‖Lp(R) ≤ 2
»
‖f‖Lp(R) ‖f ′′‖Lp(R).

Solution. Let s > 0 and t ∈ R, by using an integration by parts we haveˆ s

0
(s− τ) f ′′(t+ τ) dτ =

[
(s− τ) f ′(t+ τ)

]s
0

+

ˆ s

0
f ′(t+ τ) dτ

= −s f ′(t) + f(t+ s)− f(t).
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This identity can be rewritten as

s f ′(t) = f(t+ s)− f(t)−
ˆ s

0
(s− τ) f ′′(t+ τ) dτ,

that is

s f ′(t) = Tsf(t)− f(t)−
ˆ s

0
(s− τ) Tτf ′′(t) dτ.

As always we denote by Th the translation operator. We now take the Lp norm (with respect to
the variable t) on both sides and use Minkowski inequality, so to get

(3.7.7) s ‖f ′‖Lp(R) ≤ ‖Tsf‖Lp(R) + ‖f‖Lp(R) +

ˆ s

0
(s− τ) ‖Tτf ′′‖Lp(R) dτ.

This already shows that f ′ ∈ Lp(R).

We now prove inequality (3.7.6). By using the definition of translation operator and a simple
change of variable, it is not difficult to see that

‖Tsf‖Lp(R) = ‖f‖Lp(R) and ‖Tτf ′′‖Lp(R) = ‖f ′′‖Lp(R).

Thus from (3.7.7) we get

s ‖f ′‖Lp(R) ≤ 2 ‖f‖Lp(R) + ‖f ′′‖Lp(R)

ˆ s

0
(s− τ) dτ = 2 ‖f‖Lp(R) +

s2

2
‖f ′′‖Lp(R).

This in particular gives

(3.7.8) s ‖f ′‖Lp(R) −
s2

2
‖f ′′‖Lp(R) ≤ 2 ‖f‖Lp(R),

which is valid for every s > 0. We now observe that the function

s 7→ s ‖f ′‖Lp(R) −
s2

2
‖f ′′‖Lp(R),

is maximal for

s =
‖f ′‖Lp(R)

‖f ′′‖Lp(R)
.

By making such a choice above in (3.7.8), we end up with

1

2

‖f ′‖2Lp(R)

‖f ′′‖Lp(R)
≤ 2 ‖f‖Lp(R).

This finally gives the desired inequality (3.7.6), up to some simple algebraic manipulations. �





Chapter 4

The Laplace Transform

1. Definition and first properties

In this chapter, we will use the following notation

R+ = [0,+∞) and R− = (−∞, 0).

We will also use repeatedly the following fact: by recalling formula (1.5.3), for every z ∈ C we have

|ez| = eRe(z).

We recall that this is just a plain consequence of the definition of complex exponential.

Definition 4.1.1. Let f : R→ C be a causal signal, i.e. a measurable function such that

f(t) = 0, for t < 0.

We say that f is L−transformable if there exists α ∈ R such that

e−α t f(t) ∈ L1(R+).

In this case, we define its Laplace transform by

L[f ](z) :=

ˆ +∞

0
e−z t f(t) dt, z ∈ C such that Re(z) ≥ α.

Remark 4.1.2. We observe that the definition is well-posed. Indeed, for every z ∈ C such that
Re(z) ≥ α, we have

|e−z t f(t)| = |e−Re(z) t e−i Im(z) t f(t)| = e−Re(z) t |f(t)| ≤ e−α t |f(t)|, for t ≥ 0.

By observing that the last function is in L1(R+) by hypothesis, we then get e−z t f(t) ∈ L1(R+)
and thus L[f ] is well-defined.

Definition 4.1.3. Let f : R→ C be an L−transformable causal signal, we define

σf = inf{α ∈ R : e−α t f(t) ∈ L1(R+)}.

Then its Laplace transform is well-defined on the right half-plane

{z ∈ C : Re(z) > σf}.

107
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The number σf is called abscissa of convergence. The axis

{z ∈ C : Re(z) = σf},

is also called critical axis.

Remark 4.1.4. It is not difficult to see that for an L−transformable causal signal f , we have

(4.1.1) e−α t f ∈ L1(R+), for every α > σf .

Indeed, if α > σf , we can take

ε =
α− σf

2
> 0.

Then, by definition of infimum, we have that there exists αε < σf + ε such that

e−αε t f ∈ L1(R+).

Observe that by construction, we have

αε < σf + ε = σf +
α− σf

2
=
α+ σf

2
< α.

This implies that ˆ +∞

0
e−α t |f(t)| dt ≤

ˆ +∞

0
e−αε t |f(t)| dt < +∞,

and thus the claimed property (4.1.1).

Example 4.1.5 (Laplace transform of the Heaviside function). Let us consider the causal signal
given by the Heaviside function H. We observe

e−α tH(t) =

®
e−α t, t ≥ 0,
0, t < 0,

and this function is in L1(R+) if and only if α > 0. Indeed, we haveˆ +∞

0
e−α t dt =

®
+∞, if α ≤ 0,
1/α, if α > 0.

Thus the Heaviside function is L−transformable, with σH = 0. Its Laplace transform is thus the
function of a complex variable defined on {z ∈ C : Re(z) > 0} by

L[H](z) =

ˆ +∞

0
e−z t dt =

ñ
−e
−z t

z

ô+∞

0

=
1

z
, for Re(z) > 0.

Observe that in order to compute the last integral, we used that for Re(z) > 0

lim
t→∞

∣∣∣∣∣e−z tz
∣∣∣∣∣ = lim

t→∞

e−Re(z) t

|z|
= 0.

Remark 4.1.6 (Link with the Z−transform). Let f be an L−transformable causal signal, with
abscissa of convergence σf . Let us fix a time step τ > 0 and consider the regular grid

{0, τ, 2 τ, . . . , n τ, . . . }.

We can imagine to discretize the integral defining the Laplace transform by using Riemann integral
sums, i.e. ˆ +∞

0
e−z t f(t) dt '

∞∑
n=0

e−z n τ f(n τ) τ, Re(z) > σf .
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If in the last sum we make the change of variable ez τ = w ∈ C, we thus getˆ +∞

0
e−z t f(t) dt ' τ

∞∑
n=0

f(n τ)

wn
,

and the last expression is exactly the Z−transform of f with time step τ > 0, in the complex
variable w. Observe that the map

z 7→ ez τ = w,

send the half-plane {z ∈ C : Re(z) > σf} into the annular set {w ∈ C : |w| > eσf τ}, by recalling
property (1.5.5).

Lemma 4.1.7 (A necessary condition for transformability). Let f be a L−transformable causal
signal. Then for every T > 0 we have f ∈ L1([0, T ]).

Proof. By hypothesis, there exists α ∈ R such thatˆ +∞

0
e−α t |f(t)| dt < +∞.

In particular, we get

+∞ >

ˆ +∞

0
e−α t |f(t)| dt ≥

ˆ T

0
e−α t |f(t)| dt ≥ min

{
1, e−αT

} ˆ T

0
|f(t)| dt,

where we used that the real exponential is a monotone function. By observing that

min
{

1, e−αT
}
> 0,

we finally obtain ˆ T

0
|f(t)| dt < +∞,

as desired. �

Example 4.1.8. For example, the causal signal

f(t) =
1

t
H(t),

is not L−transformable. Indeed, we haveˆ 1

0
|f(t)| dt =

ˆ 1

0

1

t
dt = +∞.

2. L−transformable signals

On the other hand, the condition of Lemma 4.1.7 is only a necessary one and does not guarantee
that a causal signal with that property is L−transformable.

Example 4.2.1. Take the causal signal

f(t) = et
2
H(t).

It is easy to see that this function belongs to L1([0, T ]) for every T > 0. However, for every α ∈ R
the function

e−α t f(t) = et
2−α tH(t),

is positive and such that
lim

t→+∞
e−α t f(t) = +∞.
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Thus e−α t f 6∈ L1(R+), for every α ∈ R. This shows that the set

{α ∈ R : e−α t f ∈ L1(R+)},
is empty and f is not L−transformable.

Proposition 4.2.2 (A sufficient condition for transformability, I). Let f ∈ L1
loc(R) be a causal

signal having exponential order, i.e. such that there exists C, T > 0 and β ∈ R such that

|f(t)| ≤ C eβ t, for a. e. t ≥ T.
Then f is L−transformable and σf ≤ β. Moreover, we have the estimate

(4.2.1)

∣∣∣∣L[f ](z)

∣∣∣∣ ≤ ˆ T

0
e−β t |f(t)| dt+

C

Re(z)− β
e(β−Re(z))T , for Re(z) > β.

Proof. We prove that

(4.2.2) if α > β, then e−α t f ∈ L1(R+).

Indeed, we first observe that for almost every t ∈ [0, T ] and every α ∈ R, we have

e−α t ≤ max
{

1, e−αT
}
.

This entails that ˆ T

0
e−α t |f(t)| dt ≤ max

{
1, e−αT

}
‖f‖L1([0,T ]) < +∞,

thanks to the fact that f ∈ L1
loc(R). On the other hand, by using the assumption on f , for α > β,

we have
e−α t |f(t)| ≤ C e−α t eβ t, for a. e. t ≥ T,

and the last function is in L1([T,+∞)), thanks to the fact that β − α < 0. The last two estimates
show (4.2.2), thus we get in particular that f is L−transformable.

In order to prove the estimate on the abscissa of convergence, it is sufficient to observe that
(4.2.2) implies the following

{α ∈ R : e−α t f ∈ L1(R+)} ⊃ (β,+∞).

By taking the infimum of both sets we would get

σf = inf{α ∈ R : eα t f ∈ L1(R+)} ≤ inf(β,+∞) = β.

as desired.

Finally, we come to the proof of (4.2.1). For Re(z) > β, we estimate∣∣∣∣L[f ](z)

∣∣∣∣ =

∣∣∣∣∣
ˆ +∞

0
e−z t f(t) dt

∣∣∣∣∣ ≤
ˆ +∞

0
e−Re(z) t |f(t)| dt

=

ˆ T

0
e−Re(z) t |f(t)| dt+

ˆ +∞

T
e−Re(z) t |f(t)| dt

≤
ˆ T

0
e−β t |f(t)| dt+ C

ˆ +∞

T
e(β−Re(z)) t dt.

By computing the last two integrals, we get the desired estimate. �

Corollary 4.2.3 (Compactly supported causal signals). Let f ∈ L1
loc(R) be a compactly supported

causal signal. Then f is L−transformable and σf = −∞, i. e. its Laplace transform is defined on
the whole C.
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Proof. Since f has compact support, there exists T > 0 such that

|f(t)| = 0, for a. e. t ≥ T.

This means that f satisfies the assumptions of the previous result, for every α < 0. Thus we
conclude that σf ≤ α for every α < 0, i.e. σf = −∞. �

Example 4.2.4. Let L > 0, let us compute the Laplace transform of the function

1[0,L)(t) = H(t)−H(t− L).

Then we get

L[1[0,L)](z) =

ˆ L

0
e−z t dt =

ñ
−e
−z t

z

ôL
0

=
1− e−Lz

z
.

The results is apparently in contrast with Corollary 4.2.3, since we have a singularity at z = 0. But
this is indeed removable, since

lim
z→0

1− e−Lz

z
= L lim

z→0

1− e−Lz

Lz
= L lim

w→0

ew − 1

w
= L.

Thus the Laplace transform is entire.

Proposition 4.2.5 (A sufficient condition for transformability, II). Let f be a causal signal such
that f ∈ Lp(R), for some 1 ≤ p ≤ ∞. Then f is L−transformable and σf ≤ 0. Moreover, we have:

• if 1 < p ≤ ∞, it holds

(4.2.3)

∣∣∣∣L[f ](z)

∣∣∣∣ ≤
Ç

1

p′Re(z)

å 1
p′

‖f‖Lp(R), for Re(z) > 0;

• if p = 1, then L[f ] can be extended up to the imaginary axis {z ∈ C : Re(z) = 0} and

(4.2.4)

∣∣∣∣L[f ](z)

∣∣∣∣ ≤ ‖f‖L1(R), for Re(z) ≥ 0.

Proof. It is sufficient to observe that for every α > 0, the function t 7→ e−α t belongs to Lq(R+),
for every 1 ≤ q ≤ ∞. Indeed, for 1 ≤ q <∞ we have

(4.2.5)

ˆ +∞

0
e−α q t dt =

ñ
−e
−α q t

α q

ô∞
0

=
1

α q
< +∞,

while for q =∞ we just observe that

0 ≤ e−α t ≤ 1, for every t ≥ 0.

By choosing q = p′, we thus get by Hölder’s inequality (Proposition 3.3.5) that e−α t f(t) ∈ L1(R+)
for every α > 0, i.e. ˆ +∞

0
e−α t |f(t)| dt ≤ ‖f‖Lp(R+) ‖e−α t‖Lp′ (R+) < +∞.

This shows that f is L−transformable and that σf ≤ 0, since α > 0 is arbitrary.

Let us now suppose 1 < p ≤ ∞, then we have∣∣∣∣L[f ](z)

∣∣∣∣ =

∣∣∣∣∣
ˆ +∞

0
e−z t f(t) dt

∣∣∣∣∣ ≤
ˆ +∞

0
e−Re(z) t |f(t)| dt

≤ ‖f‖Lp(R+) ‖e−Re(z) t‖Lp′ (R+),
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again thanks to Hölder inequality. By using formula (4.2.5) above, with q = p′ and α = Re(z), we
get the estimate (4.2.3).

Finally, we take f ∈ L1(R+) and prove the last part of the statement. This is a plain consequence
of the Dominated Convergence Theorem 3.2.5. Indeed, we have

(4.2.6) lim
x→0+

L[f ](x+ i y) = lim
x→0+

ˆ +∞

0
e−x t−i t y f(t) dt.

We now observe that for every x ≥ 0 we have

|e−x t−i t y f(t)| = e−x t |f(t)| ≤ |f(t)|, for every t ≥ 0,

and the latter is in L1 and independent of the parameter x. We can thus pass the limit under
the integral sign in (4.2.6) and obtain the desired conclusion. The estimate (4.2.4) is left to the
reader. �

3. Properties of the Laplace transform

Theorem 4.3.1. Let f be an L−transformable causal signal, with abscissa of convergence σf .
Then for every σ0 > σf its Laplace transform L[f ] is bounded and continuous on Re(z) ≥ σ0.
Moreover, we have

(4.3.1) lim
Re(z)→+∞

L[f ](z) = 0,

and

(4.3.2) lim
|Im(z)|→+∞

L[f ](z) = 0, for Re(z) > σf .

Proof. Let us fix σ0 > σf , then for every Re(z) ≥ σ0 we have

|L[f ](z)| ≤
ˆ +∞

0
e−Re(z) t |f(t)| dt ≤

ˆ +∞

0
e−σ0 t |f(t)| dt < +∞,

where the last term is finite thanks to the definition of abscissa of convergence.

We now prove that L is continuous on Re(z) ≥ σ0, for every σ0 > σf . Let us fix z ∈ C such
that Re(z) ≥ σ0, we need to prove that

lim
h→0

∣∣∣∣L[f ](z + h)− L[f ](z)

∣∣∣∣ = 0.

For every h ∈ C such that

(4.3.3) |h| ≤ Re(z)− σf
2

,

we have ∣∣∣∣L[f ](z + h)− L[f ](z)

∣∣∣∣ =

∣∣∣∣∣
ˆ +∞

0

[
e−(z+h) t − e−z t

]
f(t) dt

∣∣∣∣∣
≤
ˆ +∞

0
e−Re(z) t |f(t)| |e−h t − 1| dt.

In order to conclude, it would be sufficient to pass the limit as h → 0 under the integral sign.
Indeed, observe that

lim
h→0

e−Re(z) t |f(t)| |e−h t − 1| = 0, for a. e. t ≥ 0.



3. Properties of the Laplace transform 113

We want to use the Dominated Convergence Theorem: observe that by triangle inequality and
recalling (4.3.3)

e−Re(z) t |f(t)| |e−h t − 1| ≤ e−Re(z) t |f(t)|
Ä
e−Re(h) t + 1

ä
= e−(Re(z)+Re(h)) t|f(t)|+ e−Re(z) t |f(t)|

≤ e−
Re(z)+σf

2
t|f(t)|+ e−Re(z) t |f(t)|.

In the last inequality we used that, thanks to (4.3.3), we have

|Re(h)| ≤ |h| ≤ Re(z)− σf
2

,

which implies that

Re(h) ≥ −Re(z)− σf
2

,

and thus

(4.3.4) Re(z) + Re(h) ≥ Re(z) + σf
2

.

Observe that the function above

t 7→ e−
Re(z)+σf

2
t|f(t)|+ e−Re(z) t |f(t)|,

is independent of h and is in L1, since

Re(z) + σf
2

> σf and Re(z) > σf .

Thus we can apply the Dominated Convergence Theorem and obtain

lim
h→0

∣∣∣∣L[f ](z + h)− L[f ](z)

∣∣∣∣ ≤ lim
h→0

ˆ +∞

0
e−Re(z) t |f(t)| |e−h t − 1| dt = 0,

as desired.

In order to prove (4.3.1), we observe that z = x+ i y we have

|L[f ](x+ i y)| ≤
ˆ +∞

0
e−x t |f(t)| dt.

and for x ≥ σ0,

e−x t |f(t)| ≤ e−σ0 t |f(t)| ∈ L1(R+).

Moreover, we have that

lim
x→+∞

e−x t |f(t)| = 0.

We can use Lebesgue Dominated Convergence Theorem and get the conclusion.

At last, we prove (4.3.2). We recall that

ex+i y = −ex+i (y+π),

thanks to the definition of complex exponential. Thus for every x > σf and y > 0 we have

L[f ](x+ i y) =

ˆ +∞

0
e−(x+i y) t f(t) dt,



114 4. The Laplace Transform

and also

L[f ](x+ i y) = −
ˆ +∞

0
e−(x t+i y t+i π) f(t) dt

= −
ˆ +∞

0
e
−x t−i y

(
t+π

y

)
f(t) dt

= −
ˆ +∞

π
y

e
−x
(
τ−π

y

)
e−i y τ f

Å
τ − π

y

ã
dτ

= −
ˆ +∞

0
e
−x
(
τ−π

y

)
e−i y τ f

Å
τ − π

y

ã
dτ

Observe that in the last equality we used that, by causality, we have

f

Å
τ − π

y

ã
= 0, for 0 ≤ τ ≤ π

y
.

By summing up the two expressions above, we obtain for x > σf and y 6= 0

L[f ](x+ i y) =
1

2

ˆ +∞

0
e−i y t

ï
e−x t f(t)− e−x

(
t−π

y

)
f

Å
t− π

y

ãò
dt.

By taking the modules on both sides, we obtain∣∣∣∣L[f ](x+ i y)

∣∣∣∣ ≤ 1

2

ˆ +∞

0

∣∣∣∣e−x t f(t)− e−x
(
t−π

y

)
f

Å
t− π

y

ã∣∣∣∣ dt
=

1

2

∥∥∥e−x t f − T−π
y

(e−x t f)
∥∥∥
L1(R+)

,

(4.3.5)

where we used the usual notation for the translations, i.e.

Thg(t) = g(t+ h).

It is only left to observe that if y → +∞, then −π/y → 0, thus we get the desired conclusion by
applying Theorem 3.4.5 in (4.3.5). In order to prove (4.3.2) for y → −∞, as well, we can reproduce
the proof above, by using this time

ex+i y = −ex+i (y−π).

We leave the details to the reader. �

Remark 4.3.2. The result (4.3.2) goes under the name of Riemann-Lebesgue Lemma for the
Laplace transform.

Before proving further properties of the Laplace transform, we need to record the following
technical result.

Lemma 4.3.3. For every z ∈ C∗, we have∣∣∣∣ez − 1

z

∣∣∣∣ ≤ e|z|.
Proof. Recall that we have

ez =
∞∑
k=0

zk

k!
, z ∈ C.
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Thus, by taking the modulus and using the triangle inequality, we get for every z ∈ C∗∣∣∣∣ez − 1

z

∣∣∣∣ =

∣∣∣∣∣∣
∞∑
k=1

zk−1

k!

∣∣∣∣∣∣ ≤
∞∑
k=1

|z|k−1

k!

≤
∞∑
k=1

|z|k−1

(k − 1)!
=
∞∑
m=0

|z|m

m!
=
e|z| − 1

|z|
.

This concludes the proof. �

Theorem 4.3.4. Let f be an L−transformable causal signal. Its Laplace transform L[f ] is a
holomorphic function on the half-plane Re(z) > σf . Moreover, the function t 7→ t f(t) is still
L−transformable with the same abscissa of convergence and we have

(4.3.6)
d

dz
L[f ](z) = −L[t f ](z), for Re(z) > σf .

Proof. We divide the proof in 3 steps, for ease of readability.

• Step 1. In this step, we prove that t 7→ t f(t) is still L−transformable, with abscissa of conver-
gence

(4.3.7) σt f = σf .

Let α > σf and fix

ε =
α− σf

2
> 0.

Observe that by definition we still have

α− ε =
α+ σf

2
> σf ,

thus we know that e−(α−ε) t f ∈ L1(R+), thanks to Remark 4.1.4. We now observe that

(4.3.8) e−α t t f(t) =
(
e−(α−ε) t f(t)

)
(t e−ε t).

We now use that ε > 0, thus the function

t 7→ t e−ε t,

is bounded on R+. On the other hand, we already observed that

t 7→ t e−(α−ε) t f(t),

is in L1(R+). In conclusion, from (4.3.8) we get that

t 7→ e−α t t f(t),

is still in L1(R+), for every α > σf . By resuming this discussion, we obtained

(4.3.9) for every α > σf ,we have e−α t t f(t) ∈ L1(R+).

We point out that this already shows that t 7→ t f(t) is L−transformable. Moreover, (4.3.9) shows
that

(σf ,+∞) ⊂ {α ∈ R : e−α t t f(t) ∈ L1(R+)}.
Thus by taking the infima of the two sets, we have

σt f = inf{α ∈ R : e−α t t f(t) ∈ L1(R+)} ≤ inf(σf ,+∞) = σf .
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In order to conclude this step of the proof, we only need to show the reverse inequality

σt f ≥ σf .
This would eventually show (4.3.7). We take β > σt f , thus we have e−β t t f ∈ L1(R+), again by
Remark 4.1.4. By using the elementary inequality

1 ≤ t+ 1[0,1](t), t ∈ R+,

we get
|e−β t f(t)| ≤ e−β t t |f(t)|+ e−β t |f(t)| 1[0,1](t), t ∈ R+.

Both functions in the right-hand side are in L1(R+) (for the second one, we can use Lemma 4.1.7),
thus this is true for e−β t f as well. Since this holds for every β > σt f , we proved the inclusion

(σt f ,+∞) ⊂ {β ∈ R : e−β t f(t) ∈ L1(R+)}.
By taking the infimaof the two setw, we finally obtain

σf = inf{β ∈ R : e−β t f(t) ∈ L1(R+)} ≤ inf(σt f ,+∞) = σt f ,

and thus (4.3.7).

• Step 2. In this step, we prove that L[f ] is derivable and formula (4.3.6) holds.

Let z be such that Re(z) > σf , for h ∈ C such that

(4.3.10) |h| ≤ Re(z)− σf
2

,

we still have Re(z + h) > σf , thanks to (4.3.4). Then we consider

L[f ](z + h)− L[f ](z)

h
=

ˆ +∞

0

e−h t − 1

h
e−z t f(t) dt.

Observe that z 7→ e−z t is holomorphic and

lim
h→0

e−h t − 1

h
= −t lim

h→0

e−h t − 1

−h t
= −t.

Thus, in order to conclude we need to pass the limit under the integral sign. We would like to use
Lebesgue Dominated Convergence Theorem (see Theorem 3.2.5), thus we need to find a summable
domination for ∣∣∣∣∣e−h t − 1

h
e−z t f(t)

∣∣∣∣∣ =

∣∣∣∣∣e−h t − 1

−h t

∣∣∣∣∣ e−Re(z) t |t f(t)|,

independent of h satisfying (4.3.10). By using Lemma 4.3.3, we obtain∣∣∣∣∣e−h t − 1

h
e−z t f(t)

∣∣∣∣∣ ≤ e|h| t e−Re(z) t |t f(t)| ≤ e
Re(z)−σf

2
t e−Re(z) t |t f(t)|

= e−
Re(z)+σf

2
t |t f(t)|.

By observing that
Re(z) + σf

2
> σf = σt f ,

we obtain that the last function above is summable on R+ (by Remark 4.1.4) and independent of
h. By keeping everything together, we get for every h verifying (4.3.10)

(4.3.11)

∣∣∣∣∣e−h t − 1

h
e−z t f(t)

∣∣∣∣∣ ≤ e−Re(z)+σf
2

t |t f(t)|, t ≥ 0.
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We can thus conclude by applying Lebesgue Dominated Convergence Theorem as described above
and obtain

lim
h→0

L[f ](z + h)− L[f ](z)

h
= lim

h→0

ˆ +∞

0

e−h t − 1

h
e−z t f(t) dt

= −
ˆ +∞

0
e−z t t f(t) dt = −L[t f ](z).

Thus we have shown that L[f ] is derivable and formula (4.3.6) holds.

• Step 3. In order to prove that L[f ] is holomorphic, we only need to prove that its complex
derivative

d

dz
L[f ],

is continuous. From formula (4.3.6), we know that this derivative coincides with the Laplace
transform of a causal signal, i.e. t 7→ t f(t), thus Theorem 4.3.1 implies that this is continuous. �

By recalling that a holomorphic function can be derived infinitely many times (see Theorem
1.8.2), we can iterate the previous result and get

Corollary 4.3.5. Let f be an L−transformable causal signal. For every n ∈ N \ {0} the function
t 7→ tn f(t) is still L−transformable with the same abscissa of convergence and we have

(4.3.12)
dn

dzn
L[f ](z) = (−1)n L[tn f ](z), for Re(z) > σf .

Example 4.3.6 (Unitary ramp). We consider the unitary ramp function R(t) = tH(t). By
Theorem 4.3.4, this is still L−transformable and the abscissa of convergence is

σR = σH = 0.

Its Laplace transform is given by

L[R](z) = L[tH](z) = − d

dz
L[H](z) = − d

dz

1

z
=

1

z2
for Re(z) > 0,

thanks to formula (4.3.6).

Example 4.3.7. More generally, for k ∈ N \ {0} we consider the causal signal t 7→ tkH(t). By
formula (4.3.12), we get

L[tkH](z) = (−1)k
dk

dzk
L[H](z) = (−1)k

dk

dzk
1

z
, for Re(z) > 0.

If we now observe that

dk

dzk
1

z
= (−1)k

k!

zk+1
,

we obtain

L[tkH](z) =
k!

zk+1
, for Re(z) > 0.
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4. Remarkable formulas

Proposition 4.4.1 (Linearity). Let f, g be two L−transformable causal signal, with abscissa of
convergence σf and σg. Then for every c1, c2 ∈ C the causal signal c1 f + c2 g is L−transformable
and

(4.4.1) L[c1 f + c2 g] = c1 L[f ] + c2 L[g], Re(z) > max{σf , σg}.

Proof. We just observe that for every z such that Re(z) > max{σf , σg} we have∣∣∣∣e−z t (c1 f(t) + c2 g(t))

∣∣∣∣ ≤ e−Re(z) t (|c1| |f(t)|+ |c2| |g(t)|) ∈ L1(R+),

thus the linear combination is L−transformable, with abscissa of convergence smaller than or equal
to max{σf , σg}. Formula (4.4.1) follows from linearity of the integral. �

Proposition 4.4.2 (Temporal dilations). Let f be an L−transformable causal signal. For λ > 0,
we define fλ(t) = f(λ t). Then fλ is L−transformable with abscissa of convergence σfλ = λσf and
we have

L[fλ](z) =
1

λ
L[f ]

Å
z

λ

ã
, for Re(z) > λσf .

Proof. By definition of Laplace transform and a change of variables we have

L[fλ](z) =

ˆ +∞

0
e−z t f(λ t) dt =

1

λ

ˆ +∞

0
e−

z
λ
s f(s) ds,

and observe that

e−
z
λ
s f(s) ∈ L1(R+) if Re

Å
z

λ

ã
> σf , that is if Re(z) > λσf .

This concludes the proof. �

Proposition 4.4.3 (Phase multiplication). Let f be an L−transformable causal signal. For a ∈ C,
the function ea t f(t) is still L−transformable, with abscissa of convergence given by σf + Re(a).
We have

L[ea t f ](z) = L[f ](z − a), for Re(z) > σf + Re(a).

Proof. For every z ∈ C such that Re(z) > σf + Re(a), we have

|e−z t ea t f(t)| = e−(Re(z)−Re(a)) t |f(t)| ∈ L1(R+),

thanks to the definition of σf and the fact that Re(z) − Re(a) > σf . We thus have for every
Re(z) > σf + Re(a)

L[ea t f ](z) =

ˆ +∞

0
e−z t ea t f(t) dt =

ˆ ∞
0

e−(z−a) t f(t) dt = L[f ](z − a),

as desired. �

Example 4.4.4. Let a ∈ C, by Proposition 4.4.3 the Laplace transform of the causal signal
t 7→ ea tH(t) is given by

(4.4.2) L[ea tH](z) = L[H](z − a) =
1

z − a
, Re(z) > Re(a).
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Example 4.4.5. Let k ∈ N and a ∈ C. By using Proposition 4.4.3 and recalling Example 4.3.7,
we get

(4.4.3) L
ñ
ea t tkH

k!

ô
(z) =

1

k!
L[tkH](z − a) =

1

(z − a)k+1
, Re(z) > Re(a).

Proposition 4.4.6 (Time delay). Let f be an L−transformable causal signal. For t0 > 0, we define
T−t0f(t) = f(t− t0). Then T−t0f is L−transformable with abscissa of convergence σT−t0f = σf and
we have

L[T−t0f ](z) = e−z t0 L[f ](z), for Re(z) > σf .

Proof. Observe that the function T−t0f is still a causal signal, indeed it vanishes for t < t0. We
have

L[T−h0fλ](z) =

ˆ ∞
t0

e−z t f(t− t0) dt =

ˆ +∞

0
e−z s−z t0 f(s) ds = e−z t0 L[f ](z),

as desired. �

Lemma 4.4.7 (L−transformability of periodic signals). Let f : R → C be a positively periodic
causal signal, i.e. there exists T > 0 such that

f(t+ T ) = f(t), for every t ≥ 0.

Then we have

f is L−transformable ⇐⇒ f ∈ L1([0, T ]).

Proof. We first observe that if f is L−transformable, then f ∈ L1([0, T ]) by Lemma 4.1.7.

We now suppose f ∈ L1([0, T ]) and prove that f is L−transformable. We take α > 0 and
observe that for every k ∈ N we have

ˆ (k+1)T

k T
e−α t |f(t)| dt ≤ e−k T α

ˆ (k+1)T

k T
|f(t)| dt = e−k T α

ˆ T

0
|f(t)| dt,

where we used the monotonicity of t 7→ e−α t and the periodicity of f . We thus have

ˆ +∞

0
e−α t |f(t)| dt = lim

N→∞

N∑
k=0

ˆ (k+1)T

k T
e−α t |f(t)| dt

≤ lim
N→∞

N∑
k=0

e−αk T
ˆ T

0
|f(t)| dt

= ‖f‖L1([0,T ]) lim
N→∞

N∑
k=0

e−αk T .

The last series is a geometric one, with argument 0 < e−αT < 1. Thus it converges and we have

(4.4.4) e−α t f ∈ L1(R+), for every α > 0,

which shows that f is L−transformable. �

Proposition 4.4.8 (Periodic signals). Let f be an L−transformable causal signal. Let us suppose
that f is positively periodic. Then

(4.4.5) σf = 0,
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and we have

(4.4.6) L[f ](z) =
1

1− e−T z

ˆ T

0
e−z t f(t) dt, for Re(z) > 0.

Proof. Of course, the proof has some similarities with that of the corresponding result for the
Z−transform, see Proposition 2.2.8.

In order to prove (4.4.5), we first observe that we already know that σf ≤ 0, thanks to (4.4.4).
We are left to prove that

e−α t f 6∈ L1(R+),

for every α < 0. The proof runs similarly as above, it is sufficient to observe that for α < 0
ˆ (k+1)T

k T
e−α t |f(t)| dt ≥ e−k T α

ˆ (k+1)T

k T
|f(t)| dt = e−k T α

ˆ T

0
|f(t)| dt,

then by summing with respect to k ∈ N, we now get

ˆ +∞

0
e−α t |f(t)| dt ≥ lim

N→∞

N∑
k=0

e−αk T
ˆ T

0
|f(t)| dt,

and the latter diverges to +∞, since the argument of the geometric series is now bigger than 1
(indeed, e−αT > 1 because α < 0).

We now come to formula (4.4.6). For z such that Re(z) > 0, we write

L[f ](z) =
∑
k∈N

ˆ (k+1)T

k T
e−z t f(t) dt

=
∑
k∈N

ˆ T

0
e−z k T e−z s f(s+ k T ) ds,

where we used the change of variable t = s+ k T . We now use the hypothesis of periodicity on f ,
thus we get f(s+ k T ) = f(s) and

L[f ](z) =
∑
k∈N

e−z k T
ˆ T

0
e−z s f(s) ds.

The integral does not depend on k and the sum is just a geometric series, with argument e−z T .
This series is convergent provided |e−z T | < 1, i.e.

e−Re(z)T < 1,

which is true, since we took Re(z) > 0. By observing that∑
k∈N

(e−z T )k =
1

1− e−z T
,

we get the conclusion. �

Remark 4.4.9 (Critical axis and periodic signals). By recalling the properties of the complex
exponential, we have that

1− e−T z = 0 ⇐⇒ −T z = 2π k i, k ∈ Z ⇐⇒ z =
2π k

T
i, k ∈ Z
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Thus, from formula (4.4.6), we obtain that the Laplace transform of a T−periodic causal signal
can be extended to a holomorphic function defined on

C \ {zk : k ∈ Z}, where zk =
2π k

T
i.

Each point zk lies on the imaginary axis and represents an isolated singularity for the function

F (z) =
1

1− e−T z

ˆ T

0
e−z t f(t) dt, z 6∈ {zk : k ∈ Z},

which is the extension of L[f ] to the whole C \ {zk : k ∈ Z}.
It is not difficult to see that every zk is indeed either a removable singularity or a simple pole.

Indeed, by observing that 1 = e−zk T , we have

lim
z→zk

F (z) (z − zk) = lim
z→zk

z − zk
1− e−z T

ˆ T

0
e−z t f(t) dt

=

Ç
1

T

ˆ T

0
e−

2π k
T

i t f(t) dt

å
lim
z→zk

(z − zk)T
e−zk T − e−z T

=

Ç
1

T

ˆ T

0
e−

2π k
T

i t f(t) dt

å
lim
z→zk

(z − zk)T
e−zk T (1− e−(z−zk)T )

=
1

T

ˆ T

0
e−

2π k
T

i t f(t) dt.

Remark 4.4.10 (Laplace transform VS. Fourier series). The formula found in the previous ob-
servation gives a remarkable link between the Laplace transform of a periodic signal f and the
coefficients of its Fourier series expansion. Indeed, by observing that the latter are given by (see
Appendix C)

f̂(k) =
1

T

ˆ T

0
e−

2π k
T

i t f(t) dt, for k ∈ Z,

we have just shown that (with a slight abuse of notation)

lim
z→zk

L[f ](z) (z − zk) = f̂(k), where zk =
2π k

T
i, k ∈ Z.

By recalling that if z0 is a simple pole for a function F , it holds (see Proposition 1.10.11 with
m = 1)

res(F, z0) = lim
z→z0

(z − z0)F (z),

we can rewrite the previous link between the Laplace transform and the Fourier coefficients as
follows

(4.4.7) res(L[f ], zk) = f̂(k), where zk =
2π k

T
i, k ∈ Z.

The following result is analogous to the formula for “time delay” for the Z−transform, i.e.
Proposition 2.2.2.

Proposition 4.4.11 (Laplace transform of the derivative). Let f be an L−transformable causal
signal, which is continuous on R+. Let us assume that f ′ is piecewise continuous, with f ′ having
only jump discontinuities at {x0, . . . , xN , . . . } ⊂ R+ and1

|xi − xj | ≥ δ > 0, for every i 6= j.

1The hypothesis assures that the discontinuity points are well detached and do not accumulate somewhere.
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Let us suppose that f ′ is L−transformable. Then we have the formula

(4.4.8) L[f ′](z) = z

ñ
L[f ](z)− f(0)

z

ô
, for Re(z) > max{σf , σf ′}.

Here f(0) has to be intended as limt→0+ f(t).

Proof. We will perform the proof under the stronger assumption that f ′ is continuous on R+, the
general case is left as an exercise to the reader.

We idea of the proof is very simple: it is based on the integration by parts formula. However,
since we are integrating on the unbounded set R+, some care is needed. We take M > 0, then an
integration by parts gives

ˆ M

0
e−z t f ′(t) dt =

[
e−z t f(t)

]M
0

+ z

ˆ M

0
e−z t f(t) dt

= e−zM f(M)− f(0) + z

ˆ M

0
e−z t f(t) dt, for Re(z) > max{σf , σf ′}.

(4.4.9)

By L−transformability of f and f ′, we know that both limits

lim
M→+∞

ˆ M

0
e−z t f ′(t) dt and lim

M→+∞

ˆ M

0
e−z t f(t) dt

exist. Then from (4.4.9) we obtain that the limit

lim
M→+∞

e−zM f(M),

exists as well. Since t 7→ e−z t f(t) is L1(R+) by assumption, this limit must be 0: it is a consequence
of Lemma 3.3.12 with g(t) = e−z t f(t). By taking the limit as M goes to +∞ in (4.4.9), we obtain

ˆ +∞

0
e−z t f ′(t) dt = −f(0) + z

ˆ +∞

0
e−z t f(t) dt, for Re(z) > max{σf , σf ′}

By recalling the definition of Laplace transform, this gives the desired conclusion. �

The previous result can be iterated, provided f is sufficiently regular.

Corollary 4.4.12. Let f be an L−transformable causal signal of class Cn−1(R+) for some n ∈
N \ {0}. Let us suppose that the derivative f (n−1) satisfies the hypotheses of Proposition 4.4.11.
Then we have

L[f (n)](z) = zn
[
L[f ](z)−

n−1∑
k=0

f (k)(0)

zk+1

]
, for Re(z) > max{σf , σf ′ , . . . , σf (n)}.

We recall from Chapter 3 that if f, g : R→ C are causal, then their convolution (provided this
is well-defined) can be written

(4.4.10) f ∗ g(t) =

ˆ t

0
f(s) g(t− s) ds =

ˆ t

0
f(t− s) g(s) ds.

It is easy to see that f ∗ g is still causal, i.e. it vanishes for negative t.
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Proposition 4.4.13 (Laplace transform of the convolution). Let f, g two L−transformable causal
signals. Then f ∗g is L−transformable with abscissa of convergence σf∗g ≤ max{σf , σg}. Moreover,
we have

(4.4.11) L[f ∗ g](z) = L[f ](z)L[g](z), for Re(z) > max{σf , σg}.

Proof. We first show that f ∗ g is L−transformable. Indeed, let us take

α > max{σf , σg},

then we know that

F (t) = e−α t f(t) ∈ L1(R) and G(t) = e−α t g(t) ∈ L1(R),

by definition of L−transformability. From Proposition 3.5.4, we know that the convolution F ∗G
is well-defined and is in L1(R). We thus get

F ∗G(t) =

ˆ +∞

0
e−α s f(s) e−α (t−s) g(t− s) ds

=

ˆ +∞

0
f(s) e−α t g(t− s) ds

= e−α t f ∗ g(t),

which shows that e−α t f ∗ g(t) ∈ L1(R). Thus f ∗ g is L−transformable and

σf∗g ≤ α, for every α > max{σf , σg}.

In order to prove (4.4.11), we write

L[f ∗ g](z) =

ˆ +∞

0
e−z t f ∗ g(t) dt =

ˆ +∞

0
e−z t

Çˆ t

0
f(s) g(t− s) ds

å
dt

=

ˆ +∞

0

Çˆ t

0
e−z s f(s) e−z (t−s) g(t− s) ds

å
dt,

where we used (4.4.10). Observe that for every z such that Re(z) > max{σf , σg}, the function

(s, t) 7→
∣∣∣e−z s f(s) e−z (t−s) g(t− s) ds

∣∣∣ = e−Re(z) s |f(s)| e−Re(z) (t−s) |g(t− s)|,

satisfies the hypothesis of Tonelli’s Theorem. Thus we obtain that

(s, t) 7→ e−z s f(s) e−z (t−s) g(t− s),

is summable and thus by Fubini’s Theorem we can exchange the order of integration. We thus
obtain (by further using the change of variable t− s = τ)

L[f ∗ g](z) =

ˆ +∞

0
e−z s f(s)

Çˆ +∞

s
e−z (t−s) g(t− s) dt

å
ds

=

ˆ +∞

0
e−z s f(s)

Çˆ +∞

0
e−z τ g(τ) dτ

å
ds

= L[f ](z)L[g](z),

as desired. �
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5. Inversion formula

We have the following inversion formula.

Theorem 4.5.1. Let f be an L−transformable piecewise C1 causal signal. Let us assume that f
and f ′ have only jump discontinuities at {x0, . . . , xk, . . . } ⊂ [0,+∞), with

|xk − xj | ≥ δ > 0, for every k 6= j.

We normalize f so that

f(xk) =
1

2

[
lim
x→x+

k

f(x) + lim
x→x−

k

f(x)

]
, k ∈ N.

Then for every t ∈ R we have

f(t) =
1

2π i
lim

L→+∞

ˆ α+i L

α−i L
L[f ](z) ez t dz

=
1

2π
lim

L→+∞

ˆ L

−L
L[f ](α+ i y) eα t ei y t dy,

(4.5.1)

where α is any real number such that α > σf .

Proof. We will prove this formula in Section 5 of the next chapter, as a consequence of the Inversion
Formula for the Fourier Transform. �

Corollary 4.5.2 (Injectivity of the Laplace transform). Let f and g be two piecewise C1 causal
signals, which are L−transformable. Let us assume that they both satisfy the hypotheses of Theorem
4.5.1. If

L[f ](z) = L[g](z), for every z ∈ BR(z0) ⊂
{
w ∈ C : Re(w) > max{σf , σg}

}
,

then we have

f(t) = g(t), for every t ∈ R.

Proof. We first observe that, by using that the Laplace transform is a holomorphic function, from
the unique continuation principle (see Corollary 1.8.7) we get that

L[f ](z) = L[g](z), for every z such that Re(z) > max{σf , σg}.

We now take α > max{σf , σg}, then by using the previous information and formula (4.5.1) for f
and g, we get

f(t) =
1

2π i
lim

L→+∞

ˆ α+i L

−α−i L
L[f ](z) ez t dz

=
1

2π i
lim

L→+∞

ˆ α+i L

α−i L
L[g](z) ez t dz = g(t).

This concludes the proof. �

The following result is very useful in order to avoid the use of the inversion formula in some
particular situations. It assures that every rational function is indeed the Laplace transform of a
suitable causal signal.
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Proposition 4.5.3 (Inversion of a rational function). Let P,Q : C → C be two polynomials such
that

(4.5.2) n = deg (P ) < deg(Q) = m.

Let us call z1, . . . , zk the roots of Q, each one having multiplicity m1, . . . ,mk so that

m1 + · · ·+mk = m,

Let us consider the function of the complex variable z

F (z) =
P (z)

Q(z)
, for z ∈ C \ {z1, . . . , zk}.

Then there exists an L−transformable causal signal f : R→ C such that

F (z) = L[f ](z), for Re(z) > max{Re(z1), . . . ,Re(zk)}.

More precisely, the signal f is given by

(4.5.3) f(t) =
k∑
j=1

ezj t
(mj∑
h=1

aj,h
(h− 1)!

th−1

)
H(t), t ∈ R,

where aj,h ∈ C are the coefficients of the partial fraction decomposition of F , which are given by

aj,h = res

Ç
(z − zj)h−1 P (z)

Q(z)
, zj

å
,

see Theorem 1.11.7.

Proof. From Theorem 1.11.7, we already know that we have the partial fraction decomposition

(4.5.4) F (z) =
P (z)

Q(z)
=

k∑
j=1

(mj∑
h=1

aj,h
(z − zj)h

)
,

for suitable coefficients aj,h ∈ C. We know recall that for every k ∈ N and every a ∈ C (see Example
4.3.7)

1

(z − a)k+1
= L

ñ
tk ea tH

k!

ô
(z), for Re(z) > Re(a).

By using this formula with a = zi and k = h − 1, we thus get for every j ∈ {1, . . . , k} and
h ∈ {1, . . . ,mj}

(4.5.5)
aj,h

(z − zj)h
= L

ñ
aj,h

th−1 ezj tH

(h− 1)!

ô
(z), for Re(z) > Re(zj).

By using (4.5.5) in (4.5.4), we thus obtain for Re(z) > max{Re(z1), . . . ,Re(zk)}

P (z)

Q(z)
=

k∑
j=1

(mj∑
h=1

aj,h
(z − zj)h

)
=

k∑
j=1

(mj∑
h=1

L
ñ
aj,h

th−1 ezj tH

(h− 1)!

ô
(z)

)

= L

 k∑
j=1

ezj t
(mj∑
h=1

aj,h
th−1

(h− 1)!

)
H

 (z),

and the latter is the Laplace transform of the signal defined by (4.5.3). This concludes the proof. �
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Remark 4.5.4. The signal (4.5.3) considerably simplifies if all the zeros z1, . . . , zk of the denomi-
nator Q are simple. In this case k = m and mj = 1 for every j = 1, . . . ,m, thus we obtain

f(t) =
m∑
i=1

ai e
zi tH(t), t ∈ R.

The ai ∈ C are still the coefficients of the partial fraction decomposition of F = P/Q.

Remark 4.5.5 (Some words on formula (4.5.3)). We can resume Proposition 4.5.3 by saying that:

every rational function F (z) = P (z)/Q(z) verifying (4.5.2) and with k distinct poles is the
Laplace transform of the sum of k causal signals, each one of the form

e(zero of Q) t × polynomial of degree “(order of the zero)− 1′′.

In particular, if all the poles are simple, this is just the sum of k exponential signals.

6. Solving linear ordinary differential equations

One of the main applications of the Laplace transform is to the solution of initial value problems
for linear ordinary differential equations, with constant coefficients.

For n ∈ N \ {0}, we fix the coefficients β0, . . . , βn ∈ C (with βn 6= 0) and the initial conditions
y0, . . . , yn−1 ∈ C. We also fix an L−transformable causal signal f . Then we want to find a causal
signal y of class Cn(R+) such that

(4.6.1)



βn y
(n)(t) + βn−1 y

(n−1)(t) + · · ·+ β1 y
′(t) + β0 y(t) = f(t),

y(0) = y0,
y′(0) = y1,
. . . . . .

y(n−1)(0) = yn−1.

• Preliminary discussion. It is useful to separate the difficulties in the problem (4.6.1):
in other words, we consider the two problems

(4.6.2)



βn y
(n)(t) + βn−1 y

(n−1)(t) + · · ·+ β1 y
′(t) + β0 y(t) = 0,

y(0) = y0,
y′(0) = y1,
. . . . . .

y(n−1)(0) = yn−1,

and

(4.6.3)



βn y
(n)(t) + βn−1 y

(n−1)(t) + · · ·+ β1 y
′(t) + β0 y(t) = f(t),

y(0) = 0,
y′(0) = 0,
. . . . . .

y(n−1)(0) = 0,

Thanks to the linearity of the derivative, it is easy to verify that if yhom solves (4.6.2) and
yf solves (4.6.3), then

y = yhom + yf
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is a solution of the original problem (4.6.1). In order to solve (4.6.2) and (4.6.3), let us
introduce the characteristic polynomial

Pcar(z) = βn z
n + βn−1 z

n−1 + · · ·+ β1 z + β0 =
n∑
i=0

βi z
i, z ∈ C.

We denote by z1, . . . , zk its roots, each one having multiplicity m1, . . . ,mk, so that m1 +
· · ·+mk = n.

• Solution of problem (4.6.2). We call yhom the solution of this problem. By taking the
Laplace transform, using its linearity and Corollary 4.4.12, the problem (4.6.2) becomes

Pcar(z)L[yhom](z)−
n∑
i=1

βi

(
i−1∑
`=0

y` z
i−1−`

)
= 0.

Thus we easily get the Laplace transform of yhom, this is given by

(4.6.4) L[yhom](z) =

n∑
i=1

βi

(
i−1∑
`=0

y` z
i−1−`

)
Pcar(z)

.

Though the expression on the right-hand side seems ugly, we can observe that this is the
ratio of two polynomials. Moreover, the degree of the numerator is (at most) n − 1
(just take k = 0 and i = n), while Pcar has degree n, thus (4.5.2) is verified. We can thus
apply Proposition 4.5.3 in order to find yhom. We get

yhom(t) =
k∑
j=1

ezj t
(mj∑
h=1

bj,h
(h− 1)!

th−1

)
H(t), t ∈ R

where bj,h ∈ C are the coefficients of the partial fraction decomposition of the rational
function in (4.6.4), that is

bj,h = res

â
(z − zj)h−1

n∑
i=1

βi

(
i−1∑
`=0

y` z
i−1−`

)
Pcar(z)

, zj

ì
.

• Solution of problem (4.6.3). We call yf a such a solution. As before, we take the Laplace
transform, use its linearity and Corollary 4.4.12, thus problem (4.6.3) now becomes

Pcar(z)L[yf ](z) = L[f ](z),

where we used that in (4.6.3) all the initial conditions are 0. The Laplace transform of yf
is easily found to be

L[yf ](z) =
L[f ](z)

Pcar(z)
=

1

Pcar(z)
L[f ](z).

The function of one complex variable

F (z) =
1

Pcar(z)
,
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is called transfer function2 of the system. We observe that the transfer function is a rational
function, thus by Proposition 4.5.3 again we know that there exists a causal signal Y , such
that

L[Y ](z) =
1

Pcar(z)
.

More precisely, by formula (4.5.3), we have

Y (t) =
k∑
j=1

ezj t
(mj∑
h=1

aj,h
(h− 1)!

th−1

)
H(t), t ∈ R,

with

aj,h = res

Ç
(z − zj)h−1

Pcar(z)
, zj

å
.

The causal signal Y is called impulse response3 of the system. We thus have obtained

L[yf ](z) =
1

Pcar(z)
L[f ](z) = L[Y ](z)L[f ](z) = L[Y ∗ f ](z),

where we used Proposition 4.4.13 in the last equality. Since yf and Y ∗ f have the same
Laplace transform, if they are regular enough we can apply Corollary 4.5.2 and finally
obtain

(4.6.5) yf (t) = Y ∗ f(t) =

ˆ t

0
f(t− s)Y (s) ds.

• Conclusion. The solution of the original problem (4.6.1) is thus given by

y(t) = yhom(t) + yf (t)

=
k∑
j=1

ezj t
(mj∑
h=1

bj,h
(h− 1)!

th−1

)
H(t) + Y ∗ f(t).

7. Solving linear integral equations

The Laplace transform is also a useful tool to solve integral equations. Without any attempt to
offer a rigorous or complete treatment of the subject, let us present some ideas and computations.

Let us consider the Volterra integral equation of the second kind

(4.7.1) y(t) = f(t) +

ˆ t

0
K(t, s) y(s) ds, t ≥ 0,

where:

• y is the unknown, which we consider as a causal signal ;

• K is a given function, called kernel of the equation;

• f is a given causal signal, called source.

2“Funzione di trasferimento” in italian.
3“Risposta impulsiva” in italian.
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We observe that if the kernel has the following form

K(t, s) = K(t− s),

for some function K : R→ R which is causal (i.e. K(t) = 0 for t ≤ 0), then by considering y as a
causal signal as well we getˆ t

0
K(t, s) y(s) ds =

ˆ t

0
K(t− s) y(s) ds = K ∗ y(t),

and thus (4.7.1) rewrites

y(t) = f(t) +K ∗ y(t).

Let us suppose that both f and K are L−transformable. By passing to the Laplace transform,
using its linearity and Proposition 4.4.13, we thus get

L[y](z) = L[f ](z) + L[K](z)L[y](z).

By supposing that the kernel K is such that

L[K](z) 6= 1, for Re(z) > σK ,

then we can determine the Laplace transform of y, which is given by

L[y](z) =
L[f ](z)

1− L[K](z)
, for Re(z) > max{σf , σK}.

If we are now able the to compute the inverse transform of the right-hand side above, we can then
find a solution to (4.7.1). We refer to the exercises below for some examples.

Remark 4.7.1 (Integro-differential equations). It should be clear that we can still use the Laplace
transform to solve a combination of the last two types of equations, i. e. ordinary differential
equations with constant coefficients and Volterra equations of the second kind. For example, we
could use the Laplace transform to solve an integro-differential equation of the type y′(t) + a y(t) = f(t) +

ˆ t

0
K(t− s) y(s) ds, for t ≥ 0,

y(0) = y0,

with a, y0 ∈ C given. We do not insist on this point.

8. The bilateral Laplace transform and the Mellin transform

The Laplace transform can be defined also for general functions f : R→ C, not necessarily causal.
However, some care is needed.

Definition 4.8.1. Let f : R→ C be a measurable function. We say that f is L−transformable if
there exist α < β ∈ R such that

e−α t f ∈ L1(R+) and e−β t f ∈ L1(R−),

i.e. ˆ +∞

0
e−α t |f(t)| dt < +∞ and

ˆ 0

−∞
e−β t |f(t)| dt < +∞.

In this case, we define its bilateral Laplace transform by

B[f ](z) :=

ˆ +∞

−∞
e−z t f(t) dt, z ∈ C such that α ≤ Re(z) ≤ β.
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Remark 4.8.2. We observe that the definition is well-posed. Indeed, for every z ∈ C such that
α ≤ Re(z) ≤ β, we have

|e−z t f(t)| = |e−Re(z) t e−i Im(z) t f(t)| = e−Re(z) t |f(t)| ≤
®
e−α t |f(t)|, for t ≥ 0,
e−β t |f(t)|, for t < 0.

By observing that the last function is in L1(R) by hypothesis, we then get e−z t f(t) ∈ L1(R) and
thus B[f ] is well-defined.

Definition 4.8.3. Let f : R→ C be an L−transformable signal, we define

σf = inf{α ∈ R : e−α t f(t) ∈ L1(R+)},
and

Σf = sup{β ∈ R : e−β t f(t) ∈ L1(R−)}.
Then its Laplace transform is a well-defined function on the strip

{z ∈ C : σf < Re(z) < Σf}.
The number Σf is called upper abscissa of convergence.

By proceeding as in the proof of Lemma 4.1.7, one can easily get the following

Lemma 4.8.4 (A necessary condition for transformability). Let f be a L−transformable signal.
Then for every T > 0 we have f ∈ L1([−T, T ]).

Without any attempt of completeness, we give a sufficient condition for L−transformability.

Proposition 4.8.5. Let f ∈ L1
loc(R) be such that for some C, T > 0 and β > 0 we have

|f(t)| ≤ C e−β |t|, for a. e. |t| ≥ T.
Then f is L−transformable, with

σf ≤ −β and Σf ≥ β.

Proof. The proof is the same of Proposition 4.2.2. The fact that f ∈ L1
loc(R), implies thatˆ T

−T
e−α t |f(t)| dt < +∞,

for every α ∈ R. In order to check the summability on R \ [−T, T ], we use the assumption on f .
Then for every α > −β we haveˆ +∞

T
e−α t|f(t)| dt ≤ C

ˆ +∞

T
e−α t e−β t dt = C

ˆ +∞

T
e−(β+α) t dt =

C e−(β+α)T

β + α
< +∞

and for every α < βˆ −T
−∞

e−α t |f(t)| dt ≤ C
ˆ −T
−∞

e−α t eβ t dt = C

ˆ −T
−∞

e(β−α) t dt =
C e−(β−α)T

β − α
< +∞.

This concludes the proof. �

As in the case of causal signals, from the previous result we immediately get the following

Corollary 4.8.6 (Compactly supported signals). Let f ∈ L1
loc(R) be a compactly supported signal.

Then f is L−transformable, with σf = −∞ and Σf = +∞, i. e. its bilateral Laplace transform is
defined on the whole C.
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The following result is analogous to Theorem 4.3.1.

Theorem 4.8.7. Let f be a L−transformable signal, with abscissae of convergence σf < Σf . Then
for every σ0 > σf and Σ0 < Σf its bilateral Laplace transform B[f ] is bounded and continuous on
the strip σ0 ≤ Re(z) ≤ Σ0. Moreover, we have

(4.8.1) lim
|Im(z)|→+∞

B[f ](z) = 0, for σf < Re(z) < Σf .

Remark 4.8.8. We recall that in the case of causal signals, by (4.3.1) we also have

lim
Re(z)→+∞

B[f ](z) = lim
Re(z)→+∞

L[f ](z) = 0.

However, if f is not causal, then this property in general fails. See Example 4.8.10 below for a
counterexample.

Finally, with a proof similar to that of Theorem 4.3.4, one can prove

Theorem 4.8.9. Let f be an L−transformable signal. Its bilateral Laplace transform B[f ] is a
holomorphic function on the strip

{z ∈ C : σf < Re(z) < Σf}.

Moreover, the function t 7→ t f(t) is still L−transformable with the same abscissae of convergence
and we have

(4.8.2)
d

dz
B[f ](z) = −B[t f ](z), for σf < Re(z) < Σf .

Example 4.8.10 (Bilateral Laplace transform of the rectangle). The rectangular function f(t) =
rect(t) is L−transformable, with

σf = −∞ and Σf = +∞.

Indeed, for every α ∈ R and every β ∈ R we haveˆ +∞

0
e−α t |rect(t)| dt =

ˆ 1/2

0
e−α t dt < +∞

and ˆ 0

−∞
e−β t |rect(t)| dt =

ˆ 0

−1/2
e−β t dt < +∞.

Its bilateral Laplace transform is the entire function given by

B[rect](z) =

ˆ 1
2

− 1
2

e−z t dt =

ñ
−e
−z t

z

ô1/2

−1/2

=
e
z
2 − e−

z
2

z
.

Observe that z = 0 is a removable singularity, thus the function is truly holomorphic on the whole
C.

Example 4.8.11. The function f(t) = e−|t| is L−transformable, with

σf = −1 and Σf = 1.

Indeed, for every α > −1 we haveˆ +∞

0
e−α t f(t) dt =

ˆ +∞

0
e−α t e−t dt =

1

α+ 1
< +∞,
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and for every β < 1 ˆ 0

−∞
e−β t f(t) dt =

ˆ 0

−∞
e−β t et dt =

1

1− β
< +∞.

For every z ∈ C with −1 < Re(z) < 1, the bilateral Laplace transform is given by

B[f ](z) =

ˆ +∞

0
e−z t e−t dt+

ˆ 0

−∞
e−z t et dt

=

ñ
−e
−(z+1) t

z + 1

ô+∞

0

+

ñ
−e
− (z−1) t

z − 1

ô0

−∞

=
1

z + 1
− 1

z − 1
= − 2

z2 − 1

Once we defined the bilateral Laplace transform, we can define the so-called Mellin transform.
This is again well-defined for causal signals.

Definition 4.8.12. Let f : R → C be a causal signal. We say that f is M−transformable if the
function

g(t) = f(e−t), t ∈ R,
is L−transformable, i.e. (see Definition 4.8.3) if there exist α < β ∈ R such thatˆ +∞

0
e−α t |f(e−t)| dt < +∞ and

ˆ 0

−∞
e−β t |f(e−t)| dt < +∞.

In this case, we define its Mellin transform by

M[f ](z) := B[g](z) =

ˆ +∞

−∞
e−z t f(e−t) dt, z ∈ C such that α ≤ Re(z) ≤ β.

Remark 4.8.13 (Another form of the Mellin transform). We observe that if f is M−transformable,
by making the change of variable

e−t = x i. e. t = − log x,

we can also write

M[f ](z) =

ˆ +∞

−∞
e−z t f(e−t) dt =

ˆ +∞

0
ez log x f(x)

dx

x

=

ˆ +∞

0
xz f(x)

dx

x

=

ˆ +∞

0
xz−1 f(x) dx, z ∈ C such that α ≤ Re(z) ≤ β.

Example 4.8.14. The causal signal

f(t) = rect(t− 1/2) =

®
1, if 0 ≤ t ≤ 1,
0, otherwise,

is M−transformable. Indeed, we observe that

g(t) = f(e−t) = rect

Å
e−t − 1

2

ã
=

®
1, if t ≥ 0,
0, if t < 0.

In other words, we have
g(t) = H(t),
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i.e. it coincides with the Heaviside function. By definition, we thus obtain

M[rect(· − 1/2)](z) = B[H](z) = L[H](z) =
1

z
,

where we used that the bilateral Laplace transform coincides with the Laplace transform for a
causal signal and Example 4.1.5. By using the alternative expression for the Mellin transform

M[f ](z) =

ˆ +∞

0
xz−1 f(x) dx,

the computations above imply thatˆ 1

0
xz−1 dx =

1

z
, for Re(z) > 0.

Example 4.8.15 (The Gamma function). We consider the causal signal

f(t) = e−tH(t).

This function is M−transformable, since the function

g(t) = f(e−t) = e−e
−t
,

is L−transformable, with

σg = 0 and Σg = +∞.
Let us prove this assertion: for every α > 0, we haveˆ +∞

0
e−α t g(t) dt =

ˆ +∞

0
e−α t e−e

−t
dt ≤

ˆ +∞

0
e−α t dt =

1

α
< +∞.

This shows also that σg = 0. On the other hand, for every β > 0, we haveˆ 0

−∞
e−β t g(t) dt =

ˆ 0

−∞
e−(β t+e−t) dt < +∞,

thanks to the fact that

e−(β t+e−t) = o(e−t
2
) for t→ −∞,

and the last function is summable on (−∞, 0]. This is true for every β > 0, thus this also shows
that Σg = +∞. We can then define the Mellin transform of f , by

M[f ](z) =

ˆ +∞

0
tz−1 e−t dt, for z ∈ C with Re(z) > 0.

This function of the complex variable z is called Gamma function. We observe that the restriction
of M[f ] to N \ {0} has the following properties:

• M[f ](1) =

ˆ +∞

0
e−t dt = 1

• the recursive formula for n ≥ 1

M[f ](n+ 1) =

ˆ +∞

0
tn e−t dt

=
î
−tn e−t

ó+∞
0

+ n

ˆ +∞

0
tn−1 e−t dt

= n

ˆ +∞

0
tn−1 e−t dt = nM[f ](n).
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The previous relations imply that

M[f ](1) = 1, M[f ](2) = 1, M[f ](3) = 2, M[f ](4) = 2 · 3 = 6

and so on....in other words we obtained the following remarkable relation

M[f ](n) = (n− 1)!, for every n ∈ N.

For this reason, the Gamma function can be seen as an extension of the factorial function.

9. Exercises

Exercise 4.9.1. Let ω > 0, show that the Laplace transform of the causal signal cos(ω t)H(t) is
given by

L[cos(ω t)H](z) =
z

z2 + ω2
, Re(z) > 0.

Solution. We recall that

cos(ω t) =
ei ω t + e−i ω t

2
,

thus from (4.4.2) with a = i ω we get

L[cos(ω t)H](z) =
1

2

{
L[ei ω tH](z) + L[e−i ω tH](z)

}
=

1

2

ß
1

z − i ω
+

1

z + i ω

™
=

z

z2 + ω2
, Re(z) > 0,

as desired. �

Exercise 4.9.2. Let ω > 0, show that the Laplace transform of the causal signal sin(ω t)H(t) is
given by

(4.9.1) L[sin(ω t)H](z) =
ω

z2 + ω2
, Re(z) > 0.

Solution. This is very similar to the previous one. We recall that

sin(ω t) =
ei ω t − e−i ω t

2 i
,

thus from (4.4.2) with a = i ω we get

L[sin(ω t)H](z) =
1

2 i

{
L[ei ω tH](z)− L[e−i ω tH](z)

}
=

1

2 i

ß
1

z − i ω
− 1

z + i ω

™
=

ω

z2 + ω2
, Re(z) > 0,

as desired. �

Exercise 4.9.3 (A positively periodic signal). Let us consider the following positively periodic
causal signal (sawtooth wave4)

SW (t) =
∞∑
k=0

(t− k)
[
H(t− k)−H(t− k − 1)

]
,

see Figure 1. Compute its Laplace transform.

4“Onda a dente di sega” in italian.
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Figure 1. The graph of the sawtooth wave

Solution. Observe that the period of this signal is T = 1. Also notice that SW ∈ L1([0, 1]), thus
by appealing to Lemma 4.4.7, we obtain that SW is L−transformable. Moreover, σSW = 0 thanks
to Proposition 4.4.8.

From formula (4.4.6), we get

L[SW ](z) =
1

1− e−z

ˆ 1

0
e−z t t dt, for Re(z) > 0.

We compute the last integral: by using an integration by parts

ˆ 1

0
e−z t t dt =

ñ
−e
−z t

z
t

ô1

0

+

ˆ 1

0

e−z t

z
dt

= −e
−z

z
+

ñ
−e
−z t

z2

ô1

0

= −e
−z

z
+

1

z2
− e−z

z2
, for Re(z) > 0.

After some elementary manipulations, we thus get

L[f ](z) =
1

z2
− 1

z (ez − 1)
=
ez − z − 1

z2

1

ez − 1
, for Re(z) > 0.

This concludes the exercise. �

Exercise 4.9.4. Solve the following intial value problem for the linear ordinary differential equation
of second order with constant coefficients

y′′(t) + 4 y′(t) + 3 y(t) = 0, t ≥ 0
y(0) = 3,
y′(0) = 1.

Solution. Observe that this is a homogeneous equation. Let us introduce the characteristic poly-
nomial

Pcar(z) = z2 + 4 z + 3.
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By passing to the Laplace transform, from formula (4.6.4) we find the Laplace transform of the
solution

L[y](z) =
a1 y(0) + a2 (y(0) z + y′(0))

Pcar(z)
=

3 z + 13

z2 + 4 z + 3
.

We now compute the partial fraction decomposition of the last rational function: observe that

z 7→ 3 z + 13

z2 + 4 z + 3
,

has two simple poles, in correspondence of

z1 = −3 and z2 = −1.

We thus seek for two coefficients A,B ∈ C such that

3 z + 13

z2 + 4 z + 3
=

A

z + 3
+

B

z + 1
.

By recalling Corollary 1.11.8, we have

A = res

Å
3 z + 13

z2 + 4 z + 3
,−3

ã
= −2 and B = res

Å
3 z + 13

z2 + 4 z + 3
,−1

ã
= 5.

Thus we have

L[y](z) = − 2

z + 3
+

5

z + 1
, Re(z) > −1.

This finally gives

y(t) = −2 e−3 t + 5 e−t, t ≥ 0,

thanks to Proposition 4.5.3. �

Exercise 4.9.5. Solve the following initial value problem for the linear ordinary differential equa-
tion of second order with constant coefficients

y′′(t) + 2 y′(t) + 5 y(t) = 0, t ≥ 0
y(0) = 2,
y′(0) = −4.

Solution. Again, this is a homogeneous equation. Let us introduce the characteristic polynomial

Pcar(z) = z2 + 2 z + 5.

By passing to the Laplace transform, from formula (4.6.4) we find the Laplace transform of the
solution

L[y](z) =
a1 y(0) + a2 (y(0) z + y′(0))

Pcar(z)
=

2 z

z2 + 2 z + 5
.

We have to compute the partial fraction decomposition of the last rational function. The function

F (z) =
2 z

z2 + 2 z + 5
,

has two simple poles, in correspondence of

z1 = −1− 2 i and z2 = −1 + 2 i.

We thus seek for two coefficients A,B ∈ C such that

F (z) =
2 z

z2 + 2 z + 5
=

A

z + 1 + 2 i
+

B

z + 1− 2 i
.
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By using Corollary 1.11.8, we get

A = res(F, z1) =
z1

z1 + 1
=

1 + 2 i

2 i
= 1− i

2
,

and

B = res(F, z2) =
z2

z2 + 1
=
−1 + 2 i

2 i
= 1 +

i

2
.

Finally, we obtain

L[y](z) =

Å
1− i

2

ã
1

z + 1 + 2 i
+

Å
1 +

i

2

ã
1

z + 1− 2 i
,

which gives

y(t) =

Å
1− i

2

ã
e−t e−2 i t +

Å
1 +

i

2

ã
e−t e2 i t, t ≥ 0,

thanks to Proposition 4.5.3. Observe that we can rewrite the solution in a different fashion as

y(t) = e−t
ñ
e−2 i t + e2 i t + i

e2 i t − e−2 i t

2

ô
= e−t

[
2 cos(2 t)− sin(2 t)

]
, t ≥ 0,

concluding the exercise. �

Exercise 4.9.6. Solve the following initial value problem for the linear ordinary differential equa-
tion of second order with constant coefficients

y′′(t) + y(t) = R(t), t ≥ 0
y(0) = 0,
y′(0) = 0.

where as above t 7→ R(t) = tH(t) is the unitary ramp function.

Solution. As always, let us introduce the characteristic polynomial

Pcar(z) = z2 + 1.

Observe that this is a non-homogeneous equation (due to the presence of the source term R), but
with homogeneous initial conditions. Thus we already know from formula (4.6.5) that the solution
can be written in the form

y(t) = Y ∗R(t), t ≥ 0,

where Y is the causal signal such that

L[Y ](z) =
1

Pcar(z)
=

1

z2 + 1
, for Re(z) > 0.

We recognize that the right-hand side is the Laplace transform of the causal signal t 7→ sin tH(t),
thanks to Exercise 4.9.2. Thus we obtain Y (t) = sin tH(t) and

y(t) = Y ∗R(t) =

ˆ t

0
(t− s) sin s ds = t−

ˆ t

0
cos(t− s) ds

= t− sin t, for t ≥ 0,

thus concluding the exercise. �
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Exercise 4.9.7. Solve the following intial value problem for the linear ordinary differential equation
of second order with constant coefficients

y′′(t) + y(t) = R(t), t ≥ 0
y(0) = 1,
y′(0) = −1.

where as above t 7→ R(t) = tH(t) is the unitary ramp function.

Solution. As always, let us introduce the characteristic polynomial

Pcar(z) = z2 + 1.

Observe that now we are in the general situation faced in Section 6. We thus decompose the
problem in the two problems 

y′′(t) + y(t) = 0, t ≥ 0
y(0) = 1,
y′(0) = −1,

and 
y′′(t) + y(t) = R(t), t ≥ 0

y(0) = 0,
y′(0) = 0.

The seeked solution of the initial problem will be the sum of yhom (solving the first one) and yf
(solving the second one). We observe that yf has already been computed in the previous exercise.
In order to find the solution yhom, we cans use the Laplace transform and obtain from (4.6.4)

L[yhom](z) =
a1 y(0) + a2 (y(0) z + y′(0))

Pcar(z)
=

z − 1

z2 + 1
, for Re(z) > 0.

We could now proceed to compute the partial fraction decomposition of the right-hand side. Oth-
erwise, we can recognize directly that

z − 1

z2 + 1
=

z

z2 + 1
− 1

z2 + 1
= L[cos tH](z)− L[sin tH](z),

thanks to Execises 4.9.1 and 4.9.2. We thus get

yhom(t) = cos t− sin t, for t ≥ 0,

and finally

y(t) = yhom + yf (t) = cos t− 2 sin t+ t, for t ≥ 0,

thus concluding the exercise. �

Exercise 4.9.8. Solve the following initial value problem for the linear ordinary differential equa-
tion of third order with constant coefficients

y′′′(t)− 3 y′(t) + 2 y(t) = et, t ≥ 0
y(0) = 0,
y′(0) = 0,
y′′(0) = 0.
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Solution. The characteristic polynomial is given by

Pcar(z) = z3 − 3 z + 2.

This is a non-homogeneous equation (due to the presence of the source term et), but with homo-
geneous initial conditions. By formula (4.6.5), we know that the solution can be written as

y(t) = Y ∗ et, t ≥ 0,

where Y is the impulse response, i.e. the causal signal such that

L[Y ](z) =
1

Pcar(z)
=

1

z3 − 3 z + 2
.

We observe that

z3 − 3 z + 2 = (z − 1)2 (z + 2),

thus we have

L[Y ](z) =
1

(z − 1)2 (z + 2)
.

In order to find Y , we need to perfom a partial fraction decomposition, i.e. we need to find
A,B,C ∈ C such that

L[Y ](z) =
1

(z − 1)2 (z + 2)
=

A

z − 1
+

B

(z − 1)2
+

C

z + 2
.

Observe that we have a multiple pole, thus we need to use the general formula of Theorem 1.11.7.
We thus get

A = res

Ç
1

(z − 1)2 (z + 2)
, 1

å
= lim

z→1

d

dz

1

z + 2
= −1

9
,

B = res

Ç
(z − 1)

1

(z − 1)2 (z + 2)
, 1

å
=

1

3
,

and

C = res

Ç
1

(z − 1)2 (z + 2)
,−2

å
=

1

9
.

We used Proposition 1.10.11 in order to compute the residues above. We thus obtained

L[Y ](z) = −1

9

1

z − 1
+

1

3

1

(z − 1)2
+

1

9

1

z + 2
.

This implies that

Y (t) =

Å
−1

9
et +

1

3
t et +

1

9
e−2 t

ã
H(t).

Finally, we solution is given by

y(t) = Y ∗ et = −1

9

ˆ t

0
es et−s ds+

1

3

ˆ t

0
s es et−s ds+

1

9

ˆ t

0
e−2 s et−s ds.

The previous integrals can be easily computed, we leave the details to the reader. �
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10. Advanced exercises

Exercise 4.10.1. Let a ∈ C be such that Re(a) > 0. Compute the bilateral Laplace transform of
the signal f : R→ C defined by

f(t) =

®
e−a t, for t ≥ 0,
ea t, for t < 0.

Solution. We first observe that f is L−transformable, since

e−α t f ∈ L1(R+), for every α > −Re(a),

and

e−β t f ∈ L1(R+), for every β < Re(a).

This also shows that

σf = −Re(a) and Σf = Re(a).

We now compute the bilateral Laplace transform. For every z ∈ C with −Re(a) < Re(z) < Re(a),
we have

B[f ](z) =

ˆ
R
e−z t f(t) dt =

ˆ +∞

0
e−(z+a) t dt+

ˆ 0

−∞
e−(z−a) t dt

= lim
M→+∞

ñ
−e
−(z+a) t

z + a

ôM
0

+ lim
M→−∞

ñ
−e
−(z−a) t

z − a

ô0

M

=
1

z + a
− 1

z − a
=

2 a

a2 − z2
.

Observe that we used that

lim
M→+∞

−e
−(z+a)M

z + a
= 0, for Re(z) > −Re(a),

and

lim
M→−∞

−e
−(z−a)M

z − a
= 0, for Re(z) < Re(a).

This concludes the exercise. �

Exercise 4.10.2. Show that the causal signal

f(t) = (sinc t)H(t),

is L−transformable and compute its Laplace transform.

Solution. We have already seen that sinc ∈ Lp(R) for every 1 < p ≤ ∞, see Example 3.3.15. Thus
f is L−transformable by Proposition 4.2.5 and we have

σf ≤ 0.

In order to compute L[f ], we introduce the causal signal

g(t) =
1

π
sin(π t)H(t).

Then by recalling the definition of the cardinal sinus, we get

g(t) = t f(t).
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By Theorem 4.3.4, we have that g is L−transformable, as well. Moreover, σg = σf and

L[g](z) = L[t f ](z) = − d

dz
L[f ](z), for Re(z) > σf .

On the other hand, we can use Exercise 4.9.2 to compute L[g]: by using formula (4.9.1) with ω = π,
we find

L[g](z) =
1

π

π

z2 + π2
=

1

z2 + π2
, for Re(z) > σg = 0.

This shows that σf = σg = 0 and that

d

dz
L[f ](z) = − 1

z2 + π2
, for Re(z) > 0.

We now introduce the function

F (z) = − 1

π
Arctan

Å
z

π

ã
,

where Arctan is the function of Exercise 1.13.2, and observe that

F ′(z) = − 1

z2 + π2
.

This shows that L[f ] − F has derivative constantly equals to 0, on the connected set {z ∈ C :
Re(z) > 0}. Thus there exists a constant C ∈ C such that

L[f ](z) = F (z) + C = − 1

π
Arctan

Å
z

π

ã
+ C.

It is only left to compute the constant C: we take the limit as Re(z)→ +∞ in the previous identity.
By using Theorem 4.3.1, we obtain

0 = lim
Re(z)→+∞

− 1

π
Arctan

Å
z

π

ã
+ C, that is C = lim

Re(z)→+∞

1

π
Arctan

Å
z

π

ã
=

1

2
.

In the last computation we used that Arctan has the explicit expression

Arctan(w) =
1

2
Arg

Å
1 + i w

1− i w

ã
+ i log

 ∣∣∣∣1− i w1 + i w

∣∣∣∣, for w ∈ C \ {−i, i}.

In conclusion, we get

L[f ](z) = F (z) + C =
1

2
− 1

π
Arctan

Å
z

π

ã
.

This concludes the exercise. �

Exercise 4.10.3. Compute the Fourier coefficients {f̂(k)}k∈Z of the sawtooh wave.

Solution. We already observed that the sawtooth wave is T−positively periodic, with T = 1. We
set

F (z) = L[f ](z) =
ez − z − 1

z2 (ez − 1)
,

then we want to use formula (4.4.7) with T = 1, to infer that

f̂(k) = res(F, zk), where zk = 2π k i, k ∈ Z
For k = 0, we have z0 = 0 and thus

f̂(0) = res(F, 0) = lim
z→0

z
ez − z − 1

z2 (ez − 1)
= lim

z→0

ez − z − 1

z (ez − 1)
= lim

z→0

z2

2
+ o(z2)

z2 + o(z2)
=

1

2
,

where we used the second order Taylor expansion of the exponential.
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Figure 2. The sawtooth wave (in black) and the first 30 terms of its Fourier series (in red).

For k 6= 0, we can observe that the function F can be written as

F (z) =
h(z)

g(z)
, with h(z) =

ez − z − 1

z2
and g(z) =

1

ez − 1
.

We can then compute the residue at zk by using Corollary 1.10.13 and get

f̂(k) = res(F, zk) =
h(zk)

g′(zk)
=
ezk − zk − 1

z2
k e

zk
.

If we now recall that ezk = 1, we finally obtain

f̂(k) =
1− zk − 1

z2
k · 1

= − 1

zk
= − 1

2π k i
=

i

2π k
, k ∈ Z \ {0}.

This concludes the exercise. �

Exercise 4.10.4. Find a causal signal y solving the Volterra integral equation of the second kind

y(t) = f(t) +

ˆ t

0
K(t− s) y(s) ds, t ≥ 0,

where

f(t) = t e−tH(t), K(t) = e−tH(t).

Solution. The equation can be rewritten as

y(t) = f(t) +K ∗ y(t), t ≥ 0,

and f and K are both L−transformable, with σf = σK = −1, thanks to (4.4.3). By taking the
Laplace transform, the previous equation becomes

L[y](z) = L[f ](z) + L[K](z)L[y](z), for Re(z) > −1.

This gives (
1− L[K](z)

)
L[y](z) = L[f ](z), for Re(z) > −1.
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We now observe that

L[f ](z) = L[t e−tH](z) = − d

dz
L[e−tH]

= − d

dz

1

z + 1
=

1

(z + 1)2
, for Re(z) > −1,

where we used Theorem 4.3.4 in the first equality and Proposition 4.4.3 in the second one. Similarly,
we compute

L[K](z) = L[e−tH](z) =
1

z + 1
, for Re(z) > −1,

and observe that L[K](z) 6= 1 for Re(z) > 0. By confining our analysis to this half-plane, we thus
obtain

L[y](z) =
L[f ](z)(

1− L[K](z)
) =

1

(z + 1)2

1

1− 1

z + 1

=
1

z (z + 1)
, Re(z) > 0.

We can use the partial fractional decomposition of the last term: in this case, this is particularly
simple since we have

1

z (z + 1)
=

1

z
− 1

z + 1
, z 6= 0 and z 6= −1.

The last two terms are two known Laplace transforms, indeed

1

z
= L[H](z) and

1

z + 1
= L[etH](z).

Thus we get the solution
y(t) = H(t)− etH(t), t ∈ R.

concluding the exercise. We can easily verify that this causal signal is indeed a solution of the
initial Volterra equation (check it!). �





Chapter 5

The Fourier Transform

1. Fourier transform of L1 functions

Definition 5.1.1. Let f ∈ L1(R) be a complex-valued function, we define its Fourier transform
by

F [f ](ω) =

ˆ
R
e−i t ω f(t) dt, ω ∈ R.

The definition is well-posed, since for every ω ∈ R we have∣∣∣e−i t ω f(t)
∣∣∣ =

∣∣∣e−i t ω∣∣∣ |f(t)| = |f(t)| ∈ L1(R),

where we used that

|e−i t ω| = 1,

thanks to (1.5.3).

Remark 5.1.2 (Relation with the Laplace transform). To every function f ∈ L1(R) we can
associate two L−transformable causal signals: these are given by

f→(t) := f(t)H(t), t ∈ R (forward signal),

and

f←(t) := f(−t)H(t), t ∈ R (backward signal).

Observe that by construction we have

f(t) = f→(t) + f←(−t), for every t ∈ R.

They are both in L1(R+), thus by Lemma 4.2.5 they are L−transformable with σf→ , σf← ≤ 0.
Moreover, the L1 hypothesis entails that their Laplace transforms

z 7→ L[f→](z) and z 7→ L[f←](z),

can be extended up to the imaginary axis {z ∈ C : Re(z) = 0}, still by Proposition 4.2.5. We can
thus consider

L[f→](i ω) =

ˆ +∞

0
e−i t ω f(t) dt, ω ∈ R,

145
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and

L[f←](i ω) =

ˆ +∞

0
e−i t ω f(−t) dt, ω ∈ R.

Finally, we observe that with a simple change of variables

L[f→](i ω) + L[f←](−i ω) =

ˆ +∞

0
e−i t ω f(t) dt+

ˆ +∞

0
ei t ω f(−t) dt

=

ˆ +∞

0
e−i t ω f(t) dt+

ˆ 0

−∞
e−i s ω f(s) ds = F [f ](ω).

This gives the relation between the two transforms.

Remark 5.1.3 (Relation with the bilateral Laplace transform). If f ∈ L1(R) is L−trasformable
with bilateral Laplace transform

B[f ](z) =

ˆ +∞

−∞
e−z t f(t) dt and σf < 0 < Σf ,

then the relation with the Fourier transform is more direct. Indeed, we just have

F [f ](ω) = B[f ](i ω),

i.e. F [f ] coincides with the restriction of the bilateral Laplace transform to the imaginary axis.

Example 5.1.4 (Fourier Transform of the rectangular function). We recall that the rectangular
function is defined by

rect(t) =

 1, if t ∈
ï
−1

2
,
1

2

ò
,

0, otherwise.

This is an L1(R) function, thus we can define its Fourier transform. Observe that rect is L−transformable,
as seen in Example 4.8.10, with abscissae of convergence given by

σrect = −∞ and Σrect = +∞.
Its bilateral Laplace transform is given by the entire function

B[rect](z) =
e
z
2 − e−

z
2

z
.

By taking the restriction of this function to z = i ω, we get

F [rect](ω) = B[rect](i ω) =
e
i ω
2 − e−

i ω
2

i ω
.

By recalling that
ei ϑ − e−i ϑ

2 i
= sinϑ, ϑ ∈ R,

we get

F [rect](ω) =
sin

Å
ω

2

ã
ω

2

.

By recalling the definition of the cardinal sine function

sincω =


sin(π ω)

π ω
, if ω 6= 0,

1, if ω = 0,
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we can also rewrite the previous formula as

(5.1.1) F [rect](ω) = sinc

Å
ω

2π

ã
.

Example 5.1.5. The Fourier transform of the function f(t) = e−|t| is given by

F [f ](ω) =
2

1 + ω2
.

Indeed, we recall that the function f(t) = e−|t| is L−transformable and its bilateral Laplace trans-
form is given by

B[f ](z) = − 2

z2 − 1
, for − 1 < Re(z) < 1,

see Example 4.8.11. Thus by Remark 5.1.3 we get

F [f ](ω) = B[f ](i ω) = − 2

−ω2 − 1
=

2

ω2 + 1
.

2. Properties of the Fourier transform

Theorem 5.2.1. Let f ∈ L1(R) be a complex-valued function. Then its Fourier transform F [f ] is
a bounded and continuous function on R. Moreover, we have

(5.2.1)

∥∥∥∥F [f ]

∥∥∥∥
L∞(R)

≤ ‖f‖L1(R),

and

(5.2.2) lim
|ω|→∞

∣∣∣∣F [f ](ω)

∣∣∣∣ = 0 (Riemann-Lebesgue Lemma).

Proof. We start by proving (5.2.1). By definition and properties of the Lebesgue integral, we have

|F [f ](ω)| =
∣∣∣∣ˆ

R
e−i t ω f(t) dt

∣∣∣∣ ≤ ˆ
R

∣∣∣e−i t ω f(t)
∣∣∣ dt =

ˆ
R
|f(t)| dt

where we used again that |e−i t ω| = 1 for every t, ω ∈ R. Since the previous estimate is valid for
every ω ∈ R, we thus obtain ∥∥∥∥F [f ]

∥∥∥∥
L∞(R)

≤
ˆ
R
|f(t)| dt,

as desired.

Let us now prove that ω 7→ F [f ](ω) is a continuous function. We fix ω0 ∈ R, we need to prove that

lim
ω→ω0

∣∣∣∣F [f ](ω)−F [f ](ω0)

∣∣∣∣ = 0.

By definition and elementary properties of the Lebesgue integral, we have∣∣∣∣F [f ](ω)−F [f ](ω0)

∣∣∣∣ =

∣∣∣∣ˆ
R
e−i t ω f(t) dt−

ˆ
R
e−i t ω0 f(t) dt

∣∣∣∣
=

∣∣∣∣ˆ
R

Ä
e−i t ω − e−i t ω0

ä
f(t) dt

∣∣∣∣
≤
ˆ
R

∣∣∣e−i t ω − e−i t ω0

∣∣∣ |f(t)| dt.
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We now observe that

lim
ω→ω0

∣∣∣e−i t ω − e−i x ω0

∣∣∣ = 0,

thus in order to conclude we want to pass the limit under the integral sign. By noticing that∣∣∣e−i t ω − e−i x ω0

∣∣∣ |f(t)| ≤
(∣∣∣e−i t ω|+ |e−i x ω0

∣∣∣) |f(t)| = 2 |f(t)| ∈ L1(R),

we can invoke the Lebesgue Dominated Convergence Theorem and conclude.

We now prove (5.2.2). We notice that the proof is exactly the same as in the case of Laplace
transform, see Theorem 4.3.1. We start by observing that for ω ∈ R we have

F [f ](ω) = −
ˆ
R
e−i t ω−i π f(t) dt,

since e−i π = −1. Then if ω 6= 0 we have

F [f ](ω) = −
ˆ
R
e−i t ω−i π f(t) dt = −

ˆ
R
e−i (t+

π
ω )ω f(t) dt

= −
ˆ
R
e−i y ω f

Å
y − π

ω

ã
dy.

On the other hand, by definition of Fourier transform

F [f ](ω) =

ˆ
R
e−i t ω f(t) dt.

By summing up the two previous identities and dividing by 2, we thus obtain

F [f ](ω) =
1

2

ˆ
R
e−i y ω

ï
f(y)− f

Å
y − π

ω

ãò
dy.

By taking the modulus, we get∣∣∣∣F [f ](ω)

∣∣∣∣ ≤ 1

2

ˆ
R

∣∣∣∣f(y)− f
Å
y − π

ω

ã∣∣∣∣ dy =
1

2
‖f − T− π

ω
f‖L1(R),

where we used the usual notation Thf(t) = f(t + h) for translations. We conclude by using the
continuity of the L1 norm with respect to translations (see Proposition 3.4.5) and the fact that
π/ω converges to 0, as |ω| goes to +∞. �

Remark 5.2.2. From Theorem 5.2.1 we can infer that if f ∈ L1(R), then F [f ](ω) is indeed
uniformly continuous on R. We do not insist on this point.

Proposition 5.2.3 (Higher regularity of the transform). Let f ∈ L1(R) be such that the function
t 7→ t f(t) is in L1(R) as well. Then the Fourier transform F [f ] is a C1(R) function and we have

(5.2.3)
d

dω
F [f ](ω) = −iF [t f ](ω).

Moreover we have

d

dω
F [f ] ∈ L∞(R) and lim

|ω|→+∞

∣∣∣∣ ddωF [f ](ω)

∣∣∣∣ = 0.

Proof. We first observe that since t 7→ t f(t) is in L1(R), we already know from Theorem 5.2.1
that F [t f ] is continuous, bounded and converges to 0 as |ω| → +∞. Thus it is sufficient to show
that F [f ] is derivable and that formula (5.2.3) holds.
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We start by observing that

(5.2.4) lim
h→0

F [f ](ω + h)−F [f ](ω)

h
= lim

h→0

ˆ
R

e−i t h − 1

h
e−i t ω f(t) dt,

and since

lim
h→0

e−i t h − 1

h
= −i t,

in order to conclude we just need the take the limit under the integral sign. We observe that

|e−i t h − 1| =
»

(cos(t h)− 1)2 + sin2(t h)

=
»

2− 2 cos(t h)

=
√

2
»

1 − cos(t h) = 2

∣∣∣∣sinÅ t h2 ã∣∣∣∣ ,
thus we get ∣∣∣∣∣e−i t h − 1

h

∣∣∣∣∣ = 2

∣∣∣∣sinÅ t h2 ã∣∣∣∣ 1

|h|

= |t|
∣∣∣∣sinÅ t h2 ã∣∣∣∣ 1∣∣∣∣ t h2

∣∣∣∣ ≤ |t|,
where we used the well-known trigonometric facts

sin2
Å
α

2

ã
= 1− cosα and

∣∣∣∣sinαα
∣∣∣∣ ≤ 1.

Thus for the function under the integral sign in (5.2.4), we have∣∣∣∣∣e−i t h − 1

h
e−i t ω f(t)

∣∣∣∣∣ ≤ |t f(t)|, t ∈ R.

The last function is in L1 by assumption and does not depend on h, thus we can apply the Lebesgue
Dominated Convergence Theorem and get

lim
h→0

F [f ](ω + h)−F [f ](ω)

h
= −i

ˆ
R
t e−i t ω f(t) dt,

as desired. �

Corollary 5.2.4. Let f ∈ L1(R) be such that the function t 7→ tn f(t) is in L1(R) as well, for some
n ∈ N \ {0}. Then the Fourier transform F [f ] is a Cn(R) function and we have

dk

dωk
F [f ](ω) = (−i)k F [tk f ](ω), k = 1, . . . , n.

Moreover for every k = 1, . . . , n we have

dk

dωk
F [f ] ∈ L∞(R) and lim

|ω|→+∞

∣∣∣∣∣ dkdωkF [f ](ω)

∣∣∣∣∣ = 0.

Remark 5.2.5. The hypothesis “t 7→ tn f(t) is in L1(R)” holds true if f is such that

lim
|t|→+∞

|tα f(t)| < +∞, for some α > n+ 1.

Thus from the previous result we could say that “the faster the signal decays at infinity, the more
regular its Fourier transform is”.
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Proposition 5.2.6. Let f ∈ L1(R), then:

• if f is real-valued and even, then F [f ] is real-valued and even;

• if f is real-valued and odd, then F [f ] is purely imaginary and odd.

Proof. Let us suppose that f is real-valued and even, i.e. f(−t) = f(t) for every t ∈ R. Then
with a simple change of variable we get

Im (F [f ](ω)) = −
ˆ
R

sin(t ω) f(t) dt = −
ˆ +∞

0
sin(t ω) f(t) dt−

ˆ 0

−∞
sin(t ω) f(t) dt

= −
ˆ +∞

0
sin(t ω) f(t) dt−

ˆ +∞

0
sin(−s ω) f(−s) ds

= −
ˆ +∞

0
sin(t ω) f(t) dt+

ˆ +∞

0
sin(s ω) f(s) ds = 0,

where we used the fact that f is even, while the sinus is odd. This shows that F [f ] is real-valued.
Moreover, it is an even function since

F [f ](−ω) =

ˆ
R
ei t ω f(t) dt =

ˆ
R
e−i s ω f(−s) ds =

ˆ
R
e−i s ω f(s) ds.

In the case f is real-valued and odd the proof is similar, it is left to the reader as an exercise. �

3. Remarkable formulas

The following properties of the Fourier transform are analogous to the ones for the Laplace trans-
form.

Proposition 5.3.1 (Linearity). Let f, g ∈ L1(R), then for every c1, c2 ∈ C the function c1 f + c2 g
is in L1 and

(5.3.1) F [c1 f + c2 g] = c1F [f ] + c2F [g].

Proof. This is an easy consequence of the linearity of the Lebesgue integral. �

Proposition 5.3.2 (Dilations). Let f ∈ L1(R) and λ > 0. We set fλ(x) = f(λx), then we get

F [fλ](ω) =
1

λ
F [f ]

Å
ω

λ

ã
.

Proof. It is sufficient to use the definition and a change of variables, we have

F [fλ](ω) =

ˆ
R
f(λ t) e−i t ω dt =

1

λ

ˆ
R
f(y) e−i y

ω
λ dy.

This concludes the proof. �

Proposition 5.3.3 (Translations). Let f ∈ L1(R) and h ∈ R. We set Thf(t) = f(t+ h), then we
get

F [Thf ](ω) = ei h ω F [f ](ω).

Proof. We use the change of variable x+ h = y, so to get

F [Thf ](ω) =

ˆ
R
f(t+ h) e−i t ω dt =

ˆ
R
f(y) e−i (y−h)ω dy,

which concludes the proof. �
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It may be useful to state explicitely a formula for the composition of dilations and translations.

Corollary 5.3.4 (Dilations & translations). Let f ∈ L1(R), λ > 0 and h ∈ R. Then for the
function t 7→ fλ,h(t) = f(λ t+ h) we have

F [fλ,h](ω) =
ei

h
λ
ω

λ
F [f ]

Å
ω

λ

ã
.

Proof. It is sufficient to observe that

f(λ t+ h) = f

Å
λ

Å
t+

h

λ

ãã
=
(
Th
λ
f
)
λ

(t),

thus from the previous formulas we get

F [fλ,h](ω) =
1

λ
F [Th

λ
f ]

Å
ω

λ

ã
=
ei

h
λ
ω

λ
F [f ]

Å
ω

λ

ã
.

Alternatively, we can prove the formula directly, by using a simple change of variables

F [fλ,h](ω) =

ˆ
R
e−i t ω f(λ t+ h) dt =

ˆ
R
e−i

s−h
λ

ω f(s)
ds

λ

=
ei

h
λ
ω

λ

ˆ
R
e−i s

ω
λ f(s) ds,

which gives the desired formula. �

Proposition 5.3.5 (Phase multiplication). Let f ∈ L1(R) and ω0 ∈ R. Then the function t 7→
ei t ω0 f(t) is in L1(R) and

F [ei t ω0 f ](ω) = F [f ](ω − ω0).

Proof. By using the definition we have

F [ei t ω0 f ](ω) =

ˆ
R
e−i t ω ei t ω0 f(t) dt =

ˆ
R
e−i t (ω−ω0) f(t) dt,

which proves the formula. �

Proposition 5.3.6 (Fourier transform of the derivative). Let f ∈ L1(R) ∩ C0(R) be a continu-
ous summable function. Let us assume that f ′ is piecewise continuous, with f ′ having only jump
discontinuities at {x0, . . . , xN , . . . } ⊂ R and

|xj − xk| ≥ δ > 0, for every j 6= k.

Let us suppose that f ′ is in L1(R). Then we have the formula

(5.3.2) F [f ′](ω) = i ωF [f ](ω).

In particular, we get

(5.3.3) lim
|ω|→∞

∣∣∣∣ωF [f ](ω)

∣∣∣∣ = 0.

Proof. We first observe that (5.3.3) is a plain consequence of (5.3.2) and the Riemann-Lebesgue
Lemma applied to f ′, which is in L1(R) by assumption. Indeed, we would have

lim
|ω|→∞

∣∣∣∣ωF [f ](ω)

∣∣∣∣ = lim
|ω|→∞

∣∣∣∣F [f ′](ω)

∣∣∣∣ = 0.
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Let us prove formula (5.3.2) under the stronger assumption that f ′ is continuous on R. The general
case can be handled as we did in the analogous case for the Laplace transform, we leave the details
as an interesting exercise for the reader.

In this case, we observe that by basic calculus

f(t)− f(0) =

ˆ t

0
f ′(s) ds,

and since we are assuming f ′ ∈ L1(R), then the limit

lim
t→+∞

ˆ t

0
f ′(s) ds,

exists and is finite. By using the identity above, this implies that the limit

lim
t→+∞

f(t),

exists and is finite. Since f ∈ L1(R), this limit is 0 by Lemma 3.3.12. With a similar argument, we
also get

lim
t→−∞

f(t) = 0.

We now observe that by using an integration by parts

F [f ′](ω) = lim
L→∞

ˆ L

−L
e−i t ω f ′(t) dt = lim

L→+∞

[
e−i Lω f(L)− ei Lω f(−L))

]
+ i ω lim

L→+∞

ˆ L

−L
e−i t ω f(t) dt

= lim
L→+∞

[
e−i Lω f(L)− ei Lω f(−L))

]
+ i ωF [f ](ω),

and this gives the desired conclusion, since we proved above that

lim
L→+∞

[
e−i Lω f(L)− ei Lω f(−L)

]
= 0.

This concludes the proof in the case that f ′ is continuous. �

Corollary 5.3.7. Let f ∈ L1(R) ∩ C(n−1)(R) be such that f ′, . . . , f (n−1) ∈ L1(R). Let us suppose

that f (n−1) verifies the hypothesis of Proposition 5.3.6. Then we have the formula for k = 1, . . . , n

(5.3.4) F [f (k)](ω) = (i ω)k F [f ](ω), ω ∈ R.

In particular, we get

(5.3.5) lim
|ω|→∞

∣∣∣∣|ω|nF [f ](ω)

∣∣∣∣ = 0.

Remark 5.3.8. The previous result can be summarized by saying that “the more regular the signal
f is, the faster the Fourier transform decays at infinity”. This is the converse of Remark 5.2.5.

Proposition 5.3.9 (Fourier transform of a convolution). Let f, g ∈ L1(R), then we have

F [f ∗ g](ω) = F [f ](ω)F [g](ω).
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Proof. We already know that f ∗g ∈ L1(R), thus we can compute the Fourier transform. We have

F [f ∗ g](ω) =

ˆ
R

Åˆ
R
f(t− y) g(y) dy

ã
e−i t ω dt.(5.3.6)

We now observe that for every ω ∈ R the function

(t, y) 7→ f(t− y) g(y) e−i t ω,

is summable over R× R, since

|f(t− y) g(y) e−i t ω| ≤ |f(t− y)| |g(y)|,

and the function (t, y) 7→ |f(t− y)| |g(y)| is positive and such that:

• for a. e. y ∈ R the function t 7→ |f(t− y)| |g(y)| is summable on R;

• the function y 7→
´
R |f(t− y)| |g(y)| dt is summable on R.

By applying Tonelli’s Theorem, we thus obtain summability of

(t, y) 7→ |f(t− y)| |g(y)|

and this in turn implies summability of (t, y) 7→ f(t− y) g(y) e−i t ω.

We can thus apply Fubini’s Theorem in (5.3.6) and exchange the order of integration, so to get
(with a simple change of variable in the second identity)

F [f ∗ g](ω) =

ˆ
R

Åˆ
R
f(t− y) e−i (t−y)ω dt

ã
g(y) e−i y ω dy

=

ˆ
R

Åˆ
R
f(t) e−i t ω dt

ã
g(y) e−i y ω dy

= F [f ](ω)

ˆ
R
g(y) e−i y ω dy = F [f ](ω)F [g](ω),

as desired. �

Example 5.3.10 (Fourier transform of the triangular function). We recall that the triangular
function is defined by

tri(t) =

®
0, if |t| ≥ 1,

1− |t|, if |t| < 1.

We have already seen in Example 3.5.8 that

tri(t) = rect ∗ rect(t).

By Proposition 5.3.9 and Example 5.1.4, we thus get

F [tri](ω) = F [rect ∗ rect](ω) = (F [rect](ω))2 =

Å
sinc

Å
ω

2π

ãã2

.

By recalling the definition of cardinal sine function, we can also write

F [tri](ω) =
4

ω2
sin2

Å
ω

2

ã
.

Observe that this is an L1 function.
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4. Inversion formula

At first, we need the following variant of the Riemann-Lebesgue Lemma above. The idea of the
proof is the same already exploited in Theorems 4.3.1 and 5.2.1

Lemma 5.4.1. Let F ∈ L1([a, b]), then we have

lim
L→+∞

ˆ b

a
F (y) sin(Ly) dy = lim

L→+∞

ˆ b

a
F (y) cos(Ly) dy = 0.

Proof. The proof is the same as that of (5.2.2). Let us focus on the first limit, the proof for the
second one being exactly the same. By elementary properties of the trigonometric functions, we
have ˆ b

a
F (y) sin(Ly) dy = −

ˆ b

a
F (y) sin(Ly − π) dy = −

ˆ b− π
L

a− π
L

F

Å
s+

π

L

ã
sin(Ls) ds.

Thus we can inferˆ b

a
F (y) sin(Ly) dy =

1

2

[ˆ b

a
F (y) sin(Ly) dy −

ˆ b− π
L

a− π
L

F

Å
y +

π

L

ã
sin(Ly) dy

]

=
1

2

ˆ b− π
L

a

ï
F (y)− F

Å
y +

π

L

ãò
sin(Ly) dy

+
1

2

ˆ b

b− π
L

F (y) sin(Ly) dy − 1

2

ˆ a

a− π
L

F

Å
y +

π

L

ã
sin(Ly) dy,

and the 3 integrals converges to 0. For the first one we have to use the continuity of translations
with respect to Lp norms (see Proposition 3.4.5), since∣∣∣∣∣

ˆ b− π
L

a

ï
F (y)− F

Å
y +

π

L

ãò
sin(Ly) dy

∣∣∣∣∣ ≤
ˆ b− π

L

a

∣∣∣F (y)− T π
L
F (y)

∣∣∣ dy,
where we used the usual notation ThF (t) = F (t+h). The other two integrals converge to 0 because
they are the integral of a summable function on an interval which is “squeezing” (i.e. the width of
the interval tends to 0). �

Theorem 5.4.2 (Inversion for piecewise C1 signals). Let f ∈ L1(R) be a piecewise C1 function.
Let us assume that f and f ′ have only jump discontinuities at {t0, . . . , tk, . . . }, with

|tk − tj | ≥ δ > 0, for every k 6= j.

We normalize it so that

f(tj) =
1

2

 lim
x→t+j

f(t) + lim
x→t−j

f(t)

 , j = 1, 2, . . . .

Then we have

(5.4.1) f(t) =
1

2π
lim

L→+∞

ˆ L

−L
F [f ](ω) ei t ω dω.

In the case F [f ] ∈ L1(R), the formula can be written directly as

f(t) =
1

2π

ˆ
R
F [f ](ω) ei t ω dω.
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Proof. Let us fix t ∈ R, we set

f(t+) = lim
s→t+

f(s) and f(t−) = lim
s→t−

f(s).

For every L > 0, we observe that by Fubini’s Theorem for every t ∈ R we have1

ˆ L

−L
F [f ](ω) ei t ω dω =

ˆ L

−L

Åˆ
R
f(x) e−i x ω dx

ã
ei t ω dω

=

ˆ
R
f(x)

Çˆ L

−L
e−i (x−t)ω dω

å
dx

=

ˆ
R
f(x)F

[
1[−L,L]

]
(x− t) dx

=

ˆ
R
f(t− y)F

[
1[−L,L]

]
(−y) dy.

In the last identity we used a change of variable. We now observe that (see Remark 5.8.2)

F
[
1[−L,L]

]
(−y) = 2L sinc

Å
−L
π
y

ã
= 2L sinc

Å
L

π
y

ã
, y ∈ R,

where we also used that sinc is an even function. Thus we have obtained for every t ∈ R

(5.4.2)
1

2π

ˆ L

−L
F [f ](ω) ei t ω dω =

L

π

ˆ
R
f(t− y) sinc

Å
L

π
y

ã
dy.

In order to conclude the proof, it is sufficient to show that

(5.4.3) lim
L→+∞

L

π

ˆ +∞

0
f(t− y) sinc

Å
L

π
y

ã
dy =

1

2
f(t−),

and

lim
L→+∞

L

π

ˆ 0

−∞
f(t− y) sinc

Å
L

π
y

ã
dy =

1

2
f(t+).

If we are able to prove this, then (5.4.1) will follow from (5.4.2). We focus on proving (5.4.3), the
other formula is then obtained exactly in the same manner.

We recall that (see Exercise 3.7.4)ˆ
R

sinc s ds = lim
R→+∞

ˆ R

−R
sinc s ds = 1,

and y 7→ sinc y is an even function, thusˆ +∞

0
sinc s ds =

ˆ 0

−∞
sinc s ds =

1

2
.

With a change of variable, we also have

1

2
=

ˆ +∞

0
sinc s ds =

L

π

ˆ +∞

0
sinc

Å
L

π
y

ã
dy.

1The summability of the function (x, ω) 7→ f(x) e−i (x−t)ω (needed to apply Fubini’s Theorem) can be inferred from

Tonelli’s Theorem: indeed, observe that the positive function (x, ω) 7→ |f(x) e−i (x−t)ω | = |f(x)| defined on R× [−L,L] is such
that

• for a. e. ω ∈ [−L,L], the function x 7→ |f(x)| is summable on R (because f ∈ L1(R))

• the function ω 7→
´
R |f(x)| dx is summable on the bounded interval [−L,L] (indeed, this is a constant function).

By Tonelli’s Theorem this entails that (x, ω) 7→ |f(x) e−i (x−t)ω | is summable and thus the same can be said for (x, ω) 7→
f(x) e−i (x−t)ω , as desired.



156 5. The Fourier Transform

Thus we can write

L

π

ˆ +∞

0
f(t− y) sinc

Å
L

π
y

ã
dy − 1

2
f(t−)

=
L

π

ˆ +∞

0
[f(t− y)− f(t−)] sinc

Å
L

π
y

ã
dy.

In order to prove (5.4.3), it is sufficient to prove that the last integral converges to 0, as L goes to
+∞.

We now take T > 1 and write

L

π

ˆ +∞

0

[
f(t− y)− f(t−)

]
sinc

Å
L

π
y

ã
dy

=
L

π

ˆ T

0

[
f(t− y)− f(t−)

]
sinc

Å
L

π
y

ã
dy

+
L

π

ˆ +∞

T

[
f(t− y)− f(t−)

]
sinc

Å
L

π
y

ã
dy =: I1 + I2.

(5.4.4)

We have to handle carefully the two integrals I1 and I2, due to the fact that sinc 6∈ L1(R) but we
only have sinc ∈ L1

loc(R).

Estimate of the first integral I1. We start with the first one: we have

I1 =
L

π

ˆ T

0
[f(t− y)− f(t−)] sinc

Å
L

π
y

ã
dy =

1

π

ˆ T

0

f(t− y)− f(t−)

y
sin(Ly) dy,

and observe that for every t ∈ R the function

F (y) =
f (t− y)− f(t−)

y
,

is in L1([0, T ]). Indeed, since f ∈ L1(R) we have that F ∈ L1([ε, T ]), for every ε > 0. Moreover,
when y ∈ [0, ε], we can use the mean-value Theorem2 to infer existence of ξy ∈ [t− y, t] such that

|F (y)| =
∣∣∣∣∣f (t− y)− f(t−)

y

∣∣∣∣∣ = |f ′(ξy)| ≤ max
ξ∈[t−ε,t]

|f ′(ξ)|,

i.e. the function F is in L∞([0, ε]) ⊂ L1([0, ε]). By using Lemma 5.4.1 we thus get

lim
L→+∞

I1 = lim
L→+∞

1

π

ˆ T

0

f(t− y)− f(t−)

y
sin(Ly) dy = 0.

Up to now, from (5.4.4) we obtained that

lim
L→+∞

∣∣∣∣∣Lπ
ˆ +∞

0
f(t− y) sinc

Å
L

π
y

ã
dy − 1

2
f(t−)

∣∣∣∣
≤ lim

L→+∞
|I1|+ lim

L→+∞
|I2| = lim

L→+∞
|I2|.

(5.4.5)

2Teorema di Lagrange, in italian.
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Estimate of the second integral I2. In order to conclude, we need to show that the last limit
is 0. We have

|I2| =
∣∣∣∣∣Lπ
ˆ +∞

T
[f(t− y)− f(t−)] sinc

Å
L

π
y

ã
dy

∣∣∣∣∣
≤ L

π

ˆ +∞

T
|f(t− y)|

∣∣∣∣sinc

Å
L

π
y

ã∣∣∣∣ dy +

∣∣∣∣∣
ˆ +∞

L
π
T
f(t−) sinc s ds

∣∣∣∣∣
≤ 1

π

ˆ +∞

T
|f(t− y)| dy + |f(t−)|

∣∣∣∣∣
ˆ +∞

L
π
T

sinc s ds

∣∣∣∣∣ ,
where in the last inequality we used that

L

π

∣∣∣∣sinc

Å
L

π
y

ã∣∣∣∣ =
1

π

| sin(Ly)|
|y|

≤ 1

π
, for y ≥ T > 1.

By using an integration by parts, for every L ≥ π we get∣∣∣∣∣
ˆ +∞

L
π
T

sinc s ds

∣∣∣∣∣ =

∣∣∣∣∣
ˆ +∞

L
π
T

sin(π s)

π s
ds

∣∣∣∣∣ =

∣∣∣∣∣cos(LT )

π LT
−
ˆ +∞

L
π
T

cos(π s)

π2 s2
ds

∣∣∣∣∣
≤
∣∣∣∣∣cos(LT )

π LT

∣∣∣∣∣+
∣∣∣∣∣
ˆ +∞

L
π
T

cos(π s)

π2 s2
ds

∣∣∣∣∣
≤ 1

π LT
+

1

π2

ˆ +∞

L
π
T

1

s2
ds

=
1

π LT
+

1

π LT
≤ 2

π L
.

This implies

lim
L→+∞

∣∣∣∣∣
ˆ +∞

L
π
T

sinc s ds

∣∣∣∣∣ = 0,

and thus

lim
L→+∞

|I2| ≤
1

π

ˆ +∞

T
|f(t− y)| dy.

Conclusion. By resuming everything, from (5.4.5) we obtained

lim
L→+∞

∣∣∣∣∣Lπ
ˆ +∞

0
f(t− y) sinc

Å
L

π
y

ã
dy − 1

2
f(t−)

∣∣∣∣∣ ≤ 1

π

ˆ +∞

T
|f(t− y)| dy,

which is valid for every T > 1. In order to conclude, we just have to observe that sinceˆ
R
|f(t− y)| dy < +∞,

then we have

lim
T→+∞

ˆ +∞

T
|f(t− y)| dy = 0.

This finally gives

lim
L→+∞

∣∣∣∣∣Lπ
ˆ +∞

0
f(t− y) sinc

Å
L

π
y

ã
dy − 1

2
f(t−)

∣∣∣∣∣ = 0,

as desired. �
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Remark 5.4.3. Observe that (5.4.2) can also be written as

1

2π

ˆ L

−L
F [f ](ω) ei t ω dω = f ∗ HL(t), where HL(y) =

L

π
sinc

Å
L

π
y

ã
.

Then in the previous proof we have shown that for every t0 ∈ R we have

lim
L→+∞

f ∗ HL(t0) = f(t0),

provided that f verifies the hypotheses of Theorem 5.4.2 and is continuous at t0.

Corollary 5.4.4 (Duality formula). Let f ∈ L1(R) verify the hypotheses of Theorem 5.4.2. Let us
suppose that F [f ] ∈ L1(R), then

(5.4.6) F
[
F [f ]

]
(ω) = 2π f(−ω), ω ∈ R.

Proof. From the inversion formula we know thatˆ
R
F [f ](ω) ei t ω dω = 2π f(t).

By changing the name of the variables we getˆ
R
F [f ](t) ei t ω dt = 2π f(ω).

It is now sufficient to observe that the left-hand side coincides with the Fourier transform of F [f ],
evaluated at −ω. This shows that

F
[
F [f ]

]
(−ω) = 2π f(ω),

and thus concludes the proof. �

Remark 5.4.5. When F [f ] 6∈ L1(R) formula (5.4.6) still holds in the following form

lim
L→+∞

ˆ L

−L
F [f ](t) e−i t ω dt = 2π f(−ω), ω ∈ R.

Let us record the following more general result.

Theorem 5.4.6 (Inversion for L1 signals). Let f ∈ L1(R) be a function such that F [f ] ∈ L1(R) as
well. Then we have

f(t) =
1

2π

ˆ
R
F [f ](ω) ei t ω dω, for a. e. t ∈ R.

Proof. Let us take g ∈ C∞0 (R) a function such that
´
R g(t) dt = 1. For every n ∈ N\{0}, we define

the sequence
gn(t) = n g(n t).

By Theorem 3.5.13, we know that

(5.4.7) lim
n→∞

‖gn ∗ f − f‖L1(R) = 0,

and gn ∗ f ∈ C∞(R) ∩ L1(R). Observe that thanks to Proposition 5.3.9, we have

F [gn ∗ f ](ω) = F [gn](ω)F [f ](ω).

Since by assumption F [f ] ∈ L1(R) and thanks to Proposition 5.2.1 we have F [g] ∈ L∞(R), from
the previous identity we get

F [gn ∗ f ] ∈ L1(R),
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thanks to Hölder’s inequality (see Proposition 3.3.5). By smoothness of gn ∗ f and integrability of
its Fourier transform, we thus obtain from Theorem 5.4.2

gn ∗ f(t) =
1

2π

ˆ
R
F [gn ∗ f ](ω) ei t ω dω, t ∈ R.

We now observe that from (5.4.7) we can suppose to have3

lim
n→∞

gn ∗ f(t) = f(t), for a. e. t ∈ R,

which implies

f(t) =
1

2π
lim
n→∞

ˆ
R
F [gn ∗ f ](ω) ei t ω dω, for a. e. t ∈ R.

In order to conclude, we need to take the limit under the integral sign. Let us start by observing
that

F [gn ∗ f ](ω) = F [gn](ω)F [f ](ω) = F [g]

Å
ω

n

ã
F [f ](ω),

where we used Proposition 5.3.2 and the definition of gn. This shows that

lim
n→∞

F [gn ∗ f ](ω) ei t ω = F [g](0)F [f ](ω) ei t ω, for a. e. ω ∈ R.

Moreover, we can easily produce a uniform L1 domination of this function: indeed∣∣∣F [gn ∗ f ](ω) ei t ω
∣∣∣ =

∣∣∣∣F [g]

Å
ω

n

ã
F [f ](ω)

∣∣∣∣ ≤ ‖F [g]‖L∞(R) |F [f ](ω)|,

and the last function is L1 (by assumption) and independent of n. We can thus apply Lebesgue
Dominated Convergence Theorem and obtain

f(t) =
F [g](0)

2π

ˆ
R
F [f ](ω) ei t ω dω, for a. e. t ∈ R.

In order to conclude, it is only left to observe that

F [g](0) =

ˆ
R
g(t) dt = 1,

since g has been chosen at the beginning with this property. This concludes the proof. �

5. Back to the Laplace transform

We already seen in Remark 5.1.2 how the Fourier transform of a signal f ∈ L1(R) is linked to
the Laplace transform of two causal signals obtained from f . Conversely, if f : R → C is an
L−transformable causal signal and

σf = inf
{
α ∈ R : e−α t f ∈ L1(R)

}
< +∞,

for α > σf we can define the new causal signal

g(t) = e−α t f(t),

3We use the following remarkable fact: if {fn}n∈N ⊂ Lp(R) converges in Lp norm to a function f ∈ Lp(R), then there

exists a subsequence {fnk}k∈N such that

lim
k→∞

fnk (t) = f(t), for a. e. t ∈ R.
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and take its Fourier transform. Indeed, observe that this is in L1(R) by construction. We thus get
the relation for ω ∈ R and α > σf

(5.5.1) F [g](ω) =

ˆ +∞

0
e−i t ω e−α t f(t) dt =

ˆ ∞
0

e−(α+i ω) t f(t) dt = L[f ](α+ i ω).

We can now exploit this relation in order to prove the Inversion Formula for the Laplace transform.

Proof of Theorem 4.5.1. With the notation above, we further assume that f verifies the hy-
potheses of Theorem 4.5.1. Then the signal g(t) = e−α t f(t) verifies them, as well, and from the
Inversion Formula for the Fourier transform of Theorem 5.4.2 we get

g(t) =
1

2π
lim

L→+∞

ˆ L

−L
ei ω tF [g](ω) dω.

By using this in (5.5.1) and recalling the definition of g, we get

e−α t f(t) =
1

2π
lim

L→+∞

ˆ L

−L
ei ω t L[f ](α+ i ω) dω,

that is, multiplying both sides for eα t

f(t) =
1

2π
lim

L→+∞

ˆ L

−L
e(α+i ω) t L[f ](α+ i ω) dω

=
1

2π i
lim

L→+∞

ˆ α+i L

α−i L
ez t L[f ](z) dz.

This proves Theorem 4.5.1. �

Theorem 5.5.1 (Uncertainty principle). Let f ∈ L1(R) be a such that there exist C, T > 0 and
α > 0 for which

|f(t)| ≤ C e−α |t|, for a. e. |t| ≥ T.
Let us suppose that f does not identically vanish. Then the set

{ω ∈ R : F [f ](ω) = 0},

is either empty or made of isolated points.

Proof. By using Proposition 4.8.5 and Theorem 4.8.9, the function f is L−transformable and its
bilateral Laplace transform B[f ] is holomorphic in the strip

{z ∈ C : −α < Re(z) < α},

thanks to the growth assumption on f . This strip contains the imaginary axis in its interior, thus
we have

F [f ](ω) = B[f ](i ω), ω ∈ R.
In order to conclude, we can now use the properties of the zeros of holomorphic functions, see
Proposition 1.8.8. �

By observing that a compactly supported function satisfies the hypothesis of the previous
theorem (recall Lemma 3.7.6), we get the following

Corollary 5.5.2. Let f ∈ L1(R) be a compactly supported function. Then its Fourier transform
F [f ] can not be compactly supported, unless f identically vanishes.
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6. The Schwartz class and the Fourier transform in L2

We recall that C∞(R) is the set of functions ϕ : R → C which are differentiable infinitely many
times. The Schwartz class S is an important subset of C∞(R), which plays a major rôle in the
theory of the Fourier transform.

Definition 5.6.1. Let ϕ ∈ C∞(R), we say that ϕ belongs to the Schwartz class S if for every
m, k ∈ N we have

(5.6.1) [ϕ]m,k := sup
t∈R

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣ < +∞.

In other words, a function from S is such that it and all its derivatives decay to 0 at infinity faster
than any polynomial. It is easy to verify that S is a vector space over C: if α, β ∈ C and ϕ,ψ ∈ S,
then we have

αϕ+ β ψ ∈ S,
as well.

The following simple result will be quite useful in order to verify that a function belongs to S.

Lemma 5.6.2. Let ϕ ∈ C∞(R), then we have

ϕ ∈ S ⇐⇒ lim
|t|→+∞

∣∣∣∣tn ϕ(k)(t)

∣∣∣∣ = 0, for every n, k ∈ N.

Proof. Let us suppose that ϕ ∈ S, we want to show that

lim
|t|→+∞

∣∣∣∣tn ϕ(k)(t)

∣∣∣∣ = 0, for every n, k ∈ N.

For every |t| ≥ 1 and every n, k ∈ N, we have∣∣∣∣tn ϕ(k)(t)

∣∣∣∣ =
1

|t|

∣∣∣∣tn+1 ϕ(k)(t)

∣∣∣∣ ≤ 1

|t|
sup
t∈R

∣∣∣∣tn+1 ϕ(k)(t)

∣∣∣∣ =
1

|t|
[ϕ]n+1,k.

By taking the limit as |t| goes to +∞, we get

lim
|t|→+∞

∣∣∣∣tn ϕ(k)(t)

∣∣∣∣ ≤ [ϕ]n+1,k lim
|t|→+∞

1

|t|
= 0,

as desired.

We now prove the converse implication. We suppose that

lim
|t|→+∞

∣∣∣∣tn ϕ(k)(t)

∣∣∣∣ = 0, for every n, k ∈ N,

we need to show that

[ϕ]m,k = sup
t∈R

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣ < +∞.

By hypothesis and using the definition of limit, for every ε > 0 there exists Mε > 0 such that∣∣∣∣tn ϕ(k)(t)

∣∣∣∣ < ε, for every |t| > Mε.

On the other hand, the function t 7→ |tn ϕ(k)(t)| is continuous on R, thus by the Weiestrass’ Theorem
we have

sup
t∈[−Mε,Mε]

|tn ϕ(k)(t)| = max
t∈[−Mε,Mε]

|tn ϕ(k)(t)| < +∞.
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In conclusion, we get

[ϕ]m,k = sup
t∈R

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣ ≤ sup
|t|>Mε

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣+ sup
t∈[−Mε,Mε]

|tn ϕ(k)(t)|

< ε+ max
t∈[−Mε,Mε]

|tn ϕ(k)(t)| < +∞,

as desired. �

Example 5.6.3. We give some examples:

(1) it is not difficult to see that if ϕ ∈ C∞0 (R), then ϕ ∈ S. Indeed, by assumption, there
exists an interval [a, b] ⊂ R such that

|ϕ(k)(t)| = 0 for every t ∈ R \ [a, b] and every k ∈ N.

This implies that for every m, k ∈ N, we have

[ϕ]m,k = sup
t∈R

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣ = max
t∈[a,b]

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣
≤ max{|a|m, |b|m} max

t∈[a,b]
|ϕ(k)(t)| < +∞,

thanks to the Weierstrass’ Theorem;

(2) as an example of function in S not having compact support, we can take the standard

Gaussian function ϕ(t) = e−t
2
. In order to verify that it belong to S, it is sufficient to

recall that

e−t
2

= o(|t|−n), as |t| → +∞, for every n ∈ N.

In other words, we have

lim
|t|→+∞

|t|n e−t2 = 0, for every n ∈ N.

By using Lemma 5.6.2, we can now easily prove that e−t
2

belongs to S;

(3) on the other hand, the function

ϕ(t) =
1

1 + t2
, for t ∈ R,

is C∞(R), but it does not belong to S. Indeed, we have

[ϕ]3,0 = sup
t∈R

∣∣∣∣∣ t3

1 + t2

∣∣∣∣∣ = +∞.

Proposition 5.6.4. For every 1 ≤ p ≤ ∞, we have S ⊂ Lp(R).

Proof. Let ϕ ∈ S. We first consider the case p = ∞. In this case, it is sufficient to observe that
by definition

‖ϕ‖L∞(R) = sup
t∈R
|ϕ(t)| = [ϕ]0,0 < +∞,

thus ϕ is bounded on R, i.e. ϕ ∈ L∞(R).
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We now prove that ϕ ∈ L1(R). We haveˆ
R
|ϕ(t)| dt =

ˆ
R

(1 + t2) |ϕ(t)| 1

1 + t2
dt

=

ˆ
R

Ä
|ϕ(t)|+ t2 |ϕ(t)|

ä 1

1 + t2
dt

≤ ([ϕ]0,0 + [ϕ]2,0)

ˆ
R

1

1 + t2
dt = π ([ϕ]0,0 + [ϕ]2,0) < +∞,

as desired. Finally, by using that ϕ ∈ L1(R) ∩ L∞(R), we can easily prove that ϕ ∈ Lp(R) for
1 < p <∞, as well. Indeed, we haveˆ

R
|ϕ(t)|p dt =

ˆ
R
|ϕ(t)|p−1 |ϕ(t)| dt ≤ ‖ϕ‖p−1

L∞(R)

ˆ
R
|ϕ(t)| dt < +∞.

This concludes the proof. �

Proposition 5.6.5. Let ϕ ∈ S, then we have

t ϕ ∈ S and ϕ′ ∈ S.

More generally, for every n, ` ∈ N, we have

tn ϕ ∈ S and ϕ(k) ∈ S.

Proof. We observe that it is sufficient to prove the first part of the statement, the second part just
follows by iterating this result.

In order to prove the first fact, we notice that both t 7→ t and t 7→ ϕ(t) are C∞ functions, thus
their product is C∞ as well. We now take m ∈ N and k ∈ N \ {0}, by recalling that

dk

dtk
(t ϕ(t)) =

k∑
j=0

Ç
k

j

å
dj

dtj
t ϕ(k−j)(t) = t ϕ(k)(t) + k ϕ(k−1)(t),

we get ∣∣∣∣∣tm dk

dtk
(t ϕ(t))

∣∣∣∣∣ ≤ |tm+1 ϕ(k)(t)|+ k |tm ϕ(k−1)(t)|.

By taking the supremum over R, we obtain

[t ϕ]m,k ≤ [ϕ]m+1,k + k [ϕ]m,k−1 < +∞.

As for the case k = 0, it is sufficient to observe that

[t ϕ]m,0 = sup
t∈R
|tm t ϕ| = [ϕ]m+1,0 < +∞.

We now prove the second fact. The fact that ϕ′ ∈ C∞(R) is a plain consequence of ϕ ∈ C∞(R).
Moreover, for every m, k ∈ N we have

[ϕ′]m,k = sup
t∈R

∣∣∣∣∣tm dk

dtk
ϕ′(t)

∣∣∣∣∣ = sup
t∈R

∣∣∣tm ϕ(k+1)(t)
∣∣∣ = [ϕ]m,k+1 < +∞.

This concludes the proof. �

The class S is important for its remarkable properties with respect to the Fourier transform.
These are collected in the following result.

Theorem 5.6.6 (“Schwartz meets Fourier”). We have the following facts:
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i) for every ϕ ∈ S, we have F [ϕ] ∈ S as well;

ii) for every ϕ ∈ S there exists ψ ∈ S such that

ϕ = F [ψ];

iii) for every ϕ,ψ ∈ S we have4

(5.6.2)

ˆ
R
ϕ(t)ψ(t)∗ dt =

1

2π

ˆ
R
F [ϕ](ω)F [ψ](ω)∗ dω, (Parseval’s formula);

iv) in particular, for every ϕ ∈ S we have

(5.6.3) ‖ϕ‖2L2(R) =
1

2π

∥∥∥∥F [ϕ]

∥∥∥∥2

L2(R)
, (Plancherel’s formula).

Proof. We prove i). Let ϕ ∈ S, thanks to Proposition 5.6.5, we have

tn ϕ ∈ S, for every n ∈ N.
We can thus use Proposition 5.6.4 and infer that

(5.6.4) tn ϕ ∈ L1(R), for every n ∈ N.
By using (5.6.4) and Corollary 5.2.4, we get that F [ϕ] belongs to C∞(R). In order to conclude the
proof of point i), we need to prove that [

F [ϕ]
]
m,n

< +∞,

for every n,m ∈ N. Still by Proposition 5.6.5, this time applied to tn ϕ ∈ S, we also obtain

dm

dtm
(tn ϕ) ∈ S.

By applying Proposition 5.6.4, we obtain

(5.6.5)
dm

dtm
(tn ϕ) ∈ L1(R), for every n,m ∈ N.

By using the informations (5.6.4) e (5.6.5), we thus get∣∣∣∣ωm dn

dωn
F [ϕ](ω)

∣∣∣∣ = |ωm (−i)nF [tn ϕ](ω)|

= |ωmF [tn ϕ](ω)|
= |(i ω)mF [tn ϕ](ω)|

=

∣∣∣∣F ï dmdtm (tn ϕ)

ò
(ω)

∣∣∣∣ ,
where in the first equality we used Corollary 5.2.4 with the choice,

f(t) = tn ϕ(t),

while in the last equality we used Corollary 5.3.7 with the choice

f(t) =
dm

dtm
(tn ϕ) .

The identity above, in conjunction with the Riemann-Lebesgue Lemma, guarantees that

lim
|ω|→+∞

∣∣∣∣ωm dn

dωn
F [ϕ](ω)

∣∣∣∣ = 0, for every n,m ∈ N.

4Recall that for a complex number z = x+ i y, the symbol z∗ denotes its complex conjugate, i.e. z∗ = x− i y.
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This finally shows that F [ϕ] ∈ S, thanks to Lemma 5.6.2.

We now prove point ii). Let ϕ ∈ S, we want to prove that there exists ψ ∈ S such that F [ψ] = ϕ.
From the duality formula (5.4.6) we get

2π ϕ(−ω) = F
[
F [ϕ]

]
(ω).

We now set

η(t) = 2π ϕ(−t) ∈ S,
and use again the duality formula, so to get

ϕ(ω) =
1

2π
η(−ω) =

1

4π2
F
[
F [η]

]
(ω).

If we set

ψ =
1

4π2
F [η],

we get the desired result, since η ∈ S and thus F [η] ∈ S thanks to the first part of the proof.

Let us prove the identity (5.6.2). By using the definition of Fourier transform and exchanging the
order of integration5, we haveˆ

R
F [ϕ](ω)F [ψ](ω)∗ dω =

ˆ
R
F [ϕ](ω)

Åˆ
R
e−i t ωψ(t) dt

ã∗
dω

=

ˆ
R
F [ϕ](ω)

Åˆ
R
ei t ω ψ(t)∗ dt

ã
dω

=

ˆ
R

Åˆ
R
F [ϕ](ω) ei t ω dω

ã
ψ(t)∗ dt.

We finally observe that ϕ ∈ S verifies the hypotheses of the Inversion Formula Theorem 5.4.2, thus
from (5.4.1) we get the desired formula.

Formula (5.6.3) is a direct consequence of (5.6.2), it is sufficient to take ψ = ϕ. �

Proposition 5.6.7. Let f ∈ L1(R) and let ϕ ∈ S. Then we have f ∗ϕ ∈ C∞(R)∩L1(R)∩L∞(R).
Moreover, we have

(5.6.6)
dk

dtk
(f ∗ ϕ) = f ∗ d

k

dtk
ϕ.

Proof. By Proposition 5.6.4, we have ϕ ∈ L1(R) ∩ L∞(R). By using Proposition 3.5.4 with the
choices q = p = 1, we get

f ∗ ϕ ∈ L1(R).

Moreover, by using Proposition 3.5.6 with p = 1, we also get

f ∗ ϕ ∈ L∞(R) ∩ C(R).

5Observe that the positive function

(t, ω) 7→
∣∣∣F [f ](ω)

∣∣∣ |ψ(t)|,

is such that

• for a. e. ω ∈ R, the function t 7→ |F [f ](ω)| |ψ(t)| is summable on R (since ψ ∈ S ⊂ L1(R));

• the function ω 7→
´
R |F [f ](ω)| |ψ(t)| dt is summable on R (since F [ψ] ∈ S ⊂ L1(R)).

By Tonelli’s Theorem, these entails that the function is in L1(R× R). We can thus apply Fubini’s Theorem and exchange the

order of integration.
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We are left to show that the convolution is C∞, the proof is similar to that of Proposition 3.5.11.
Let t ∈ R, for every |h| < 1 we have

f ∗ ϕ(t+ h)− f ∗ ϕ(t)

h
=

ˆ
R
f(y)

ϕ(t+ h− y)− ϕ(t− y)

h
dy.

Thanks to the regularity of ϕ, we have

lim
h→0

ϕ(x+ h− y)− ϕ(x− y)

h
= ϕ′(x− y),

in order to pass the limit under the integral sign, we need to find a domination with an L1 function.
We have ∣∣∣∣∣ϕ(t+ h− y)− ϕ(t− y)

h

∣∣∣∣∣ = |ϕ′(ξ)| ≤ ‖ϕ′‖L∞(R) < +∞,

where ξ in a point belonging to interval (t− y, t− y + h). In the last inequality we used that

‖ϕ′‖L∞(R) = [ϕ]0,1 < +∞.

In conclusion, for every |h| < 1 we get∣∣∣∣∣f(y)
ϕ(t+ h− y)− ϕ(t− y)

h

∣∣∣∣∣ ≤ ‖ϕ′‖L∞(R) |f(y)| ∈ L1(R).

We can apply Lebesgue Dominated Convergence Theorem (Theorem 3.2.5) and obtain

lim
h→0

f ∗ ϕ(t+ h)− f ∗ ϕ(t)

h
=

ˆ
R
f(y)ϕ′(t− y) dy = f ∗ ϕ′(t).

This shows that f ∗ ϕ is derivable and that formula (5.6.6) holds for k = 1. Finally, by observing
that ϕ′ still belongs to S by Proposition 5.6.5, we can iterate the argument and obtain the desired
result. �

The Fourier transform of an L2 function can be defined through an approximation procedure,
using the functions in S.

Theorem 5.6.8 (Fourier transform of an L2 function). Let f ∈ L2(R), then we have:

(1) there exists a sequence {fn}n∈N ⊂ S such that

(5.6.7) lim
n→∞

‖fn − f‖L2(R) = 0;

(2) there exists F ∈ L2(R) such that

lim
n→∞

∥∥∥∥F [fn]− F
∥∥∥∥
L2(R)

= 0.

The function F is called Fourier transform of f and denoted by FL2 [f ];

(3) the function F does not depend on the particular choice of the sequence {fn}n∈N;

(4) if f, g ∈ L2(R), we have

(5.6.8)

ˆ
R
f(t) g(t)∗ dt =

1

2π

ˆ
R
FL2 [f ](ω)FL2 [g](ω)∗ dω,

and

(5.6.9)

ˆ
R
|f(t)|2 dt =

1

2π

ˆ
R
|FL2 [f ](ω)|2 dω.
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(5) finally, if f ∈ L1(R) ∩ L2(R), then

FL2 [f ](ω) = F [f ](ω) =

ˆ
R
e−i t ω f(t) dt.

Proof. We construct explicitely the sequence {fn}n∈N ⊂ S of point (1). We take ϕ(t) ∈ C∞0 (R)
such that ˆ

R
ϕ(t) dt = 1,

and define

ϕn(t) = nϕ(n t), n ∈ N.
Then we set

fn(t) = ϕn ∗ (f 1[−n,n])(t) =

ˆ n

−n
ϕn(t− s) f(s) ds.

By using Minkowski’s inequality and Young’s inequality for convolutions (see Proposition 3.5.4),
we have

‖fn − f‖L2(R) ≤ ‖ϕn ∗ (f 1[−n,n])− ϕn ∗ f‖L2(R)

+ ‖ϕn ∗ f − f‖L2(R)

≤ ‖f 1[−n,n] − f‖L2(R) ‖ϕn‖L1(R)

+ ‖ϕn ∗ f − f‖L2(R).

(5.6.10)

Observe that

lim
n→∞

‖f 1[−n,n] − f‖L2(R) = lim
n→∞

Çˆ
|t|>n
|f(t)|2 dt

å 1
2

= 0,

‖ϕn‖L1(R) =

ˆ
R
|ϕ(t)| dt, for every n ∈ N,

and by Theorem 3.5.13 of Chapter 3

lim
n→∞

‖ϕn ∗ f − f‖L2(R) = 0.

By using these informations in (5.6.10), we thus get

lim
n→∞

‖fn − f‖L2(R) = 0.

It is only left to verify that fn ∈ S. The fact that fn ∈ C∞(R) follows from Theorem 3.5.13 of
Chapter 3, by choosing ε = 1/n. Moreover, since both ϕn and f 1[−n,n] have compact support, by
Lemma 3.5.15 their convolution as well has compact support. Thus we get fn ∈ C∞0 (R) ⊂ S.

The proof of point (2) uses Plancherel’s formula for S and completeness of the space L2(R), i.e.
Theorem 3.4.2. Indeed, observe that {fn}n∈N ⊂ S is a Cauchy sequence in L2(R), since we proved
in point (1) that it is converging. On the other hand, by Plancherel’s formula (5.6.3), we have for
every n,m ∈ N

‖F [fn]−F [fm]‖2L2(R) = ‖F [fn − fm]‖2L2(R) = 2π ‖fn − fm‖L2(R),

which shows that also {F [fn]}n∈N is a Cauchy sequence in L2(R). By using Theorem 3.4.2, there
exists F ∈ L2(R) such that

lim
n→∞

‖F [fn]− F‖L2(R) = 0,

ad desired.
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Let us prove point (3). Let us take another sequence {hn}n∈N ⊂ S such that

lim
n→∞

‖hn − f‖L2(R) = 0.

By repeating the argument of point (2), we know that there exists H ∈ L2(R) such that

lim
n→∞

∥∥∥∥F [hn]−H
∥∥∥∥
L2(R)

= 0.

We need to prove that F = H, where F is the function found at point (2). By using Minkowski
inequality (Theorem 3.3.7) and Plancherel’s formula (5.6.3) for functions in S, we have

‖F −H‖L2(R) ≤
∥∥∥∥F −F [fn]

∥∥∥∥
L2(R)

+

∥∥∥∥F [fn]−F [hn]

∥∥∥∥
L2(R)

+

∥∥∥∥F [hn]−H
∥∥∥∥
L2(R)

=

∥∥∥∥F −F [fn]

∥∥∥∥
L2(R)

+

∥∥∥∥F [fn − hn]

∥∥∥∥
L2(R)

+

∥∥∥∥F [hn]−H
∥∥∥∥
L2(R)

=

∥∥∥∥F −F [fn]

∥∥∥∥
L2(R)

+
√

2π

∥∥∥∥fn − hn∥∥∥∥
L2(R)

+

∥∥∥∥F [hn]−H
∥∥∥∥
L2(R)

≤
∥∥∥∥F −F [fn]

∥∥∥∥
L2(R)

+
√

2π

∥∥∥∥fn − f∥∥∥∥
L2(R)

+
√

2π

∥∥∥∥hn − f∥∥∥∥
L2(R)

+

∥∥∥∥F [hn]−H
∥∥∥∥
L2(R)

n→∞−→ 0,

thus F = H as desired.

We now prove Parseval’s formula for functions in L2(R), i.e. point (4). We start by observing that
since

f, g ∈ L2(R) and F,G ∈ L2(R),

then the two integrals ˆ
R
f(t) g(t)∗ dt and

ˆ
R
F (ω)G(ω)∗ dω,

are well-defined, thanks to Hölder inequality. Let {gn}n∈N be the sequence of point (1) for the
function g, then we observe that∣∣∣∣ˆ

R
fn(t) gn(t)∗ dt−

ˆ
R
f(t) g(t)∗ dt

∣∣∣∣ =

∣∣∣∣ˆ
R

(fn(t)− f(t)) gn(t)∗ dt+

ˆ
R
f(t) (gn(t)∗ − g(t)∗) dt

∣∣∣∣
≤
∣∣∣∣ˆ

R
(fn(t)− f(t)) gn(t)∗ dt

∣∣∣∣
+

∣∣∣∣ˆ
R
f(t) (gn(t)∗ − g(t)∗) dt

∣∣∣∣
≤ ‖fn − f‖L2(R) ‖gn‖L2(R)

+ ‖f‖L2(R) ‖gn − g‖L2(R),

where we used Hölder inequality in the last estimate6. By using that

lim
n→∞

‖fn − f‖L2(R) = lim
n→∞

‖gn − g‖L2(R) = 0,

6We also used that if

lim
n→∞

‖gn − g‖L2(R) = 0,

then

‖gn‖L2(R),
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from the previous estimate we conclude

lim
n→∞

∣∣∣∣ˆ
R
fn(t) gn(t)∗ dt−

ˆ
R
f(t) g(t)∗ dt

∣∣∣∣ = 0,

that is

(5.6.11) lim
n→∞

ˆ
R
fn(t) gn(t)∗ dt =

ˆ
R
f(t) g(t)∗ dt.

Observe that with the very argument, we can also prove that

(5.6.12) lim
n→∞

ˆ
R
F [fn](ω)F [gn](ω)∗ dt =

ˆ
R
F (ω)G(ω)∗ dω.

On the other, by Parseval’s formula (5.6.2) for S, we know thatˆ
R
fn(t) gn(t)∗ dt =

1

2π

ˆ
R
F [fn](ω)F [gn](ω)∗ dt.

By taking the limit as n goes to ∞ on both sides and using (5.6.11) and (5.6.12), we finally get
Parseval’s formula for L2 functions. We can now obtain Plancherel’s formula by simply taking
g = f .

In order to conclude, we need to prove point (5). We observe that if f ∈ L1(R) ∩ L2(R), a closer
inspection of the proof of point (1) reveals that the sequence {fn}n∈N is also such that

lim
n→∞

‖fn − f‖L1(R) = 0,

(verify this assertion!). By recalling (5.2.1), we then get∥∥∥∥F [fn]−F [f ]

∥∥∥∥
L∞(R)

=

∥∥∥∥F [fn − f ]

∥∥∥∥
L∞(R)

≤ ‖fn − f‖L1(R),

thus we obtain

lim
n→∞

∥∥∥∥F [fn]−F [f ]

∥∥∥∥
L∞(R)

= 0.

This shows that F [fn] converges uniformly to F [f ]. In particular, for every M > 0 we get

lim
n→∞

∥∥∥∥F [fn]−F [f ]

∥∥∥∥
L2([−M,M ])

= 0,

thanks to Proposition 3.3.10, used with E = [−M,M ], p = 2 and q = ∞. On the other hand, we
also know that

lim
n→∞

∥∥∥∥F [fn]− F
∥∥∥∥
L2([−M,M ])

= 0,

thanks to point (2). By Minkowski inequality, we then get∥∥∥∥F [f ]− F
∥∥∥∥
L2([−M,M ])

≤
∥∥∥∥F [f ]−F [fn]

∥∥∥∥
L2([−M,M ])

+

∥∥∥∥F [fn]− F
∥∥∥∥
L2([−M,M ])

,

and by taking the limit as n goes to ∞∥∥∥∥F [f ]− F
∥∥∥∥
L2([−M,M ])

= 0.

is uniformly bounded. This easily follows from Minkowski inequality, i.e.

‖gn‖L2(R) ≤ ‖gn − g‖L2(R) + ‖g‖L2(R),

and the first term on the right-hand side is converging to 0, while the second one does not depend on n.
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This shows that

F (ω) = F [f ](ω), for a. e. ω ∈ [−M,M ].

By arbitrariness of M , we get the desired conclusion. �

7. Band-limited signals and a sampling formula

Definition 5.7.1. Let f ∈ L1(R), we say that f is a band-limited signal if there exists M > 0 such
that

F [f ](ω) = 0, for |ω| > M.

In other words, a band-limited signal is such that its Fourier transform has compact support. For
such a function, we call band limit the number

ωf = inf{M > 0 : F [f ](ω) = 0, for |ω| > M}.

Lemma 5.7.2 (A necessary condition for being band-limited). Let f ∈ L1(R) be a band-limited
signal. Then we have f ∈ C∞(R) with

dkf

dtk
∈ L∞(R) and lim

|t|→+∞

∣∣∣∣∣ dkdtk f(t)

∣∣∣∣∣ = 0, for every k ∈ N.

Proof. Let us call ωf the band limit of f , then we first observe thatˆ
R
|F(ω)| dω =

ˆ ωf

−ωf
|F(ω)| dω ≤

∥∥∥∥F [f ]

∥∥∥∥
L∞(R)

2ωf < +∞,

thanks to (5.2.1). Thus in particular F [f ] ∈ L1(R) and by the duality formula (5.4.6) we have

f(−ω) =
1

2π
F
[
F [f ]

]
(ω), ω ∈ R,

which shows that f is the Fourier transform of a compactly supported L1 function. By Corollary
5.2.4, we get the desired conclusion. �

Remark 5.7.3. The previous conditions are necessary but NOT sufficient. Indeed, f(t) = e−t
2

verifies the properties above, but its Fourier transform is not compactly supported (see Exercise
5.8.5).

Example 5.7.4 (An example of band-limited signal). We will construct an example of band-limited
signal as follows: recall from Example 5.3.10 that

F [tri](ω) =

Å
sinc

Å
ω

2π

ãã2

∈ L1(R).

We then take g(x) = F [tri](x), then by using the duality formula (5.4.6) and the fact that the
triangular function is an even function, we obtain

(5.7.1) F [g](ω) = F [F [tri]] (ω) = 2π tri(ω).

This shows that the signal g is band-limited with band limit ωg = 1, since tri identically vanishes
outside [−1, 1].

Starting from this example, we can construct more general band-limited signal as follows: take
f ∈ L1(R) and define the new signal

F (t) = f ∗ g(t) =

ˆ
R
f(y)

Å
sinc

Å
t− y
2π

ãã2

dy.
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Observe that this is a L1(R) function, as a convolution of two L1 functions. We thus can take its
Fourier transform, by Proposition 5.3.9 we get

F [F ](ω) = F [f ](ω)F [g](ω) = 2πF [f ](ω) tri(ω),

which is again band-limited, with band limit ωF ≤ ωg = 1.

Remark 5.7.5 (Low-pass filters). In signal processing, the operation of taking the convolution of
a signal f with a band-limited signal g corresponds to apply an (ideal) low-pass filter. In this case,
the band-limited signal g is also called low-pass filter.

Remark 5.7.6 (Band-pass filters). More generally, one could be interested in using a filter that
admits only frequencies in a given range [a, b]. This means that we want to take a convolution f ∗g,
with a filter g having the property

|F [g](ω)| = 0, for ω 6∈ [a, b].

In this case, we say that g is an (ideal) band-pass filter. We observe that we can always construct
a band-pass filter starting from a low-pass filter: indeed, if h is a band-limited signal with band
limit ωh > 0, by taking

g(t) = ei
b+a
2
t h

Å
b− a
2ωh

t

ã
,

we obtain

F [g](ω) = F
ï
h b−a

2ωh

ò Å
ω − b+ a

2

ã
=

2ωh
b− a

F [h]

Å
2ωh
b− a

ω − 2ωh
b− a

b+ a

2

ã
.

Observe that this Fourier transform is not identically zero if and only if

−ωh ≤
2ωh
b− a

ω − 2ωh
b− a

b+ a

2
≤ ωh.

With simple algebraic manipulations, this is the same as

a ≤ ω ≤ b,

thus the Fourier transform of the signal g has compact support, given by the interval [a, b]. In other
words, the new signal g is a band-pass filter.

The main result of this section is the following sampling formula. The proof exploits the theory
of Fourier series expansions in L2, for which we refer to Appendix C and the books [1, 2].

Theorem 5.7.7 (Shannon-Whittaker formula). Let f ∈ L1(R) be a band-limited signal with band
limit ωf > 0. Then for every M ≥ ωf we have the following formula

(5.7.2) f(t) =
∑
n∈Z

f

Å
n
π

M

ã
sinc

ÅÅ
t− n π

M

ã
M

π

ã
, for t ∈ R.

In other words, the signal f can be completely reconstructed from its regular samplingß
f

Å
n
π

M

ã™
n∈Z

.

Proof. We first define the (2M)−periodic extension on F [f ], i.e.

F (ω) =
∑
k∈Z
F [f ](ω − 2 kM).
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The Fourier coefficients of F are given by

(5.7.3) “F (n) =
1

2M

ˆ M

−M
F (ω) e−i n

π
M
ω dω =

1

2M

ˆ M

−M
F [f ](ω) e−i n

π
M
ω dω.

We already know by Theorem 5.2.1 that F [f ] is bounded. Moreover, by assumption it is compactly
supported, thus in particular F [f ] ∈ L1(R). Observe that thanks to the choice of M , we have

F [f ](ω) = 0, for ω ∈ R \ [−M,M ].

We can use the inversion formula of Theorem 5.4.6 and get

(5.7.4) 2π f(−t) =

ˆ M

−M
F [f ](ω) e−i t ω dω, for a. e. t ∈ R.

By joining (5.7.3) and (5.7.4), we get“F (n) =
π

M
f

Å
−n π

M

ã
.

For every fixed t ∈ R, we now consider the function

gt(ω) = ei t
π
M
ω · 1[−M,M ](ω),

and its (2M)−periodic extension

Gt(ω) =
∑
k∈Z

gt(ω − 2 kM),

whose Fourier coefficients are given by

Ĝt(n) =
1

2M

ˆ M

−M
Gt(ω) e−i n

π
M
ω dω =

1

2M

ˆ M

−M
ei (t−n) π

M
ω dω

=
1

2M
F
[
1[−M,M ]

]Ån− t
M

π

ã
= sinc(t− n),

where we used Remark 5.8.2 and the fact that sinc is an even function. We now observe that by
Parseval’s formula for Fourier series (see Theorem C.2.7) we haveˆ M

−M
F (ω)Gt(ω)∗ dω = 2M

∑
n∈Z

“F (n) (Ĝt(n))∗ = 2π
∑
n∈Z

f

Å
−n π

M

ã
sinc(t− n).

On the other hand, by definition of Gt we haveˆ M

−M
F (ω)Gt(ω)∗ dω =

ˆ M

−M
F [f ](ω) e−i t

π
M
ω dω = 2π f

Å
−t π

M

ã
,

where we used again the inversion formula. We thus get

f

Å
−t π

M

ã
=
∑
n∈Z

f

Å
−n π

M

ã
sinc(t− n).

By changing variable k = −n in the sum, we get

f

Å
−t π

M

ã
=
∑
k∈Z

f

Å
k
π

M

ã
sinc(t+ k).

If we finally change variable s = −t π/M and observe that x 7→ sincx is an even function, we get
the conclusion. �
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Figure 1. The continuous line is the graph of the band-limited signal

f(t) = 10
(

sinc
(
t

2π

))2

.

The dotted red line represents the partial sum

f(t) =

2∑
n=−2

f
Ä
n
π

M

ä
sinc

(Ä
t− n π

M

ä M

π

)
in (5.7.2).

Remark 5.7.8 (Aliasing). The requirement

M ≥ ωf ,

is crucial. In other words, if we take a regular samplingß
f

Å
n
π

M

ã™
n∈Z

,

with M < ωf , in general it is not possible to reconstruct the signal. Take for example the two
band-limited signals

f(t) =

Å
sinc

Å
t

2π

ãã2

and g(t) = f(2 t) =

Å
sinc

Å
t

π

ãã2

.

We have seen in Example 5.7.4 that f has band limit ωf = 1. Moreover, we have

F [g](ω) =
1

2
F [f ]

Å
ω

2

ã
,

thus g has band limit ωg = 2. Let us now take

M =
1

2
< ωf < ωg,

i.e. we consider the regular samplings

{f (2nπ)}n∈Z and {g (2nπ)}n∈Z .

We observe that from the definition of cardinal sinus, we have for every n ∈ Z \ {0}

f (2nπ) = (sincn)2 = 0 = (sinc(2n))2 = g(2nπ),
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Figure 2. The two band-limited signals are indistinguishable if we consider the sampling corre-
sponding to the dots. In this case the crucial requirement M ≥ ωf is violated.

and also

f(0) = (sinc(0))2 = g(0),

Then of course the Shannon-Whittaker formula (5.7.2) can not hold now. Observe that we can not
distinguish between the two signals f and g, just by looking at their values on the regular sampling
grid {2nπ}n∈Z (see Figure 2). This phenomenon is called aliasing in signal processing.

Remark 5.7.9 (An equivalent form of the Shannon-Whittaker formula). Let f ∈ L1(R) be a
band-limited signal, with band limit ωf > 0. In many textbooks on Signal Processing, the Fourier
transform is defined by

X[f ](ω) =

ˆ
R
e−2π i ω t f(t) dt.

The relation with our definition is thus given by

(5.7.5) X[f ](ω) = F [f ](2π ω).

If we then define the corresponding band limit as

ω̃f = inf{M > 0 : X[f ](ω) = 0, for |ω| > M},
by (5.7.5) we get the relation

ω̃f =
ωf
2π

.

This implies that the sampling step
π

M
, for M ≥ ωf ,

needed for the validity of (5.7.2) in our notation, can be read as

π

M
=

2π

2M
=

1

2 M̃
, for M̃ =

M

2π
≥ ωf

2π
= ω̃f .

In this way, we end up with the statement of the Shannon-Whittaker formula which is commonly
stated in the textbooks, asserting that to reconstruct the signal, the sampling rate should be at least
the double of the band limit. This threshold rate is called Nyquist frequency in Signal Processing.
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Remark 5.7.10. We observe that if we set

en(t) =

 
M

π
sinc

ÅÅ
t− n π

M

ã
M

π

ã
,

then {en}n∈Z is an orthonormal family in L2(R), with respect to the standard scalar product of
L2(R), given by

〈f, g〉L2(R) =

ˆ
R
f(t) g(t)∗ dt.

Indeed, let us recall that (see Exercise 5.9.5)

FL2 [sinc](ω) = 1[−π,π](ω),

thus by the translation and dilation properties of the Fourier transform (Corollary 5.3.4) we have

FL2 [en](ω) =

…
π

M
e−i

nπ
M
ω 1[−M,M ](ω).

We now use Parseval’s formula for the Fourier transform in L2(R) (see Theorem 5.6.8), this gives

ˆ
R
en e

∗
k dt =

1

2π

ˆ
R
FL2 [en]FL2 [ek]

∗ dω =
π

M

1

2π

ˆ M

−M
e−i

(n−k)π
M

ω dω

=

®
1, if n = k
0, if n 6= k.

Thus from the Shannon-Whittaker formula we get in particular that if f ∈ L1(R) ∩ L2(R) is
band-limited, then ˆ

R
|f(t)|2 dt =

π

M

∑
n∈Z

∣∣∣∣f Ån π

M

ã∣∣∣∣2 ,
i.e. the energy of the signal can be computed from the sampling.

8. Exercises

Exercise 5.8.1. Let a < b, show that the Fourier transform of the generalized rectangular function
f(t) = 1[a,b](t) is given by

F [f ](ω) = (b− a) e−
b+a
2
i ω sinc

Å
b− a
2π

ω

ã
.

Solution. Rather then computing it directly, we appeal to Example 5.1.4 and Corollary 5.3.4.
Indeed, we already seen (recall formula (3.6.2)) that

1[a,b](t) = rect

Å
t− a
b− a

− 1

2

ã
.

Thus by setting

λ =
1

b− a
and h = −

Å
a

b− a
+

1

2

ã
,

we have

1[a,b](t) = rect(λ t+ h).
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Figure 3. The Fourier transform of the generalized rectangular function 1[−L,L], for L = 1/2
(black), L = 2 (green) and L = 4 (red).

By using Corollary 5.3.4 we get

F
[
1[a,b]

]
(ω) =

ei
h
λ
ω

λ
F [rect]

Å
ω

λ

ã
= (b− a) e−a i ω−

b−a
2
i ω sinc

Å
b− a
2π

ω

ã
.

By observing that

−a− b− a
2

= −b+ a

2
,

we get the desired conclusion. �

Remark 5.8.2. In particular, by taking a = −L and b = L in the previous formula, we get

F
î
1[−L,L]

ó
(ω) = 2L sinc

Å
L

π
ω

ã
,

see Figure 3. We recall that this is essentially the family of functions entering in the proof of the
inversion formula, see Remark 5.4.3.

Exercise 5.8.3. Compute the Fourier transform of the function

g(t) =
1

1 + t2
.

Show that this is given by

F [g](ω) = π e−|ω|.

Solution. We could compute the Fourier transform directly, but here we prefer to take advantage
of the duality formula (5.4.6). Indeed, if we set f(t) = e−|t|, this function satisfies the hypothesis
of Theorem 5.4.2. Moreover, from Example 5.1.5 we have

F [f ](ω) =
2

1 + ω2
,
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and this function is in L1(R). From Corollary 5.4.4 we obtain

F
[
F [f ]

]
(ω) = 2π f(−ω) = 2π e−|ω|.

By using the explicit expression for F [f ], this can be rewritten asˆ
R

2

1 + t2
e−i t ω dt = 2π e−|ω|,

that is ˆ
R

1

1 + t2
e−i t ω dt = π e−|ω|.

Finally, this proves

F [g](ω) = π e−|ω|,

thus concluding. �

Exercise 5.8.4. For every n ∈ N, compute the Fourier transform of

f(t) = tn e−|t|.

Solution. For n = 0, we have already computed this transform in Example 5.1.5. For n ≥ 1, it is
sufficient to use Corollary 5.2.4, which gives

F [f ](ω) = F [tn e−|t|](ω) =
1

(−i)n
dn

dωn
F [e−|t|](ω) =

1

(−i)n
dn

dωn
2

1 + ω2
.

For example, for n = 1 we get

F [t e−|t|](ω) = − 1

−i
4ω

(1 + ω2)2
= − 4 i ω

(1 + ω2)2
.

This concludes the exercise. �

Exercise 5.8.5. Show that the Fourier transform of the function f(t) = e−t
2

is given by

F [f ](ω) =
√
π e−

ω2

4 .

Solution. We observe that f satisfies

f ′(t) = −2 t e−t
2

= −2 t f(t).

By taking the Fourier transform, from (5.3.4) we thus get

i ωF [f ](ω) = F [f ′](ω) = −2F [t f ](ω).

By using formula (5.2.3), we thus get

d

dω
F [f ](ω) = −iF [t f ](ω) = −ω

2
F [f ](ω).

Also observe that

F [f ](0) =

ˆ
R
e−t

2
dt =

√
π.

Thus the function ω 7→ F [f ](ω) solves the linear differential equation{
y′(ω) +

ω

2
y(ω) = 0

y(0) =
√
π.
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The solution of this problem can be easily computed to be (see Example B.1.1 of Appendix B
below)

y(ω) =
√
π e−

ω2

4 ,

which thus coincides with the Fourier transform of f . �

Exercise 5.8.6 (Fourier transform of a Gaussian function). Let a > 0 and t0 ∈ R, show that the

Fourier transform of the function f(t) = e−a (t−t0)2 is given by

F [f ](ω) =

…
π

a
e−

ω2

4 a

(
cos(t0 ω)− i sin(t0 ω)

)
.

Solution. We can use the previous Exercise and Corollary 5.3.4. Indeed, observe that if we set

g(x) = e−x
2
, then

f(t) = g(
√
a (t− t0)) = g(

√
a t−

√
a t0).

Thus from Corollary 5.3.4 we get

F [f ](ω) =
e−i t0 ω√

a
F [g]

Ç
ω√
a

å
=

…
π

a
e−i t0 ω e−

ω2

4 a .

This gives the desired formula, by recalling that ei ϑ = cosϑ+ i sinϑ. �

Exercise 5.8.7. Let f ∈ L1(R), prove that a solution u to the equation

(5.8.1) − u′′(t) + u(t) = f(t), t ∈ R,

can be written in the form

u(t) = G ∗ f(t), with G(t) =
1

2
e−|t|.

Solution. We take the Fourier transform of the equation, so by Corollary 5.3.7 we get

ω2F [u](ω) + F [u](ω) = F [f ](ω).

This in turn implies that

F [u](ω) =
1

1 + ω2
F [f ](ω).

By using Exercise 5.1.5, we know that

1

1 + ω2
= F [G](ω),

thus we obtained

F [u](ω) = F [G](ω)F [f ](ω) = F [G ∗ f ](ω).

In the last identity, we used Proposition 5.3.9. This finally gives that

u(t) = G ∗ f(t),

as desired. �

Exercise 5.8.8. Let f, g ∈ L1(R), show thatÅˆ
R
f(t) dt

ã Åˆ
R
g(t) dt

ã
=

ˆ
R
f ∗ g(t) dt.
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Solution. By definition, we haveˆ
R
f(t) dt = F [f ](0) and

ˆ
R
g(x) dt = F [g](0).

From Proposition 5.3.9, we knowÅˆ
R
f(t) dt

ã Åˆ
R
g(x) dt

ã
= F [f ](0)F [g](0) = F [f ∗ g](0) =

ˆ
R
f ∗ g dt.

This concludes the proof. �

Exercise 5.8.9. Let f ∈ L1(R) ∩ C2(R) be such that f ′′ ∈ L1(R). Show that F [f ] ∈ L1(R).

Proof. By using the Kallman-Rota inequality (see Exercise 3.7.7), the hypotheses imply that we
have f ′ ∈ L1(R), as well. By Corollary 5.3.7, we have that

lim
|ω|→+∞

ω2F [f ](ω) = 0.

This implies in particular that, by using the definition of limit, there exists M1 > 0 such that

|ω2F [f ](ω)| < 1, for |ω| > M1.

We can thus write ˆ
R
|F [f ](ω)| dω =

ˆ
|ω|>M1

|F [f ](ω)| dω +

ˆ M1

−M1

|F [f ](ω)| dω

≤
ˆ
|ω|>M1

1

ω2
dω + ‖F [f ]‖L∞(R) 2M1.

By observing that the integral of 1/ω2 converges, we get the desired conclusion. �

Exercise 5.8.10. Show that for every ϕ ∈ S we have the estimate

(5.8.2) ‖ϕ‖L1(R) ≤ 4
»

[ϕ]0,0 [ϕ]2,0.

Solution. We fix M > 0, then we writeˆ
R
|ϕ(t)| dt =

ˆ M

−M
|ϕ(t)| dt+

ˆ
|t|>M

|ϕ(t)| t2 dt
t2

≤ 2 sup
t∈R
|ϕ(t)|M + sup

t∈R
|t2 ϕ(t)|

ˆ
|t|>M

dt

t2

= 2 [ϕ]0,0M + 2 [ϕ]2,0

ˆ +∞

M

dt

t2

= 2 [ϕ]0,0M +
2

M
[ϕ]2,0.

The previous estimate is valid for every M > 0 positive. In particular, we getˆ
R
|ϕ(t)| dt ≤ 2 inf

M>0

Å
[ϕ]0,0M +

1

M
[ϕ]2,0

ã
.

It is not difficult to see that the quantity

[ϕ]0,0M +
1

M
[ϕ]2,0,
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is minimal for

M =

√
[ϕ]2,0
[ϕ]0,0

.

By replacing above, we finally get the desired result. �

Exercise 5.8.11. Prove that for every ϕ ∈ S, we haveˆ
R
|F [ϕ](ω)|2 dω ≤ 8π ([ϕ]0,0)

3
2 ([ϕ]2,0)

1
2 .

Solution. Observe that by definition, we have

(5.8.3) ‖ϕ‖L∞(R) = sup
t∈R
|ϕ(t)| = [ϕ]0,0.

By using the interpolation inequality (3.7.1) with

r = 2, p = 1, q =∞,
we obtain

‖ϕ‖L2(R) ≤
»
‖ϕ‖L1(R) ‖ϕ‖L∞(R).

We can use (5.8.2) and (5.8.3), so to obtain

‖ϕ‖L2(R) ≤ 2
√»

[ϕ]0,0 [ϕ]2,0 [ϕ]0,0.

By taking the square on both sides and using Plancherel’s formula (5.6.3), we get the conclusion. �

Exercise 5.8.12. Let 0 < τ < 1, show that for every f ∈ L1(R) ∩ L2(R) we haveˆ
R

1

|ω|τ
|F [f ](ω)|2 dω < +∞.

More precisely, prove that we have the estimateÇˆ
R

1

|ω|τ
∣∣∣∣F [f ](ω)

∣∣∣∣2 dω
å 1

2

≤ C
Åˆ

R
|f(t)| dt

ãτ Åˆ
R
|f(t)|2 dt

ã 1−τ
2

,

for a constant C depending on τ and which blows-up as τ ↗ 1.

Solution. We take λ > 0 and decompose the integral in the left-hand side as followsˆ
R
|ω|−τ

∣∣∣∣F [f ](ω)

∣∣∣∣2 dω =

ˆ
{|ω|≤λ}

|ω|−τ
∣∣∣∣F [f ](ω)

∣∣∣∣2 dω +

ˆ
{|ω|>λ}

|ω|−λ
∣∣∣∣F [f ](ω)

∣∣∣∣2 dω.
Since f ∈ L1(RN ), by Theorem 5.2.1 we have that its Fourier transform is in L∞(R), thus we
obtain ˆ

R
|ω|−τ

∣∣∣∣F [f ](ω)

∣∣∣∣2 dω ≤ ∥∥∥∥F [f ]

∥∥∥∥2

L∞(R)

ˆ λ

−λ
|ω|−τ dω

+ λ−τ
ˆ
R

∣∣∣∣F [f ](ω)

∣∣∣∣2 dω.
By Theorem 5.6.8, we know that

FL2 [f ] = F [f ],

since f ∈ L1(R) ∩ L2(R). Thus we can use the Plancherel’s identity (5.6.9) and the fact that∥∥∥∥F [f ]

∥∥∥∥
L∞(R)

≤ ‖f‖L1(R),
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thanks to (5.2.1). We then arrive at
ˆ
R
|ω|−τ

∣∣∣∣F [f ](ω)

∣∣∣∣2 dω ≤ 2

1− τ
λ1−τ ‖f‖2L1(R) + 2π λ−τ ‖f‖L2(R).

This is valid for every λ > 0 and the right-hand side is minimal for

λ = π τ
‖f‖2L2(R)

‖f‖2L1(R)

.

This in turn givesˆ
R
|ω|−τ

∣∣∣∣F [f ](ω)

∣∣∣∣2 dω ≤ 2

τ τ (1− τ)
π1−τ

Ä
‖f‖2L1(R)

äτ Ä‖f‖2L2(R)

ä1−τ
,

as desired. �

Exercise 5.8.13. Let us take the two signals

g(t) =

Å
sinc

Å
t

2π

ãã2

and h(t) = cos(2 t) g(t).

Show that g ∗ h = 0.

Solution. We observe that g, h ∈ L1(R), then g ∗ h ∈ L1(R). We use that

cos(2 t) =
e2 i t + e−2 i t

2
,

thus we have

F [g ∗ h](ω) = F [g](ω)F [cos(2 t) g](ω)

= F [g](ω)F
ñ
e2 i t + e−2 i t

2
g

ô
(ω)

=
1

2
F [g](ω)

(
F
î
e2 i t g

ó
(ω) + F

î
e−2 i t g

ó
(ω)
)
.

We now recall that by (5.7.1)

F [g](ω) = 2π tri(ω),

and by Proposition 5.3.5

F
î
e2 i t g

ó
(ω) = 2π tri(ω − 2) and F

î
e−2 i t g

ó
(ω) = 2 tri(ω + 2).

Thus we obtained

F [g ∗ h](ω) = π tri(ω)
(
2π tri(ω − 2) + 2π tri(ω + 2)

)
= 2π2 tri(ω) tri(ω − 2) + 2π2 tri(ω) tri(ω + 2).

The last two products identically vanish, since the functions have disjoint supports. By using the
Inversion Formula, we thus obtain

g ∗ h(t) =
1

2π

ˆ
R
F [g ∗ h](ω) ei t ω dt = 0,

as desired. �
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Exercise 5.8.14. Let f ∈ L1(R) be a band-limited signal, with band limit ωf > 0. Let us take the
two signals

g(t) = cos(2ωf t) f(t) and h(t) = sin(2ωf t) f(t).

Prove that f ∗ g = f ∗ h = 0.

Solution. This is similar to the previous exercise. Indeed, by using that

cos(2ωf t) =
e2 i ωf t + e−2 i ωf t

2
,

and Propositions 5.3.9 and 5.3.5, we get

F [f ∗ g](ω) = F [f ](ω)F [g](ω) =
1

2
F [f ](ω)

(
F [e2 i ωf t f ](ω) + F [e−2 i ωf t f ](ω)

)
=

1

2
F [f ](ω)F [f ](ω − 2ωf )

+
1

2
F [f ](ω)F [f ](ω + 2ωf ).

We now observe that, since F [f ] identically vanishes outside [−ωf , ωf ], we have

F [f ](ω)F [f ](ω − 2ωf ) = F [f ](ω)F [f ](ω + 2ωf ) = 0, for every ω ∈ R.

Then we can conclude as in the previous exercise. �

9. Advanced exercises

Exercise 5.9.1. For a > 0 and b, c ∈ R, we consider the second order polynomial

P (t) = a t2 + b t+ c.

Let us suppose that P does not have real roots, i.e. b2 − 4 a c < 0. Compute the Fourier transform
of the function

g(t) =
1

P (t)
.

Solution. This can be computed starting from the one of Exercise 5.8.3. Indeed, let us set

∆ = 4 a c− b2,
then we observe that

P (t) = a t2 + b t+ c = a

Å
t2 +

b

a
t+

c

a

ã
= a

ñÅ
t+

b

2 a

ã2

+

Ç
c

a
− b2

4 a2

åô
= a

ñÅ
t+

b

2 a

ã2

+
∆

4 a2

ô
=

∆

4 a

ñ
4 a2

∆

Å
t+

b

2 a

ã2

+ 1

ô
=

∆

4 a

[Ç
2 a√

∆
t+

b√
∆

å2

+ 1

]
Thus we can write

g(t) =
1

P (t)
=

4 a

∆

1Ç
2 a√

∆
t+

b√
∆

å2

+ 1

.
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If we set

f(t) =
1

1 + t2
,

then the previous identity implies that

g(t) =
4 a

∆
f

Ç
2 a√

∆
t+

b√
∆

å
.

We can now apply Corollary 5.3.4 with

h =
b√
∆

and λ =
2 a√

∆
,

so to get

F [g](ω) =
4 a

∆

ei
b
2 a

ω

2 a

√
∆F [f ]

Ç√
∆

2 a
ω

å
.

If we now use Exercise 5.8.3 to compute the last transform and recall the definition of ∆, we finally
get

F [g](ω) =
2π√

4 a c− b2
ei

b
2 a

ω e−
√

4 a c−b2
2 a

|ω|.

This concludes the exercise. �

Exercise 5.9.2 (Heat equation). Let ϕ ∈ L1(R) and let us consider the following initial value
problem for the heat equation in R

∂u

∂t
=

∂2u

∂x2
, for (t, x) ∈ R+ × R

u(0, x) = ϕ(x), x ∈ R.
Show that the solution u can be written as

u(t, x) = Gt ∗ ϕ(x) =

ˆ
R
Gt(x− y)ϕ(y) dy,

where the function Gt is given by

Gt(x) =
1√
4π t

e−
x2

4 t , x ∈ R, t > 0.

Solution. We have to pay attention to the fact that we have 2 variables, i.e. we are dealing with
a partial differential equation. We set

y(t, ω) = F [u](ω) =

ˆ
R
e−i x ω u(t, x) dx,

then we take the Fourier transform of the equation in the spatial variable x, so to obtain

∂

∂t
y(t, ω) = −ω2 y(t, ω),

with initial condition

y(0, ω) =

ˆ
R
e−i x ω u(0, x) dx =

ˆ
R
e−i x ω ϕ(x) dx = F [ϕ](ω).

This means that for every fixed ω ∈ R, the function t 7→ y(t, ω) is a solution of the first order linear
differential equations

y′(t) = −ω2 y(t)
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with initial condition F [ϕ](ω). It is not difficult to see that such a solution is given by

t 7→ F [ϕ](ω) e−ω
2 t,

thus
F [u](ω) = y(t, ω) = F [ϕ](ω) e−ω

2 t.

We now observe that for every fixed t > 0, the function

ω 7→ e−ω
2 t,

is a Gaussian function. By using Exercise 5.8.6 with

a =
1

4 t
and t0 = 0,

we have that
ω 7→ e−ω

2 t,

is the Fourier transform (with respect to the variable x) of the function

(5.9.1) Gt(x) =
1√
4π t

e−
x2

4 t , x ∈ R.

We thus obtained that

F [u](ω) = F [ϕ](ω)F [Gt](ω) = F [Gt ∗ ϕ](ω).

This finally gives the desired conclusion. �

Remark 5.9.3. The function u of the previous exercise represents the evolution in time of the
temperature of an infinite thin bar (modeled by R), starting from the initial temprature ϕ. In other
words, we have

u(t, x) = “temperature of the point x at the time t ′′.

Such a temperature evolves in time and space according to the equation

∂u

∂t
=
∂2u

∂x2
,

which is called heat equation. The time-dependent function Gt defined in (5.9.1) is called heat
kernel.

Exercise 5.9.4. Compute the Fourier transform of the function

f(t) =
1

1 + t4
.

Solution. We will rely on Exercise 4.10.1. We first observe that

1 + t4 = (t2 − i) (t2 + i),

thus we get

f(t) =
1

(t2 − i) (t2 + i)
=

1

2 i

Å
1

t2 − i
− 1

t2 + i

ã
.

We now observe that i and −i can be written as

i =
Ä
e
π
4
i
ä2

and − i =
Ä
e−

π
4
i
ä2
.

By using Exercise 4.10.1 with a = e
π
4
i, we then obtain that

1

t2 + i
=

1

i− (i t)2
=

1

a2 − (i t)2
=

1

2 a
B[g](i t) =

e−
π
4
i

2
B[g](i t),
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where g is defined by

g(t) =

 e−e
π
4 i t, for t ≥ 0,

ee
π
4 i t, for t < 0.

In a similar way, by using Exercise 4.10.1 with a = e−
π
4
i, we obtain

1

t2 − i
=

1

−i− (i t)2
=

1

a2 − (i t)2
=
e
π
4
i

2
B[h](i t),

where h now is defined by

h(t) =

 e−e
−π4 i t, for t ≥ 0,

ee
−π4 i t, for t < 0.

By putting everything together, we obtained

f(t) =
1

2 i

Ç
e−

π
4
i

2
B[g](i t)− e

π
4
i

2
B[h](i t)

å
=

1

2 i
B
ñ
e−

π
4
i

2
g − e

π
4
i

2
h

ô
(i t).

We now recall the relation between the bilateral Laplace transform and the Fourier transform (see
Remark 5.1.3), so to obtain

f(t) =
1

2 i
F
ñ
e−

π
4
i

2
g − e

π
4
i

2
h

ô
(t).

By taking the Fourier transform on both sides and using the Duality Formula, we thus get

F [f ](ω) =
π

i

Ç
e−

π
4
i

2
g(−ω)− e

π
4
i

2
h(−ω)

å
.

By recalling the definitions of g and h, we getÇ
e−

π
4
i

2
g(−ω)− e

π
4
i

2
h(−ω)

å
=


e−

π
4
i

2
ee

π
4 i ω − e

π
4
i

2
ee
−π4 i ω, for ω < 0,

e−
π
4
i

2
e−e

π
4 i ω − e

π
4
i

2
e−e

−π4 i ω, for ω ≥ 0.

= i e−
√
2

2
|ω| sin

Ç√
2

2
|ω|+ π

4

å
.

In conclusion, we obtain

F [f ](ω) = π e−
√
2
2
|ω| sin

Ç√
2

2
|ω|+ π

4

å
.

This concludes the exercise. �

Exercise 5.9.5. Show that

FL2 [sinc] = 1[−π,π].

Solution. We recall that by Remark 5.8.2, we have

F [1[−π,π]](ω) = 2π sincω.

Moreover, the function 1[−π,π] satisfies the hypotheses of the inversion formula of Theorem 5.4.2,
thus we have

2π 1[−π,π](t) = lim
L→+∞

ˆ L

−L
F [1[−π,π]](ω) ei t ω dω = 2π lim

L→+∞

ˆ L

−L
sinc(ω) ei t ω dω.
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In other words, we get

1[−π,π](t) = lim
L→+∞

F [sinc ·1[−L,L]](−t), for every t ∈ R.

Observe that sinc ·1[−L,L] ∈ L1(R)∩L2(R), thus we can use Plancherel’s formula (5.6.9) and obtainˆ
R

∣∣∣∣F [sinc ·1[−L,L]](t)− 1[−π,π](t)

∣∣∣∣2 dt =
1

2π

ˆ
R

∣∣∣∣FL2

[
F [sinc ·1[−L,L]]

]
(ω)−FL2 [1[−π,π]](ω)

∣∣∣∣2 dω
=

1

2π

ˆ
R

∣∣∣∣F[F [sinc ·1[−L,L]]
]
(ω)−F [1[−π,π](ω)

∣∣∣∣2 dω
=

1

2π

ˆ
R
|2π sinc(ω) · 1[−L,L](ω)− 2π sinc(ω)|2 dω

= 2π

ˆ
R
| sinc(ω) · 1[−L,L](ω)− sinc(ω)|2 dω.

In the second equality we used the property (5) of Theorem 5.6.8. In the third equality we used
the duality formula (5.4.6), for the even function sinc ·1[−L,L] ∈ L1(R) ∩ L2(R). We now observe
that

lim
L→+∞

sinc(ω) · 1[−L,L](ω) = sinc(ω), for every ω ∈ R.

Moreover, for every L > 0 we have

| sinc(ω) · 1[−L,L](ω)− sinc(ω)|2 = | sinc(ω) 1R\[−L,L](ω)|2 ≤ | sinc(ω)|2, for every ω ∈ R.

Since the last function is in L1(R) and independent of L, we can use the Lebesgue Dominated
Convergence Theorem (see Theorem 3.2.5) and obtain

lim
L→+∞

ˆ
R

∣∣∣∣F [sinc ·1[−L,L]](t)− 1[−π,π](t)

∣∣∣∣2 dt = lim
L→+∞

2π

ˆ
R
| sinc(ω) · 1[−L,L](ω)− sinc(ω)|2 dω = 0,

that is

(5.9.2) lim
L→+∞

∥∥∥∥F [sinc ·1[−L,L]]− 1[−π,π]

∥∥∥∥
L2(R)

= 0.

Finally, as in the proof of point (1) of Theorem 5.6.8, we take ϕ ∈ C∞0 (Ω) such thatˆ
R
ϕ(t) dt = 1,

and define ϕn(t) = nϕ(n t). We have seen in the proof of Theorem 5.6.8 that

lim
n→∞

∥∥∥∥(sinc ·1[−n,n]]) ∗ ϕn − sinc

∥∥∥∥
L2(R)

= 0,

and

(5.9.3) lim
n→∞

∥∥∥∥F [(sinc ·1[−n,n]]) ∗ ϕn]−FL2 [sinc]

∥∥∥∥
L2(R)

= 0.

By Minkowski’s inequality (see Proposition 3.3.7), we have for every n ∈ N∥∥∥∥FL2 [sinc]− 1[−π,π]

∥∥∥∥
L2(R)

=

∥∥∥∥(FL2 [sinc]−F [sinc ·1[−n,n]]
)
−
(
F [sinc ·1[−n,n]]− 1[−π,π]

)∥∥∥∥
L2(R)

≤
∥∥∥∥FL2 [sinc]−F [sinc ·1[−n,n]]‖L2(R)

+

∥∥∥∥(F [sinc ·1[−n,n]]− 1[−π,π]

)∥∥∥∥
L2(R)

.
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By taking the limit as n goes to ∞ and using (5.9.2), (5.9.3), we finally get∥∥∥∥FL2 [sinc]− 1[−π,π]

∥∥∥∥
L2(R)

= 0.

This concludes the exercise. �





Chapter 6

Tempered distributions

1. A brief and rough introduction

The concept of distribution is a fundamental tool in Physics and Engineering. It can be seen as a
generalization of the concept of function. Such a generalization is useful in order to extend some
usual operations like derivatives or integral transforms beyond their natural domain of definition.

The central idea behind the definition of distributions can (very roughly) be summarized as
follows:

“try to define a function NOT through its pointwise values
but through the effects it makes when tested against good functions ”

Of course, this is NOT the mathematical definition of a distribution. To clarify this point, let
us start with a concrete example.

Example 6.1.1 (Derivative of a step function?). We considered many times the Heaviside step
function H. We know that this is a piecewise constant function, which assumes only two values
and has a unit jump at t = 0. In particular, we have

H ′(t) = 0 for t 6= 0,

while for t = 0 the function is not derivable. Indeed, we know that

lim
h→0

H(h)−H(0)

h
,

does not exist. Let us try to apply the rough idea presented above: rather than trying to define
the derivative at t = 0 by computing the limit of the incremental ratio (as we have seen, this is
not possible), let us “test” the incremental ratio against a “good” function, for example a function
ϕ ∈ C∞0 (R). More precisely, we consider

ˆ
R

H(t+ h)−H(t)

h
ϕ(t) dt, h 6= 0 and ϕ ∈ C∞0 (R).

189
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We can make a simple change of variable as followsˆ
R

H(t+ h)−H(t)

h
ϕ(t) dt =

ˆ
R

H(t+ h)

h
ϕ(t) dt−

ˆ
R

H(t)

h
ϕ(t) dt

=

ˆ
R

H(s)

h
ϕ(s− h) ds−

ˆ
R

H(s)

h
ϕ(s) ds

=

ˆ
R
H(s)

ϕ(s− h)− ϕ(s)

h
ds

=

ˆ +∞

0

ϕ(s− h)− ϕ(s)

h
ds.

Finally, we observe that since ϕ ∈ C∞0 (R), we can pass to the limit under the integral sign in
the last expression (as always, this can be justified by appealing to the Dominated Convergence
Theorem). Thus we obtain

lim
h→0

ˆ
R

H(t+ h)−H(t)

h
dt = −

ˆ +∞

0
ϕ′(s) ds = −

[
ϕ(s)

]+∞
0

= ϕ(0).

In other words, while we can not always compute the pointwise limit

lim
h→0

H(t+ h)−H(t)

h
, t ∈ R,

the limit of this incremental ratio “tested” against a smooth compactly supported function can
be always computed. This defines the derivative of H “in the sense of distributions”. Observe
that (as announced above) this does NOT define a function in the usual sense: rather, it defines a
“functional” defined on the space C∞0 (R) and with values in C. More precisely, this is the functional

C∞0 (R) → C
ϕ 7→ ϕ(0),

called Dirac delta centered at 0. Thus one could say that

“H ′(t) = Dirac delta centered at 0 ′′ in the sense of distributions.

We will come back on this in the next sections, by giving a precise mathematical framework for
the ideas presented above.

2. Definitions and examples

As a space of “test functions” we want to use the Schwartz class S presented in Chapter 5. We
first need to introduce a notion of convergence on this space.

Definition 6.2.1 (Convergence in the Schwartz class S). Let {ϕn}n∈N ⊂ S and ϕ ∈ S. We say
that {ϕn}n∈N converges to ϕ in S if we have

lim
n→∞

[ϕn − ϕ]m,k = 0, for every m, k ∈ N.

We recall that for every m, k ∈ N the quantities [ · ]m,k are defined by

[ϕ]m,k = sup
t∈R

∣∣∣∣tm ϕ(k)(t)

∣∣∣∣ < +∞.

We will use the notation ϕn
S−→ ϕ for this convergence.
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For a functional F : S → C, we use the notation

〈F,ϕ〉,

for the value of F computed at ϕ ∈ S. We recall that F is said to be linear if

〈F, αϕ+ β ψ〉 = α 〈F,ϕ〉+ β 〈F,ψ〉, for every α, β ∈ C, ϕ, ψ ∈ S.

We can now give the definition of tempered distribution.

Definition 6.2.2. Let F : S → C be a functional on S. We say that F is a tempered distribution
if:

• it is linear;

• it is continuous on S, i.e. if for every sequence {ϕn}n∈N ⊂ S such that

ϕn
S−→ ϕ, as n goes to ∞,

we have

lim
n→∞

〈F,ϕn〉 = 〈F,ϕ〉.

We indicate with S ′ the collection of all tempered distributions.

Remark 6.2.3. Observe that by linearity of F , we have

lim
n→∞

〈F,ϕn〉 = 〈F,ϕ〉 ⇐⇒ lim
n→∞

〈F,ϕn − ϕ〉 = 0,

and the sequence ϕn − ϕ converges to 0 in S. Thus, if we want to verify that a linear function
F : S → C is a tempered distribution, it is sufficient to show that

lim
n→∞

〈F,ϕn〉 = 0,

for every sequence ϕn
S−→ 0.

Example 6.2.4 (Dirac delta). Let t0 ∈ R, we define the linear functional δt0 : S → C by

〈δt0 , ϕ〉 = ϕ(t0), for every ϕ ∈ S.

This is called Dirac delta centered at t0. Let us verify that δt0 ∈ S ′.
We first verify that δt0 is a linear functional: for every α, β ∈ C and ϕ,ψ ∈ S we have

〈δt0 , α ϕ+ β ψ〉 = αϕ(t0) + β ψ(t0) = α 〈δt0 , ϕ〉+ β 〈δt0 , ψ〉.

We now show that δt0 is continuous on S. We take a sequence {ϕn}n∈N ⊂ S such that ϕn
S−→ 0.

In particular, this implies that

lim
n→∞

Ç
sup
t∈R
|ϕn(t)|

å
= lim

n→∞
[ϕn]0,0 = 0.

We thus obtain

lim
n→∞

|〈δt0 , ϕn〉| = lim
n→∞

|ϕn(t0)| ≤ lim
n→∞

Ç
sup
t∈R
|ϕn(t)|

å
= 0.

By taking into account Remark 6.2.3, this shows that δt0 is a tempered distribution.
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Example 6.2.5 (Regular tempered distributions). Let f ∈ L1
loc(R) be a locally summable function

such that there exists m ∈ N for whichˆ
R

|f(t)|
1 + |t|m

dt < +∞.

We then say that f is a slowly growing function. To such a function f we associate a linear
functional Ff : S → C, defined by

〈Ff , ϕ〉 =

ˆ
R
f(t)ϕ(t) dt, ϕ ∈ S.

Observe that the integral is well-defined for every ϕ ∈ S, since∣∣∣∣ˆ
R
f(t)ϕ(t) dt

∣∣∣∣ =

∣∣∣∣∣
ˆ
R

f(t)

1 + |t|m
(1 + |t|m)ϕ(t) dt

∣∣∣∣∣
≤
ˆ
R

|f(t)|
1 + |t|m

(1 + |t|m) |ϕ(t)| dt

≤
(
[ϕ]0,0 + [ϕ]m,0

) ˆ
R

|f(t)|
1 + |t|m

dt < +∞.

Moreover, the linearity of Ff is a straightforward consequence of the linearity of the Lebesgue
integral.

We call Ff regular tempered distribution generated by f . We can easily verify that Ff is indeed
a tempered distribution. In order to verify the continuity on S, we take a sequence {ϕn}n∈N ⊂ S
such that ϕn

S−→ 0. We get

lim
n→∞

∣∣∣∣ˆ
R
f(t)ϕn(t) dt

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
ˆ
R

f(t)

1 + |t|m
(1 + |t|m)ϕn(t) dt

∣∣∣∣∣
≤ lim

n→∞

ˆ
R

|f(t)|
1 + |t|m

(1 + |t|m) |ϕn(t)| dt

≤ lim
n→∞

(
[ϕn]0,0 + [ϕn]m,0

)ˆ
R

|f(t)|
1 + |t|m

dt = 0,

thanks to the fact thatˆ
R

|f(t)|
1 + |t|m

dt < +∞ and lim
n→∞

(
[ϕn]0,0 + [ϕn]m,0

)
= 0.

Proposition 6.2.6 (Lp functions are slowly growing functions). Let 1 ≤ p ≤ ∞ and let f ∈ Lp(R).
Then f is a slowly growing function and thus, in particular, Ff ∈ S ′.

Proof. Let us start with the case p =∞. Then we haveˆ
R

|f(t)|
1 + t2

dt ≤ ‖f‖L∞(R)

ˆ
R

dt

1 + t2
< +∞,

which shows that f is slowly growing.

Let us now consider the case 1 < p <∞, then by Hölder’s inequality (see Proposition 3.3.5)

ˆ
R

|f(t)|
1 + |t|

dt ≤
Åˆ

R
|f(t)|p dt

ã 1
p
Çˆ

R

dt

(1 + |t|)p′
å 1
p′

< +∞,

and the last integral is finite, since 1 < p′ < +∞.
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Finally, for the case p = 1, the function f ∈ L1(R) verifies the definition of slowly growing
function with m = 0. �

Example 6.2.7 (Principal value of 1/t). An important example of tempered distribution is the
one generated by the function

f(t) =
1

t
, t ∈ R \ {0}.

Observe that this function does NOT fall in the class of slowly growing functions, since f 6∈ L1
loc(R)

(the singularity of 1/t is not summable near the origin). However, we can associate to this function
a tempered distribution defined by

(6.2.1)

≠
P.V.

1

t
, ϕ

∑
= lim

ε→0+

ˆ
|t|>ε

ϕ(t)

t
dt, for every ϕ ∈ S.

This is called principal value of 1/t. We first observe that for every ε > 0, we have∣∣∣∣∣
ˆ
|t|>ε

ϕ(t)

t
dt

∣∣∣∣∣ < +∞.

Indeed, it holds ∣∣∣∣∣
ˆ
|t|>ε

ϕ(t)

t
dt

∣∣∣∣∣ ≤
ˆ
|t|>ε

|ϕ(t)|
|t|

dt ≤ 1

ε

ˆ
R
|ϕ(t)| dt,

and the latter is finite, since ϕ ∈ S ⊂ L1(R) (see Proposition 5.6.4). In order to verify that (6.2.1)
defines a tempered distribution, we want to rewrite it in a different form, which is easier to handle.
We then fix 0 < ε < 1 and writeˆ

|t|>ε

ϕ(t)

t
dt =

ˆ +∞

ε

ϕ

t
dt+

ˆ −ε
−∞

ϕ(t)

t
dt

=

ˆ +∞

ε

ϕ(t)

t
dt−

ˆ +∞

ε

ϕ(−t)
t

dt =

ˆ +∞

ε

ϕ(t)− ϕ(−t)
t

dt,

where we used the change of variable t 7→ −t in the integral performed on (−∞,−ε). We now split
the last integral as followsˆ +∞

ε

ϕ(t)− ϕ(−t)
t

dt =

ˆ 1

ε

ϕ(t)− ϕ(−t)
t

dt+

ˆ +∞

1

ϕ(t)− ϕ(−t)
t

dt

=

ˆ 1

0

ϕ(t)− ϕ(−t)
t

1[ε,1](t) dt+

ˆ +∞

1

ϕ(t)− ϕ(−t)
t

dt.

For the first integral, we have1

(6.2.2)

∣∣∣∣∣ϕ(t)− ϕ(−t)
t

1[ε,1](t)

∣∣∣∣∣ ≤
∣∣∣∣∣ϕ(t)− ϕ(−t)

t

∣∣∣∣∣ ≤ 2 [ϕ]0,1, for t ∈ [0, 1],

1By the Mean Value Theorem (i.e. Lagrange’s Theorem, for italian readers), we have

ϕ(t)− ϕ(−t) = ϕ′(ξ) (t− (−t)) = 2 t ϕ′(ξ),

for some ξ ∈ [−t, t]. Since we are working with t ∈ [0, 1], this in particular gives

|ϕ(t)− ϕ(−t)| ≤ 2 t sup
ξ∈[−1,1]

|ϕ′(ξ)| ≤ 2 t sup
ξ∈R
|ϕ′(ξ)| = 2 t [ϕ]0,1.
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thus by the Dominated Converge Theorem, we can infer

lim
ε→0+

ˆ 1

ε

ϕ(t)− ϕ(−t)
t

dt = lim
ε→0+

ˆ 1

0

ϕ(t)− ϕ(−t)
t

1[ε,1](t) dt =

ˆ 1

0

ϕ(t)− ϕ(−t)
t

dt.

In conclusion, we can write

(6.2.3)

≠
P.V.

1

t
, ϕ

∑
=

ˆ +∞

0

ϕ(t)− ϕ(−t)
t

dt.

We can take the latter as definition of the principal value of 1/t. Before going further, we observe
that

(6.2.4)

ˆ +∞

0

∣∣∣∣∣ϕ(t)− ϕ(−t)
t

∣∣∣∣∣ dt < +∞,

i.e. the function t 7→ (ϕ(t) + ϕ(−t))/t is in L1(R+).

With this definition, it is now easy to verify that this is a tempered distribution. Linearity is
trivial and it just follows from linearity of the Lebesgue integral. Let us verify that (6.2.3) defines

a continuous functional on S. We take a sequence {ϕn}n∈N ⊂ S such that ϕn
S−→ 0, then we have∣∣∣∣≠P.V.

1

t
, ϕn

∑∣∣∣∣ =

∣∣∣∣∣
ˆ 1

0

ϕn(t)− ϕn(−t)
t

dt+

ˆ +∞

1

ϕn(t)− ϕn(−t)
t

∣∣∣∣∣
≤
∣∣∣∣∣
ˆ 1

0

ϕn(t)− ϕn(−t)
t

dt

∣∣∣∣∣+
∣∣∣∣∣
ˆ +∞

1

ϕn(t)− ϕn(−t)
t

dt

∣∣∣∣∣
≤
ˆ 1

0

∣∣∣∣∣ϕn(t)− ϕn(−t)
t

∣∣∣∣∣ dt+

ˆ +∞

1

∣∣∣∣∣ϕn(t)− ϕn(−t)
t

∣∣∣∣∣ dt.
We now observe that by (6.2.2)

lim
n→∞

ˆ 1

0

∣∣∣∣∣ϕn(t)− ϕn(−t)
t

∣∣∣∣∣ dt ≤ 2 lim
n→∞

[ϕn]0,1 = 0.

As for the integral on [1,+∞), we proceed as follows

lim
n→∞

ˆ +∞

1

∣∣∣∣∣ϕn(t)− ϕn(−t)
t

∣∣∣∣∣ dt ≤ lim
n→∞

ˆ +∞

1

|ϕn(t)|+ |ϕn(−t)|
t

dt

= lim
n→∞

ˆ +∞

1

t
[
|ϕn(t)|+ |ϕn(−t)|

]
t2

dt

≤ 2 lim
n→∞

sup
t∈R

∣∣∣∣t ϕn(t)

∣∣∣∣ ˆ +∞

1

dt

t2

= 2 lim
n→∞

[ϕn]1,0 = 0.

This finally gives

lim
n→∞

≠
P.V.

1

t
, ϕn

∑
= 0,

as desired.

Example 6.2.8 (Series of Dirac deltas). Let τ > 0 be a given time step and let {ck}k∈Z ⊂ C be a
bounded sequence, i.e.

|ck| ≤ C, for every k ∈ Z.
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The functional F : S → C defined by

F =
∑
k∈Z

ck δτ k,

is a tempered distribution. We first verify that the definition is well-posed, i.e. for every ϕ ∈ S the
series

〈F,ϕ〉 =
∑
k∈Z

ck ϕ(τ k),

is converging. Indeed, we have∣∣∣∣∣∣∑k∈Z ck ϕ(τ k)

∣∣∣∣∣∣ ≤∑k∈Z |ck| |ϕ(τ k)| =
∑
k∈Z

|ck|
1 + (τ k)2

(1 + (τ k)2) |ϕ(τ k)|

≤ C
Ç

sup
t∈R
|ϕ(t)|+ sup

t∈R
|t2 ϕ(t)|

å ∑
k∈Z

1

1 + τ2 k2
,

which implies

(6.2.5) |〈F,ϕ〉| ≤ C
(
[ϕ]0,0 + [ϕ]2,0

) ∑
k∈Z

1

1 + τ2 k2
< +∞.

The fact that F is linear is straightforward, let us verify that F is continuous on S. We take a

sequence {ϕn}n∈N ⊂ S such that ϕn
S−→ 0, then by formula (6.2.5)

lim
n→∞

|〈F,ϕn〉| ≤ C

Ñ∑
k∈Z

1

1 + τ2 k2

é
lim
n→∞

(
[ϕn]0,0 + [ϕn]2,0

)
= 0.

This shows that F is continuous on S.

3. Elementary operations on distributions

3.1. Linear combinations. Given F,G ∈ S ′ and α, β ∈ C, we can define their linear combination
αF + β G by simply posing

〈αF + β G,ϕ〉 = α 〈F,ϕ〉+ β 〈G,ϕ〉, for every ϕ ∈ S.

It is left as an (easy!) exercise to verify that αF + β G is still a tempered distribution. This in
particular entails that S ′ has a stucture of vector space over the field C.

Remark 6.3.1. It is not difficult to see that if α, β ∈ C and f, g are two slowly growing function,
then we have

αFf + β Fg = Fαβ+β g.

Indeed, by using the definitions of linear combination and of regular distribution, we have for every
ϕ ∈ S

〈αFf + β Fg, ϕ〉 = α 〈Ff , ϕ〉+ β 〈Fg, ϕ〉

= α

ˆ
R
f(t)ϕ(t) dt+ β

ˆ
R
g(t)ϕ(t) dt

=

ˆ
R

[
α f(t) + β g(t)

]
ϕ(t) dt = 〈Fαf+β g, ϕ〉.
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3.2. Change of variable. Let λ ∈ R \ {0} and h ∈ R, we define the affine change of variable
Aλ,h : R→ R such that

Aλ,h(t) = λ t+ h, for every t ∈ R.
If F ∈ S ′, we can then define its “change of variable” as the linear functional F ◦ Aλ,h : S → C
given by

(6.3.1) 〈F ◦ Aλ,h, ϕ〉 =
1

|λ|

〈
F,ϕ ◦ A 1

λ
,−h

λ

〉
, for every ϕ ∈ S,

where the symbol ◦ on the right-hand side the usual composition of functions, i.e.

ϕ ◦ A 1
λ
,−h

λ
(t) = ϕ

(
A 1

λ
,−h

λ
(t)
)

= ϕ

Å
t− h
λ

ã
, for every t ∈ R.

It is easy to see that with this definition F ◦ Aλ,h is still a tempered distribution.

The previous definition is better appreciated with an example.

Example 6.3.2 (Change of variable for regular distributions). If Ff is a regular tempered distri-
bution, generated by the slowly growing function f , from the previous definition (6.3.1) we have

〈Ff ◦ Aλ,h, ϕ〉 =
1

|λ|

〈
Ff , ϕ ◦ A 1

λ
,−h

λ

〉
=

1

|λ|

ˆ
R
f(t)ϕ

Å
t− h
λ

ã
dt

=

ˆ
R
f(λ s+ h)ϕ(s) ds,

thanks to the change of variable t = Aλ,h(s) = λ s + h. This shows that in this case Ff ◦ Aλ,h
coincides with the regular tempered distribution defined by the function f ◦Aλ,h, i.e. t 7→ f(λ t+h),
i.e.

(6.3.2) Ff ◦ Aλ,h = Ff◦Aλ,h .

Example 6.3.3 (Change of variable for a Dirac delta). Let δt0 be the Dirac delta centered at
t0 ∈ R, then for every λ ∈ R \ {0} and every h ∈ R, we have

〈δt0 ◦ Aλ,h, ϕ〉 =
1

|λ|
〈δt0 , ϕ ◦ A 1

λ
,−h

λ
〉 =

1

|λ|
ϕ

Å
t0 − h
λ

ã
.

Thus we get that

δt0 ◦ Aλ,h =
1

|λ|
δ t0−h

λ

,

i.e. this is still a Dirac delta, this time centered at the point (t0−h)/λ and multiplied by the factor
1/|λ|.

3.3. Multiplication by a function. We first need to define a suitable class of functions.

Definition 6.3.4. We say that ψ ∈ C∞(R) is a multiplier of the class S if for every k ∈ N, there
exists a constant Ck > 0 and an index mk ∈ N such that

(6.3.3)

∣∣∣∣ψ(k)(t)

∣∣∣∣ ≤ Ck (1 + |t|mk), for every t ∈ R.

In other words, every derivative of ψ has at most polynomial growth. We indicate by OM the
collection of all functions with this property.

The importance of the class OM lies in the following technical result, which also explains the
terminology we used.
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Lemma 6.3.5. Let ψ ∈ OM and ϕ ∈ S. Then we have

ψ ϕ ∈ S.

Proof. We first observe that ψ ϕ ∈ C∞(R), since both functions are infinitely times differentiable.
We fix m, k ∈ N and observe that we have

∣∣∣tm (ψ(t)ϕ(t))(k)
∣∣∣ =

∣∣∣∣∣∣tm
k∑
j=0

Ç
k

j

å
ψ(j)(t)ϕ(k−j)(t)

∣∣∣∣∣∣
≤ |t|m

k∑
j=0

Ç
k

j

å
|ψ(j)(t)| |ϕ(k−j)(t)|

≤ |t|m
k∑
j=0

Ç
k

j

å
Cj (1 + |t|mj ) |ϕ(k−j)(t)|

=
k∑
j=0

Ç
k

j

å
Cj (|t|m + |t|mj+m) |ϕ(k−j)(t)|.

We now take the supremum over t ∈ R, so to get

[ψ ϕ]m,k ≤ sup
t∈R

 k∑
j=0

Ç
k

j

å
Cj (|t|m + |t|mj+m) |ϕ(k−j)(t)|


≤

k∑
j=0

Ç
k

j

å
Cj
(
[ϕ]m,k−j + [ϕ]mj+m,k−j

)
< +∞,

(6.3.4)

thanks to the fact that ϕ ∈ S. �

Example 6.3.6. It is easy to see that S ⊂ OM , i.e. every function of the Schwartz class S is a
multiplier of the class S. Indeed, if ϕ ∈ S, then in particular we get

[ϕ]0,k = sup
t∈R
|ϕ(k)(t)| < +∞.

Thus we have

|ϕ(k)(t)| ≤ [ϕ]0,k, for every t ∈ R,

i.e. ϕ satisfies (6.3.3) with Ck = [ϕ]0,k/2 and mk = 0.

Example 6.3.7. Every polinomial is a multiplier of the class S. Indeed, if

ϕ(t) =
m∑
j=0

aj t
j , for some a0, . . . , am ∈ C,
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then for k ∈ {0, . . . ,m} we have2

∣∣∣∣ϕ(k)(t)

∣∣∣∣ =

∣∣∣∣∣∣
m∑
j=k

aj
j!

(j − k)!
tj−k

∣∣∣∣∣∣ ≤
m∑
j=k

∣∣∣∣∣aj j!

(j − k)!

∣∣∣∣∣ |t|j−k
≤

Ñ
m∑
j=k

∣∣∣∣∣aj j!

(j − k)!

∣∣∣∣∣
é

(1 + |t|m−k),

thus definition (6.3.3) is satisfied with

Ck =

Ñ
m∑
j=k

∣∣∣∣∣aj j!

(j − k)!

∣∣∣∣∣
é

and mk = m− k.

On the other hand, for k > m we directly have ϕ(k)(t) ≡ 0.

Definition 6.3.8. Let F ∈ S ′ and ψ ∈ OM , we define the multiplication ψ F as the linear functional
ψ F : S → C defined by

〈ψ F,ϕ〉 = 〈F,ψ ϕ〉, for every ϕ ∈ S.

We observe that this is well-defined, thanks to the fact that ψ ϕ ∈ S, see Lemma 6.3.5.

It is not difficult to see that ψ F ∈ S ′. Indeed, the linearity is straightforward. In order to
verify that it is continuous on S, it is sufficient to use the estimate (6.3.4) (the reader should try to
write the details, as an exercise).

Example 6.3.9. Let us compute the multiplication of the tempered distribution P.V.(1/t) with
the function ψ(t) = t. Observe that we have ψ ∈ OM by Example 6.3.7, thus the multiplication is
well-defined. By recalling (6.2.3), we have≠

tP.V.
1

t
, ϕ

∑
=

≠
P.V.

1

t
, t ϕ

∑
=

ˆ +∞

0

t ϕ(t)− (−t ϕ(−t))
t

dt

=

ˆ +∞

0

(
ϕ(t) + ϕ(−t)

)
dt

=

ˆ +∞

0
ϕ(t) dt+

ˆ +∞

0
ϕ(−t) dt

=

ˆ +∞

0
ϕ(t) dt+

ˆ 0

−∞
ϕ(s) ds =

ˆ
R
ϕ(t) dt.

In other words, the product tP.V.(1/t) coincides with the regular tempered distribution F1, gen-
erated by the constant function f(t) = 1. We can rewrite this result informally as

tP.V.
1

t
= 1.

Written in this way, this result looks of course very natural...

2In the second inequality, we use that

|t|α ≤ (1 + |t|β), for every t ∈ R,

whenever 0 ≤ α ≤ β.
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Example 6.3.10. We now compute the multiplication of the Dirac delta δ0 by the function ψ(t) =
tk, where k ∈ N \ {0}. We first observe that still by Example (6.3.7) we have ψ ∈ OM , thus the
multiplication is well-defined. For every ϕ ∈ S we have

〈tk δ0, ϕ〉 = 〈δ0, t
k ϕ〉 =

(
tk ϕ(t)

)
|t=0

= 0.

In other words, tk δ0 is the zero distribution, for every k ∈ N \ {0}. Of course, the same is still true
for ψ δ0, for every ψ ∈ OM such that ψ(0) = 0.

3.4. Convolution with a function.

Definition 6.3.11. We say that a measurable function ψ : R→ C is a convolver of the class S if
we have

(6.3.5) tk ψ ∈ L1(R), for every k ∈ N.

We indicate by OC the collection of all functions with this property.

Example 6.3.12 (The class S). By recalling that S ⊂ L1(R) (see Proposition 5.6.4) and that for
every ψ ∈ S and k ∈ N it holds

tk ψ ∈ L1(R),

by equation (5.6.4), we have S ⊂ OC . Thus every function of the Schwartz class is a convolver of
the class S.

Example 6.3.13 (Compactly supported convolvers). Let ψ ∈ L1(R) be a compactly supported
function, i.e. such that

|ψ(t)| = 0, for almost every t ∈ R \ [a, b].

Then we have ψ ∈ OC . Indeed, for every k ∈ N we have
ˆ
R
|t|k |ψ(t)| dt =

ˆ b

a
|t|k |ψ(t)| dt ≤ max{|a|k, |b|k}

ˆ b

a
|ψ(t)| dt < +∞.

Remark 6.3.14. We observe that if ψ ∈ OC , then by Corollary 5.2.4 we get in particular

F [ψ] ∈ C∞(R) with
dk

dωk
F [ψ] ∈ L∞(R), for every k ∈ N.

This implies that

ψ ∈ OC =⇒ F [ψ] ∈ OM .

The following expedient result justifies the name for the class OC .

Proposition 6.3.15. For every ψ ∈ OC and ϕ ∈ S, we have

ϕ ∗ ψ ∈ S.

Moreover, for every k,m ∈ N it holds

(6.3.6) [ϕ ∗ ψ]m,k ≤ C
(
[ϕ]m,k ‖ψ‖L1(R) + [ϕ]0,k ‖tm ψ‖L1(R)

)
,

for a constant C > 0 depending on m only.
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Proof. We first observe that ϕ ∗ ψ ∈ C∞(R), thanks to Proposition 5.6.7. In order to conclude,
we need to prove that for every m, k ∈ N we have

[ϕ ∗ ψ]m,k < +∞.
By recalling formula (5.6.6) and the definition of convolution between functions, we get∣∣∣∣tm (ϕ ∗ ψ)(k)(t)

∣∣∣∣ =

∣∣∣∣tm (ψ ∗ (ϕ(k))(t)
)∣∣∣∣ = |t|m

∣∣∣∣ˆ
R
ψ(y)ϕ(k)(t− y) dy

∣∣∣∣
≤ |t|m

ˆ
R
|ψ(y)| |ϕ(k)(t− y)| dy

≤ C
ˆ
R
|ψ(y)|

(
|t− y|m + |y|m

) ∣∣∣ϕ(k)(t− y)
∣∣∣ dy

= C

ˆ
R
|ψ(y)| |t− y|m

∣∣∣ϕ(k)(t− y)
∣∣∣ dy

+ C

ˆ
R
|ψ(y)| |y|m

∣∣∣ϕ(k)(t− y)
∣∣∣ dy,

where C > 0 depends on m only. From the previous chain of inequalities, we then get for every
t ∈ R ∣∣∣∣tm (ϕ ∗ ψ)(k)(t)

∣∣∣∣ ≤ C Å
[ϕ]m,k

ˆ
R
|ψ(y)| dy + [ϕ]0,k

ˆ
R
|ym ψ(y)| dy

ã
< +∞.

This shows that ϕ ∗ ψ ∈ S, as well as the validity of the estimate (6.3.6). �

We can now define the convolution of a tempered distribution with a convolver of the class S.

Definition 6.3.16. Let F ∈ S ′ and ψ ∈ OC . The convolution of ψ and F is the linear functional
ψ ∗ F : S → C defined by

〈ψ ∗ F,ϕ〉 = 〈F, (ψ ◦ A−1,0) ∗ ϕ〉, for every ϕ ∈ S.

As usual, the definition of convolution may look weird, but it is designed so to coincide with
the usual operation of convolution between functions, when F is a regular tempered distribution.

Example 6.3.17. Let f : R → C be a slowly growing function and let ψ ∈ OC . We denote as
usual by Ff the regular tempered distribution generated by f , then for every ϕ ∈ S we have

〈ψ ∗ Ff , ϕ〉 = 〈Ff , (ψ ◦ A−1,0) ∗ ϕ〉 =

ˆ
R
f(t) (ψ ◦ A−1,0) ∗ ϕ(t) dt

=

ˆ
R
f(t)

Åˆ
R
ψ ◦ A−1,0(t− s)ϕ(s) ds

ã
dt

=

ˆ
R
f(t)

Åˆ
R
ψ(s− t)ϕ(s) ds

ã
dt

=

ˆ
R

Åˆ
R
f(t)ψ(s− t) dt

ã
ϕ(s) ds

=

ˆ
R
f ∗ ψ(s)ϕ(s) ds = 〈Ff∗ψ, ϕ〉,

where in the fifth equality we exchanged the order of integration. This shows that

ψ ∗ Ff = Ff∗ψ.

Proposition 6.3.18. Let ψ ∈ OC and F ∈ S ′. Then ψ ∗ F ∈ S ′.
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Proof. We first observe that ψ ∗ F is well-defined, since ψ ◦ A−1,0 ∈ OC and thus for every ϕ ∈ S
we have

ψ ◦ A−1,0 ∗ ϕ ∈ S,
by Proposition 6.3.15. Then the expression

〈F,ψ ◦ A−1,0 ∗ ϕ〉,
makes sense. Linearity of ψ ∗ F is easy to verify, in order to prove ψ ∗ F ∈ S ′ we only need to

check that it is continuous on S. We take a sequence {ϕn}n∈N ⊂ S such that ϕn
S−→ 0. Then by

definition
lim
n→∞

〈ψ ∗ F,ϕn〉 = lim
n→∞

〈F, (ψ ◦ A−1,0) ∗ ϕn〉.
By using the estimate (6.3.6), we have

lim
n→∞

[
(ψ ◦ A−1,0) ∗ ϕn

]
m,k
≤ C lim

n→∞
[ϕn]m,k ‖ψ ◦ A−1,0‖L1(R)

+ C lim
n→∞

[ϕn]0,k ‖tm ψ ◦ A−1,0‖L1(R) = 0.

This shows that the sequence {(ψ ◦ A−1,0) ∗ ϕn}n∈N converges to 0 in S. Since F is continuous on
S, we thus get

lim
n→∞

〈ψ ∗ F,ϕn〉 = lim
n→∞

〈F, (ψ ◦ A−1,0) ∗ ϕn〉 = 0,

as desired. �

Example 6.3.19. Let us compute the convolution of a Dirac delta δt0 with a convolver ψ ∈ OC .
By definition, for every ϕ ∈ S we have

〈ψ ∗ δt0 , ϕ〉 = 〈δt0 , (ψ ◦ A−1,0) ∗ ϕ〉 = (ψ ◦ A−1,0) ∗ ϕ(t0) =

ˆ
R
ψ(t− t0)ϕ(t) dt = 〈Fψ◦A1,−t0

, ϕ〉.

In other words, the distribution ψ ∗ δt0 coincides with the regular tempered distribution generated
by t 7→ ψ(t− t0). In particular, for t0 = 0 we have that ψ ∗ δ0 coincides with the regular tempered
distrbution generate by ψ. Informally, we could write this as

ψ ∗ δ0 = ψ.

3.5. Convergence of distributions. On the vector space of tempered distributions, we can
define in a natural way a notion of convergence.

Definition 6.3.20. Let {Fn}n∈N ⊂ S ′ be a sequence of tempered distributions. We say that Fn
converges to F ∈ S ′ if

lim
n→∞

〈Fn, ϕ〉 = 〈F,ϕ〉, for every ϕ ∈ S.

In this case, we use the notation Fn
S′−→ F .

The following result shows that a Dirac delta can be obtained as limit in S ′ of regular tempered
distributions.

Proposition 6.3.21 (Regular approximations of a Dirac delta). Let t0 ∈ R and let f ∈ L1(R) be
such that ˆ

R
f(t) dt = c.

For every ε > 0, we define the L1 function

fε(t) =
1

ε
f

Å
t− t0
ε

ã
, for t ∈ R.



202 6. Tempered distributions

Then we have

Ffε
S′−→ c δt0 ,

that is

(6.3.7) lim
ε→0+

ˆ
R
fε(t)ϕ(t) dt = c ϕ(t0), for every ϕ ∈ S.

Proof. Let ϕ ∈ S, by definition of regular tempered distribution and of fε, we have

〈Ffε , ϕ〉 =

ˆ
R
fε(t)ϕ(t) dt =

1

ε

ˆ
R
f

Å
t− t0
ε

ã
ϕ(t) dt

=

ˆ
R
f(s)ϕ(ε s+ t0) ds.

We now observe that

lim
ε→0

(
f(s)ϕ(ε s+ t0)

)
= f(s)ϕ(t0), for a. e. s ∈ R,

and that ∣∣∣∣f(s)ϕ(ε s+ t0)

∣∣∣∣ ≤ |f(s)| [ϕ]0,0, for a. e. s ∈ R.

The last function belongs to L1(R) and does not depend on ε > 0, thus we can apply the Dominated
Convergence Theorem and obtain

lim
ε→0
〈Ffε , ϕ〉 = lim

ε→0

ˆ
R
f(s)ϕ(ε s+ t0) ds = ϕ(t0)

ˆ
R
f(s) ds = c ϕ(t0),

as desired. �

The following result is quite sophisticated. It will be useful in order to compute the Fourier
transform of some tempered distributions.

Theorem 6.3.22 (The Sochocki-Plemelj formula). For every α > 0, let us define

gα(t) =
1

t− i α
, t ∈ R.

Then the sequence of regular tempered distributions {Fgα}α>0 ⊂ S ′ generated by the family {gα}α>0

converges in S ′ to the tempered distribution

P.V.
1

t
+ i π δ0,

as α goes to 0. In other words, we have

Fgα
S′−→ P.V.

1

t
+ i π δ0,

that is

lim
α→0+

ˆ
R

ϕ(t)

t− i α
dt =

≠
P.V.

1

t
, ϕ

∑
+ i π ϕ(0), for every ϕ ∈ S.

Proof. Let ϕ ∈ S, we use the same trick that we used to define the principal value of 1/t. We split
the integral and use a change of variable, so to getˆ

R

ϕ(t)

t− i α
dt =

ˆ +∞

0

ϕ(t)

t− i α
dt+

ˆ 0

−∞

ϕ(t)

t− i α
dt

=

ˆ +∞

0

ϕ(t)

t− i α
dt−

ˆ +∞

0

ϕ(−t)
t+ i α

dt.
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With simple algebraic manipulations, we obtainˆ
R

ϕ(t)

t− i α
dt =

ˆ +∞

0

ñ
ϕ(t)

t− i α
− ϕ(−t)
t+ i α

ô
dt

=

ˆ +∞

0

ϕ(t) (t+ i α)− ϕ(−t) (t− i α)

t2 + α2
dt

=

ˆ +∞

0

ϕ(t)− ϕ(−t)
t2 + α2

t dt+ i

ˆ +∞

0

ϕ(t) + ϕ(−t)
t2 + α2

αdt.

We now need to take the limit as α goes to 0 in the last two integrals, i.e.

I1(α) =

ˆ +∞

0

ϕ(t)− ϕ(−t)
t2 + α2

t dt,

and

I2(α) =

ˆ +∞

0

ϕ(t) + ϕ(−t)
t2 + α2

αdt.

For I1(α), it is sufficient to observe that∣∣∣∣∣ϕ(t)− ϕ(−t)
t2 + α2

t

∣∣∣∣∣ ≤
∣∣∣∣∣ϕ(t)− ϕ(−t)

t

∣∣∣∣∣ for t > 0,

and the last function is in L1(R+) (recall (6.2.4)). Thus we can apply the Dominated Convergence
Theorem and get

lim
α→0+

I1(α) =

ˆ +∞

0

ϕ(t)− ϕ(−t)
t

dt =

≠
P.V.

1

t
, ϕ

∑
.

As for the second integral above, i.e. I2(α), it is sufficient to apply Exercise 6.8.10 below, which
guarantees

lim
α→0+

I2(α) = 〈π δ0, ϕ〉 = π ϕ(0).

By keeping everything together, we obtained

lim
α→0+

ˆ
R

ϕ(t)

t− i α
dt = lim

α→0+
I1(α) + i lim

α→0+
I2(α) =

≠
P.V.

1

t
, ϕ

∑
+ i 〈π δ0, ϕ〉,

as desired. �

4. Distributional derivatives

Definition 6.4.1. Let F ∈ S ′, its distributional derivative is the linear functional F ′ : S → C
defined by

〈F ′, ϕ〉 = −〈F,ϕ′〉, for every ϕ ∈ S.
More generally, for every k ∈ N\{0} the k−th distributional derivative of F is the linear functional

F (k) defined by

〈F (k), ϕ〉 = (−1)k 〈F,ϕ(k)〉, for every ϕ ∈ S.
Observe that the definitions are well-posed, since if ϕ ∈ S, then ϕ(k) ∈ S for every k ∈ N \ {0}.

The distributional derivative of a tempered distribution still defines a tempered distribution.
This is the content of the next result.

Proposition 6.4.2. Let F ∈ S ′, then for every k ∈ N \ {0} we have F (k) ∈ S ′ as well.
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Proof. Let us prove the result for k = 1. We take a sequence {ϕn}n∈N ⊂ S such that ϕn
S−→ 0 in

S. This means that

lim
n→∞

[ϕn]m,` = 0, for every m, ` ∈ N.

Observe that ϕ′n ∈ S thanks to Proposition 5.6.5. Moreover, for every m, ` ∈ N we have

[ϕ′n]m,` = sup
t∈R

∣∣∣∣∣tm d`

dt`
ϕ′n(t)

∣∣∣∣∣ = sup
t∈R

∣∣∣∣tm ϕ(`+1)
n (t)

∣∣∣∣ = [ϕn]m,`+1.

This implies that the sequence {ϕ′n}n∈N ⊂ S is such that ϕ′n
S−→ 0 in S. Finally, by using the

definition of distributional derivative, we get

lim
n→∞

〈F,ϕn〉 = − lim
n→∞

〈F,ϕ′n〉 = 0,

where in the last passage we used that F ∈ S ′, so in particular it is continuous on S. �

The following result is important, it enables one to compute the distributional derivative of a
piecewise C1 function.

Theorem 6.4.3. Let f : R → C be a piecewise C1 function, such that f and f ′ have only jump
discontinuities at the points {tn}n∈N, with

|tk − tj | ≥ δ > 0, for every k 6= j ∈ N.

Let us suppose in addition that there exists C > 0 and m ∈ N such that

(6.4.1) |f(t)|+ |f ′(t)| ≤ C (1 + |t|m), for every t ∈ R.

Then the distributional derivative of Ff is given by

(6.4.2) F ′f = Ff ′ +
∞∑
n=0

Ä
f(t+n )− f(t−n )

ä
δtn .

Proof. In order to give a better understanding of the proof, we confine ourselves to prove the
result in the case where f and f ′ have only one jump discontinuity, in correspondence of the point
t0.

We first observe that (6.4.1) guarantees that both f and f ′ are slowly growing functions, thus
it is possible to consider Ff and Ff ′ . For every ϕ ∈ S, by using the definition of distributional
derivative we then have

〈F ′f , ϕ〉 = −〈Ff , ϕ′〉 = −
ˆ
R
f(t)ϕ′(t) dt

= −
ˆ t0

−∞
f(t)ϕ′(t) dt−

ˆ ∞
t0

f(t)ϕ′(t) dt

= −
[
f(t)ϕ(t)

]t0
−∞

+

ˆ t0

−∞
f ′(t)ϕ(t) dt

−
[
f(t)ϕ(t)

]+∞
t0

+

ˆ +∞

t0

f ′(t)ϕ(t) dt.

In order to conclude, we just need to observe that since ϕ ∈ S and f verifies (6.4.1), we have

lim
t→+∞

f(t)ϕ(t) = lim
t→−∞

f(t)ϕ(t) = 0.
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Thus we obtain

〈F ′f , ϕ〉 = f(t+0 )ϕ(t0)− f(t−0 )ϕ(t0) +

ˆ
R
f ′(t)ϕ(t) dt

=
¨Ä
f(t+0 )− f(t−0 )

ä
δt0 , ϕ

∂
+ 〈Ff ′ , ϕ〉.

This concludes the proof. �

Example 6.4.4 (Distributional derivative of the Heaviside function). Let us consider the regular
tempered distribution FH , generated by the Heaviside step function H. From formula (6.4.2), we
find again

F ′H = δ0,

as we computed “by hand” in Section 1.

Example 6.4.5 (Distributional derivative of rect). Let us compute the distributional derivative of
the rectangular function or, more precisely, of the regular tempered distribution Frect generated by
the rectangular function. Observe that t 7→ rect(t) verifies the hypotheses of Theorem 6.4.3, since
it is a piecewise constant function, with compact support. Observe that

rect′(t) = 0 for |t| 6= 1

2
,

and rect has only two discontinuity points

t0 = −1

2
and t1 =

1

2
,

with jumps
rect(t+0 )− rect(t−0 ) = 1 and rect(t+1 )− rect(t−1 ) = −1.

Thus from formula (6.4.2) we get
F ′rect = δ− 1

2
− δ 1

2
.

In other words, for every ϕ ∈ S we have

〈F ′rect, ϕ〉 = ϕ

Å
−1

2

ã
− ϕ

Å
1

2

ã
.

Example 6.4.6 (Distributional derivative of the sawtooth wave). Let us compute the distributional
derivative of the sawtooth wave

SW (t) =
∞∑
k=0

(t− k)
[
H(t− k)−H(t− k − 1)

]
, t ∈ R.

Observe that this verifies the hypotheses of Theorem 6.4.3. Indeed, SW is piecewise C1, with SW
and SW ′ discontinuous at the points tn = n for n ∈ N. More precisely, we observe that for t0 = 0
the function SW is continuous, thus

SW (0−) = SW (0+),

while for n ≥ 1 the jump is −1, i.e.

SW (n+)− SW (n−) = −1.

Also observe that
SW ′(t) = H(t), for t 6∈ N.

Thus from (6.4.2) we obtain

F ′SW = FH −
∞∑
n=1

δn,
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where FH is the regular tempered distribution generated by the Heaviside step function SW ′(t) =
H(t). In other words, for every ϕ ∈ S we have

〈F ′SW , ϕ〉 =

ˆ +∞

0
ϕ(t) dt−

∞∑
n=1

ϕ(n).

Corollary 6.4.7. Let f : R→ C satisfy the hypothesis of Theorem 6.4.3. Let us suppose in addition
that f is continuous. Then the distributional derivative of Ff is the regular tempered distribution
generated by f ′, i.e.

F ′f = Ff ′ .

In other words, we have

〈F ′f , ϕ〉 =

ˆ
R
f ′(t)ϕ(t) dt, for every ϕ ∈ S.

Remark 6.4.8. The previous result can be rephrased informally by saying that “the distributional
derivative of f coincides with the classical one f ′ ”, under the previous assumptions.

Example 6.4.9 (Derivative of the ramp function). We consider the unitary ramp function R(t) =
tH(t). This verifies the assumptions of Corollary 6.4.7, thus by observing that

R′(t) = H(t), for t 6= 0,

we obtain

F ′R = FH .

Informally, this means that the Heaviside step function is the distributional derivative of the unitary
ramp function.

Example 6.4.10 (Derivative of the absolute value). We consider the function f(t) = |t|. This
function verifies the assumptions of Corollary 6.4.7 and

d

dt
|t| =

®
1, if t > 0,
−1, if t < 0.

Then the distributional derivative of the regular tempered distribution F|t| is the regular tempered

distribution generated by d
dt |t|.

Proposition 6.4.11. Let F ∈ S ′ be such that F ′ = 0, i.e.

〈F ′, ϕ〉 = 0, for every ϕ ∈ S.

Then F is the regular tempered distribution generated by a constant function, i.e. there exists c ∈ C
such that

〈F,ϕ〉 = c

ˆ
R
ϕ(t) dt, for every ϕ ∈ S.

5. The distributional Fourier transform

The following simple result suggests a way to define the Fourier transform for a tempered distribu-
tion.

Lemma 6.5.1. Let f, g ∈ L1(R), then we haveˆ
R
F [f ](ω) g(ω) dω =

ˆ
R
f(ω)F [g](ω) dω.
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Proof. We first observe that both sides are well-defined, since by Theorem 5.2.1 we have

F [f ] ∈ L∞(R) and F [g] ∈ L∞(R),

thus by Holder’s inequality

F [f ] g ∈ L1(R) and f F [g] ∈ L1(R).

By applying Fubini’s Theorem and exchanging the order of integration, we getˆ
R
F [f ](ω) g(ω) dω =

ˆ
R

Åˆ
R
e−i tω f(t) dt

ã
g(ω) dω

=

ˆ
R

Åˆ
R
e−i tω g(ω) dω

ã
f(t) dt

=

ˆ
R
f(t)F [g](t) dω

which is the desired formula. �

Definition 6.5.2. Let F ∈ S ′, the Fourier transform of F is the linear functional F [F ] : S → C
defined by

〈F [F ], ϕ〉 = 〈F,F [ϕ]〉, for every ϕ ∈ S.
Observe that for every ϕ ∈ S, we know by Theorem 5.6.6 that F [ϕ] ∈ S as well, thus

〈F,F [ϕ]〉,

is well-defined.

The next result shows that this definition of Fourier transform extends to S ′ the definition we
gave for L1(R). In other words, for regular distributions generated by L1 functions, we are back to
the usual definition.

Proposition 6.5.3. Let f ∈ L1(R) and let Ff be the regular tempered distribution generated by f .
Then we have

F [Ff ] = FF [f ],

i.e. the distributional Fourier transform of Ff coincides with the tempered distribution generated
by F [f ]. This implies that

〈F [Ff ], ϕ〉 =

ˆ
R
F [f ](ω)ϕ(ω) dω, for every ϕ ∈ S.

Proof. By using the definition of Fourier transform for a tempered distribution and Lemma 6.5.1,
for every ϕ ∈ S we have

〈F [Ff ], ϕ〉 = 〈Ff ,F [ϕ]〉 =

ˆ
R
f(ω)F [ϕ](ω) dω

=

ˆ
R
F [f ](ω)ϕ(ω) dω = 〈FF [f ], ϕ〉.

This shows the desired identity. �

The same can be said for the distributional Fourier transform of regular tempered distribution
generated by a function in L2.
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Proposition 6.5.4. Let f ∈ L2(R), then we have

F [Ff ] = FFL2 [f ],

i.e. the distributional Fourier transform of Ff coincides with the tempered distribution generated
by FL2 [f ] defined in Section 6 of Chapter 5.

Proof. For every ϕ ∈ S, by definition of distributional Fourier transform we have

(6.5.1) 〈F [Ff ], ϕ〉 = 〈Ff ,F [ϕ]〉 =

ˆ
R
f(ω)F [ϕ](ω) dω.

We now use Parseval’s formula in L2 (see Theorem 5.6.8) for the two functions3

f and F [ϕ]∗,

which gives ˆ
R
f(ω)F [ϕ](ω) dω =

1

2π

ˆ
R
FL2 [f ](ω)F

[
F [ϕ]∗

]
(ω)∗ dω.

We now observe that

F
[
F [ϕ]∗

]
(ω)∗ =

Åˆ
R
e−i t ω F [ϕ](t)∗ dt

ã∗
=

ˆ
R
ei t ω F [ϕ](t) dt = 2π ϕ(ω),

where in the last identity we used the inversion formula, i.e. Theorem 5.4.2. This shows thatˆ
R
f(ω)F [ϕ](ω) dω =

ˆ
R
FL2 [f ](ω)ϕ(ω) dω.

By using this information in (6.5.1), we get the conclusion. �

Example 6.5.5 (Fourier transform of a Dirac delta). Let t0 ∈ R, we have shown that δt0 ∈ S ′.
Let us compute its Fourier transform. By using the definitions, we have

〈F [δt0 ], ϕ〉 = 〈δt0 ,F [ϕ]〉 = F [ϕ](t0) =

ˆ
R
e−i ω t0 ϕ(ω) dω.

This shows that F [δt0 ] coincides with the tempered distribution generated by the bounded function
ω 7→ e−i ω t0 . Thus we could informally write

F [δt0 ](ω) = e−i ω t0 .

Observe in particular that for t0 = 0 we have (by still using the informal writing as above)

F [δ0](ω) = 1,

i.e. the Fourier transform of δ0 is the constant function valued 1.

Example 6.5.6 (Fourier transform of a constant function). We now consider the regular tempered
distribution F1 generated by the constant function, valued 1. For every ϕ ∈ S we have

〈F [F1], ϕ〉 = 〈F1,F [ϕ]〉 =

ˆ
R
F [ϕ](ω) dω.

Since ϕ ∈ S, it verifies the hypothesis of the Inversion Formula of Theorem 5.4.2. Then we have

ϕ(t) =
1

2π

ˆ
R
F [ϕ](ω) ei t ω dω,

3Recall that for a complex number z, we have (z∗)∗ = z.
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and by taking t = 0 we get

2π ϕ(0) =

ˆ
R
F [ϕ](ω) dω.

This shows that

〈F [F1], ϕ〉 = 〈F1,F [ϕ]〉 =

ˆ
R
F [ϕ](ω) dω = 2π ϕ(0),

that is

F [F1] = 2π δ0.

The following result collects the properties of the Fourier transform of a tempered distribution.
These are analogue to those for L1 functions seen in Chapter 5.

Theorem 6.5.7. Let F ∈ S ′, then F [F ] is a tempered distribution as well. Moreover, the following
formulas hold in the sense of distributions

(6.5.2)
dk

dωk
F [F ] = (−i)k F [tk F ], for every k ∈ N,

(6.5.3) F [F (k)] = (i ω)k F [F ], for every k ∈ N,

(6.5.4) F [F ◦ Aλ,h] =
1

λ
ei

h
λ
ω F [F ] ◦ A 1

λ
,0, for every λ > 0, h ∈ R,

(6.5.5) F [ei ω0 t F ] = F [F ] ◦ A1,−ω0 , for every ω0 ∈ R,

(6.5.6) F
[
F [F ]

]
= 2π F ◦ A−1,0, (duality formula)

(6.5.7) F [ψ ∗ F ] = F [ψ]F [F ], for every ψ ∈ OC .

Proof. At first, we need to show that F [F ] is linear and continuous on S. Linearity easily follows
from its definition and the linearity of the Fourier transform for functions. In order to verify the
continuity, we have to show that

lim
n→∞

〈F [F ], ϕn〉 = 0,

for every {ϕ}n∈N ⊂ S such that ϕn
S−→ 0. By definition of distributional Fourier transform, we

have

〈F [F ], ϕn〉 = 〈F,F [ϕn]〉,
then we get the conclusion by using that F is continuous on S and

(6.5.8) ϕn
S−→ 0 =⇒ F [ϕn]

S−→ 0.

In order to prove the last result, we recall that by proceeding as in the proof of Theorem 5.6.6, we
have ∣∣∣∣∣ωm dk

dωk
F [ϕn](ω)

∣∣∣∣∣ =

∣∣∣∣F ï dmdtm (tk ϕn)

ò
(ω)

∣∣∣∣ ,
thus by taking the supremum we get[

F [ϕn]
]
m,k

=

∥∥∥∥F ï dmdtm (tk ϕn)

ò∥∥∥∥
L∞(R)

.
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If we now use Theorem 5.2.1 and in particular the estimate (5.2.1), we obtain[
F [ϕn]

]
m,k
≤
∥∥∥∥ dmdtm (tk ϕn)

∥∥∥∥
L1(R)

.

We can further use the estimate of Exercise 5.8.10 for the function
dm

dtm
(tk ϕn) ∈ S,

so to get [
F [ϕn]

]
m,k
≤ 4

√ï
dm

dtm
(tk ϕn)

ò
0,0

ï
dm

dtm
(tk ϕn)

ò
2,0
.

It is now quite easy to prove (6.5.8) by using this estimate.

Let us prove formula (6.5.2). By using first the definition of distributional derivative and then the
definition of distributional Fourier transform, for every ϕ ∈ S we getÆ

dk

dωk
F [F ], ϕ

∏
= (−1)k〈F [F ], ϕ(k)〉 = (−1)k 〈F,F [ϕ(k)]〉.

We now recall that by Corollary 5.3.7, we have

F [ϕ(k)](ω) = (i ω)k F [ϕ](ω),

and observe that the function ω 7→ ωk belongs to the class OM (recall Example 6.3.7). Thus we
get Æ

dk

dωk
F [F ], ϕ

∏
= (−1)k 〈F, (i ω)k F [ϕ](ω)〉 = (−i)k 〈ωkF,F [ϕ]〉

= (−i)k 〈F [ωk F ], ϕ〉,
which gives the desired result.

We prove formula (6.5.3). We take ϕ ∈ S, then we get

〈F [F (k)], ϕ〉 = 〈F (k),F [ϕ]〉 = (−1)k
Æ
F,

dk

dωk
F [ϕ]

∏
.

On the other hand, by Corollary 5.2.4 we have

dk

dωk
F [ϕ](ω) = (−i)k F [tk ϕ](ω).

Thus we can proceed similarly as before, i.e.

〈F [F (k)], ϕ〉 = 〈F (k),F [ϕ]〉 = (−1)k
Æ
F,

dk

dωk
F [ϕ]

∏
= ik 〈F,F [tk ϕ]〉

= ik 〈F [F ], tk ϕ〉

= 〈(i t)k F [F ], ϕ〉,

which proves the formula. Observe that the function t 7→ (i t)k belongs to OM (recall Remark
6.3.7), thus the multiplication is well-defined.

The proofs of (6.5.4), (6.5.5) and (6.5.6) are achieved in a similar way, by appealing to the relevant
formulas for the Fourier transform of functions.
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As for formula (6.5.7), we observe that by Remark 6.3.14 we have F [ψ] ∈ OM for every ψ ∈ OC .
Thus the product F [ψ]F [F ] is well-defined in S ′ and the formula does make sense. In order to
prove it, by first using the definition of distributional Fourier transform and then the definition of
convolution, for every ϕ ∈ S we get

(6.5.9) 〈F [ψ ∗ F ], ϕ〉 = 〈ψ ∗ F,F [ϕ]〉 = 〈F, (ψ ◦ A−1,0) ∗ F [ϕ]〉.

We now observe that

(ψ ◦ A−1,0) ∗ F [ϕ](t) =

ˆ
R
ψ(y − t)F [ϕ](y) dy

=

ˆ
R
ϕ(y)F [ψ ◦ A1,−t][y] dy,

thanks to Lemma 6.5.1. We can use that (see Proposition 5.3.5)

F [ψ ◦ A1,−t](y) = e−i y tF [ψ](y),

thus in conclusion

(ψ ◦ A−1,0) ∗ F [ϕ](t) =

ˆ
R
ψ(y − t)F [ϕ](y) dy

=

ˆ
R
ϕ(y)F [ψ ◦ A1,−t][y] dy

=

ˆ
R
e−i t y ϕ(y)F [ψ](y) dy = F

[
ϕF [ψ]

]
(t).

By using this in (6.5.9), we obtain

〈F [ψ ∗ F ], ϕ〉 =
〈
F,F

[
ϕF [ψ]

]〉
.

If we now use the definition of distributional Fourier transform and the definition of multiplication
in S ′ by the function F [ψ], we get the conclusion. �

Definition 6.5.8. Let P : S → S be a linear differential operator with constant coefficients, i.e.

P (u) =
m∑
k=0

ak
dku

dtk
, for u ∈ S,

where a0, . . . , am ∈ C. We say that a tempered distribution F ∈ S ′ is a fundamental solution of
the operator P if

P (F ) = δ0, in S ′,
i.e. if it holds

m∑
k=0

(−1)k ak 〈F,ϕ(k)〉 = ϕ(0), for every ϕ ∈ S.

Example 6.5.9. Let us consider the operator

P (u) = −u′′ + u.

We look for a fundamental solution of this operator, i.e. we look for a solution in S ′ of the equation

−F ′′ + F = δ0.

By using the Fourier transform in S ′, the previous equation gives

−F [F ′′] + F [F ] = F [δ0].
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By using (6.5.3), we get Ä
ω2 + 1

ä
F [F ] = F1,

that is

F [F ] =
1

1 + ω2
F1.

This shows that the Fourier transform of F is the regular tempered distribution generated by the
function

ω 7→ 1

1 + ω2
.

We then observe that this function is the Fourier transform of the L1 function

t 7→ 1

2
e−|t|,

thanks to Exercise 5.1.5. We can thus conclude that the regular tempered distribution generated
by the last function is a fundamental solution of the operator P . In other words, we can informally
write

− d2

dt2

Å
1

2
e−|t|

ã
+

1

2
e−|t| = δ0, in S ′.

We refer to Exercise 6.9.2 below for a generalization of this example.

6. Periodic distributions

In this section, we still make use of the notation Aλ,h(t) = λ t+ h.

Definition 6.6.1. Let F ∈ S ′ and τ > 0, we say that F is τ−periodic if

〈F ◦ A1,τ , ϕ〉 = 〈F,ϕ〉, for every ϕ ∈ S.

By recalling the definition of A1,τ (t) = t+ τ and formula (6.3.1) for the change of variabile, this is
the same as

〈F,ϕ ◦ A1,−τ 〉 = 〈F,ϕ〉, for every ϕ ∈ S.
Informally, this property could be written as

F (t+ τ) = F (t).

Example 6.6.2 (The Dirac comb or sampling function). An important example of periodic tem-
pered distribution is the so-called Dirac comb (also called sampling function) with time step τ > 0

Pτ =
∑
k∈Z

δk τ .

This is a particular case of the family of tempered distributions encountered in Example 6.2.8. By
definition, it acts as

〈Pτ , ϕ〉 =
∑
k∈Z

ϕ(τ k), for every ϕ ∈ S.

Theorem 6.6.3 (Poisson’s summation formula). Let f ∈ S, then we have

(6.6.1)
∑
k∈Z

f(k) =
∑
n∈Z
F [f ](2π n),

where both series are absolutely convergent.



6. Periodic distributions 213

Proof. We first observe that the absolute convergence of the two series follows from the fact that
both f and F [f ] belong to S (recall Theorem 5.6.6). Then, we have

|f(k)| = (1 + k2)
|f(k)|
1 + k2

≤ [f ]0,0 + [f ]2,0
1 + k2

, for every k ∈ Z,

and the latter is the k−th term of a converging series. The same computations apply to F [f ].

Let us now prove (6.6.1). We define the 1−periodic repetition of f , i.e. we consider the function

f1(t) =
∑
k∈Z

f(t+ k), t ∈ R.

We observe that this series of functions converges totally on closed and bounded intervals and f1 is
a C∞ function (thanks to the fact that f ∈ S). Thus, by Theorem C.2.3 we can write the Fourier
expansion of f1, which is given by

(6.6.2) f1(t) =
∑
n∈Z

cn e
2π i n t.

The coefficients cn are given by

cn =

ˆ 1
2

− 1
2

f1(t) e−2π i n t dt =

ˆ 1
2

− 1
2

∑
k∈Z

f(t+ k) e−2π i n t dt

=
∑
k∈Z

ˆ 1
2

− 1
2

f(t+ k) e−2π i n t dt

=
∑
k∈Z

ˆ 1
2

+k

− 1
2

+k
f(s) e−2π i n s ds,

where in the last equality we used the change of variable t+ k = s and the fact that

e2π i n (s−k) = e2π i n s.

We now observe that∑
k∈Z

ˆ 1
2

+k

− 1
2

+k
f(s) e−2π i n s ds =

ˆ
R
f(s) e2π i n s ds = F [f ](2π n),

that is

cn = F [f ](2π n), for every n ∈ Z.

By using this in (6.6.2), we get

f1(t) =
∑
n∈Z
F [f ](2π n) e2π i n t,

and by recalling the definition of f1, this is the same as∑
k∈Z

f(t+ k) =
∑
n∈Z
F [f ](2π n) e2π i n t.

If we now use this identity with t = 0, we get (6.6.1) as desired. �

Remark 6.6.4. The hypothesis f ∈ S of the previous Theorem can be considerably relaxed. For
simplicity, we avoided to state the result in its most general form.
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Example 6.6.5 (Fourier transform of a Dirac comb). Let us consider again the Dirac comb Pτ of
Example 6.6.2. We use Poisson’s summation formula (6.6.1) to compute its Fourier transform. By
using the definition of Fourier transform for a tempered distrbution, i.e. Definition 6.5.2, for every
ϕ ∈ S we have

〈F [Pτ ], ϕ〉 = 〈Pτ ,F [ϕ]〉 =
∑
k∈Z
F [ϕ](k τ)

=
∑
k∈Z

ˆ
R
ei t k τ ϕ(t) dt

=
2π

τ

∑
k∈Z

ˆ
R
e2π i s k ϕ

Å
2π

τ
s

ã
ds

=
2π

τ

∑
k∈Z
F
[
ϕ ◦ A 2π

τ
,0

]
(2π k),

where we used the change of variable t = (2π s)/τ . We can now use Poisson’s summation formula
for the function ϕ ◦ A2π/τ,0 to infer

2π

τ

∑
k∈Z
F
[
ϕ ◦ A 2π

τ
,0

]
(2π k) =

2π

τ

∑
n∈Z

ϕ ◦ A 2π
τ
,0(n) =

2π

τ

∑
n∈Z

ϕ

Å
2π n

τ

ã
.

We now observe that the last series coincides with a suitable Dirac comb applied to ϕ, i.e.

2π

τ

∑
n∈Z

ϕ

Å
2π n

τ

ã
=

2π

τ

〈
P 2π

τ
, ϕ
〉
.

In other words, for every time step τ > 0, we showed that

F [Pτ ] =
2π

τ
P 2π

τ
,

which shows that the Fourier transform of a Dirac comb is still a Dirac comb.

7. Hilbert transform

In this section we give a brief treatment of the so-called Hilbert transform. At a formal level, this
is the operator defined by

H[ϕ](s) =

ˆ
R

ϕ(t)

s− t
dt.

In other words, H[ϕ] is the convolution between ϕ and the function t 7→ 1/t. However, since the
latter is not even in L1

loc(R) as already observed, the correct definition of H[ϕ] needs some care.

We have seen in Example 6.2.7 that we can treat 1/t as a tempered distribution, i.e. we may
consider the distribution P.V.1/t in place of the function 1/t. Then, for every ϕ ∈ OC , we can
define the convolution in distributional sense, as in Definition 6.3.16. This leads to the

Definition 6.7.1. The Hilbert transform of a function ϕ ∈ OC is defined by

H[ϕ] = ϕ ∗
Å

P.V.
1

t

ã
,

i.e. for every ψ ∈ S we have

〈H[ϕ], ψ〉 =

≠
P.V.

1

t
, (ϕ ◦ A−1,0 ∗ ψ)

∑
.
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Observe that by definition H[ϕ] ∈ S ′. In other words, the Hilbert transform of a function ϕ ∈ OC
is a tempered distribution.

Proposition 6.7.2 (Hilbert VS. Fourier). Let us define the sign function

sign(t) =

®
−1, if t < 0,

1, if t > 0.

For every ϕ ∈ OC we have

F
[
H[ϕ]

]
= −π i FsignF [ϕ],

where as usual Fsign denotes the regular tempered distribution generated by sign.

Proof. By using the definition of Hilbert transform and formula (6.5.7) for the Fourier transform
of a convolution, we have

F
[
H[ϕ]

]
= F [ϕ]F

ï
P.V.

1

t

ò
.

Then the conclusion follows by using Exercise 6.8.5, which computes the last Fourier transform. �

Remark 6.7.3. The previous result can be informally rephrased as

F
[
H[ϕ]

]
(ω) = −π i sign(ω)F [ϕ](ω).

Example 6.7.4. Let us take the rectangular function and recall that

F [rect](ω) = sinc

Å
ω

2π

ã
.

By observing that rect ∈ OC (thanks to Example 6.3.13), from the previous result we get that

F
[
H[rect]

]
= −i π sinc

Å
ω

2π

ã
Fsign.

In other words, the distributional Fourier transform of H[rect] is the regular tempered distribution
generated by the slowly growing function

ω 7→


−i π sinc

Å
ω

2π

ã
, if ω > 0,

i π sinc

Å
ω

2π

ã
, if ω < 0.

The Hilbert transform of rect can be computed explicitly, see Exercise 6.9.8 below.

8. Exercises

Exercise 6.8.1. Prove the following formula

t δ′0 = −δ0, in S ′.

Solution. By using the definition of multiplication, we have

〈t δ′0, ϕ〉 = 〈δ′0, t ϕ〉, for every ϕ ∈ S.
We now use the definition of distributional derivative, so to get

〈t δ′0, ϕ〉 = −〈δ0, (t ϕ)′〉, for every ϕ ∈ S.
By observing that

(t ϕ(t))′ = ϕ(t) + t ϕ′(t),
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and using the definition of δ0, we now get the conclusion. �

Exercise 6.8.2 (Distributional Leibniz rule). Let ψ ∈ OM and F ∈ S ′. Prove the validity of the
Leibniz rule for the distributional derivative of the product ψ F , i.e. show that

(ψ F )′ = ψ′ F + ψ F ′, in S ′.

Solution. We take ϕ ∈ S, we have to show that

〈(ψ F )′, ϕ〉 = 〈ψ′ F + ψ F ′, ϕ〉.

We first observe that if ψ ∈ O, then by definition we have ψ′ ∈ OM . Thus the previous formula
makes sense. We start computing: by using the definition of distributional derivative and that of
multiplication, we get

〈(ψ F )′, ϕ〉 = −〈ψ F,ϕ〉 = −〈F,ψ ϕ′〉
= −〈F, (ψ ϕ)′〉+ 〈F,ψ′ ϕ〉.

(6.8.1)

In the last identity we used the Leibniz rule for functions, so that

(ψ ϕ)′ = ψ′ ϕ+ ψ ϕ′.

We now use again the definition distributional derivative and that of multiplication, so that

−〈F, (ψ ϕ)′〉 = 〈F ′, ψ ϕ〉 = 〈ψ F,ϕ〉,

and

〈F,ψ′ ϕ〉 = 〈ψ′ F,ϕ〉.

By using the last two identities in (6.8.1), we end up with

〈(ψ F )′, ϕ〉 = 〈ψ F,ϕ〉+ 〈ψ′ F,ϕ〉 = 〈ψ F ′ + ψ′ F ϕ〉,

as desired. �

Exercise 6.8.3. Prove that if f(t) = sinc(t), then Ff is a tempered distribution. Show that its
Fourier transform is the regular tempered distribution generated by

h(ω) = 1[−π,π](ω).

Solution. We know from Example 3.3.15 that sinc ∈ Lp(R) for every 1 < p ≤ ∞, thus it is a
slowly growing function by Proposition 6.2.6. This gives that Ff is a tempered distribution. We
can use two different methods to compute its Fourier transform.

First method. We recall that

F [rect](ω) = sinc

Å
ω

2π

ã
,

thus we get

sincω = F [rect](2π ω) =
1

2π
F
[
1[−π,π]

]
(ω).
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By using this identity and Lemma 6.5.1, for every ϕ ∈ S we get4

〈F [Ff ], ϕ〉 =

ˆ
R

sinc(ω)F [ϕ](ω) dω =
1

2π

ˆ
R
F
[
1[−π,π]

]
(ω)F [ϕ](ω) dω

=
1

2π

ˆ
R

1[−π,π](ω)F
[
F [ϕ]

]
(ω) dω

=

ˆ
R

1[−π,π](ω)ϕ(−ω) dω,

thanks to the duality formula (5.4.6) applied to ϕ ∈ S. By using the simple change of variable
ω 7→ −ω and the fact that 1[−π,π] is an even function, we get the conclusion.

Second method. We have seen in Exercise 5.9.5, that

FL2 [sinc] = 1[−π,π].

By appealing to Proposition 6.5.4, we directly get the conclusion. �

Exercise 6.8.4. Prove that the Fourier transform of the regular tempered distribution generated
by the Heaviside step function is given by

F [FH ] =
1

i
P.V.

1

ω
+ π δ0.

Solution. We want to compute this Fourier transform by restricting the Laplace transform of H
to the imaginary axis. However, since the imaginary axis is the critical axis for such a Laplace
transform, much care is needed in this operation. We first recall that (see Example 4.1.5)

L[H](z) =
1

z
, for Re(z) > 0.

We now use the definition of Fourier transform for a tempered distribution and get

〈F [FH ], ϕ〉 = 〈FH ,F [ϕ]〉 =

ˆ +∞

0
F [ϕ](ω) dω.

Then we observe that ˆ +∞

0
F [ϕ](ω) dω = lim

α→0+

ˆ +∞

0
e−αω F [ϕ](ω) dω,

thanks to the Dominated Convergence Theorem. Let us take α > 0 and consider the last integral:
we have ˆ +∞

0
e−αω F [ϕ](ω) dω =

ˆ +∞

0
e−αω

Åˆ
R
e−i t ω ϕ(t) dt

ã
dω

=

ˆ
R

Çˆ +∞

0
e−(α+i t)ω dω

å
ϕ(t) dt,

where we used Fubini’s and Tonelli’s Theorems in order to exchange the order of integration. We
can now recognize that the integral in ω is a Laplace transform: we haveˆ +∞

0
e−(α+i t)ω dω = L[H](α+ i t) =

1

α+ i t
, for α > 0, t ∈ R.

4Observe that we could also use Parseval’s formula in the third passage and get directly the conclusion.
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By keeping everything together, up to now we obtained

〈F [FH ], ϕ〉 = lim
α→0+

ˆ
R

ϕ(t)

α+ i t
dt.

By recalling that 1/i = −i, we getˆ
R

ϕ(t)

α+ i t
dt = −i

ˆ
R

ϕ(t)

t− i α
dt,

and thus

〈F [FH ], ϕ〉 = −i lim
α→0+

ˆ
R

ϕ(t)

t− i α
dt.

We can now conclude by appealing to the Sochocki-Plemelj Formula, i.e. Theorem 6.3.22. �

Exercise 6.8.5. Let us consider the piecewise constant function

sign(t) =

®
−1, if t < 0,

1 if t > 0.

Show that the Fourier transform of the principal value of 1/t is given by

F
ï
P.V.

1

t

ò
= −π i Fsign.

Solution. We already know from Exercise 6.8.4 that

F [FH ] =
1

i
P.V.

1

ω
+ π δ0,

that is

P.V.
1

ω
= iF [FH ]− i π δ0.

We take the distributional Fourier transform on both sides, so to get

F
ï
P.V.

1

ω

ò
= iF

[
F [FH ]

]
− i π F1,

where we used that the Fourier transform of δ0 is the regular tempered distribution generated by
the constant function 1 (recall Example 6.5.5). By using the duality formula (6.5.6) in S ′ , we get

F
ï
P.V.

1

ω

ò
= 2π i FH ◦ A−1,0 − i π F1 = i π

(
2FH ◦ A−1,0 − F1

)
.

By recalling (6.3.2) and Remark 6.3.1, we get

2FH ◦ A−1,0 − F1 = 2FH◦A−1,0 − F1 = F2H◦A−1,0−1.

Finally, by observing that

2H ◦ A−1,0(t)− 1 = −sign(t),

we get the conclusion. �

Exercise 6.8.6. Show that the Fourier transform of Fsign is given by

F [Fsign] = −2 iP.V.
1

ω
.

Solution. Here we just need to use the previous exercise and the duality formula in S ′, i.e. formula
(6.5.6). We leave the details to the reader. �
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Exercise 6.8.7. Let ω0 ∈ R and let us consider the regular tempered distribution Fei t ω0 generated
by the bounded function t 7→ ei t ω0. Show that

F [Fei t ω0 ] = 2π δω0 .

Solution. By using the definition of distributional Fourier transform, for every ϕ ∈ S we have

〈F [Fei t ω0 ], ϕ〉 = 〈Fei t ω0 ,F [ϕ]〉 =

ˆ
R
ei t ω0 F [ϕ](t) dt.

By using the inversion formula, we know thatˆ
R
ei t ω0 F [ϕ](ω) dω = 2π ϕ(ω0).

This implies that

F [Fei t ω0 ] = 2π δω0 .

as desired. �

Exercise 6.8.8. Let us consider the regular tempered distributions Fcos and Fsin generated by the
bounded functions t 7→ cos t and t 7→ sin t, respectively. Show that

F [Fcos] = π
(
δ1 + δ−1

)
,

and

F [Fsin] = π i
(
δ−1 − δ1

)
.

Solution. We recall that

cos t =
ei t + e−i t

2
and sin t =

ei t − e−i t

2 i
,

that is

Fcos =
1

2
Fei t +

1

2
Fe−i t and Fsin =

1

2 i
Fei t −

1

2 i
Fe−i t .

By using the linearity of the Fourier transform and the previous exercise, we thus get

F [Fcos] = π δ1 + π δ−1,

and

F [Fcos] =
π

i
δ1 −

π

i
δ−1.

as desired (recall that 1/i = −i). �

Exercise 6.8.9. For every α > 0, we define the function

fα(t) =
1√
α
e−

t2

α , t ∈ R.

Prove that

Ffα
S′−→
√
π δ0.

Solution. We define the function

f(t) = e−t
2
, for t ∈ R,

and observe that this is in L1(R) (indeed, it is a function belonging to the Schwartz class S). We
also recall that ˆ

R
f(t) dt =

√
π.
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If we now observe that

fα(t) =
1

α
f

Ç
t√
α

å
,

the conclusion is readily obtained by applying Proposition 6.3.21, with ε =
√
α. �

Exercise 6.8.10. For every α > 0, we define the function

fα(t) =
α

t2 + α2
, t ∈ R.

Prove that

Ffα
S′−→ π δ0.

Solution. This is very similar to the previous exercise. If we introduce the L1(R) function

f(t) =
1

1 + t2
, t ∈ R,

it is not difficult to see that

fα(t) =
1

α
f

Å
t

α

ã
.

By observing that ˆ
R
f(t) dt =

ˆ
R

1

1 + t2
dt =

[
arctan t

]+∞
−∞

= π,

we get the desired conclusion again by Proposition 6.3.21. �

Remark 6.8.11. We refer to Exercise D.5.3 for an interesting application of the previous exercise.

9. Advanced exercises

Exercise 6.9.1. Prove that the distributional derivative of the regular tempered distribution gen-
erated by the function t 7→ log |t| is given by the principal value of 1/t, i.e.

F ′log |t| = P.V.
1

t
.

Solution. We first observe that t 7→ log |t| is a slowly growing function. Indeed, we haveˆ
R

| log |t||
1 + |t|3

dt = 2

ˆ +∞

0

| log t|
1 + t3

dt = 2

ˆ 1

0

− log t

1 + t3
dt+ 2

ˆ +∞

1

log t

1 + t3
dt

≤ 2

ˆ 1

0
(− log t) dt+ 2

ˆ +∞

1

log t

t3
dt

≤ 2

ˆ 1

0
(− log t) dt+ 2

ˆ +∞

1

1

t2
dt,

where in the last integral we used that

log t ≤ t, for t > 0.

By computing the last integrals, we getˆ
R

| log |t||
1 + |t|3

dt < +∞.

Thus we know that Flog |t| ∈ S ′, thanks to the discussion of Example 6.2.5.
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In order to compute its distributional derivative, we take ϕ ∈ S. Then, by using the definitions
of distributional derivative and of regular tempered distribution, we get

〈F ′log |t|, ϕ〉 = −〈Flog |t|, ϕ
′〉 = −

ˆ
R

log |t|ϕ′(t) dt

= − lim
ε→0+

ˆ +∞

ε
log t ϕ′(t) dt− lim

ε→0

ˆ −ε
−∞

log(−t)ϕ′(t) dt

= − lim
ε→0+

Ç
− log εϕ(ε)−

ˆ +∞

ε

ϕ(t)

t
dt

å
− lim
ε→0+

ñ
log(ε)ϕ(−ε)−

ˆ −ε
−∞

ϕ(t)

t
dt

ô
= lim

ε→0+
log ε

(
ϕ(ε)− ϕ(−ε)

)
+ lim
ε→0+

ˆ
|t|>ε

ϕ(t)

t
dt.

By using a first order Taylor expansion, we have

ϕ(ε)− ϕ(−ε) =
(
ϕ(0) + ϕ′(0) ε+ o(ε)

)
−
(
ϕ(0)− ϕ′(0) ε+ o(ε)

)
= 2ϕ′(0) ε+ o(ε), for ε→ 0+,

thus we get

lim
ε→0+

log ε
(
ϕ(ε)− ϕ(−ε)

)
= 2ϕ′(0) lim

ε→0+
ε log ε = 0.

In conclusion, we obtained

〈F ′log |t|, ϕ〉 = lim
ε→0+

ˆ
|t|>ε

ϕ(t)

t
dt, for every ϕ ∈ S.

By recalling the definition (6.2.1), we conclude the exercise. �

Exercise 6.9.2. We consider the second order linear differential operator

P (u) = −a d
2u

dt2
− i b du

dt
+ c u, for u ∈ S.

Let us assume that a, b, c ∈ R, with a > 0 and that b2 − 4 a c < 0. Find a fundamental solution
F ∈ S ′ of the operator P .

Solution. We need to find a tempered distribution F ∈ S ′ such that

P (F ) = δ0, in S ′.

We take the distributional Fourier transform, i.e.

F [P (F )] = F [δ0] = F1.

By using (6.5.3), we obtain

F [P (F )] = −aF
ñ
d2

dt2
F

ô
− i bF

ï
d

dt
F

ò
+ cF [F ]

=
[
− a (i ω)2 − i b (i ω) + c

]
F [F ]

= (aω2 + b ω + c)F [F ].
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Thus a seeked fundamental solution F ∈ S is such that

F [F ] =
1

aω2 + b ω + c
F1,

i.e. in other words F [F ] is the regular tempered distribution generated by the slowly growing
function

ga,b,c(ω) =
1

aω2 + b ω + c
.

We now recall from Exercise 5.9.1 that

F [ga,b,c](ω) =
2π√

4 a c− b2
ei

b
2 a

ω e−
√

4 a c−b2
2 a

|ω| = ha,b,c(ω),

which implies from the duality formula (5.4.6) that

F [ha,b,c](ω) = 2π ga,b,c(−ω) = 2π ga,−b,c(ω).

By using this formula and exchanging b with −b, we get

F
ï

1

2π
ha,−b,c

ò
(ω) = ga,b,c(ω).

This in turn implies that

F [F ] = F
ï

1

2π
Fha,−b,c

ò
,

and thus as a fundamental solution we can take the regular tempered distribution

F =
1

2π
Fha,−b,c , with ha,−b,c(t) =

2π√
4 a c− b2

e−i
b
2 a

t e−
√

4 a c−b2
2 a

|t|.

This concludes the exercise. �

Exercise 6.9.3. We consider the second order linear differential operator

P (u) =
d2u

dt2
+ λu, for u ∈ S,

where λ > 0. Find a fundamental solution F ∈ S ′ of the operator P .

Solution. As before, we need to find a tempered distribution F ∈ S ′ such that

P (F ) = δ0, in S ′.

We take the distributional Fourier transform, i.e.

F [P (F )] = F [δ0] = F1.

By using (6.5.3), we obtain

F [P (F )] = F
ñ
d2

dt2
F

ô
+ λF [F ]

=
[
(i ω)2 + λ

]
F [F ] = (λ− ω2)F [F ].

From the equation, we formally get

F [F ] =
1

λ− ω2
F1 =

1

2
√
λ

ñ
1√
λ+ ω

− 1

ω −
√
λ

ô
F1.
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Figure 1. The function f generates a fundamental solution of P (u) = d2u
dt2

+ λu.

Observe that this computation only holds at a formal level, since the function 1/(λ− ω2) is not a
multiplier of the class S. We can interpret the previous formula as

F [F ] = − 1

2
√
λ

P.V.
1

ω −
√
λ

+
1

2
√
λ

P.V.
1

ω +
√
λ
.

By recalling that

F [Fsign] = −2 iP.V.
1

ω
,

from formula (6.5.5) we get

F [ei
√
λ tFsign] = −2 iP.V.

1

ω −
√
λ

and F [e−i
√
λ tFsign] = −2 iP.V.

1

ω +
√
λ
.

Thus, if we define (see Figure 1)

f(t) = − i

4
√
λ

sign(t)
[
ei
√
λ t − e−i

√
λ t
]

=
sign(t)

2
√
λ

sin(
√
λ t),

we get that

F [Ff ] = − 1

2
√
λ

P.V.
1

ω −
√
λ

+
1

2
√
λ

P.V.
1

ω +
√
λ
,

as desired. Thus the regular tempered distribution generated by the function f is a fundamental
solution. �

Exercise 6.9.4. For every n ∈ N \ {0}, we set

Hn(t) =
n

π
sinc

Å
n

π
t

ã
.
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Prove that if we consider the sequence of regular tempered distributions {FHn}n≥1 ⊂ S ′, we have

FHn
S′−→ δ0.

Solution. We first observe that Hn ∈ L∞(R), thus by Proposition 6.2.6 we have that FHn is a
tempered distribution. We point out that in this case we can not directly apply Proposition 6.3.21,
since the function

t 7→ 1

π
sinc

Å
1

π
t

ã
,

is not in L1(R). We take ϕ ∈ S, we need to show that

lim
n→∞

〈FHn , ϕ〉 = ϕ(0).

By using the definition of FHn and the fact that Hn is even, we have

lim
n→∞

〈FHn , ϕ〉 = lim
n→∞

ˆ
R
Hn(t)ϕ(t) dt = lim

n→∞

ˆ
R
Hn(0− t)ϕ(t) dt = lim

n→∞
ϕ ∗ Hn(0).

If we now recall Remark 5.4.3, we get the desired conclusion. �

Exercise 6.9.5. By using the Poisson’s summation formula, compute the sum∑
n∈Z

1

1 + n2
.

Solution. We consider the L1 function

f(t) =
1

1 + t2
.

By Exercise 5.8.3, we already know that

F [f ](ω) = π e−|ω|.

By using Theorem 6.6.3, we then get∑
n∈Z

1

1 + n2
=
∑
n∈Z

f(n) =
∑
k∈Z
F [f ](2π k) = π

∑
k∈Z

e−2π |k|

= π + π
∞∑
k=1

e−2π k + π
k=−1∑
−∞

e2π k

= π + 2π
∞∑
k=1

e−2π k

= π + 2π

( ∞∑
k=0

Ä
e−2π

äk − 1

)

= π + 2π

Å
1

1− e−2π
− 1

ã
.

In conclusion, we get5

∑
n∈Z

1

1 + n2
= π + 2π

e−2π

1− e−2π
= π

e2π + 1

e2π − 1
=

π

tanhπ
.

5We recall that

tanh t =
sinh t

cosh t
=
et − e−t

et + e−t
=
e2 t − 1

e2 t + 1
, t ∈ R,

is the hyperbolic tangent.
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This concludes the exercise. �

Exercise 6.9.6. Generalize the previous exercise, by computing the sum∑
n∈Z

1

a2 + n2
,

where a > 0 is given.

Solution. We can proceed as above, by taking the L1 function

f(t) =
1

a2 + t2
=

1

a2

1

1 +

Å
t

a

ã2 .

By using Proposition 5.3.2, we then get

F [f ](ω) =
1

a2
a π e−a |ω| =

π

a
e−a |ω|.

We now proceed as in the previous exercise. By using Theorem 6.6.3, we then get∑
n∈Z

1

a2 + n2
=
∑
n∈Z

f(n) =
∑
k∈Z
F [f ](2π k) =

π

a

∑
k∈Z

e−2π a |k|

=
π

a
+
π

a

∞∑
k=1

e−2π a k +
π

a

k=−1∑
−∞

e2π a k

=
π

a
+ 2

π

a

∞∑
k=1

e−2π a k

=
π

a
+ 2

π

a

( ∞∑
k=0

Ä
e−2π a

äk − 1

)

=
π

a
+ 2

π

a

Å
1

1− e−2π a
− 1

ã
.

In conclusion, we get∑
n∈Z

1

a2 + n2
=
π

a
+ 2

π

a

e−2π a

1− e−2π a
=
π

a

e2π a + 1

e2π a − 1
=

1

a2

π a

tanh(π a)
.

This concludes the exercise. �

Remark 6.9.7. We can use the previous exercise to compute the sum
∞∑
n=1

1

n2
.

Indeed, observe that

∞∑
n=1

1

n2
= lim

a→0+

1

2

[∑
n∈Z

1

a2 + n2
− 1

a2

]

=
1

2
lim
a→0+

1

a2

ñ
π a

tanh(π a)
− 1

ô
=

1

2
lim
a→0+

π a− tanh(π a)

a2 tanh(π a)
.
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We now use the third order Taylor expansion

tanh(t) = t− t3

3
+ o(t3), for t→ 0,

which gives

1

2
lim
a→0+

π a− tanh(π a)

a2 tanh(π a)
=

1

2
lim
a→0+

1

3
π3 a3 + o(a3)

π a3 + o(a3)
=
π2

6
.

In conclusion, we obtained
∞∑
n=1

1

n2
=
π2

6
.

Exercise 6.9.8. Show that the Hilbert transform of rect is the regular tempered distribution gen-
erated by the function

t 7→ log

∣∣∣∣∣∣∣∣
t+

1

2

t− 1

2

∣∣∣∣∣∣∣∣ .



Appendix A

Limit superior and
limit inferior

1. Suprema and infima

Let E ⊂ R be a non-empty set. We say that m ∈ R is a lower bound for E if

m ≤ x, for every x ∈ E.

We say that M ∈ R is an upper bound for E if

x ≤M, for every x ∈ E.

Definition A.1.1. Let E ⊂ R be a non-empty set. We define its supremum as the smallest upper
bound for E. We indicate by

supE,

this number, with the convention that supE = +∞ if the class of upper bounds is empty.

Remark A.1.2. If M = supE < +∞, then it has the following properties:

• x ≤M for every x ∈ E;

• for every ε > 0, there exists xε ∈ E such that

M − ε < xε.

Definition A.1.3. Let E ⊂ R be a non-empty set. We define its infimum as the greatest lower
bound for E. We indicate by

inf E,

this number, with the convention that inf E = −∞ if the class of lower bounds is empty.

Remark A.1.4. If m = inf E > −∞, then it has the following properties:

• x ≥ m for every x ∈ E;

• for every ε > 0, there exists xε ∈ E such that

m+ ε > xε.
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228 A. Limit superior and limit inferior

Given a sequence {xn}n∈N, we will use the notations

sup
n∈N

xn = sup{xn : n ∈ N},

and more generally

sup
n≥k

xn = sup{xn : n ≥ k}.

We will use a similar notation for the infima of sequences.

2. Limit superior and limit inferior

Definition A.2.1. Let {bn}n∈N be a sequence of real numbers. Its limit superior is defined by

inf
k∈N

sup
n≥k

bn.

We use the notation

lim sup
n→∞

bn,

to denote this quantity.

Remark A.2.2. Observe that the new sequence

Bk = sup
n≥k

bn, for every k ∈ N,

is monotone decreasing by construction. Then we have

inf
k∈N

Bk = lim
k→∞

Bk.

Definition A.2.3. Let {bn}n∈N be a sequence of real numbers. Its limit inferior is defined by

sup
k∈N

inf
n≥k

bn.

We use the notation

lim inf
n→∞

bn,

to denote this quantity.

Remark A.2.4. Observe that the new sequence

Bk = inf
n≥k

bn, for every k ∈ N,

is monotone increasing by construction. Then we have

sup
k∈N

Bk = lim
k→∞

Bk.

Example A.2.5. By taking the sequence bn = (−1)n, it is not difficult to see that

lim inf
n→∞

(−1)n = −1 and lim sup
n→∞

(−1)n = 1.

Example A.2.6. Let us consider the sequence

bn =


n

n+ 1
, if n even,

n+ 1

n
, if n odd.
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We observe that for every k ∈ N

sup
n≥k

bn =

®
bk, if k odd,

bk+1, if k even
=


k + 1

k
, if k odd,

k + 2

k + 1
, if k even.

This implies that

lim sup
n→∞

bn = lim
k→∞


k + 1

k
, if k odd,

k + 2

k + 1
, if k even.

= 1.

Theorem A.2.7. Let {bn}n∈N be a sequence of real numbers. Then the sequence admits a limit if
and only if

lim sup
n→∞

bn = lim inf
n→∞

bn.

In this case, we have
lim
n→∞

bn = lim sup
n→∞

bn = lim inf
n→∞

bn.





Appendix B

First order linear
differential equations

1. Variable coefficients case

In this section, we briefly recall how to solve an ordinary differential equation of the form

y′(t) + a(t) y(t) = b(t), t ∈ R,

where the continuous functions a, b are given. Let A be a C1 function such that

A′(t) = a(t), for t ∈ R,

i.e. A is a primitive of a. Then we observe that

y′(t) + a(t) y(t) = b(t) ⇐⇒ eA(t)
(
y′(t) + a(t) y(t)

)
= eA(t) b(t).

With this simple trick, we can now recognize a derivative on the left-hand side, i.e.

eA(t)
(
y′(t) + a(t) y(t)

)
=
(
eA(t) y(t)

)′
.

From the previous identity, we thus get that y is a solution of the differential equation if and only
if (

eA(t) y(t)
)′

= eA(t) b(t),

that is if

eA(t) y(t) is a primitive of eA(t) b(t).

We write this with the formula

eA(t) y(t) = B(t) + c, with B′(t) = eA(t) b(t) and c ∈ R.

Thus finally we get the solutions

(2.1.1) y(t) = e−A(t)B(t) + c e−A(t),

i.e. we have found infinitely many solutions.
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232 B. First order linear differential equations

Example B.1.1. Let us solve
y′(t) + t y(t) = 0, t ∈ R.

With the notation above, we have a(t) = t and b = 0. We can choose the following primitives

A(t) =
t2

2
and B(t) = 0,

and obtain the family of solutions

y(t) = c e−
t2

2 ,

where c ∈ R is an arbitrary constant.

2. Separation of variables

When b = 0, the equation
y′(t) + a(t) y(t) = 0, t ∈ R,

can be solved by the separation of variables technique. We rewrite the equation in the form

y′(t) = −a(t) y(t),

and then divide by y(t) both sides (let us suppose that y(t) > 0 for every t ∈ R). We thus get

y′(t)

y(t)
= −a(t),

and the left-hand side is the derivative of t 7→ log y(t). In other words, we have

(log y(t))′ = −a(t).

We introduce as before a primitive A of a, then we obtain

log y(t) = −A(t) + c

and c ∈ R is an arbitrary constant. By composing with the exponential function on both sides, we
thus obtain

y(t) = e−A(t) ec.

By arbitrariness of c ∈ R, we can rewrite the previous as

y(t) = C e−A(t), C > 0,

which is nothing but (2.1.1). Observe that the restriction C > 0 is in accordance with the require-
ment y(t) > 0 that we made during the previous discussion.



Appendix C

Fourier series

In this Appendix, we briefly present some definitions and results about Fourier series.

1. Definition and first properties

Let T > 0 and let f : R → C be a T−periodic measurable function. The theory of Fourier
series aims at solving the problem of writing f as a (possibly infinite) superposition of T−periodic
functions of the form

cos

Å
2π

T
n t

ã
and sin

Å
2π

T
n t

ã
, n ∈ N.

In other words, we want to understand under which conditions on f is it possible to write

(3.1.1) f(t) = a0 +
∞∑
n=1

an cos

Å
2π

T
n t

ã
+
∞∑
n=1

bn sin

Å
2π

T
n t

ã
,

for two suitable sequences of coefficients {an}n∈N, {bn}n∈N ⊂ C. Moreover, in which sense does the
convergence of the series above should be understood?

It is useful to observe that (3.1.1) can be rewritten in a more compact form. Indeed, by recalling
that

ei ϑ = cosϑ+ i sinϑ,

we have

cosϑ =
ei ϑ + e−i ϑ

2
and sinϑ =

ei ϑ − e−i ϑ

2 i
.
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234 C. Fourier series

This implies that

a0 +
∞∑
n=1

an cos

Å
2π

T
n t

ã
+
∞∑
n=1

bn sin

Å
2π

T
n t

ã
= a0 +

∞∑
n=1

an
ei

2π
T
n t + e−i

2π
T
n t

2
+
∞∑
n=1

bn
ei

2π
T
n t − e−i

2π
T
n t

2 i

= a0 +
∞∑
n=1

Å
an − i bn

2

ã
ei

2π
T
n t +

∞∑
n=1

Å
an + i bn

2

ã
e−i

2π
T
n t

= a0 +
∞∑
n=1

Å
an − i bn

2

ã
ei

2π
T
n t +

m=−1∑
−∞

Å
a−m + i b−m

2

ã
ei

2π
T
mt,

where in the last series we made the change of index m = −n. If we then set

(3.1.2) c0 = a0, cn =
an − i bn

2
, for n ≥ 1,

and

(3.1.3) cn =
a−n + i b−n

2
, for n ≤ −1,

then the problem can be reformulated in compact form as follows: under which conditions on f is
it possible to write

(3.1.4) f(t) =
∑
n∈Z

cn e
i n 2π

T
t,

for a suitable sequence of coefficients {cn}n∈N ⊂ C? In which sense does the convergence of the
series above should be understood?

In order to answer this question, we first observe that the form of the coefficients can be easily
guessed: we choose k ∈ Z, multiply both sides of (3.1.4) by

e−i k
2π
T
t,

and integrate over the periodicity interval [−T/2, T/2]. By discarding convergence issues and
proceeding formally, we get

ˆ T
2

−T
2

e−i k
2π
T
t f(t) dt =

ˆ T
2

−T
2

∑
n∈Z

cn e
i (n−k) 2π

T
t dt

=
∑
n∈Z

cn

ˆ T
2

−T
2

ei (n−k) 2π
T
t dt.

We observe that for n 6= k we have

ˆ T
2

−T
2

ei (n−k) 2π
T
t dt =

ei (n−k)π − e−i (n−k)π

i (n− k) 2π
T

= 0,

while for n = k ˆ T
2

−T
2

ei (n−k) 2π
T
t dt =

ˆ T
2

−T
2

dt = T.
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In conclusion, we get the relation
ˆ T

2

−T
2

e−i k
2π
T
t f(t) dt = T ck,

that is, whenever f can be written as (3.1.4), the coefficients ck must have the form

ck =
1

T

ˆ T
2

−T
2

e−i k
2π
T
t f(t) dt.

Definition C.1.1. Let f : R → C be a T−periodic measurable function. Let us suppose that
f ∈ L1([−T/2, T/2]), then its Fourier coefficients are given by

f̂(n) =
1

T

ˆ T
2

−T
2

e−i n
2π
T
t f(t) dt, for every n ∈ Z.

The formal expression

J [f ](t) =
∑
n∈Z

f̂(n) ei n
2π
T
t,

is called Fourier series of f .

Theorem C.1.2. Let f : R → C be a T−periodic measurable function. Let us suppose that
f ∈ L1([−T/2, T/2]), then the sequence {f̂(n)}n∈Z ⊂ C is bounded and such that

(3.1.5) lim
|n|→∞

|f̂(n)| = 0.

Proof. The boundedness of {f̂(n)}n∈Z easily follows from the definition, indeed for every n ∈ Z
we have

|f̂(n)| =

∣∣∣∣∣∣ 1T
ˆ T

2

−T
2

e−i n
2π
T
t f(t) dt

∣∣∣∣∣∣ ≤ 1

T

ˆ T
2

−T
2

|e−i n
2π
T
t| |f(t)| dt =

1

T

ˆ T
2

−T
2

|f(t)| dt,

and the last quantity is finite and independent of n (compare this estimate with (5.2.1)). In order
to prove (3.1.5), we observe that

e−i n
2π
T
t = −e−i n

2π
T
t e−i π,

thus we get

f̂(n) = − 1

T

ˆ T
2

−T
2

e−i n
2π
T
t e−i π f(t) dt

= − 1

T

ˆ T
2

−T
2

e−i n
2π
T (t+ T

2n) f(t) dt

= − 1

T

ˆ n+1
n

T
2

−n−1
n

T
2

e−i n
2π
T
τ f

Å
τ − 1

n

T

2

ã
dτ.

We observe that the last integral is performed over an interval of length T and the integrated
function is T−periodic, thus this integral coincides with

− 1

T

ˆ T
2

−T
2

e−i n
2π
T
τ f

Å
τ − 1

n

T

2

ã
dτ.
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We thus obtained

f̂(n) = − 1

T

ˆ T
2

−T
2

e−i n
2π
T
τ f

Å
τ − 1

n

T

2

ã
dτ.

On the other hand, by definition

f̂(n) =
1

T

ˆ T
2

−T
2

e−i n
2π
T
t f(t) dt.

By summing up the two identities, we get

f̂(n) =
1

2T

ˆ T
2

−T
2

e−i n
2π
T
t
Å
f(t)− f

Å
t− 1

n

T

2

ãã
dt,

and thus

(3.1.6) |f̂(n)| ≤ 1

2T

ˆ T
2

−T
2

∣∣∣∣f(t)− f
Å
t− 1

n

T

2

ã∣∣∣∣ dt.
By using the continuity in L1 norm of translations, i.e. Proposition 3.4.5, we get the conclusion. �

Lemma C.1.3. Let f : R→ C be a T−periodic measurable function. Then:

1. if f is even, then the Fourier coefficients are even, i.e.

f̂(n) = f̂(−n), for every n ∈ Z;

2. if f is odd, then the Fourier coefficients are odd, i.e.

f̂(n) = −f̂(−n), for every n ∈ Z;

3. if f is real-valued and even, then the Fourier coefficients {f̂(n)}n∈Z are real;

4. if f is real-valued and odd, then the Fourier coefficients {f̂(n)}n∈Z are purely imaginary.

Proof. We prove the points 1. and 3., leaving the other proofs as an exercise. By using the change
of variable s = −t and using that f is even, we get

f̂(−n) =
1

T

ˆ T
2

−T
2

ei n
2π
T
t f(t) dt =

1

T

ˆ T
2

−T
2

e−i n
2π
s
t f(−s) ds

=
1

T

ˆ T
2

−T
2

e−i n
2π
s
t f(s) ds = f̂(n),

which proves the first point.

Let us now further assume that f is real-valued, in order to prove that the Fourier coefficients
are real, we can prove that

f̂(n) = f̂(n)∗, for every n ∈ Z.

By definition, we have

f̂(n)∗ =
1

T

(ˆ T
2

−T
2

e−i n
2π
T
t f(t) dt

)∗
=

1

T

ˆ T
2

−T
2

(
e−i n

2π
T
t
)∗

(f(t))∗ dt.

Since f is real-valued, we have that (f(t))∗ = f(t), while(
e−i n

2π
T
t
)∗

= ei n
2π
T
t.
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We thus obtain

f̂(n)∗ =
1

T

ˆ T
2

−T
2

ei n
2π
T
t f(t) dt = f̂(−n).

By point 1., the last coefficient is equal to f̂(n). We thus achieved the desired conclusion. �

Remark C.1.4. By recalling the relations (3.1.2) and (3.1.3), we get that if f is even, then its
Fourier series can be written as

J [f ](t) = a0 +
∞∑
n=1

an cos

Å
2π

T
n t

ã
,

i.e. it only contains the cosine functions. Indeed, by the previous Lemma we have

an − i bn
2

= f̂(n) = f̂(−n) =
an + i bn

2
, for every n ∈ N,

which implies that bn = 0, for every n ∈ N.

Similarly, if f is odd, its Fourier series can be written as

J [f ](t) =
∞∑
n=1

bn sin

Å
2π

T
n t

ã
.

Definition C.1.5. Let f : R→ C be a measurable T−periodic function, such that

f ∈ L1
Åï
−T

2
,
T

2

òã
.

Let us suppose that g ∈ L1
loc(R). We define their convolution to be the function

f ∗ g(t) =

ˆ T
2

−T
2

f(t− τ) g(τ) dτ.

Lemma C.1.6. Under the previous assumption, the functions f ∗ g is still T−periodic and

f ∗ g ∈ L1
Åï
−T

2
,
T

2

òã
,

with

‖f ∗ g‖L1([−T2 ,
T
2 ]) ≤ ‖f‖L1([−T2 ,

T
2 ]) ‖g‖L1([−T2 ,

T
2 ]).

Proof. By using the T−periodicity of f , we easily get.

f ∗ g(t+ T ) =

ˆ T
2

−T
2

f(t+ T − τ) g(τ) dτ =

ˆ T
2

−T
2

f(t− τ) g(τ) dτ = f ∗ g(t).

In order to prove that f ∗ g is in L1, we proceed as in the proof of Proposition 3.5.4. We have

ˆ T
2

−T
2

|f ∗ g(t)| dt =

ˆ T
2

−T
2

∣∣∣∣∣∣
ˆ T

2

−T
2

f(t− τ) g(τ) dτ

∣∣∣∣∣∣ dt
≤
ˆ T

2

−T
2

ˆ T
2

−T
2

|f(t− τ)| |g(τ)| dτ dt

=

ˆ T
2

−T
2

|g(τ)|
(ˆ T

2

−T
2

|f(t− τ)| dt
)
dτ,
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thanks to Fubini’s and Tonelli’s Theorem. By using a change of variable and the T−periodicity of
f , we get ˆ T

2

−T
2

|f(t− τ)| dt =

ˆ T
2
−τ

−T
2
−τ
|f(s)| ds =

ˆ T
2

−T
2

|f(s)| ds,

and thus the conclusion follows. �

2. Convergence

We now discuss under which conditions the Fourier series

J [f ](t) =
∑
n∈Z

f̂(n) ei n
2π
T
t,

converges to the original periodic signal f . Moreover, we want to clarify in which sense this
convergence must be understood. Observe that whenever we have

J [f ](t) = f(t),

this can be read as an inversion formula for the Fourier series, in analogy with the inversion formulas
for the Laplace and Fourier transforms.

In this spirit, the following result can be seen as the natural counterpart of Theorem 5.4.2.

Theorem C.2.1. Let f : R→ C be a T−periodic measurable function. Let us assume that f is a
piecewise C1 function on [−T/2, T/2], i.e. f and f ′ have only jump discontinuities at

−T
2
≤ t1 < t2 < · · · < t` ≤

T

2
.

Then for every t ∈ [−T/2, T/2], we have

J [f ](t) =
f(t+) + f(t−)

2
.

Proof. Let us fix t ∈ [−T/2, T/2], for every k ∈ N we define the k−th partial Fourier sum

(3.2.7) Jk[f ](t) =
k∑

n=−k
f̂(n) e

2π n
T

i t.

Then we need to show that

lim
k→∞

Jk[f ](t) =
f(t+) + f(t−)

2
.

By using the definition of Fourier coefficient, we have

Jk[f [(t) =
k∑

n=−k

1

T

ˆ T
2

−T
2

f(τ) e−
2π n
T

i (τ−t) dτ

=
1

T

ˆ T
2

−T
2

f(τ)

Ñ
k∑

n=−k
e−

2π n
T

i (τ−t)

é
dτ.
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We now perform the change of index m = n+ k in the sum above, so to obtain

k∑
n=−k

e−
2π n
T

i (τ−t) =
2 k∑
m=0

e−
2π (m−k)

T
i (τ−t)

= e
2π k
T

i (τ−t)
2 k∑
m=0

e−
2πm
T

i (τ−t) = e
2π k
T

i (τ−t)
2 k∑
m=0

(
e−

2π
T
i (τ−t)

)m
.

We can recognize that the last sum is a partial sum of a geometric series. By recalling that

(3.2.8)
2 k∑
m=0

αm =


α2 k+1 − 1

α− 1
, if α 6= 1,

2 k + 1, if α = 1,

we get that:

• if (τ − t)/T ∈ R \ Z, then

e−
2π
T
i (τ−t) 6= 1,

and thus by (3.2.8) with

α = e−
2π
T
i (τ−t),

we get

e
2π k
T

i (τ−t)
2 k∑
m=0

(
e−

2π
T
i (τ−t)

)m
= e

2π k
T

i (τ−t) e
− 2π (2 k+1)

T
i (τ−t) − 1

e−
2π
T
i (τ−t) − 1

=
e−

2π (k+1)
T

i (τ−t) − e
2π k
T

i (τ−t)

e−
2π
T
i (τ−t) − 1

=
e−

2π (k+1)
T

i (τ−t) − e
2π k
T

i (τ−t)

e−
π
T
i (τ−t)(e−

π
T
i (τ−t) − e

π
T
i (τ−t))

=
e−

2π (k+1
2 )

T
i (τ−t) − e

2π (k+1
2 )

T
i (τ−t)

e−
π
T
i (τ−t) − e

π
T
i (τ−t)

=
sin

Å
π

T
(2 k + 1) (τ − t)

ã
sin

Å
π

T
(τ − t)

ã ;

• if (τ − t)/T ∈ Z, then

e−
2π
T
i (τ−t) = 1,

and thus

e
2π k
T

i (τ−t)
2 k∑
m=0

(
e−

2π
T
i (τ−t)

)m
= 2 k + 1.

By introducing the Dirichlet kernel

Dk(t) =


sin ((2 k + 1) t)

sin t
, if t ∈ R \ {πm : m ∈ Z},

2 k + 1, if t ∈ {πm : m ∈ Z}.
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Figure 1. The Dirichlet kernel Dk for k = 1, 2, 3.

we can summarize the previous discussion by saying that

e
2π k
T

i (τ−t)
2 k∑
m=0

(
e−

2π
T
i (τ−t)

)m
= Dk

Å
π

T
(τ − t)

ã
.

We thus obtained

(3.2.9) Jk[f ](t) =
1

T

ˆ T
2

−T
2

f(τ)Dk

Å
π

T
(τ − t)

ã
dτ.

Before going on, we manipulate a bit the last integral. Observe that by definition Dk is even, thus

Dk

Å
π

T
(τ − t)

ã
= Dk

Å
π

T
(t− τ)

ã
.

In this way we can recognize the expression of a convolution, in the right-hand side of (3.2.9).
Moreover, Dk is π−periodic, thus we have

Jk[f ](t) =
1

T

ˆ T
2

−T
2

f(τ)Dk

Å
π

T
(τ − t)

ã
dτ

=
1

T

ˆ T
2

−T
2

f(τ)Dk

Å
π

T
(t− τ)

ã
dτ

=
1

T

ˆ t+T
2

t−T
2

f(t− s)Dk

Å
π

T
s

ã
ds =

1

T

ˆ T
2

−T
2

f(t− s)Dk

Å
π

T
s

ã
ds.

(3.2.10)
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In the last identity we used that the integrand is T−periodic. In order to conclude, we need to
show that

lim
k→∞

1

T

ˆ T
2

−T
2

f(t− s)Dk

Å
π

T
s

ã
ds =

f(t+) + f(t−)

2
.

For this, it is sufficient to prove that

(3.2.11) lim
k→∞

1

T

ˆ T
2

0
f(t− s)Dk

Å
π

T
s

ã
ds =

f(t−)

2
,

and

lim
k→∞

1

T

ˆ 0

−T
2

f(t− s)Dk

Å
π

T
s

ã
ds =

f(t+)

2
.

The proof of these two facts is quite similar to that of Theorem 5.4.2. We focus on proving (3.2.11),
the proof of the other fact being equal. Observe that by using formula (3.2.10) with f(t) = 1, we
have1

1 =
1

T

ˆ T
2

−T
2

Dk

Å
π

T
(t− s)

ã
ds.

As already observed, Dk is an even function, thus from the previous computation we also get

1

T

ˆ T
2

0
Dk

Å
π

T
(t− s)

ã
ds =

1

2
.

Thus (3.2.11) can be rewritten as

lim
k→∞

1

T

ˆ T
2

0

(
f(t− s)− f(t−)

)
Dk

Å
π

T
s

ã
ds = 0.

By recalling the definition of Dirichlet kernel, this is turn is equivalent to

(3.2.12) lim
k→∞

1

T

ˆ T
2

0

(
f(t− s)− f(t−)

)
sin

Å
π

T
s

ã sin

Å
π

T
(2 k + 1) s

ã
ds = 0.

If we can prove that the function

s 7→ f(t− s)− f(t−)

sin

Å
π

T
s

ã ,

is in L1([0, T/2]), then the desired conclusion (3.2.12) would follow from Lemma 5.4.1. For this, it
is sufficient to observe that thanks to the assumption on f we have

f(t− s)− f(t−)

sin

Å
π

T
s

ã ∼ f ′(t−) s
π

T
s

=
f ′(t−)
π

T

, for s→ 0+.

We leave the final details to the reader. �

1For the costant function f(t) = 1, we have

f̂(n) = 0, for every n 6= 0

and f̂(0) = 1.
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Proposition C.2.2. Let f : R → C be a T−periodic measurable function. Let us suppose that
there exists C > 0 and β > 1 such that

|f̂(n)| ≤ C

1 + |n|β
, for every n ∈ Z.

Then the Fourier series of f is totally converging on R.

Proof. We need to prove that ∑
n∈Z

Ç
sup
t∈R

∣∣∣f̂(n) ei n
2π
T
t
∣∣∣å < +∞.

By the properties of the complex exponential and the assumption on f , we haveÇ
sup
t∈R

∣∣∣f̂(n) ei n
2π
T
t
∣∣∣å ≤ C

1 + |n|β
, for every n ∈ Z.

By recalling that (here it is needed β > 1)
∞∑
n=0

1

1 + |n|β
< +∞,

we get the desired conclusion. �

Theorem C.2.3 (Smooth periodic signals I). Let f : R→ C be a T−periodic measurable function.
Let us suppose that f ∈ C0(R) ∩ C1([−T/2, T/2]) and that f ′ is α−Hölder continuous, i.e. there
exists C > 0 and 0 < α ≤ 1 such that

|f ′(t)− f ′(s)| ≤ C |t− s|α, for t, s ∈ R.

Then the Fourier series of f is totally converging on R to f .

Proof. Under the standing assumptions on f , we already know by Theorem C.2.1 that the Fourier
series converges pointwise. In order to infer total convergence, the idea is to apply Proposition
C.2.2. By using an integration by parts, we get for n ∈ Z \ {0}

f̂(n) =
1

T

ˆ T
2

−T
2

e−i n
2π
T
t f(t) dt =

1

T

[
e−i n

2π
T
t

−i n 2π
f(t)

]T
2

−T
2

− 1

T

ˆ T
2

−T
2

e−i n
2π
T
t

−i n 2π
f ′(t) dt

=
1

T
i

1

2nπ

ï
e−i n π f

Å
T

2

ã
− ei n π f

Å
−T

2

ãò
− 1

T
i

1

2nπ

ˆ T
2

−T
2

e−i n
2π
T
t f ′(t) dt.

By the hypothesis of continuity of f , we get

f

Å
T

2

ã
= f

Å
−T

2

ã
,

and thus

|f̂(n)| = 1

2 |n|π

∣∣∣∣∣∣ 1T
ˆ T

2

−T
2

e−i n
2π
T
t f ′(t) dt

∣∣∣∣∣∣ .
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By hypothesis the derivative f ′ is continuous on the interval [−T/2, T/2], thus in particular it is
bounded. We then obtain

|f̂(n)| = 1

2 |n|π

∣∣∣∣∣∣ 1T
ˆ T

2

−T
2

e−i n
2π
T
t f ′(t) dt

∣∣∣∣∣∣ =
1

2 |n|π
|“f ′(n)|.

By recalling the estimate (3.1.6) and using the Hölder regularity of f ′, we obtain

|“f ′(n)| = 1

2T

ˆ T
2

−T
2

∣∣∣∣f ′(t)− f ′ Åt− 1

n

T

2

ã∣∣∣∣ dt ≤ C

2T

ˆ T
2

−T
2

Ç
T

2 |n|

åα
dt =

C Tα

2α+1 |n|α
.

In conclusion, we obtain for n ∈ Z \ {0}

|f̂(n)| = 1

2nπ
|“f ′(n)| ≤ C Tα

2α+2 |n|1+α
.

By Proposition C.2.2 with β = α+ 1, we obtain the desired conclusion. �

Proposition C.2.4 (Bessel inequality). Let f : R→ C be a T−periodic measurable function, such
that

f ∈ L2
Åï
−T

2
,
T

2

òã
.

Then ∑
n∈Z
|f̂(n)|2 ≤ 1

T

ˆ T
2

−T
2

|f(t)|2 dt.

Proof. We first introduce some notations. For every pair of functions f, g ∈ L2([−T/2, T/2]), we
define the scalar product

〈f, g〉 =

ˆ T
2

−T
2

f(t) g(t)∗ dt.

Observe that this has the following properties:

• 〈g, f〉 = (〈f, g〉)∗;

• 〈α f1 + β f2, g〉 = α 〈f1, g〉+ β 〈f2, g〉, for every α, β ∈ C;

• 〈f, f〉 = ‖f‖2L2 .

Also observe that by combining the first two properties, we also have for every α, β ∈ C

〈f, α g1 + β g2〉 =
(
〈α g1 + β g2, f〉

)∗
=
(
α 〈g1, f〉+ β 〈g2, f〉

)∗
= α∗ (〈g1, f〉)∗ + β∗ (〈g2, f〉)∗

= α∗ 〈f, g1〉+ β∗ 〈f, g2〉.

For every n ∈ Z, we also set

en(t) =
1√
T
ei n

2π
T
t,

and observe that

(3.2.13) 〈ek, em〉 =
1

T

ˆ T
2

−T
2

ei k
2π
T
t e−im

2π
T
t dt =

®
1, if k = m,
0 if k 6= m.
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We also notice that, with these notations, we have

f̂(n) =
1√
T
〈f, en〉, for every n ∈ Z.

We now fix k ∈ Z and observe that the k−th partial Fourier sum of f (3.2.7) ca be rewritten as

Jk[f ](t) =
k∑

n=−k
〈f, en〉 en(t).

Then we decompose f as follows:

f(t) =
[
f(t)− Jk[f ](t)

]
+ Jk[f ](t).

We observe that by construction, we have

〈f − Jk[f ],Jk[f ]〉 = 〈f,Jk[f ]〉 − 〈Jk[f ],Jk[f ]〉

=

∞
f,

k∑
n=−k

〈f, en〉 en

∫
−

∞
k∑

n=−k
〈f, en〉 en,

k∑
n=−k

〈f, en〉 en

∫
=

k∑
n=−k

〈f, en〉 〈f, en〉∗ −
k∑

n=−k
〈f, en〉 〈f, en〉∗ = 0,

(3.2.14)

where we used the properties of the scalar product and the orthogonality relations (3.2.13). From
this identity and the properties of the scalar product, we get

〈Jk[f ], f − Jk[f ]〉 =
(
〈f − Jk[f ],Jk[f ]〉

)∗
= 0,

as well. By using these facts, we obtain

ˆ T
2

−T
2

|f(t)|2 dt = 〈f, f〉

=
〈[
f − Jk[f ]

]
+ Jk[f ],

[
f − Jk[f ]

]
+ Jk[f ]

〉
= 〈f(t)− Jk[f ], f − Jk[f ]〉
+ 〈f(t)− Jk[f ],Jk[f ]〉+ 〈Jk[f ], f − Jk[f ]〉
+ 〈Jk[f ],Jk[f ]〉
= 〈f − Jk[f ], f − Jk[f ]〉+ 〈Jk[f ],Jk[f ]〉

=

ˆ T
2

−T
2

|f(t)− Jk[f ](t)|2 dt+ 〈Jk[f ],Jk[f ]〉 ≥ 〈Jk[f ],Jk[f ]〉.

By recalling the definition of Jk[f ] and using the orthogonality relations (3.2.13), we obtain

(3.2.15) 〈Jk[f ],Jk[f ]〉 =
k∑

n=−k
〈f, en〉 〈f, en〉∗ =

k∑
n=−k

|〈f, en〉|2 = T
k∑

n=−k
|f̂(n)|2.

The previous discussion leads to

ˆ T
2

−T
2

|f(t)|2 dt ≥ T
k∑

n=−k
|f̂(n)|2.
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This estimate holds true for every k ∈ N, thus by taking the limit as k goes to ∞, we get the
desired conclusion. �

With the aid of the previous result, we can considerably improve Theorem C.2.3 as follows.

Theorem C.2.5 (Smooth periodic signals II). Let f : R→ C be a T−periodic measurable function.
Let us suppose that f ∈ C0(R) and that f ′ is piecewise continuous on [−T/2, T/2], i.e. f ′ have
only jump discontinuities at

−T
2
≤ t1 < t2 < · · · < t` ≤

T

2
.

Then the Fourier series J [f ] is totally converging on R to f .

Proof. Under the standing assumption, we already know by Theorem C.2.1 that J [f ] converges
pointwise to f . Thus, we only have to show that the convergence of the Fourier series is actually
total, i.e. we need to show that∑

n∈Z

Ç
sup
t∈R

∣∣∣f̂(n) ei n
2π
T
t
∣∣∣å =

∑
n∈N
|f̂(n)| < +∞.

We prove the result by assuming for simplicity that f ′ only has one discontinuity point −T/2 <
t0 < T/2, it is then easy to reproduce the proof in the more general case.

By using an integration by parts, we get for n ∈ Z \ {0}

f̂(n) =
1

T

ˆ T
2

−T
2

e−i n
2π
T
t f(t) dt =

1

T

ˆ t0

−T
2

e−i n
2π
T
t f(t) dt+

1

T

ˆ T
2

t0

e−i n
2π
T
t f(t) dt

=
1

T

[
e−i n

2π
T
t

−i n 2π
f(t)

]t0
−T

2

− 1

T

ˆ T
2

−T
2

e−i n
2π
T
t

−i n 2π
f ′(t) dt

+
1

T

[
e−i n

2π
T
t

−i n 2π
f(t)

]T
2

t0

− 1

T

ˆ T
2

t0

e−i n
2π
T
t

−i n 2π
f ′(t) dt

=
1

T
i

1

2nπ

ï
−e−i n π f

Å
T

2

ã
+ ei n π f

Å
−T

2

ãò
+

1

T
i

1

2nπ

ï
((((

((((−e−i n
2π
T
t0 f(t0) +���

���
��

e−i n
2π
T
t0 f(t0)

ò
− 1

T
i

1

2nπ

ˆ T
2

−T
2

e−i n
2π
T
t f ′(t) dt.

We now observe that e−i n π = ei n π and by the hypothesis of continuity of f , we get

f

Å
T

2

ã
= f

Å
−T

2

ã
.

Thus from the above computations we get

(3.2.16) |f̂(n)| = 1

2 |n|π

∣∣∣∣∣∣ 1T
ˆ T

2

−T
2

e−i n
2π
T
t f ′(t) dt

∣∣∣∣∣∣ =
1

2 |n|π
|“f ′(n)|.
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By hypothesis the derivative f ′ is bounded on the interval [−T/2, T/2], thus in particular we have

ˆ T
2

−T
2

|f ′(t)|2 dt < +∞.

By applying Bessel inequality to the function f ′, we thus obtain that∑
n∈Z
|“f ′(n)|2 < +∞.

By using (3.2.16), we thus have∑
n∈Z
|f̂(n)| = |f̂(0)|+

∑
n6=0

|f̂(n)| = |f̂(0)|+ 1

2π

∑
n 6=0

1

|n|
|“f ′(n)|

≤ |f̂(0)|+ 1

4π

∑
n 6=0

1

|n|2
+

1

4π

∑
n6=0

|“f ′(n)|2 < +∞,

as desired. Observe that in the last inequality we used Young’s inequality (i.e. Lemma 3.3.2 with
p = 2). �

Remark C.2.6. The statement of the previous result looks quite similar to that of Theorem C.2.1.
However, the crucial difference is that in Theorem C.2.5 the signal has to be globally continuous,
i.e. f does not have jumps.

Theorem C.2.7 (Parseval’s formula). Let f, g : R → C be two T−periodic measurable functions,
such that

f, g ∈ L2
Åï
−T

2
,
T

2

òã
.

Then we have Parseval’s formula

1

T

ˆ T
2

−T
2

f(t) g(t)∗ dt =
∑
n∈Z

f̂(n) ĝ(n)∗.

Proof. We perform the proof under the additional assumption that the Fourier series J [f ] and
J [g] both converge uniformly to f and g, respectively. In this case, we have

1

T

ˆ T
2

−T
2

f(t) g(t)∗ dt =
1

T

ˆ T
2

−T
2

J [f ](t)J [g](t)∗ dt

= lim
k→∞

1

T

ˆ T
2

−T
2

Ñ
k∑

n=−k
f̂(n) e−

2π n
T

i t

é Ñ
k∑

m=−k
ĝ(m) e−

2πm
T

i t

é∗
dt

= lim
k→∞

k∑
n,m=−k

f̂(n) ĝ(m)∗
1

T

ˆ T
2

−T
2

e−
2π (n−m)

T
i t dt.

If we now use the orthogonality relations (3.2.13), we get

1

T

ˆ T
2

−T
2

f(t) g(t)∗ dt = lim
k→∞

k∑
n=−k

f̂(n) ĝ(n)∗.
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Observe that by Young’s inequality (see Lemma 3.3.2 with p = 2) we have

lim
k→∞

∣∣∣∣∣∣
k∑

n=−k
f̂(n) ĝ(n)∗

∣∣∣∣∣∣ ≤ lim
k→∞

k∑
n=−k

|f̂(n)| |ĝ(n)∗|

≤ 1

2
lim
k→∞

k∑
n=−k

|f̂(n)|2 +
1

2
lim
k→∞

k∑
n=−k

|ĝ(n)∗|2,

and the last two series are converging, thanks to Bessel inequality. This concludes the proof. �

Remark C.2.8. By choosing f = g in the formula above, we obtain Plancherel’s formula

1

T

ˆ T
2

−T
2

|f(t)|2 dt =
∑
n∈Z
|f̂(n)|2.

Corollary C.2.9 (Convergence in L2). Let f : R→ C be a T−periodic measurable function, such
that

f ∈ L2
Åï
−T

2
,
T

2

òã
.

Then we have

f = J [f ] in L2
Åï
−T

2
,
T

2

òã
.

This means that we have

lim
k→∞

∥∥∥∥f − Jk[f ]

∥∥∥∥
L2([−T2 ,

T
2 ])

= 0,

where Jk[f ] is the k−th partial Fourier sum, see (3.2.7).

Proof. We still use the scalar product

〈f, g〉 =

ˆ T
2

−T
2

f(t) g(t)∗ dt,

introduced in the proof of Proposition C.2.4. Then we have∥∥∥∥f − Jk[f ]

∥∥∥∥2

L2([−T2 ,
T
2 ])

= 〈f − Jk[f ], f − Jk[f ]〉

= 〈f, f〉+ 〈f,Jk[f ]〉 − 〈Jk[f ], f〉+ 〈Jk[f ],Jk[f ]〉.

By (3.2.14), we have

〈f,Jk[f ]〉 = 〈Jk[f ],Jk[f ]〉,
while by the properties of the scalar product, we get

〈Jk[f ], f〉 = (〈f,Jk[f ]〉)∗ = (〈Jk[f ],Jk[f ]〉)∗ = 〈Jk[f ],Jk[f ]〉.

Thus we obtain ∥∥∥∥f − Jk[f ]

∥∥∥∥2

L2([−T2 ,
T
2 ])

= 〈f, f〉 − 〈Jk[f ],Jk[f ]〉.

By using that 〈f, f〉 coincides with the square of the L2 norm and formula (3.2.15), from the
previous identity we get∥∥∥∥f − Jk[f ]

∥∥∥∥2

L2([−T2 ,
T
2 ])

= ‖f‖2
L2([−T2 ,

T
2 ]) − T

k∑
n=−k

|f̂(n)|2.
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By taking the limit as k goes to ∞ and using Plancherel’s formula (see Remark C.2.8), we get the
conclusion. �

3. Exercises

Exercise C.3.1. Let f : R→ R be the periodic signal

f(t) =
∑
k∈Z

rect(t− 2 k).

Draw the graph of f and compute its Fourier series, by discussing its convergence.

Solution. It is not difficult to see that f is obtained by periodically repeating the rectangular
function, extended by 0 to the whole interval [−1, 1]. Thus f is 2−periodic. The signal f is
piecewise C1, thus from Theorem C.2.1 we can infer the pointwise convergence of its Fourier series
J [f ]. More precisely, we have

J [f ](t) =



1, if − 1/2 < t < 1/2,

1

2
, if t = ±1

2
,

0, if t ∈
ï
−1,−1

2

ã
∪
Å

1

2
, 1

ò
.

We now compute its Fourier coefficients. We have for n 6= 0

f̂(n) =
1

2

ˆ 1

−1
rect(t) e−π n i t dt =

1

2

ˆ 1
2

− 1
2

e−π n i t dt =
1

2

ñ
−e
−π n i t

π n i

ô 1
2

− 1
2

=
1

2

ñ
e
π
2
n i

π n i
− e−

π
2
n i

π n i

ô
=

1

π n
sin

Å
π

2
n

ã
.

In other words, we obtained

f̂(n) =
1

π n

®
0, if n is even,
(−1)k, if n = 2 k + 1.

The coefficient f̂(0) is given by

f̂(0) =
1

2

ˆ 1

−1
rect(t) dt =

1

2
.

Finally, the Fourier series is given by

J [f ] =
1

2
+
∞∑
k=0

f̂(2 k + 1) eπ (2 k+1) i t =
1

2
+

1

π

∞∑
k=0

(−1)k

2 k + 1
eπ (2 k+1) i t.

We also observe that f is even, thus by Remark C.1.4 we can also rewrite this as a series containing
only cosine functions, with coefficients ak given by (recall (3.1.2))

a0 = f̂(0), ak = 2 f̂(k), for k ≥ 1,
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Figure 2. The graph of the signal f of Exercise C.3.1. In red the sum of the first 8 terms of the
Fourier expansion.
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Figure 3. The periodic signal f of Exercise C.3.2.

i.e.

J [f ] =
1

2
+

2

π

∞∑
k=0

(−1)k

2 k + 1
cos(π (2 k + 1) t).

This concludes the exercise. �

Exercise C.3.2. Let f : R→ R be the periodic signal

f(t) =
∑
k∈Z

tri

Å
t

π
− 2 k

ã
.

Draw the graph of f and compute its Fourier series, by discussing its convergence.

Solution. It is easy to see that f is periodic, with period T = 2π. Moreover, the function f
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verifies the assumptions of Theorem C.2.5, thus we have

J [f ](t) = f(t), for every t ∈
ï
−T

2
,
T

2

ò
,

and the convergence of the Fourier series is total.

We first observe that

t 7→ 1− (|t|/π)

is a real-valued even function, thus by Lemma C.1.3 we already know that its Fourier coefficients
are real and such that f̂(−n) = f̂(n). Let us compute them: we have

f̂(0) =
1

2π

ˆ π

−π

Ç
1− |t|

π

å
dt =

1

π

ˆ π

0

Å
1− t

π

ã
dt

=

ˆ 1

0
(1− s) ds =

1

2
.

For n 6= 0, by using an integration by parts we have

f̂(n) =
1

2π

ˆ π

−π

Ç
1− |t|

π

å
e−i n t dt

=
1

2π

ˆ π

0

Å
1− t

π

ã
e−i n t dt dt+

1

2π

ˆ 0

−π

Å
1 +

t

π

ã
e−i n t dt

=
��

���
���

���
�

1

2π

ñÅ
1− t

π

ã
e−i n t

−i n

ôπ
0

− 1

2π2

ˆ π

0

e−i n t

i n
dt

+
��

���
���

���
�

1

2π

ñÅ
1 +

t

π

ã
e−i n t

−i n

ô0

−π
+

1

2π2

ˆ 0

−π

e−i n t

i n
dt

= − 1

2π2

ˆ π

0

e−i n t

i n
dt+

1

2π2

ˆ 0

−π

e−i n t

i n
dt

=
1

2π2 i n

ñ
e−i n t

i n

ôπ
0

+
1

2π2 i n

ñ
e−i n t

−i n

ô0

−π
.

In conclusion, we get

f̂(n) =
1

2π2 i n

ñ
e−i n π

i n
− 1

i n

ô
+

1

2π2 i n

ñ
ei n π

i n
− 1

i n

ô
= − 1

2π2 n2
[ei n π − 1],

where we used that e−i n π = ei n π. Moreover, we have

ei n π = (−1)n,

thus for n ∈ Z \ {0} we finally get

f̂(n) =
1

n2 π2

®
0, if n even,
2, if n odd,

and thus

J [f ](t) =
1

2
+

2

π2

∑
k∈Z

ei (2 k+1) t

(2 k + 1)2
.
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Figure 4. The graph of the signal f of Exercise C.3.3. In red the sum of the first 5 terms of its
Fourier series expansion.

As the function f is even, by Remark C.1.4 we can also rewrite this as a series containing only
cosine functions, with coefficients ak given by (recall (3.1.2))

ak = 2 f̂(k),

i.e.

J [f ](t) =
1

2
+

4

π2

∑
k∈N

cos
(
(2 k + 1) t

)
(2 k + 1)2

.

This concludes the exercise. �

Exercise C.3.3. Let us define

g(t) = t2 rect

Å
t

π

ã
,

and

f(t) =
∑
k∈Z

g(t− k π).

Draw the graph of f and compute its Fourier series, by discussing its convergence.

Solution. It is not difficult to see that the function f is periodic with period T = π. Moreover,
the function f verifies the assumptions of Theorem C.2.5, thus we have

J [f ](t) = f(t), for every t ∈
ï
−T

2
,
T

2

ò
,

and the convergence of the Fourier series is total.

Its Fourier coefficients are given by

f̂(n) =
1

π

ˆ π
2

−π
2

t2 e−2 i n t dt =
1

π

ˆ π
2

−π
2

t2 cos(2n t) dt

− i

π

ˆ π
2

−π
2

t2 sin(2n t) dt.
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We observe that the function t 7→ t2 is even, thus we get

1

π

ˆ π
2

−π
2

t2 cos(2n t) dt =
2

π

ˆ π
2

0
t2 cos(2n t) dt,

and
1

π

ˆ π
2

−π
2

t2 sin(2n t) dt = 0.

We now observe that with some integration by parts, we obtain for n ∈ Z \ {0}

f̂(n) =
2

π

ˆ π
2

0
t2 cos(2n t) dt =

���
���

���
ñ

2

π

sin(2n t)

2n
t2
ôπ

2

0

+
2

nπ

ˆ π
2

0
t (− sin(2n t)) dt

=
2

nπ

{ñ
t

cos(2n t)

2n

ôπ
2

0

−
��

���
���

ˆ π
2

0

cos(2n t)

2n
dt

}

=
cos(nπ)

2n2
=

(−1)n

2n2
.

As for the coefficient f̂(0), we have

f̂(0) =
2

π

ˆ π
2

0
t2 dt =

π2

12
.

In conclusion, we get

J [f ](t) =
π2

12
+

∑
n∈Z\{0}

(−1)n

2n2
e2n i t,

which can also be rewritten as

J [f ](t) =
π2

12
+
∞∑
k=1

(−1)k

k2
cos(2 k t).

This concludes the exercise. �

Exercise C.3.4 (Square wave). Let us define

g(t) = rect

Å
t− 1

2

ã
− rect

Å
t+

1

2

ã
.

We consider the square wave signal, defined by

�(t) =
∑
n∈Z

g(t+ 2n).

Draw the graph of � and compute its Fourier series, by discussing its convergence.

Solution. We first observe that � is 2−periodic, since

�(t+ 2) =
∑
n∈Z

g(t+ 2 + 2n) =
∑
n∈Z

g(t+ 2 (n+ 1)) =
∑
m∈Z

g(t+ 2m) = �(t).

The square wave signal is piecewise C1, thus from Theorem C.2.1 we can infer the pointwise
convergence of its Fourier series J [�]. More precisely, we have

J [�](t) = �(t), for t ∈ (−1, 0) ∪ (0, 1),
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Figure 5. The square wave signal. In red the sum of the first 6 terms of its Fourier expansion.

and

J [�](0) = J [�](−1) = J [�](1) = 0.

Let us compute its Fourier coefficients: for every n ∈ Z \ {0}, we have“�(n) =
1

2

ˆ 1

−1
g(t) e−π n i t dt =

1

2

ˆ 1

0
e−π n i t dt− 1

2

ˆ 0

−1
e−π n i t dt

=
1

2

ñ
e−π n i t

−π n i

ô1

0

− 1

2

ñ
e−π n i t

−π n i

ô0

−1

=
1

2

1

π n i
− 1

2

e−π n i

π n i
+

1

2

1

π n i
− 1

2

eπ n i

π n i

=
1

π n i
(1− enπ i),

which gives “�(n) = − i

π n

®
0, if n even,
2, if n odd.

On the other hand, we easily see that “�(0) = 0.

Observe that � is real-valued and odd and what we obtained is perfectly in accordance with Lemma
C.1.3. The Fourier series is then given by

J [�](t) =
∑
n∈Z
− 2 i

π (2n+ 1)
e(2n+1)π i t.

Since f is real-valued and even, we know by Remark C.1.4 this can be written as a series of sine
functions, with coefficients bn given by (recall (3.1.2))

f̂(n) =
−i bn

2
,
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Figure 6. In red, the partial sum of the Fourier series of Exercise C.3.5, corresponding to the first 5 terms.

that is

J [�](t) =
4

π

∞∑
n=1

sin((2n+ 1)π t)

2n+ 1
.

This concludes the exercise. �

Exercise C.3.5. Let us set

g(t) = cos(t) rect(t),

and consider the periodic signal f : R→ C defined by

f(t) =
∑
k∈Z

g(t− k).

Draw the graph of f and compute its Fourier series, by discussing its convergence.

Soluzione. The signal f is 1−periodic, since we have

f(t+ 1) =
∑
k∈Z

g(t+ 1− k) =
∑
m∈Z

g(t−m) = f(t).

Moreover, this is piecewise C1 signal, globally continuous on R, because g is continuous on [−1/2, 1/2]
and we have

g

Å
1

2

ã
= g

Å
−1

2

ã
.

By Theorem C.2.5 we thus have that the Fourier series J [f ] is totally converging. Let us now
compute the Fourier coefficients of f : at this aim, it is useful to observe that

cos t =
ei t + e−i t

2
.
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We thus have for every n ∈ Z

f̂(n) =

ˆ 1
2

− 1
2

cos t e−2π n i t dt =

ˆ 1
2

− 1
2

e−(2π n−1) i t

2
dt+

ˆ 1
2

− 1
2

e−(2π n+1) i t

2
dt

=

ñ
− e−(2π n−1) i t

2 i (2π n− 1)
dt

ô 1
2

− 1
2

+

ñ
− e−(2π n+1) i t

2 i (2π n+ 1)
dt

ô 1
2

− 1
2

=
1

2π n− 1

e(2π n−1) i
2 − e−(2π n−1) i

2

2 i

+
1

2π n+ 1

e(2π n+1) i
2 − e−(2π n+1) i

2

2 i
.

If we now recall that

sin t =
ei t − e−i t

2 i
,

we get

f̂(n) =
1

2π n− 1
sin

Å
π n− 1

2

ã
+

1

2π n+ 1
sin

Å
π n+

1

2

ã
.

Observe that by using trigonometric formulas, we have

sin

Å
π n− 1

2

ã
= − cos(π n) sin

Å
1

2

ã
= −(−1)n sin

Å
1

2

ã
,

and

sin

Å
π n+

1

2

ã
= cos(π n) sin

Å
1

2

ã
= (−1)n sin

Å
1

2

ã
,

which yield

f̂(n) =

ï
1

2π n+ 1
− 1

2π n− 1

ò
(−1)n sin

Å
1

2

ã
=

2 · (−1)n+1

4π2 n2 − 1
sin

Å
1

2

ã
.

In conclusion, we get

J [f ](t) = 2 sin

Å
1

2

ã ∑
n∈Z

(−1)n+1

4π2 n2 − 1
e2π n i t.

Finally, let us observe that f is even, we can thus rewrite J [f ] as a series of cosines. By recalling
the relations

f̂(0) = a0, f̂(n) =
an
2

for n ≥ 1, f̂(n) =
a−n

2
for n ≤ −1,

we get

J [f ](t) = 2 sin

Å
1

2

ã
+ 4 sin

Å
1

2

ã ∞∑
k=1

(−1)k+1

4π2 k2 − 1
cos(2π k t).

This concludes the exercise. �





Appendix D

Harmonic functions in
the plane

1. Examples

We have seen in Chapter 1 that a function u : Ω → R of class C2 on the open set Ω ⊂ R2 is said
to be harmonic if it verifies

uxx(x, y) + uyy(x, y) = 0, for every (x, y) ∈ Ω.

We set

∆u = div(∇u) = uxx + uyy,

this differential operator is called Laplacian. Then u is harmonic if ∆u = 0.

By Remark 1.4.14, we know that by taking the real or imaginary part of a holomorphic function,
we get a harmonic function in the plane. Let us have a look at some explicit examples.

Example D.1.1. Let us take f(z) = ez = ex (cos y + i sin y), where as usual we write z = x+ i y.
Then the functions

u(x, y) = Re(ez) = ex cos y and v(x, y) = Im(ez) = ex sin y,

are harmonic in R2.

Example D.1.2. Similarly, by considering f(z) = Log z = log |z|+ iArg(z) and recalling that this
is holomorphic in C∗∗, we get that

u(x, y) = Re(Log z) = log
»
x2 + y2,

is harmonic in R2 \ {(x, 0) : x ≤ 0}. More precisely, by direct computation, we can see that u is
harmonic in R2 \ {(0, 0)}.

257
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2. Construction of conjugate pairs

We have seen in Remark 1.4.14 that two harmonic functions u, v : Ω→ R on the open set Ω ⊂ R2

are said to be conjugate if they satisfy ®
ux = vy,
uy = −ux,

i.e. the system of Cauchy-Riemann equations. It is a remarkable fact that given a harmonic function
u on Ω, we can always construct another harmonic function v on Ω such that (u, v) are conjugate,
provided the open set Ω is “nice”.

We first need to recall some facts from the 2nd year course in Mathematical Analysis.

Definition D.2.1. Let Ω ⊂ R2 be a non-empty open set. We say that Ω is starshaped with respect
to a point (x0, y0) ∈ Ω if for every (x, y) ∈ Ω the segment joining (x, y) and (x0, y0) is entirely
contained in Ω.

Definition D.2.2. Let Ω ⊂ R2 be an open set. Let F : Ω → R2 be a vector field of class C1(Ω).
We say that:

• F is irrotational if
∂F2

∂x
(x, y)− ∂F1

∂y
(x, y) = 0, for every (x, y) ∈ Ω;

• F is conservative if there exists a function U : Ω→ R of class C2(Ω) such that

F(x, y) = ∇U(x, y), for every (x, y) ∈ Ω.

We can now state the main result of this section.

Theorem D.2.3. Let Ω ⊂ R2 be a starshaped set. If u : Ω → R is a harmonic function Ω, then
there exists v : Ω→ R such that v is harmonic in Ω and®

ux = vy,
uy = −ux,

in Ω.

Proof. We start by defining the vector field in the plane

F(x, y) = (−uy(x, y), ux(x, y)).

Observe that F coincides with the anti-cloackwise rotation of ∇u by π/2. Since u is harmonic in
Ω, we get that F is irrotational in Ω, i.e.

∂F2

∂x
− ∂F1

∂y
= −uyy − uxx = 0.

By recalling that “on a starshaped open set a vector field of class C1 is conservative if and only if
is irrotational ”, we get that there exists a C2 function v : Ω→ R such that

F(x, y) = ∇v(x, y), for every (x, y) ∈ Ω.

By recalling the definition of F, this is the same as

−uy = vx and ux = vy.

In other words, u and v solve the system of Cauchy-Riemann equations. The fact that v is harmonic
now follows as in Remark 1.4.14. �
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3. The mean value property

Harmonic functions have the following remarkable property, which is a consequence of Cauchy’s
integral formula (i.e. Theorem 1.6.14).

Theorem D.3.1. Let Ω ⊂ R2 be a starshaped open set. Let u : Ω→ R be a harmonic function in
Ω. For every point (x0, y0) ∈ Ω and every r > 0 such that Br((x0, y0)) ⊂ Ω, we have

(4.3.1) u(x0, y0) =
1

2π r

ˆ
∂Br((x0,y0))

u(x, y) d`.

In other words, the value of u in a point (x0, y0) coincides with the integral mean of u on the
boundary of any ball centered at the same point.

Proof. By using Theorem D.2.3, we know that there exists v : Ω → R harmonic such that u and
v are conjugate. Thus by Corollary 1.4.9 the function

f(z) = f(x+ i y) = u(x, y) + i v(x, y),

is holomorphic in Ω. By Theorem 1.6.14, if we set z0 = x0 + i y0, we have

f(z0) =
1

2π i

ˆ
γr(z0)

f(z)

z − z0
dz,

where

γr(z0) = r ei t + z0, t ∈ [0, 2π].

Observe that γr(z0) is a smooth parametrization of ∂Br((x0, y0)) with positive orientation. We
now write explicitly the integral above, in terms of its real and imaginary parts:

u(x0, y0) + i v(x0, y0)

=
1

2π

ˆ 2π

0

u(x0 + r cos t, y0 + r sin t) + i v(x0 + r cos t, y0 + r sin t)

r cos t+ i r sin t
(r cos t+ i r sin t) dt

=
1

2π

ˆ 2π

0
u(x0 + r cos t, y0 + r sin t) dt

+
i

2π

ˆ 2π

0
v(x0 + r cos t, y0 + r sin t) dt

=
1

2π r

ˆ
∂Br((x0,y0))

u(x, y) d`

+
i

2π r

ˆ
∂Br((x0,y0))

v(x, y) d`.

Thus we get

u(x0, y0) =
1

2π r

ˆ
∂Br((x0,y0))

u(x, y) d` and v(x0, y0) =
1

2π r

ˆ
∂Br((x0,y0))

v(x, y) d`.

This concludes the proof. �

Corollary D.3.2. Let Ω ⊂ R2 be a starshaped open set. Let u : Ω→ R be a harmonic function in
Ω. For every point (x0, y0) ∈ Ω and every R > 0 such that BR((x0, y0)) ⊂ Ω, we have

u(x0, y0) =
1

π R2

ˆ
BR((x0,y0))

u(x, y) dx dy.



260 D. Harmonic functions in the plane

Proof. We fix R > 0 as in the statement and use (4.3.1) for 0 < r ≤ R, i.e.

2π r u(x0, y0) =

ˆ
∂Br((x0,y0))

u(x, y) d`.

By integrating this formula in r, we get

π R2 u(x0, y0) =

ˆ R

0

Çˆ
∂Br((x0,y0))

u(x, y) d`

å
dr

=

ˆ R

0

Çˆ 2π

0
u(x0 + r cos t, y0 + r sin t) r dt

å
dr

=

ˆ R

0

ˆ 2π

0
u(x0 + r cos t, y0 + r sin t) r dr dt.

Observe that by using the polar coordinates, we haveˆ
BR((x0,y0))

u(x, y) dx dy =

ˆ 2π

0

ˆ R

0
u(x0 + r cos t, y0 + r sin t) r dr dt.

This gives the desired conclusion. �

4. Harmonic functions in the disk

We now suppose to work in a disk D of radius R > 0, centered for simplicity at the origin (0, 0).
In this case, we can introduce the polar coordinates

x = % cosϑ y = % sinϑ, 0 ≤ % ≤ R, 0 ≤ ϑ ≤ 2π.

Thus, given a function u : D → R of class C2(D), we want to write its Laplacian in terms of the
new coordinates % and ϑ.

We first use the chain rule for functions of several variables for the function u(x, y) = u(% cosϑ, % sinϑ),
so to get

(4.4.1)
∂u

∂%
= cosϑ

∂u

∂x
+ sinϑ

∂u

∂y
,

and

(4.4.2)
∂u

∂ϑ
= −% sinϑ

∂u

∂x
+ % cosϑ

∂u

∂y
.

We now wish to invert these relations and write

∂u

∂x
and

∂u

∂y
,

in terms of
∂u

∂%
and

∂u

∂ϑ
.

At this aim, we multiply equation (4.4.1) by % sinϑ, multiply equation (4.4.2) by cosϑ and sum
the two relevant equations. We get

% sinϑ
∂u

∂%
+ cosϑ

∂u

∂ϑ
=
���

���
��

% sinϑ cosϑ
∂u

∂x
+ % sin2 ϑ

∂u

∂y
sinϑ

���
���

���
−% cosϑ sinϑ

∂u

∂x
+ % cos2 ϑ

∂u

∂y
sinϑ.
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By recalling that cos2 ϑ+ sin2 ϑ = 1, we obtain

(4.4.3)
∂u

∂y
= sinϑ

∂u

∂%
+

cosϑ

%

∂u

∂ϑ

In order to find ∂u/∂x, we argue in a similar fashion: we multiply equation (4.4.1) by % cosϑ,
multiply equation (4.4.2) by − sinϑ and the take the sum. We get

% cosϑ
∂u

∂%
− sinϑ

∂u

∂ϑ
= % cos2 ϑ

∂u

∂x
+
���

���
���

��

% sinϑ cosϑ
∂u

∂y
sinϑ

+ % sin2 ϑ
∂u

∂x
+
��

���
���

���

% cosϑ sinϑ
∂u

∂y
sinϑ.

We use again that cos2 ϑ+ sin2 ϑ = 1, this yields

(4.4.4)
∂u

∂x
= cosϑ

∂u

∂%
− sinϑ

%

∂u

∂ϑ
.

Equations (4.4.3) and (4.4.3) give the expression of ∇u in terms of the polar coordinates. Let us
now proceed to get the expression of the Laplacian: by observing that

uxx =
∂2u

∂x2
=

∂

∂x

∂u

∂x
,

and

uyy =
∂2u

∂y2
=

∂

∂y

∂u

∂y
,

we need to iterate (4.4.3) and (4.4.4). Thus we get

∂2u

∂x2
=

∂

∂x

∂u

∂x
=

Å
cosϑ

∂

∂%
− sinϑ

%

∂

∂ϑ

ã Å
cosϑ

∂u

∂%
− sinϑ

%

∂u

∂ϑ

ã
= cosϑ

∂

∂%

Å
cosϑ

∂u

∂%
− sinϑ

%

∂u

∂ϑ

ã
− sinϑ

%

∂

∂ϑ

Å
cosϑ

∂u

∂%
− sinϑ

%

∂u

∂ϑ

ã
= cos2 ϑ

∂2u

∂%2
− cosϑ sinϑ

∂

∂%

Å
1

%

∂u

∂ϑ

ã
− sinϑ

%

∂

∂ϑ

Å
cosϑ

∂u

∂%

ã
+

sinϑ

%2

∂

∂ϑ

Å
sinϑ

∂u

∂ϑ

ã
and

∂2u

∂y2
=

∂

∂y

∂u

∂y
=

Å
sinϑ

∂

∂%
+

cosϑ

%

∂

∂ϑ

ã Å
sinϑ

∂u

∂%
+

cosϑ

%

∂u

∂ϑ

ã
= sinϑ

∂

∂%

Å
sinϑ

∂u

∂%
+

cosϑ

%

∂u

∂ϑ

ã
+

cosϑ

%

∂

∂ϑ

Å
sinϑ

∂u

∂%
+

cosϑ

%

∂u

∂ϑ

ã
= sin2 ϑ

∂2u

∂%2
+ cosϑ sinϑ

∂

∂%

Å
1

%

∂u

∂ϑ

ã
+

cosϑ

%

∂

∂ϑ

Å
sinϑ

∂u

∂%

ã
+

cosϑ

%2

∂

∂ϑ

Å
cosϑ

∂u

∂ϑ

ã
.
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When we sum up the last two quantities, we get

∆u = cos2 ϑ
∂2u

∂%2
−
���

���
���

��

cosϑ sinϑ
∂

∂%

Å
1

%

∂u

∂ϑ

ã
− sinϑ

%

∂

∂ϑ

Å
cosϑ

∂u

∂%

ã
+

sinϑ

%2

∂

∂ϑ

Å
sinϑ

∂u

∂ϑ

ã
+ sin2 ϑ

∂2u

∂%2
+
���

���
���

��

cosϑ sinϑ
∂

∂%

Å
1

%

∂u

∂ϑ

ã
+

cosϑ

%

∂

∂ϑ

Å
sinϑ

∂u

∂%

ã
+

cosϑ

%2

∂

∂ϑ

Å
cosϑ

∂u

∂ϑ

ã
,

that is, by using the fundamental trigonometric identity,

∆u =
∂2u

∂%2

− sinϑ

%

∂

∂ϑ

Å
cosϑ

∂u

∂%

ã
+

sinϑ

%2

∂

∂ϑ

Å
sinϑ

∂u

∂ϑ

ã
+

cosϑ

%

∂

∂ϑ

Å
sinϑ

∂u

∂%

ã
+

cosϑ

%2

∂

∂ϑ

Å
cosϑ

∂u

∂ϑ

ã
,

We are now left to compute the last derivatives: this yields

∆u =
∂2u

∂%2

+
sin2 ϑ

%

∂u

∂%
−
��

���
���

�sinϑ cosϑ

%

∂2u

∂% ∂ϑ

+
��

���
��sinϑ cosϑ

%2

∂u

∂ϑ
+

sin2 ϑ

%2

∂2u

∂ϑ2

+
cos2 ϑ

%

∂u

∂%
+
���

���
���cosϑ sinϑ

%

∂2u

∂% ∂ϑ

−
��

���
��cosϑ sinϑ

%2

∂u

∂ϑ
+

cos2 ϑ

%2

∂2u

∂ϑ2

=
∂2u

∂%2
+

cos2 ϑ+ sin2 ϑ

%

∂u

∂%
+

cos2 ϑ+ sin2 ϑ

%2

∂2u

∂ϑ2
.

In conclusion, we get

(4.4.5) ∆u =
∂2u

∂%2
+

1

%

∂u

∂%
+

1

%2

∂2u

∂ϑ2

Example D.4.1 (Spherical harmonics). Let n ∈ N \ {0}, we consider the functions in polar
coordinates

un(%, ϑ) = %n cos(nϑ) and vn(%, ϑ) = %n sin(nϑ).
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By using formula (4.4.5), it is easy to see that these are harmonic functions. Indeed, we have

∆un =
∂2

∂%2
(%2 cos(nϑ))

+
1

%

∂

∂%
(%n cos(nϑ))

+
1

%2

∂2

∂ϑ2
(%n cos(nϑ))

= n (n− 1) %n−2 cos(nϑ) + n%n−2 cos(nϑ)− n2 %n−2 cos(nϑ)

= (n2 − n+ n− n2) %n−2 cos(nϑ) = 0.

Similar computations work for the function vn. We recall that by using polar coordinates in the
complex plane, i.e. z = % (cosϑ+ i sinϑ), then we know that

zn = %n (cos(nϑ) + i sin(nϑ)).

Thus we can write the functions above as

un = Re(zn) and vn = Im(zn).

This shows that (un, vn) is a conjugate pair, for every n ∈ N\{0}. We also observe that the relation
above between un (or vn) and zn, permits to find un and vn as functions of the standard cartesian
variables (x, y). Indeed, we have

un(x, y) = Re(zn) = Re((x+ i y)n) = Re

(
n∑
k=0

Ç
n

k

å
xk (i y)n−k

)
,

and

vn(x, y) = Im(zn) = Im((x+ i y)n) = Im

(
n∑
k=0

Ç
n

k

å
xk (i y)n−k

)
.

For example, for n = 4 we have

u4(x, y) = Re((i y)4 + 4x (i y)3 + 6x2 (i y)2 + 4x3 (i y) + x4) = y4 − 6x2 y2 + x4,

and

v4(x, y) = Im((i y)4 + 4x (i y)3 + 6x2 (i y)2 + 4x3 (i y) + x4) = −4x y3 + 4x3 y.

The functions (un, vn) are called spherical harmonics of order n.

5. Exercises

Exercise D.5.1. Find an explicit solution u ∈ C2(R+ × R) of the following two-dimensional
boundary value problem

∆u(x, y) = 0, in (x, y) ∈ R+ × R,

u(0, y) = sinc

Å
y

2π

ã
, y ∈ R.

Solution. We have seen that

sinc

Å
y

2π

ã
= F [rect](y) = B[rect](i y),
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Figure 1. The solution of Exercise D.5.1.

with

B[rect](z) =
e
z
2 − e−

z
2

z
, for z ∈ C,

see Example 4.8.10. The function B[rect] is holomorphic, thus by recalling Remark 1.4.14

u(x, y) = Re (B[rect](x+ i y)) and v(x, y) = Im (B[rect](x+ i y)) ,

are two harmonic functions. Moreover, we have

u(0, y) = Re (B[rect](i y)) = sinc

Å
y

2π

ã
,

thus u is a solution of the boundary value problem. We are only left with computing explicitly the
real part of B[rect](x+ i y): we have

B[rect](z) =
e
x
2 ei

y
2 − e−

x
2 e−i

y
2

x+ i y

=
e
x
2 cos

Å
y

2

ã
+ i e

x
2 sin

Å
y

2

ã
− e−

x
2 cos

Å
y

2

ã
+ i e−

x
2 sin

Å
y

2

ã
x2 + y2

(x− i y)

=
2 sinh

Å
x

2

ã
cos

Å
y

2

ã
+ 2 i sin

Å
y

2

ã
cosh

Å
x

2

ã
x2 + y2

(x− i y)

= 2 sinh

Å
x

2

ã
cos

Å
y

2

ã
x

x2 + y2
+ 2 sin

Å
y

2

ã
cosh

Å
x

2

ã
y

x2 + y2

+ i

ï
sin

Å
y

2

ã
cosh

Å
x

2

ã
x

x2 + y2
− 2 sinh

Å
x

2

ã
cos

Å
y

2

ã
y

x2 + y2

ò
.

Thus in conclusion we obtain that

u(x, y) = 2 sinh

Å
x

2

ã
cos

Å
y

2

ã
x

x2 + y2
+ 2 sin

Å
y

2

ã
cosh

Å
x

2

ã
y

x2 + y2
,

is a solution. �
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Figure 2. The solution of Exercise D.5.2 for R = 3/2.

Exercise D.5.2. Let R > 1, find an explicit solution u ∈ C2(R2 \ BR((0, 0))) of the following
two-dimensional boundary value problem

∆u(x, y) = 0, in (x, y) ∈ R2 \BR((0, 0)),

u(x, y) =
R2 − x

R2 + 1− 2x
, (x, y) ∈ ∂BR((0, 0)).

Solution. We observe that

R2 − x
R2 + 1− 2x

=
x2 − x+ y2

x2 + 1− 2x+ y2
=
x (x− 1) + y2

(x− 1)2 + y2
, for (x, y) ∈ ∂BR((0, 0)).

The last function is the real part of the function,
z

z − 1

which is holomorphic for z 6= 1. Thus we can take

u(x, y) =
x (x− 1) + y2

(x− 1)2 + y2
,

as a solution. �

Exercise D.5.3 (Poisson’s kernel for the half-space). Let us consider the function

P (x, y) =
1

π

x

x2 + y2
, for (x, y) ∈ (0,+∞)× R.

Prove that:

(1) P is harmonic in (0,+∞)× R;

(2) for every f ∈ S, the function

Uf (x, y) =

ˆ
R
P (x, t) f(y − t) dt, (x, y) ∈ (0,+∞)× R,

is harmonic;

(3) for every f ∈ S, we have

lim
x→0+

Uf (x, y) = f(y), for every t ∈ R.
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Solution. It is easily seen that

x

x2 + y2
= Re

Å
1

x+ i y

ã
= Re

Å
x− i y
x2 + y2

ã
,

thus point (1) follows directly from Remark 1.4.14.

As for point (3), we already know from Exercise 6.8.10 that

lim
x→0+

ˆ
R

x

x2 + t2
ϕ(t) dt = 〈π δ0, ϕ〉 = π ϕ(0), for every ϕ ∈ S.

By recalling the definition of P , this automatically gives

lim
x→0+

ˆ
R
P (x, t) f(y − t) dt = 〈δ0, f(y − ·)〉 = f(y), for every f ∈ S.

We are left with proving point (2). We first observe that for every fixed x > 0, we have

Uf (x, y) = P (x, ·) ∗ f(y).

Thus we can directly claim that Uf can be differentiated infinitely many times in y, thanks to
Corollary 3.5.12. Moreover, by the same result we have

(4.5.1)
∂2Uf
∂y2

=

Ç
∂2

∂y2
P (x, ·)

å
∗ f =

ˆ
R

∂2

∂t2
P (x, t) f(y − t) dy.

In order to prove differentiability in the x variable, we need to use the Lebesgue Dominated Con-
vergence Theorem (see Theorem 3.2.5). We first observe that for every x > 0 and y ∈ R

(4.5.2)

∣∣∣∣ ∂∂yP (x, ·)
∣∣∣∣ =

∣∣∣∣∣ y2 − x2

(x2 + y2)2

∣∣∣∣∣ ≤ y2 + x2

(y2 + x2)2
=

1

x2 + y2
≤ 1

x2
,

and

(4.5.3)

∣∣∣∣∣ ∂2

∂y2
P (x, ·)

∣∣∣∣∣ = 2x
|x2 − 3 y2|
(x2 + y2)3

≤ 6x
x2 + y2

(x2 + y2)3
≤ 6x

1

x4
=

6

x3
.

These will help us to show the differentiability of Uf in x. Indeed, for every x > 0 and y ∈ R, we
have

lim
h→0

Uf (x+ h, y)− Uf (x, y)

h
= lim

h→0

ˆ
R

P (x+ h, t)− P (x, t)

h
f(y − t) dt.

In order to pass the limit under the integral sign, we observe that

lim
h→0

P (x+ h, t)− P (x, t)

h
=

∂

∂x
P (x, t),

and that for every |h| < x/2, we have for a point ξx,h such that |ξx,h − x| ≤ |h|∣∣∣∣∣P (x+ h, t)− P (x, t)

h
f(y − t)

∣∣∣∣∣ =

∣∣∣∣ ∂∂xP (ξx,h, t)

∣∣∣∣ |f(t− y)| ≤ 1

(ξx,h)2
|f(t− y)|.

By observing that by construction

ξx,h ≥ x− |h| ≥
x

2
> 0,
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the last estimate gives the summable upper bound independent of h, needed to apply the Dominated
Convergence Theorem. Thus we get

∂

∂x
Uf (x, y) = lim

h→0

Uf (x+ h, y)− Uf (x, y)

h
= lim

h→0

ˆ
R

P (x+ h, t)− P (x, t)

h
f(y − t) dt

=

ˆ
R

∂

∂x
P (x, t) f(y − t) dt.

In a similar way, we prove that

(4.5.4)
∂2

∂x2
Uf (x, y) =

ˆ
R

∂2

∂x2
P (x, t) f(y − t) dt.

By putting together (4.5.4) and (4.5.1) and using that P is harmonic by point (1), we finally get
that Uf is harmonic, as well. �





Appendix E

Tables of transforms

1. Z−transforms

Sequence Transform Radius of convergence

δ0 1 0

1
z

z − 1
1

an (a ∈ C∗)
z

z − a
|a|

n
z

(z − 1)2
1

n2 z (1 + z)

(z − 1)3
1

cos(n τ) (τ > 0)
z (z − cos τ)

z2 − 2 z cos τ + 1
1

sin(n τ) (τ > 0)
z sin τ

z2 − 2 z cos τ + 1
1

269



270 E. Tables of transforms

Sequence Transform Radius of convergence

1

n
−Log

Å
1− 1

z

ã
1

1

n!
e

1
z 0

2. Laplace transforms

Causal signal Transform Abscissa of convergence

H(t)
1

z
0

R(t)
1

z2
0

tk ea tH(t)
k!

(z − a)k+1
Re(a)

cos(t τ) (τ > 0)
z

z2 + τ2
0

sin(t τ) (τ > 0)
τ

z2 + τ2
0

SW (t)
ez − 1− z
z2 (ez − 1)

0

3. Bilateral Laplace transforms

Signal Transform Abscissa of convergence Upper abscissa of convergence

rect(t)
e
z
2 − e−

z
2

z
−∞ +∞

e−|t|
2

1− z2
−1 1
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4. Mellin transforms

Causal Signal Transform Abscissa of convergence Upper abscissa of convergence

1[0,1](t)
1

z
0 +∞

e−tH(t) Γ(z) 0 +∞

5. Hilbert transforms

Signal Transform

rect(t) log

∣∣∣∣∣∣∣∣
ω +

1

2

ω − 1

2

∣∣∣∣∣∣∣∣
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6. Fourier transforms

Signal Transform Notes

rect(t) sinc

Å
ω

2π

ã
tri(t)

Å
sinc

Å
ω

2π

ãã2

e−|t|
2

1 + ω2

1

1 + t2
π e−|ω|

1

a t2 + b t+ c
(with a > 0, b2 − 4 a c < 0)

2π√
4 a c− b2

ei
b
2 a

ω e−
√

4 a c−b2
2 a

|ω|

1

1 + t4
π e−

√
2

2
|ω| sin

Ç√
2

2
|ω|+ π

4

å
1[a,b](t) (b− a) e−

a+b
2
i ω sinc

Å
b− a
2π

ω

ã
sinc(t) 1[−π,π](ω) in L2 or S ′

sinc2(t) tri

Å
ω

2π

ã
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Signal Transform Notes

e−t
2 √

π e−
ω2

4

e−a (t−t0)2 (a > 0)

…
π

a
e−

ω2

4 a

(
cos(t0 ω)− i sin(t0 ω)

)

δt0 e−i t0 ω in S ′

1 2π δ0 in S ′

ei t0 t 2π δt0 in S ′

H(t) π δ0 +
1

i
P.V.

1

ω
in S ′

P.V.
1

t
−π i sign(ω) in S ′

cos t π
(
δ1 + δ−1

)
in S ′

sin t π i
(
δ−1 − δ1

)
in S ′

Pτ
2π

τ
P 2π

τ
in S ′





Index

Lp norm, 80
Z−transform, 51
Z−transform (causal signal), 63

abscissa of convergence, 108
aliasing, 173
approximation by convolution, 95

band limit, 170
band-limited signal, 170
band-pass filter, 171
Bessel inequality (Fourier series), 243
Bessel’s equation, 72
bilateral Laplace transform, 129

cardinal sine function, 86, 102
Cauchy’s integral formula, 18
Cauchy’s Theorem, 16
Cauchy-Riemann equations, 7
causal signal, 63
characteristic function, 78
characteristic polynomial, 127
compactly supported functions, 84
complex exponential function, 10
conjugate harmonic functions, 8
convolution (causal signals), 89
convolution (functions), 88
convolution (sequences), 53, 89
convolver of the class S, 199
critical axis, 108

deformation of contour, 17
Delta sequence, 52
Density Theorem, 87
Dirac comb, 212
Dirichlet kernel, 239
distributional derivative, 203

Dominated Convergence Theorem, 79
duality formula (Fourier transform), 158

essential singularity, 31

Fatou’s Lemma, 79
final value theorem (Z−transform), 59
Fourier coefficients, 235
Fourier series, 121, 235
Fourier transform (L1 function), 145
Fourier transform (L2 functions), 166
Fourier transform (distribution), 207
Fresnel’s integrals, 43
Fubini’s Theorem, 79
fundamental solution, 211
Fundamental Theorem of Algebra, 30

Gamma function, 133

Hölder’s inequality, 82
harmonic function, 8, 257
heat equation, 183
heat kernel, 184
Hilbert transform, 214
holomorphic function, 8

impulse response (Z−transform), 71
impulse response (Laplace transform), 128
initial value theorem (Z−transform), 58
integro-differential equations, 129
interpolation (Lp spaces), 100
inversion formula (Z−transform), 56
inversion formula (Fourier transform, L1 signals), 158
inversion formula (Fourier transform, piecewise C1

signals), 154
inversion formula (Laplace transform), 124, 160
inversion formula for a rational function, 125
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isolated singularity, 31

Kallman-Rota inequality, 104

Laplace transform, 107
Laplacian (in polar coordinates), 262
Laplacian operator, 257
Laurent’s Theorem, 35
Liouville’s Theorem, 29
locally summable, 86
low-pass filter, 171

Mellin transform, 132
Minkowski’s inequality, 84
Monotone Convergence Theorem, 79
multiplier of the class S, 196

normal versor, 15
Nyquist frequency, 174

Parseval’s formula, 164
Parseval’s formula (Fourier series), 246
partial Fourier sum, 238
partial fraction decomposition, 37
Plancherel’s formula, 164
Plancherel’s formula (Fourier series), 246
Poisson’s kernel, 265
Poisson’s summation formula, 212
pole, 31
positively oriented, 16
principal n−th rooth, 9
principal argument, 1
principal logarithm, 11

radius of convergence, 21
rectangular function, 92
regular tempered distribution, 192
removable singularity, 31
reparametrization, 13
Residue Theorem, 33
Riemann-Lebesgue Lemma (Fourier transform), 147
Riemann-Lebesgue Lemma (general version), 154
Riemann-Lebesgue Lemma (Laplace transform), 114
Riesz-Fischer Theorem, 87

sawtooth wave, 134, 205
separation of variables, 232
Shannon-Whittaker formula, 171
slowly growing function, 192
Sochocki-Plemelj formula, 202
spherical harmonics, 262
summable function, 77

tangent versor, 15
Tonelli’s Theorem, 80
transfer function, 128
triangular function, 92

uncertainty principle, 160

unique continuation principle, 27
upper abscissa of convergence, 130

Volterra integral equation, 128, 142

Young’s inequality, 80
Young’s inequality for convolutions, 89, 91
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