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Foreword

These notes contain the material covered by the 3rd/4th year course “Metodi Matematici per
I’Ingegneria”, which I gave in the second semester of the Academic Years from 2015/2016 to
2018/2019 at the University of Ferrara. The course lasted 48 real hours during a period of 12 weeks
and was conceived for engineers. I used the following schedule:

e 3 weeks (i.e. 6 lectures) on Chapter 1

1 week (i.e. 2 lectures) on Chapter 2

1.5 week (i.e. 3 lectures) on Chapter 3

2 weeks (i.e. 4 lectures) on Chapter 4

2 weeks (i.e. 4 lectures) on Chapter 5

2.5 weeks (i.e. 5 lectures) on Chapter 6

Almost everything contained in these notes has been treated during the course, except for some
advanced proofs or some exercises (also, I did not have time to treat the part on Volterra equations,
which however is not part of the program). The contents of the course have been inherited from
those treated by Prof. Daniela Mari, who previously held the course for many years. I only
made some minor changes: for example, I enlarged the part on L? spaces (Chapter 3), added a
brief treatment of linear finite difference equations (in Chapter 2) and proved the Sochocki-Plemelj
formula (in Chapter 6), which provides an elegant way to compute the Fourier transform of the
Heaviside function. I also added a treatment of band-limited signals and the proof of the Shannon-
Whittaker sampling formula, which is a beautiful result in the theory of Fourier transform.

The contents of the course aim at putting on a (reasonably) rigourous mathematical framework
some standard tools used by engineers in signal processing. These are essentially the 3 kind of
integral transforms presented in these notes:

o Z—transform

e Laplace transform

1X



X Foreword

e Fourier transform

as well as the modern theory of distributions. Time permetting, usually I also briefly treat the
bilateral Laplace transform, the Mellin transform and the Hilbert transform. As for the theory of
distributions, I only treat the case of tempered distributions, essentially because this is the natural
setting to define the Fourier transform in distributional sense.

Where possible, I tried to give a flavour of applications of these tools, mainly to differential
equations and finite difference equations. The students were not supposed to be familiar with these
two topics, but in the end this is not an issue. Indeed, by using the transforms one can offer a
self-contained presentation (at least in the constant coefficient linear case).

It would be a good idea to include Fourier series among the contents of the course, but essen-
tially there is no time to do it. For this reason, for completeness I added in Appendix C a brief
summary of the main facts about Fourier series that the students should know. There are essentially
two points where Fourier series enter in this course: in the proof of the Shannon-Whittaker formula
and in the proof of the Poisson summation formula. I also singled out the connection between the
singularities of the Laplace transform of a periodic function and its Fourier coefficients, see Remark
4.4.10.

I also added Appendix A and B about two standard facts in mathematical analysis, that usually
are not very familiar to the students attending the course: the definitions and properties of lim inf
and lim sup and a brief treatement of first order ordinary linear differential equations (possibly with
varying coefficients).

Appendix D is essentially a divertissement for students that want to know a little bit more
about harmonic functions in the plane. Even if they are not directly connected with the scopes
of the course, they naturally arise in connection with holomorphic functions. I give some basic
properties and construct some explicit examples.

Finally, in Appendix E one can find a summary of the main transforms computed throughout
the lecture notes (Z, Laplace, bilateral Laplace, Mellin, Fourier, Hilbert).

Acknowledgments. I take the occasion to thank Daniela Mari for many helpful suggestions during
the first preparation of the course in November 2015. 1 wish to express my gratitude to my friend
and colleague Michele Miranda, who carefully read these notes, while teaching this course in the
Academic Year 2019/2020. I also want to thank Mirko Ferracioli and Davide Zanellati, who spent
some time in reading these notes and pointed out some typos and misprints.



List of symbols

We list below some basic notations used throughout these lecture notes:

Symbol | Meaning

1 imaginary unit

C field of complex numbers

Re(z) real part of z € C

Im(z) imaginary part of z € C

Arg(z) | principal argument of z € C

Cc* C\ {0}

C** C\{z € C : Im(z) =0 and Re(z) < 0}

H Heaviside step function, defined by
Ho={4 izo

SW sawtooth wave function, defined by
SW(t) = kf;o(t — k) [H(t— k)~ H(t — k—1)]

R unitary ramp function, defined by

¢, ift>0,
R(t) = tH(t) = { 0, ift<0
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xii

List of symbols

Symbol | Meaning
rect rectangular function, defined by
) 1 1
rect(t) = 1, i - 2 sts 2’
0, otherwise
tri triangular function, defined by
o [t i —1<t<,
tri(t) = { 0, otherwise
sinc cardinal sine function, defined by
sin(mt) .
sinc(t) = Tt if £ #0,
1, ift=0
O square wave signal, defined by
1 1
O) = Y {rect (t— = +2n> — rect (t—i— = +2n)}
nez 2 2
Z[{zn}] | Z—transform of the sequence {x, }nen, defined by
[e.°] :L‘n
Z[{an}](z) = X —
n=0 2
L[f] Laplace transform of the causal signal f, defined by
+o00
o) = [ e a
of abscissa of convergence of L[f]
B[f] bilateral Laplace transform of f, defined by
+oo
Blfl= [ e
Xy upper abscissa of convergence of B[f]
M(f] Mellin transform of the causal signal f, defined by
+0oo
Ml = [ e o
Flf] Fourier transform of f, defined by

w

Flf)(w) = /R e~ £ (1) dt

band limit of the band-limited signal f



List of symbols

xiii

Symbol | Meaning
S Schwartz class
[Pl sup |t M(t)],  m,keN
teR
% S, @ | convergence in the Schwartz class &
S’ the space of tempered distributions
Fy regular tempered distribution generated by f
Ot Dirac delta centered at tg € R
P.V.- tempered distribution “principal value of 1/t”
F, SR convergence in &’
Oum multipliers of the class S
O¢ convolvers of the class S
P; Dirac comb (with time step 7 > 0)
H[f] Hilbert transform of f, defined by
HIf] = f*P.V%
f(n) n—th FourieTT coefficient of f, defined by
foo =g [ e
3
JIf] Fourier series of f

k—th partial Fourier sum






Chapter 1

Functions of one
complex variable

1. Notation

We denote by C the field of complex numbers. If z =z + iy € C is a complex number, we denote
by
Re(z) == and Im(z) =y,
its real and imaginary parts. Observe that if z,w € C, then
Re(z + w) = Re(z) + Re(w) and Im(z + w) = Im(z) + Im(w).
If z € C, we indicate by z* its conjugate, which is defined by

2=z —iy.

|2 = Va2 +y?,

is the modulus of z. We recall that there holds

We recall that z 2* = |2|?, where

(1.1.1) |z + w| < |z| + |w], for every z,w € C.
We set
C*=C\ {0}, C* =C\{z€C : Im(z) =0 and Re(z) < 0}.
Every z € C* can be written in polar coordinates as
z =|z| (cos V¥ + i sin 1)),

where ¥ € R is called an argument of z. Of course, the argument is not unique, since any other
argument of the form ¥+ 2 k7 with k € Z would correspond to the same complex number z, thanks
to the fact that

cos(¥+2km) = cos?, sin(¥ + 2k ) = sin 9.
We call principal argument of z the unique argument belonging to the interval (—m, 7]. We will use
the symbol Arg(z) to denote the principal argument of z.

1



2 1. Functions of one complex variable

Finally, we recall that if
z = |z| (cos ¥ + i sin®)) and w = |w| (cosp + i sinp),
then

(1.1.2) zw = |z| |w] (cos(z?—i—cp)—i—i sin(ﬁ—i—gp)).

2. A bit of topology
Let zp € C and r > 0, we denote by B, (zp) the disk centered at zp with radius r > 0, i.e.
By(z0) ={2€C : |z — 2| <1}.

We also introduce the notation B, (z0) for the punctured disk centered at zy with radius r > 0, i.e.

B,(20) = Br(20) \ {20}

We say that a subset A C C is open if for every zy € A, there exists > 0 such that B,(zg) C A.
We say that A is closed if C\ A is open. A point zy € C is said to be an accumulation point of a
set A C C if for every r > 0 we have

BT(ZO) NA 75 @
We say that zg is a boundary point of A if for every r > 0 we have
Br(z0)NA#0 and Br(z0) N (C\ A) # 0.

Finally, for a subset A C C we denote by dA the collection of all boundary points of A. This set
is called boundary of A.

For a set A C C we denote by A its closure. By definition, this is the smallest closed set containing
A. For example, it is not difficult to see that

Br(z0) ={2€C : |z— 20| <7}.

We say that an open set A C C is connected if for every z,w € A there exists a continuous polygonal
line v C A connecting z and w.

Example 1.2.1. Let A={z€ C : Rez > 0}U{—1+i}, this is a closed set. It is easy to see that
0A={z€C: Rez=0}U{-1+1i},
but {—1+ i} is not an accumulation point of A. Indeed, we have
Bijp(l+i)NA=0,

since the only intersection point between B; /2(1 + 1) and A is 1 + 4. Finally, A is not connected,
since the point 1 + 4 and any point z € C such that Re z > 0 can not be connected by a polygonal
line entirely contained in A.



3. Functions of one complex variable 3

3. Functions of one complex variable

We recall a couple of definitions that will be useful. Let A, B C C two non-empty setsand f : A — B
a function. We say that
e f is injective if
“for every w € B, the equation f(z) = w has at most a solution z € A”.
e f is surjective if
“for every w € B, the equation f(z) = w has at least a solution z € A”.
e f is bijective if it is injective and surjective. This means that
“for every w € B, the equation f(z) = w has a unique solution z € A”.

When f : A — B is bijective, it is well-defined its inverse function f~' : B — A. This is the
function given by
7t B = A
“the unique solution z € A

v of the equation f(z) = w”

By construction, we have
FHf(2) =2 and F(fHw)) = w, for every z € A, w € B.

Definition 1.3.1 (Limits). Let A C C be an open set and f : A — C a function of one complex
variable. Let zg € C be an accumulation point of A, we say that f admits limit L € C at zg if

Ve >0, 30 > 0 such that if z € Bjs(z), then |f(z)—L|<e.

In this case, we use the notation
lim f(z) = L.

Z—r20

Definition 1.3.2 (Continuity). Let A C C be an open set and f : A — C a function of one complex
variable. We say that f is continuous at zg € A if

lim f(z) = f(z0).

Z—20
We say that f is continuous on A if it is continuous at every z € A.
Proposition 1.3.3. A function f of a complex variable is continuous at zg € C if and only if the

two functions Re f and Im f are continuous at zg.

Proof. We observe that
£(2) = £(20)] = V/IRe f(2) = Re f(20)]* + [Tm f(2) — Tm f(z0) 2.
By using that (see Exercise 1.12.1 below)
[Re f(2) — Re f(20)] + [Im f(2) — Im f(20)|
V2

< [f(2) = f(20)]

< |Re f(z) = Re f(20)| + [Im f(z) — Im f(z0)],
we obtain that
Zli_)rrzlo |[Re f(z) —Re f(z0)] = 0
lim |£() = f(z0)| =0 <=

Z—r20

Jim [ f(=) T f ()] = 0,



4 1. Functions of one complex variable

which proves the claim. O

Example 1.3.4. The function principal argument Arg : C* — (—m, 7 is continuous on C**, but it
has a discontinuity across the semiaxis of the negative real numbers. Indeed, for zo < 0 we have

lim Arg (|xo| (cost +1i sin'ﬁ)) =
Y=~

#* - = 0ii£+ Arg (|m0| (cos ¥ + i sind}) )

Figure 1. The graph of the function (z,y) — Arg (z +iy)

Lemma 1.3.5. Let A C C be an open set and let g : A — C be a function. Suppose that g is
continuous at zg € A and that

9(20) # 0.
Then there exists r > 0 such that By(z9) C A and

g(z) #0, for z € B,(2p).

Proof. By continuity, for every € > 0 there exists r > 0 such that
lg(2) — g(20)] <€, for z € By (20).
By using the triangle inequality (1.1.1) with the choices
z=g(20) —g(z) and  w=g(z)
we get

19(2) — g(20)| + [9(2)[ = |g(20)l,
thus in particular

(1.3.1) e+ 19(2)| > lg(z0)l, for z € B, (20).

‘We now observe that

’g(ZO)| 7& 07



4. Holomorphic functions )

by hypothesis, thus we can choose

1
e = - |g9(z0)| > 0.

2
From (1.3.1), we get
1
l9(2)] > |g(20)] = = 5 lg(=0)l,  for z € By(20).
This in turn implies that g can not vanish in B,(zp). O

4. Holomorphic functions

Definition 1.4.1. Let A C C be an open set and let f : A — C be a function. We say that f is
derivable at zy € A if the limit
i B0+ h) — fz0)

C3h—0 h
exists in C. This means that there exists A € C such that

Y

f(z0 + ) — f(20)
h
In this case A is called derivative of f at zp and we use one of the notations
df
/ R

Remark 1.4.2. As in the case of functions of one real variable, we have that if f is derivable at
20, then it is continuous as well at this point. Indeed, by definition of derivative we have

Ve >0, 3§ > 0 such that if 0 < |h| < §, then — Al <e.

fz) = f(z0) = f'(20) + o(1), for |z — 29| — 0,
Z — 20
that is
f(2) = f(20) = f'(20) (z = 20) + o(z — 20), for [z — 29| — 0.

This implies that
lim [f(2) = f(z0)] = lim [/'(z0) (= = 20)] = 0.

zZ—r20

The usual properties of derivatives hold true. We state the next three propositions without
proofs, which are left to the reader.

Proposition 1.4.3 (Sums & products). Let A C C be an open set. Let f: A— Candg: A— C
two functions. If f and g are derivable at zy € A, then we have:

o for every a, B € C, the function z — « f(z) + B g(2) is derivable at zy and we have

L0 f(2) +B9(:) ., = o f'(0) + B (o)

e the product function f g is derivable at zy and we have

S (FE9(E)) ., = o) ) + £(20) o (20)

Proposition 1.4.4 (Compositions). Let A, B C C be two open sets and let f : A — C and
g: B — A be two functions of a complex variable. If g is derivable at zg € B and f is derivable at
9(z0) € A, then the composition f o g is derivable at zy and we have

d%(f 0g(2)),._. = I'(9(20)) ¢' (20);

|z=20

|z=z0
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Proposition 1.4.5 (Inverse function). Let A, B C C be two open sets and let us suppose that
f A — B is bijective. Let us assume that

o f'(f 71 (20)) #0;
e the inverse function f~': B — A is continuous at zg € B.

Then f~' is derivable at zo and we have
d . 1
> ZNz=z20 = Fr 17 N\
a? = = i)
Lemma 1.4.6. Let A C C be a connected open set and let f: A — C be such that
f'(z) =0, for every z € A.

Then f is constant.

Proof. Let us take z,w € A, since A is connected we know that there exists a polygonal line ~
contained in A and joining z to w. If we prove that

f(z) = fw),
we get the conclusion, by arbitrariness of z and w. In order to prove this, it is sufficient to prove
that f is constant on every segment of the polygonal line «. Such a segment can be parametrized
by
n(t):(l—t)pi+tpi+1, te [0,1],

for a suitable choice of distinct points p1,...,p, € C. Then the function of one real variable
g(t) = f(n(t)) defined on [0, 1] is such that

g'(t) = fm)n' ) =0, for every ¢ € [0,1].
This implies that g is constant, as desired. O

The previous properties are similar to those for differentiable functions of one real variable. On
the contrary, the next important property is characteristic of functions of one complex variable.

Theorem 1.4.7. Let A C C be an open set and let f : A — C be a function which is differentiable
as a function of the two real variables x and y. Then f is derivable as a function of the complex
variable z if and only if we have

of _10f
(1.4.1) ar i 9y
In this case, we have

1y OF _10f
(1.4.2) fi(z) = ar i 9y

Proof. Let us assume that f is derivable as a function of z. By definition of complex derivative,
we know that
fER) ~1G) . fathy) - S

R>h—0 h h—0 h

= = 1 = — .
R3h—0 ih e ih z’fy

Thus we immediately obtain (1.4.1).

W) _ g

and also
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Let us now assume that (1.4.1) is verified. By using the fact that f is differentiable as a function
of x and y, for h = h; + i hy € C we get

f(z+h) = f(2) = f@+ h1,y + he) — f(,y)
= fo(@,y) ha + fy(2,y) ha + o(|h])
= fu(x,y) ha + i fo(z,y) ha + o(|h|)
= fe(@,y) b+ o(|h]).
This implies that

S+ h) - f(2) oAl _
lim A = falz,y) + lim === = fo(z,y),
so that f is derivable as a function of z and (1.4.2) holds true. O

Remark 1.4.8. It is useful to recall that a sufficient condition for a function of two real variables
(x,y) — f(z,y) to be differentiable is that the partial derivatives f; and f, exist and are continuous.

Corollary 1.4.9 (Cauchy-Riemann equations). Under the previous hypotheses, the function f(x+
iy) = u(x,y) +iv(x,y) is derivable as a function of z = x + iy if and only if

(1.4.3) {“f A

Vp = —Uy.
Proof. It is sufficient to observe that

fr=uz+1v, and f,fy:guy—k Vy = —1 Uy + Uy,
then (1.4.1) becomes (1.4.3). O

Remark 1.4.10. The equation (1.4.1) will be called Cauchy-Riemann equations in complex form,
while (1.4.3) will be called Cauchy-Riemann equations in real form.

Example 1.4.11. We can now give an example of function which is not derivable in z, but it is
differentiable as a function of x and y. Let us take

flz) = 2%,
as a (complex-valued) function of the variables z and y this is
flz,y) =2 —iy.

This is of course differentiable as a function of x and y, since the partial derivatives f, and f, exist
and are continuous (they are actually constant functions!). On the other hand

1
fm:17é_1:gfyv
thus (1.4.1) is not satisfied and f is not derivable as a function of the complex variable z.

Example 1.4.12. Another function of a complex variable which is not derivable in z is given by
f(z) = |z|. Indeed, observe that for 2 4+ y? # 0 we have

z Y
= and = .
fa /22 + 42 Jy /22 + 42

Thus (1.4.1) is not satisfied.

Remark 1.4.13. More generally, every function f of one complex variable z which only takes real
values can not be derivable in z, unless it is constant.
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Remark 1.4.14 (Conjugate harmonic functions). Let us suppose that f : A — C is derivable on
some open set A C C. Then by writing
f(z) =u(z,y) +iv(z,y), z=x+iy €A,

We have seen that the real part u and the imaginary part v are linked to the system of Cauchy-
Riemann equations (1.4.3). If we suppose that u, v € C?(A), then we can differentiate the equations
in (1.4.3), i.e.
Uy = Uy - Ugzy = Vyy,
and
Uy = —Vy = Uyz = —Vgg,

By using that u € C%(A), we obtain from Schwarz’s Theorem that

Vyy = Ugy = Uyg = —Ugg-
In other words, the imaginary part v satisfies the partial differential equation

Vgz + Uyy = 0, in A.

A function satisfying such an equation is called a harmonic function. By proceeding in a similar
way, we can also prove that

Ugz + Uyy = 0, in A.
Then the functions u and v are said to be conjugate harmonic functions. We refer to Appendix D
for more details on harmonic functions.

Definition 1.4.15 (Holomorphic function). Let A C C be open set, we say that f is holomorphic
in A if f is derivable for every z € A and f’ is a continuous function on A.

Definition 1.4.16 (Entire function). A function f : C — C which is holomorphic on the whole
complex plane C is called entire.

5. Some examples of holomorphic functions
We now present some remarkable holomorphic functions.

e Power functions. For n € N, this is defined in the usual way by

2V =z 2z 2, =1
n
This is derivable for every z € C, the proof is the same as in the real case (use Newton’s bynomial

formula). We have
d
d—z” =nz""1, for every z € C.
z
Since the latter is continuous, the function z + 2" is holomorphic. By writing a complex number
z € C* in polar coordinates as

z=p(cos? +isind), 0>0,9¢€ (—m, ],

from (1.1.2) we have
2" = 0" (cos(n ) + i sin(n)).
This is not an injective function, unless we are in the trivial case n = 1. Indeed, for every point

z = p(cos¥ + i sin?),
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Figure 2. The restriction of the function z — 2" on the region S, is bijective (here n = 5).

such that

<9<

313
313

, z € C,
we obtain that the points
2k 2k
Zk:Q<COS(Q9+J)+Z'SHI(Q9+J>), k=1....n—1,
n n
are distinct and such that
==y =2

i.e. they have the same image. Indeed, we know that for every w € C*, the equation

(1.5.1) 2" =w,

admits n distinct solutions, given by the formula
9 2k 9 2k

(1.5.2) 2z = {/|w] (cos(—+J)+isin(—+—W)), E=0,1...,n—1,
n n n n

where ¥ is now an argument of w. On the other hand, if we take the restriction of the n—th power
function to the sector

™ 7r
n o * . —— < *} 5
S {z eC - < Arg(z) < - u {0}

then this becomes injective. Moreover, since we showed that (1.5.1) always admits at least a
solution z € &, for every w € C, this is surjective as well.

e Principal n—th root. We have seen that for every n € N\ {0, 1}, the function
S, — C

z = 2"

is bijective. Thus its inverse function is well-defined and called principale value n—th root. This is
the function
C — Sn
"

w +—  “the unique solution z € S, to the equation 2" = w",
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which will be denoted by the usual symbol {/z. By construction is the function defined by
A A
V2= /|7 {cos (rg(z)) + isin (rg(z))} , Vo=o.
n n
We observe that for n > 2 this function has a discontinuity along the semiaxis of negative real
numbers, due to the presence of the principal argument (recall Example 1.3.4). In other words, the
function z — {/z is continuous only on C**. Moreover, for every zy € C** we have

d _
My = (YR) A0,

thus by using the formula for the derivative of the inverse function (see Proposition 1.4.5), we easily
get

d 1 1 1
—Yr=—" =" zn 1 forevery z € C*.
dz "7 n(y/z)" n

Such a function is continuous on C** and thus the principal n—th root is holomorphic on C**.

e Complex exponential. This is defined by

e* = e := % (cosy + i siny), z=x+iy € C.

By its definition, we immediately get
(1.5.3) le*| = e”|cosy + i siny| = €”,
thanks to the well-known trigonometric relation

cos?y +sin?y =1, for every y € R.

Observe that this is derivable for every z € C, since

0
gyez =e” (—siny +1i cosy) =ie” :i%ez,

thus by Proposition 1.4.7 we get
d

—e

dz
as for the usual exponential function. Moreover, since the derivative is continuous, we get that
the complex exponential is an entire function. Observe that from the previous formula for the
derivative, we get in particulat

z __ 2
_67

z 0
1:60:£szzozig}%e Ze >
that is
(1.5.4) lim &=L 1,
z—0 z
Observe that we have
e #£ 0, for every z € C.

By definition, we have

eFT2mi = o7 for every z € C,

thus the complex exponential is periodic, with (complex) period 27 4. In particular, the complex
exponential is not injective. We also observe that

“the complex exponential sends the vertical line {z : Re(z) = z}
into the circle of radius e* and center 0”

(1.5.5)
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On the other hand, the complex exponential is surjective as a function from C to C*: indeed, for
every w € C*, we have

e =w <= e“(cosy+isiny)=|w| (cos(Arg)(w) +1 sin(Arg)(w))
= e = Jul,
(1.5.6) y = Arg(w)+2km keZ
PN r = log|wl,
y = Arg(w)+2km keZ

The complex exponential becomes bijective when restricted to
(1.5.7) S={2€C: —7w<Im(z) <},

since for every w € C* the set S contains one and one only of the solutions found in (1.5.6) (i.e.
the one corresponding to k = 0).

e Principal logarithm. As for the usual logarithm, roughly speaking this is defined as the
inverse function of the (complex) exponential. Once again, we should be careful, since the complex
exponential is not a bijective function and thus the concept of inverse function is not well-defined.
From the discussion above, we know that

S — C¥
z = ef

is a bijective function. Thus we can define the inverse function
cCr — )
w >  “the unique solution z € S to the equation e* = w”

We use the notation Logw for this function and call it principal logarithm. From (1.5.6), we know
that this function has an explicit expression, given by

Logw = log |w| + ¢ Arg(w), for every w € C*.

Observe that we can now give a sense to expressions like Log (—7), since by definition of principal
logarithm we have

Log (—7) =log7+im.

We observe that the principal logarithm is discontinuous across the semiaxis of negative real num-
bers, exactly like it happens for the principal value n—th root. Again, this is due to the presence
of the principal argument.

On the set C**, the principal logarithm is a holomorphic function, with derivative (again, it is
sufficient to use the formula for the inverse function)

d 11 .
gLogzzm:;, ZE(C ,

which is analogous to the case of the usual real logarithm.

e Complex trigonometric functions. We observe that by definition of complex exponential, we
have the identities for x real number
eix+6—ix eix_e—ix

cosx:f, sing = —— z € R.



12 1. Functions of one complex variable

It is then natural to extend the cosinus and sinus functions to the complex variable, by defining
them as
eiz+e—iz eiz_e—iz
cosz = ————, sing = ————, z e C.
2 24

By the definition, we immediately get that these are entire functions, as sums of entire functions.
Moreover, we have

d eiz+e—iz eiz_e—iz eiz_e—iz
— CO0S 2z = — =1 = — - = —sinz
dz dz 2 2 24 ’
and
d eiz_efiz eiz_’_ef'iz
—sinzg = — - = = CcoSsz.
dz dz 21 2
We also have
cos(z+2m) =cosz and sin(z +27) = sin z,

thus these are still periodic functions, with (real) period 2 7. By recalling that
et +e " et —e ™"

cosher = ——, sinhz = ——, for x € R,
2 2

with some elementary manipulations we obtain

cos(x + i1y) = cosx coshy — i sinx sinhy,

(1.5.8) sin(x 4+ iy) = sinz coshy + i cosx sinhy.
In particular, we obtain that!
{ cosx coshy = 0
cosz =0 <= . .
sinz sinhy = 0
cosz =0
sinz =0 or sinhy =0

By observing that if sinh y # 0 the previous system does not admit solution and that sinh y vanishes
at y = 0 only, we finally get

cosz =0 = z:g(2k+1),k€Z.

In other words, the zeros of the complex cosinus coincide with the zeros of its restriction to the real
axis. In a similar fashion, we can prove the same property for the sinus.

By appealing to the definition, it is not difficult to see that we still have the usual addition
formulas for every z,w € C

cos(z + w) = cos z cosw — sin z sinw,

sin(z + w) = sin z cos w + cos z sinw.

We also have the fundamental relation
cos? z +sinz =1, z e C.

This may be proved by observing that cos? z + sin? z is an entire function and

d . . .
- (COS2Z+SIH2Z> = —2coszsinz+2sinz cosz = 0.
z

1Recall that coshy > 1, for every y € R. In particular cosh y never vanishes.
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By Lemma 1.4.6 we get that cos? z + sin? z has to be constant. In particular
cos® z + sin? z = cos? 0 + sin?0 = 1, z € C.

As in the case of one real variable, we have

i 1 1
(1.5.9) lim SoF =1 and Lm0t = 2
z—0 z z—0 z 2

In order to prove the first one, it is sufficient to observe that by definition this coincides with the
derivative of sinus at z = 0. Thus we get

lim — = =cos(0) = 1.
z—0 z dz |z=0 ( )
For the second limit we proceed as follows
. 1—cosz . 1—cosz1+cosz . 1 1 —cos?z
lim ———— = lim = lim
20 22 Z—0 22 14+cosz 22014 cosz 22
1 . sin?z 1 . sin 2\ 2
== lim = — lim )
2 250 22 2 2—0 z

which gives the desired conclusion.

6. Integrals in the complex plane

Definition 1.6.1. Let a < b be two real numbers, a curve in the complex plane is a function
v : [a,b] — C. We will denote by

I'y:={z€C: 3te€ [a,b] such that z = (t)},
the image of . We say that v is regular if is C' and
YOI £0,  te b
We say that a continuous curve v : [a,b] — C is
o closed if y(a) = y(b);
e simple if 7 is injective on [a, b);

e a loop if it is a closed simple curve (see figure below).

Definition 1.6.2 (Reparametrization). Let v : [a,b] — C be a regular curve. Let ¢ : [¢c,d] — [a, b]
be a C! strictly monotone surjective function, with ¢/(¢) # 0 for every t € [c, d]. Then the new curve
y:=70¢:[c,d] — C is said to be a reparametrization of v. We say that the reparametrization is:

e orientation preserving if ¢'(t) > 0 for every t € [c, dJ;
e orientation reversing if ¢'(t) < 0 for every t € [c,d].

We use the notation v~ for the particular orientation reversing reparametrization v~ : [a,b] :— C
defined by

(1.6.1) v () =v0b—-t+a).

Roughly speaking, this is the curve v “run in the opposite sense”.
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Figure 3. From left to right: the image of a closed curve which is not simple; the image of a simple
curve which is not closed; the image of a loop.

Example 1.6.3 (Circle). Let zp € C and r > 0. The curve v : [0,1] — C defined by
Y(t) = 29 + 172, t €10,1],

is a regular loop. Its image is the circle of radius r and center zy. The curve 7 : [0,2 7] — C defined
by
F(t) = 20 +re't, t e [0,27],

is an orientation preserving reparametrization of 7. Indeed, we have ¥ = o ¢, with ¢(t) = t/(2).
We also observe that the orientation reversing reparametrization v~ is given by

FT() =204+ re2T D = 5 427 t€0,27].

Definition 1.6.4 (Glueing of curves). Let v : [a,b] — C and 7, : [b,¢] — C be two continuous
curves such that

Y1(b) = 72(b).
Then we can glue the two curves together, by defining the new curve 4173 : [a,c¢] — C through

— v m@), iftelad],
T 7a(t) = { fy;(t), if t € [b,cl.

We say that a curve v : [a,b] — C is piecewise regular if it is obtained by gluing together a finite
number of regular curves.

Definition 1.6.5. Let f : A — C be a continuous function on the open set A C C. Let 7y : [a,b] — C
be a piecewise regular curve such that I'y C A. Then we set

b
2)dz = "(t) dt.
A £(2) / FOv() A (8) dt

Remark 1.6.6. The value of the integral does not change if we replace « by an orientation preserv-
ing reparametrization. Indeed, let ¥ = yo0¢ : [¢,d] — C be such a reparametrization (by hypothesis
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¢ > 0), then we have

d d
/~ f(z)dz = / FG(E) () dt = / FOOEN) 7 (B(1)) &' (8) dt
! b
= N (1) dr = z)dz
/af('v( A7) /j()

where we used the usual change of variable formula for integrals of one real variable. With similar
manipulations we obtain that if ¥ = v o ¢ is orientation reversing (so that ¢’ < 0), then

/f —/f(z)dz

In particular, by recalling the definition (1.6.1), we have
(1.6.2) /f )dz +/ f(z
for every piecewise regular curve -y

The following simple result can be regarded as the fundamental Theorem of Calculus, in the
complex plane.

Lemma 1.6.7. Let A C C be a connected open set and let f: A — C be an holomorphic function.

For every zg,z1 € A we have
F(z1) = fz0) + / f(2) dz
Y

where 7 : [a,b] = C is any piecewise reqular curve such that I'y C A and
v(b) = z1 and ~v(a) = zp.

Proof. It is sufficient to use the definition of integral, i.e.

b
/ f(2) dz = / ' (0) A (1) dt

4160 = PO 1),

Thus, by the fundamental Theorem of Calculus for functions of one real variable, we get

b
/f’(Z) dz = / @)y (@) dt = f(y(b)) — f(v(a)) = f(z1) — f(20),
ol a

and observe that

as desired. O
Definition 1.6.8. Let v : [a,b] — C be a regular loop. We define its tangent versor by
7 (t)
T, (t) = ——=, t € [a,b].
! 7' (t)]

Its normal versor is defined by?
N, (t) = =i T4(t), t € [a,b].

2By recalling formula (1.1.2), the multiplication by —i geometrically corresponds to rotate the versor T (t) clockwise of
an angle /2.
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Definition 1.6.9. Let v : [a,b] — C be a piecewise regular loop. We denote by D the set entoured
by 7. We say that v is positively oriented if for every t € [a, b] the normal versor N, (¢) is exiting
from D.

Example 1.6.10. Let zg € C and r > 0, then the regular loop
y(t) =z +r 2™, for t € 10,1],
is positively oriented, while v~ is negatively oriented.
The following simple result will be useful.

Lemma 1.6.11. Let {gi}ren be a sequence of continuous functions on the open set A C C. Let
v : [a,b] = C be a piecewise regular curve, whose image in contained in A. Assume that {gi}ren
converges uniformly on the image of v to some continuous function g, i.e.

i (el () ~ 9(2)1) =0

k—oo \ z€l',

Then we have
lim /gk(z) dz = /g(z) dz.
k—o0 5 5

Proof. Let € > 0, by definition of uniform convergence there exists ky € N such that
k(¥(8) — g(y(B)] <&, for every k> ko and t € [a, ]

We thus obtain for every k& > kg

Agk(z) dZ—AQ(Z) dz

By the arbitrariness of € > 0, we get the conclusion. (]

Theorem 1.6.12 (Cauchy’s Theorem). Let A C C be a connected open set and let f: A — C be
an holomorphic function. For every positively oriented piecewise regular loop v such that I'y C A
and such that the region entoured by I'y is contained in A, we have

/vf(z) dz = 0.

Proof. We write
f(z) =ulz,y) +iv(z,y), z=x+1iy,
and
V() =m(t) +ine(t),  t€lab]
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with 71,72 : [a,b] — R piecewise C! functions. We can write the integral of f on v as

/ f()dz = / [ (8),32(6)) + i v(n (). 72()] (R (1) + 95 (0))
/ [ (5. 72(6) % (6) — v (). 72(0) %5(0)]
i / [ (8). 7t M(t)+v<m<t>,w<t>>wi<t>} it

If we introduce the two vector fields

V(z,y) = (u(z,y), —v(z,y)) and W(z,y) = (v(z,y),u(z,y)),

we can rewrite the previous formula

/Yf(z)dzzL<V’T7>d€+i/y<W,T7>d€,

and the last two integrals represent the work of the two vector fields along the curve . Let us call
D C A the region entoured by -, so that v is a positively oriented parametrization of dD. Then
by using the Gauss-Green formula we know that

/VT dﬁ—// v ou da;dy,
ou Ov
W, T dﬁ—// {7—7} da dy.
L< 7 plox Oy Y
We thus obtained

/ dz—// —@—— d:r:dy—i—z// @—— dxdy
or Oy

We now get the conclusion by recalhng that

and

ov ou ou Ov
—=—— and — ==,
ox oy or Oy
which are the Cauchy-Riemann equations (1.4.3) in real form. O

Corollary 1.6.13 (Deformation of contour). Let A C C be a connected open set and let f : A — C
be a holomorphic function. Let v1 and o be two piecewise regular loops contained in A, both
positively oriented. We indicate with D1 and Dg the regions entoured by I'y, and I'y, respectively.
We suppose that Dy C Dy and that D1\ Dy C A. Then we have

f2)dz = [ f(z)dz

71 72
Proof. We give an idea of the proof. We connect the images of 1 and 79 through two simple
curves &1 and &, as in Figure 4. We thus obtain two new pairs of simple curves, that we call ’y{v ,
v¢ and 5, ¥4, By construction, we have

— —

(1.6.3) Waf=v  and A =1

We now define two piecewise regular positively oriented loops as follows

We(d)-a  and A (&) (38) (&),
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Figure 4. An illustration of the hypotheses and the construction of Corollary 1.6.13. The integral
on v, of a function f is the same as that on 72, provided that f is holomorphic in the annular
region in between the two curves.

i.e. they are both obtained by glueing 4 simple curves. By construction and thanks to the hypothe-
ses, we have that both loops entour a region on which f is holomorphic. Thus by Theorem 1.6.12,
we have

_—  f(»)dz =0,
W) a

/ —  f(zdz=0.
P (E)T () (&)

By using the definition of glueing of curves and property (1.6.2), these equations become

/f dz+§2f dz/f dz+/f

/ @z [ fe)ds - / @ [ f)dz=
Vi &1 V5 &2

By summing these two equation and erasing the integrals over £; and &2, we obtain

/W{Vf(z)der/%Sf(z)dz—[/évf(z)dz—/ng(z)dz:0.

By recallig (1.6.3), we get the desired conclusion. O

and

and

In turn, the deformation of contour implies the following remarkable result.

Theorem 1.6.14 (Cauchy’s integral formula). Let A C C be a connected open set and let f : A — C
be a holomorphic function. Let v be a positively oriented piecewise regular loop contained in A,
together with the region D entoured by ~y. For every z € D we have

(1.6.4) foy = —— [16),

27i 7s—z
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Proof. Let z € D and let r > 0 be small enough, so that the disk B,(z) is contained in D. Let
Yr(t) = re?m i 4 ) t €0,1],

and observe that this is positively oriented. Then by applying Corollary 1.6.13 to the function
s+ f(s)/(s — z) (which is holomorphic in the open set A\ {z}), we obtain

1) [ 1) Lftrenit

2 ; eQ’Tl'ltdt
S —z s—z re2mi

v Yr

=2mi / f(z+re2mit)dt.
0

This identity implies in particular that the last integral is independent of r > 0. Thus we get

1
Mals:lim flz+re?™ ity at
Ss— 2z r—0 /o

(1.6.5)
.,

By using that the function of one real variable
tes f(z 47T, te01],

converges uniformly to f(z), as r goes to 0, we get
1

hr% flz+re?™itydt = / f(z (2),

i.e. we can pass the limit under the integral sign. By using this in (1.6.5), we get the conclusion. [

7. Intermezzo: complex power series

Let {an}nen C C be a sequence of complex numbers. For a fixed zg € C, we can consider the power

series centered at zg
o0
Z an (z — z0)"
=0

This is well-defined for every z € C such that the sequence

k
(1.7.1) sk(z) = Z an (z — 20)",
n=0

converges to a complex number A € C. This means that
Ve >0, 3kp € N such that |si(z) — A| < e for every k > k.

We observe that a power series is a particular case of the larger class of series of functions.

Definition 1.7.1. We say that the power series

o0
Z an (z — z0)",
n=0

converges:

e absolutely if

o
Z lan| |z — z0|" < 4005
n=0

e uniformly on A C C if the sequence of functions {sy}ren defined by (1.7.1) converge
uniformly on A;
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e totally on A C C if
oo
Z sup (|an||z — 20|") < +o0.
n=0 *€A

Remark 1.7.2. We observe that if for some z; # zy a power series is absolutely convergent, then
it is automatically totally convergent on the closed disk B,(zp), where p = |21 — zo|. Indeed, for
every n € N we have

sup_(Jan| [z = 20[") = lan| 0" = lan| |21 — 20|",

2€By(20)
and thus
e.)
Z sup  (Jan| |z = 20|") = Z lan| |21 — 20|™ < +o0.
n=0 zE€By(z0) n=0

This property is of course a peculiarity of power series.

Theorem 1.7.3. Let >>0° g an (z — 20)" be a power series with
(1.7.2) limsup {/|an| = L < +o0.
n—o0

i) The power series is totally convergent on every closed disk By(zo) with radius o < 1/L
(with the convention that if L =0, then 1/L = +00).

it) The power series does not converge for every z such that |z — z9| > 1/L.

Proof. In order to prove i), we first observe that by Remark 1.7.2 it is sufficient to prove that for
every o < 1/L, the power series

oo n [o.¢]
> an ((Q+Zo) —ZO> = ano",

is absolutely convergent. From (1.7.2), we know that for every ¢ > 0, there exists n. € N such that

{/lan| < L+ ¢, for every n > ne..

, ()
=-(==L)>0
€ 2\, >0,

In particular, if we take

then there exists n. € N such that
L n
lan| < (L+e)" = (f + 7) , for every n > n..

Thus we get

L 1\" L 1\"
|an|g"<(2+2g> Q":( et ) , for every n > n..
Since by construction
Lo+1
2
we get the desired result by comparison with the geometric series.

<1,

Let us now prove ii). Still by (1.7.2), we know that for every € > 0 there exists a subsequence

{an, }ren such that
"/ |an,| > L — ¢, for every k.
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We pick z € C such that |z — 29| = ¢ > 1/L and choose

1 1
(L—f>>0,

£=—
2 0
thus there exists a subsequence {ay,, }ren such that
ng ngk N 1 L "tk Tl
anel e =™ > (L= 0% = (- +5) o
1+ Lo\
= ( 5 Q) > 1, for every k.
This implies that a,, (z—20)"™ doest not converge to zero and thus the power series can not converge.

O

Definition 1.7.4. Let {a,}n,en C C be a sequence such that
limsup {/|ay,| = L.
n—00

Then R = 1/L is called radius of convergence of the power series Y 02 an (2 — 20)". We use the
following conventions:

R=— =400, ifL=0,
and

R=- =0, if L = +o0.

SIS

Proposition 1.7.5. Let
o0
s(z) =) an(z = 20)",
n=0

be a power series with radius of convergence R > 0. Then the new series S°°° 1 nay (z — 20)" ! has
the same radius of convergence R > 0.

Moreover, s is a holomorphic function on Bg(zg), with
o
s'(z) = Z nan(z — 2)""t, 2z € Bp(z).
n=1

Proof. We first verify the first statement about the radius of convergence. We first rewrite

oo 1 o0
Z nay (z—2)" = Z nay (z — zo)",
n=1

Z — 20 n—1

then the radius of convergence of this power series is given by

1
lim sup /n|a '

It is then sufficient to observe that?
logn
limsup ¢/n = lim e n =1,
n—00 n—0o0

limsup {/|a,| = limsup {/n |ay|,
n—oo n—oo

3We use that logn = o(n) for n — oco.

thus we obtain
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as desired.

We now show that the function s can be differentiated in complex sense. We take z € Br(zp)
and h € C* such that we still have z + h € Bgr(z). For this, it is sufficient to take
R—|z—
(1.7.3) 0 < |h| < |’;’ZO

We now write
s(z—i—h)—s(z):ooa (z4+h—20)"—(2—20)"
=g |

h h

o <zzO+h2<zzo>+ian {<Z+hzm;<zz@>n

n=2

:“1+§:2an {(Z—i-h—zo);:—(z_z())n}

We take v : [0,1] — Br(20) to be the regular curve such that
Y(t)=z+th, for t € [0,1].
We observe that each function
s+ (s—20)",
is holomorphic, thus by Exercise 1.13.1 for every n > 2 we can infer

(z+hzo)":(zzo)n+n(zzo)”_1h+/n(n1)(wzo)”_2(z+hw)dw.
gl

In other words, we have
(z+h—20)"— (2 —20)"
h

} =n(z—z)"!

—l—n(n—l)% /(w—zo)"_2(2+h—w)dw
g
1

(1.7.4)
=n(z—20)""

1
tn(n— 1)h/ (24 th—2)"2(1 - t) dt.
0
We now observe that the last term is the n—th term of a converging series. More precisely, we have

1 1
n(n—1)|h| / lz4+th— 2" 21 —t)dt| <n(n—1)h| / (|z — zo| + t |B))" 2 dt
0 0

1 - o n—2
Sn(n—l)]h[/ (z—zol—FtW) dt
0

R+ ‘Z — Z()‘ n—2
2 Y

gn(n—mhr(

where we used (1.7.3), to estimate the integral from above. The claimed convergence above now
follows from the convergence of the power series

o] n—2
S n(n-1)a, (R+,ZZO|) .
n=2 2
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Indeed, we have

A, Y= Dlenl = Jim, Vlaal = 7.
and
R _
+|§Zo| <R

If we now set for simplicity

o0

1
= nin-1) /(z+th—z0)"_2(1—t)dt,
0

this is a finite quantity, by the previous discussion. We have obtained from (1.7.4)

s(z4+h) —s(z)

3 :al—i-Znan (z—20)"t +hg(2)

n>2
[eS)

Z z—zonl—i-hg()

By taking the limit as h goes to 0, we finally obtain that the function s is derivable in every
z € Bg(zp) and

o0
= Z nay (z — 29)" L.
n=1

By Theorem 1.7.3, the convergence of the last series is uniform on every B,(zp) with o < R. As

every function z — (2 — 29)" ! is continuous, we get that s’ is continuous as well on B,(2), for

every o < R. This finally shows that s is holomorphic on Bgr(zp). O

By iterating the previous result, we obtain the following.

Corollary 1.7.6. Let

o0
= Z an (z — z0)",
n=0

be a power series with radius of convergence R > 0. Then s is derivable infinitely many times in
Bpg(z0) and we have

(1.7.5) Z n—1...(n—k+1ap(z—2)"" for z € Br(zp).
Remark 1.7.7. We observe that by taking z = 2 in (1.7.5), we get
s® () =k(k—1)...1ap = k! ay.

Thus s can be rewritten as

2 s (5
s(z) = Z n(' 0) (z —z0)".
n=0 :

In other words, a power series centered at zg with positive radius of convergence is a C*° function
which coincides with its Taylor series centered at zg.

The following result is useful. It states that a power series can be “integrated” term by term.
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Corollary 1.7.8 (Integrating a power series). Let

s(z) =Y an (2 — 20)",
n=0

be a power series with radius of convergence R > 0. Then for every ¢ € C, the new series

> a
S(z)=c+ > ——(z—2)",
n:On—l— 1

have the same radius of convergence R > 0.

Moreover, S is a holomorphic function on Bgr(zg) such that
oo
S'(z) = Z an (z — 20)" = s(2), for z € Br(zo).
n=0

Proof. We can rewrite the second power series as

o0 a oo
c+ Z " (z— )" = Z an (z — 20)",
n=0 n=0

—n+1
where
c, if n=0,
ay, =
=l it > 1.
n

‘We then observe that

_ V|G —
limsup {/|a,| = limsup {/ [an-1] = limsup M = limsup {/|an—1]
n—00 n—00 n @Gi n

n—oo — 00
= limsup {/|an],
n—oo

thus the two power series have the same radius of convergence. The second part of the statement
now follows by appyling Proposition 1.7.5 to the power series

[eS)
Z an (Z - ZO)n'
n=0

This concludes the proof. O

Example 1.7.9. We can use the previous results to compute explicitly the sum of some remarkable
power series. For example, we know that

s 1
Z 2= for |z| < 1.
1—=z
n=0
Then the two power series

f(z) = i n "1 and g(z) =c+ i 1
n=1 n=0

Zn+1
—n+1

I

still have radius of convergence 1 and they are holomorphic functions on the open disk Bj(0).
Moreover, we know by Proposition 1.7.5 and Corollary 1.7.8 that

d 1 1
f(2) = for |z| < 1,

Tdzl-z (1-2)2




8. Properties of holomorphic functions 25

and
1
g/(Z) = E, for ’Z| < 1.
In other words, g is a primitive of 1/(1 — z) in B1(0). Such a primitive can be computed explicitly,
by observing that the function h(z) = Log(1 — z) is holomorphic on

A:=C\{z€C : Rez>1and Imz = 0},

with

h'(z) = — , z € A.

We thus obtain that
g (z) = —h(z) for z € AN B1(0) = B1(0).

Since Bj1(0) is a connected open set, this means that g and —h coincides on B;(0) up to a constant
(thanks to Lemma 1.4.6). Finally, since g(0) = ¢ and —h(0) = 0, this implies that

g(z) =c—h(z), for |z] < 1
and thus

Observe that we get in particular

Z Ci = —Log(1 — 2), 2| < 1.
—n

8. Properties of holomorphic functions

Definition 1.8.1. Let A C C be an open connected set, we say that f: A — C is analytic in A if
for every zp € A it admits the Taylor series expansion in every B,(zp) C A4, i.e.

[e.e]
=Y cn(z—2)", z € By(20),
n=0

with ¢, = f((2)/n!
Holomorphic functions have the following striking property.

Theorem 1.8.2 (Holomorphic = analytic). Let A C C be a connected open set and let f : A — C
be a holomorphic function. Then f is analytic, i.e. for every zg € A we have

= Z en (2 —20)", for |z — zo| < dist(zo, 0A).

Moreover, each coefficient ¢, has the following expression

£ (20) 1 f(s)
1.8.1 Cp = = ds,
(1.8.1) / :

n! 27i s — zo)"t1

where 7y is any positively oriented piecewise reqular loop such that I'y C A and such that, if we call
D the domain entoured by I, we have zo € D C A.
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Proof. Let z € A be such that |z — zp| < dist(z9,0A). We set r = |z — 29| and set
r + dist(zo, 0A)

R:
2

We take the positively oriented loop
Vr(t) = 20 + Re* ™Y, t€[0,1],

whose image is the circle 0BRr(zo) centered at zp with radius R. By construction, we have z €
Br(zp) C A, thus we can apply Cauchy’s formula (1.6.4). This gives

R Ry O VPR Wy S (O,

27 )y, 85— 2 271 s—z0— (2 —2p)
1 1
= . 1(s) ———— ds.
2mi Jy, S — 20 1— 0
s — 2
We now observe that by construction
zZ— 2z
1.8.2 — <1, f el,.,
( ) pp—— R or every s € 'y,
thus we have
. z — zo)
1_2—* Z <s — 20
S — 20

and the convergence of the series is uniform for s € I, thanks to (1.8.2). We thus obtain

TR

z—zo f(s)
QWZ/YRZ s—zo> s—zods

a1 2 )

where the exchange between the summation and integral sign has been possible thanks to the
uniform convergence of the series?. This shows that f is analytic, with coefficients given by (1.8.1)
and yg the curve whose image is the circle 0Bg(zo).

On the other hand, by observing that the function
f(s)

(S _ Zo)n'H ’

is holomorphic in A\ {2}, by Corollary 1.6.13 the integral

f(s)
/7R (5 — 29)"+1 ds,

is unchanged if vg is replaced by the positively oriented loop
Yot) =20+ 0™, te[0,1],

S

41 other words, we can use Lemma 1.6.11 with the choices

k e

wr=> (22) -3 (:22)

n= n=0
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where o > 0 is any radius such that

o0 < dist(zp, 0A).
Thus, if v is any positively oriented piecewise regular loop as in the statement, by choosing o > 0
sufficiently small we get that v and ~, satisfy the hypotheses of Corollary 1.6.13. In conclusion we

get
R (O NP (O N
[m (5= 21 ‘/7@ (5= 21 /7<s—zO>n+ld’

and this concludes the proof. O
Remark 1.8.3 (Taylor expansion of the exponential). From the previous result, we get that the
entire function f(z) = €* is analytic in C and there holds

o Zn
eZ:Z—', for z € C.
= n!

We now have a closer look at the zeros of a holomorphic function. First of all, we need the
following

Definition 1.8.4. Let f : A — C be a holomorphic function, we say that zg € A is a zero of order
m € N\ {0} if
flz0) = f'(z0) == f"D(z) =0 and U (20) #0.

Observe that since f is analytic (Theorem 1.8.2), if it has a zero of order m at zp, then in a
neighborhood of zg it admits the Taylor expansion

o r(k)(,
= 3 g et

Proposition 1.8.5 (Unique continuation principle). Let A C C be an open connected set and let
f A — C be a holomorphic function. The following three facts are equivalent:

1. there exists zo € A such that f((z9) =0, for every n € N;
2. f vanishes identically in B,(z9) for some r > 0;

3. f wanishes identically in A.

Proof. Of course, we easily have 3. = 2. = 1. Also, by using the fact that f is analytic by
Theorem 1.8.2, we easily get that 1. = 2. In order to conclude the proof, it is left to prove that
2. = 3. This point is delicate and we omit it, the reader can find the proof in [1] or [2]. O

Remark 1.8.6. The previous result asserts in particular that a holomorphic function can not have
a zero of infinite order, unless it is the trivial function f = 0. This is a peculiarity of functions of
one complex variable, since for functions of one real variable this could happen. For example, the

function
(—l> for x >0
f(x) — eXp T ) 9

0, for z < 0.

is such that f((0) = 0 for every n € N, but it does not reduce to the function identically vanishing
on R.

Corollary 1.8.7. Let A C C be an open connected set. Let f,g : A — C be two holomorphic
functions such that one of the following properties is satisfied:
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e there exists zg € A and r > 0 such that f = g on By(20);
o there exists zg € A such that £ (z) = g™ (z) for every n € N.
Then f and g coincide on A.

Proof. It is sufficient to apply Proposition 1.8.5 to the function f — g. O

Proposition 1.8.8. Let A C C be an open connected set and let f : A — C be a holomorphic
function, not identically vanishing. The set

Ky={2€A: f(z) =0},

is either empty or discrete and made of isolated points, i.e. for every zg € Ky there exists r > 0
such that

f(z) #0, for every z € B,(z).
Moreover, Ky can not contain any infinite sequence {zn}nen such that z, — w € A.

Proof. Let us suppose that Ky # 0, then there exists zg € A such that f(z9) = 0. This zero
has finite order m € N\ {0}, otherwise by Proposition 1.8.5 we would have f = 0 on A. In a
neighborhood of zy we thus have

f(z)=cm(z—20)" + cme1 (2 — zo)m+1 + ...
=(z—20)"[em + emt1(z—20) +...] = (2 — 20)" g(2),
where we set

9(z) = Z Cntm (2 — 20)"
n=0

which is holomorphic in the relevant neighborhood of zy. We observe that by construction g(zg) =
¢m # 0 and that g is continuous (since it is holomorphic). By Lemma 1.3.5, there exists r > 0 such
that in B,(z9) we still have g(z) # 0. This implies that

f(z)=(2—20)"g(2) #0, for every z € Br(zo),

as desired.

To prove the last assertion, let us assume that there exists a sequence of zeros {z,}nen C Kf
converging to some w € A. By continuity of f, we would get

0= lim f(z0) = f(w),

and thus w € Ky. Since 2z, € K; is converging to w € K, this contradicts the fact that Ky
contains only isolated points. ([

Remark 1.8.9. We already know that
cos?z +sin’z = 1, for every z € C.

Let us reprove this formula by using Proposition 1.8.8. We consider the entire function f(z) =
cos? z 4+ sin? z — 1. By usual trigonometric formulas, we know that

f(z) = cos’z +sin®z — 1 =0, for every x € R.

This implies that the set of its zeros K is not discrete and thus by Proposition 1.8.8 the function
f must vanish identically.
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Definition 1.8.10 (Analytic continuation). Let I C R be an interval with non-empty interior and
let f: I — R a real function of one real variable. We say that f admits an analytic continuation
to the complex plane if there exist an open set A C C and a holomorphic function F': A — C such
that:

e IC An{z € C : Im(z) = 0};
e F(z)= f(x), for every z € I.

Remark 1.8.11 (Uniqueness of the analytic continuation). It is easy to see that the analytic
continuation is unique, provided it exists. Indeed, let us suppose that f : I — R admits two
different analytic continuation Fy : A — C and F» : A — C. Then we would get that the difference
Fy — F5 would be a holomorphic function, identically vanishing on the interval I. Since the latter
is not discrete, we get Fy = Fy by Proposition 1.8.8.

Remark 1.8.12 (Existence of the analytic continuation?). We give a sufficient condition for a
function f : I — R to admit the analytic continuation. Let us suppose that f admits the Taylor
expansion on I = (g — L,xo + L)

o £(n) (o
f(m)—zfn('o)(x—xo)", |z — xo| < L,
n=0 :
If we set

o0 £(n) (g
F(z) = an('o)(z—xg)", z € Br(zp),
n=0 :

this defines the analytic continuation of f on Bp(zg). For example, this gives another way to
construct the functions exponential, cosinus, sinus and so on.

Example 1.8.13. The functions
z €7, Z > COS Z, Z — sin 2,
are the analytic continuations of the respective ordinary functions defined on R. The function
z — Log z,

is the analytic continuation of the ordinary logarithm function defined on (0, 400).

9. Some remarkable consequences

Theorem 1.9.1 (Liouville’s Theorem). Let f be an entire function. If f is bounded, i.e. if there
exists C > 0 such that
f(2)] <C, for every z € C,

then f is constant.

Proof. We know by Theorem 1.8.2 that f is analytic, i.e.
oo

(1.9.1) flz) = Z cn 2", for every z € C.
n=0

Moreover, we have the following formula for the coefficients ¢,

O

= S
; n+1 ’
21 o

n
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where yg is given by _

vr(t) = Re't, t €1]0,2m].
Observe that since f is entire, the radius R can be chosen arbitrarily large. Since f is bounded, we
have

1 (s) 127 f(Re) it
|C7’b’ o n gn+l d ’ - ﬂ 0 Rn+1 pi (n+1)t Re'dt
1 27 f(Rezt)
<57 ), || Rt
C 2 C
< dt = —, f eN.
S o pn /0 T or every n
By taking the limit as R goes to +o00, we get
cn, =0, for every n > 1,

Thus from the Taylor series expansion (1.9.1) of f we get the conclusion
f(z) = co, for every z € C,

as desired. 0

As a remarkable consequence of Liouville’s Theorem, we have the following
Theorem 1.9.2 (Fundamental Theorem of Algebra). Let
Pz)=ay+arz+ -+ ay2", z e C.

be a non-constant polynomial. Then P has at least a root zy € C.

Proof. We can assume without loss of generality that a, # 0. The proof is by contradiction. Let
us suppose that P(z) # 0, for every z € C. Then the function
1
)= —F
is an entire function. Moreover, f is bounded: indeed, we observe that

£G)] = = ,

2 |2 4t
mn

on anl

z € C,

so that
lim [£(2)] = 0.
This means that there exists R > 0 large enough so that
f(2)] <1, for every |z| > R.

On the other hand, by setting
Br(0) ={2 € C : |z| < R},

for every® z € Br(0) we have

1 1
f(z)] < max = - =C.
@< max 50y = mm [P
s€BR(0)

5The set {z € C : |z| < R} is compact and |P(z)| is a continuous function, thus existence of a minimum point is assured
by Weierstrass’ Theorem.
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In conclusion, we obtain

|f(2)| < max{l, C}, for every z € C.
By using Liouville’s Theorem, we obtain that f is constant. This in turn implies that P itself is
constant, contradicting the hypothesis. ([

10. Singularities and the Residue Theorem

Definition 1.10.1. Let A C C be an open set and let f: A — C be a holomorphic function. We
say that zg is an isolated singularity for f if

° 20 & A;

e there exists 7 > 0 such that B,(zp) C A.

Example 1.10.2. The function f(z) = 1/z has an isolated singulatity at z = 0. The function
g(2) =1/((z — 1) (z — 2)) has two isolated singularities at z =1 and z = 2.

Example 1.10.3. By recalling that the function f(z) = Log z is defined on C* and holomorphic
on C**, we get that f has a singularity at every point of the semiaxis of real negative numbers.
Observe that these are not isolated singularities.

Definition 1.10.4. Let f: A — C be an holomorphic function and zy an isolated singularity. We
say that

e 2z is removable if

lim f(z) =\ € C;

Z—20
e 29 is a pole of order m € N\ {0} if
lim (z — 20)" f(2) = A € C*;

Z—20

e 2z is an essential singularity if it is neither removable nor a pole of finite order.
In the case of a pole of order 1, we will also call it simple pole.

Example 1.10.5. The function
z
= A=C\{km : keZ
fe)=——, zeA=C\{km:kez}
is holomorphic in A, with isolated singularities at the points k, for k € Z. We observe that the
singularity at z = 0 is removable, since (recall (1.5.9))
z

lim — =1.
z—0 sin z
On the other hand, any point of the form kx with & € Z is a simple pole. Indeed, by observing

that

sin(z) =sin(z —km + k7) =sin(z — km) cos(km) + cos(z — k) sin(k )
=sin(z — k) cos(k ),
we have
lim (z — k) ,Z _ b im ﬂ
ok sinz  cos(km) z—knsin(z — k)
{ —km, k odd,

km, k even.
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Proposition 1.10.6. Let f : A — C be a holomorphic function with a removable singularity at zg.
If we set
A= lim f(z),

Z—20
then the function
TN A, if 2 = 20,
f“”‘{f@x iz €A,

is holomorphic in the new open set A’ = AU {z}.

Corollary 1.10.7. Let f : A — C be a holomorphic function with a pole of order m € N\ {0} at
zg9. We set
A= lim (z — 20)™ f(2),

Z—20
then the function
_ A, if 2 = 20,
FO={ cns, gecd

is holomorphic in the new open set A’ = AU {z}.

Definition 1.10.8. Let f : A — C be a holomorphic function and let zg be an isolated singularity
of f. We call residue of f at zy the quantity

res(f,z0) = % /f(z) dz,
¥

where v is a positively oriented piecewise regular loop contained in A, whose image entours zy (but
not other singularities of f).

Remark 1.10.9. By Corollary 1.6.13 we know that this definition is well-posed, since it does not
depend on 7.

Example 1.10.10. Let zp € C and take f(z) = (z — 29) ™" with n € N\ {0}. This is holomorphic
in C\ {z0} with an isolated singularity (indeed, a pole) at z = zy. We take «y : [0,27] — C defined
by

(t) = 2o + €'t t €[0,2n],

then
27
res(f,z0) = 1 - / 1 dz = L 1t ietldt
27mi )y (2 — 20)" 27i Jo (20 + €'t — zp)™
1 27 )
_ efzt(nfl) dt.
27T 0

We now distinguish two cases: if n = 1, then we get

1 27
res(f,z0) = oy / dt = 1.
0

T
On the other hand, if n > 2, we obtain

12T 1 [eitn=1 727
= — - (n_l) = < |~ =
res(f, 20) o /0 ¢ di 2 {—i (n—l)}o >

1 |1, ifn=1,
res (z—zo)"’zo 10, ifn>2

In conclusion, we obtained
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The following is a remarkable consequence of Cauchy’s formula. It permits to compute a residue
at a pole just by differentiating a suitable function.

Proposition 1.10.11. Let f be a holomorphic function with a pole of order m at zg. Then we
have

m—1
(1.10.1) res(f, 20) = ———— lim (d (2 — 20)™ f(z))) .

(m —1)! z2=20 \ dzm~1

Proof. We define g(z) = (2 — 20)™ f(z) and observe that this is holomorphic (and thus analytic)
in a neighborhood of zy. We then compute

1 f(z) (z = z0)™
res(f,zo)—ﬁ [yf(z) 27rz/ (z — z9)™

T2 /7 (z z(2) dz

~ g™ D (z20)
 (m=1)7

where in the last equality we used formula (1.8.1) for the function g. O

Remark 1.10.12. By recalling the definition of residue, under the previous assumptions formula
(1.10.1) can be written as

2mi /f _ 1)1 Jim. <C§Z:1_11 ((z = 20)™ f(Z))> :

In other words, we obtained a sunple way to compute a line integral, just by differentiating a
function!

Corollary 1.10.13. Let f, g be two holomorphic functions, such that g has a simple zero at zg and
f(z0) #0. Then f/g has a simple pole at zy and we have

(1.10.2) res (i,zo) = f/(zo) .
9 g'(20)
Proof. We apply (1.10.1) to the function f/g with m = 1. We get

res (gv ZO) = lim (2 — 2p) f2)

ST Gy

then we observe that since g(zp) = 0, the limit can be rewritten as

2 (55t 1)

The conclusion now follows from the continuity of f and the definition of complex derivative. [J

We conclude this section with the following

Theorem 1.10.14 (Residue Theorem). Let A C C be an open connected set and let f: A — C
be a holomorphic function. For ~ a positively oriented piecewise regular loop, we indicate by D

the region entoured by I'y. Let z1, ...,z be the singularities of f contained in D and suppose that
D\ {z,...,2} C A. Then we have

1 / k
—_— Z res(f, zm).
2mi )y m—1
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11. Laurent’s series expansions

Let {an}nez be a sequence indexed over Z and let zy € C. We call bylateral series the expression
Z an (z — z0)".
nez

We say that the bylateral series converges if the two series

Z an (z — 2z0)" and Z an (z — 20)",
n=0

converge. The first series is called regular part, while the second one is called singular part.

The following convergence result is analogous to the one for power series, see Theorem 1.7.3.

Theorem 1.11.1. Let 3 ,cz an (z — 20)" be a bylateral series with
lim sup W =L; <400 and lim sup m = Lo.
n—+00 n—+00
Let us suppose that Ly < 1/Ly.
i) The power series is totally convergent on every closed annulus
{z€C: 0 <[z—2| <01}
with radii 01 < 1/L1 and g2 > Lo (with the usual convention that if L1 = 0, then 1/L; =
+00).

it) The power series does not converge for every z such that |z — zg| > 1/L1 or |z — 29| < Lo.

Proof. The proof is the same as that of Theorem 1.7.3, it is sufficient to discuss separately the
regular and singular parts, i.e.

n=—1

Z an (2 — 2z0)" and Z an (z — 2z0)".
n=0

—0o0

For the regular part we can apply directly Theorem 1.7.3, while for the second one we introduce
the change of variable

Then the singular part becomes
n=-—1 00
Z an (z — 20)" = Z a_pw",
—0o0 n=1
which is an ordinary power series, in the new complex variable w. By Theorem 1.7.3, we know that
we have total convergence if
) 1
lw| <r, withr < —,
)

that is

1 1 1
|z — 20| = — > —, with — > Lo.
lw| — r r

Similarly we prove point ii). We leave the details to the reader. O
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Definition 1.11.2 (Inner and outer radius). Let {ay},ez C C be a sequence such that

limsup {/|an| = Ly and limsup {/|a_n| = Lo,

n—-4o0o n—-+o0o

and )
Lo < —.
2 I
Then R; = 1/L; is called outer radius of convergence of the bylateral series 3¢z an (z — 20)",
while Ry = Lo is called inner radius of convergence. We use the usual conventions:

1
Rl:fl:+m’ if L1 =0,

and .
Rl:fl:()’ 1fL1:+OO

Remark 1.11.3. We observe that in the region of convergence, the series

o

Z a_p,w", withw= ,
Z— 20

n=1

is a holomorphic function of the variable w, thanks to the results of Subsection 7. Since the function

Z =

:w7
Z— 20

is holomorphic in C\ {2}, we get that the singular part

n=-—1

Z an (z — z0)",

—0oQ
is holomorphic as well, as a composition of holomorphic functions. In conclusion, a bylateral series
is a holomorphic function in the annular region

{z€C: Ry < |z— 20| < Ri}.
The following important result is a sort of converse.

Theorem 1.11.4 (Laurent’s Theorem). Let f : A — C be an holomorphic function on the annular
TEGILON

A:{ZE(C : 0 < Ry < |z— 2] < Ry < 400}.
For every z € A we have

F2) =2 en(z—20)",

nez
with the coefficient ¢, given by
1 f(s)
(1.11.1) Cn =5 L (5= 21 ds, for every n € Z.

Here 7y is any positively oriented piecewise regular loop such that Iy, C A and such that the region
D entoured by Iy, contains Br,(20).

Proof. The proof is similar to that of Theorem 1.8.2 and we omit it. The interested reader can
find it in [1, Proposizione 4.7-2]. O
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We observe that if f has an isolated singularity at zp, then Ro = 0 and we have the Laurent

expansion
= Z en (2 — 20)",
nez
in a sufficiently small punctured disk centered at zy and from (1.11.1) we get
1.11.2 Ydz =
( ) c_ 27”/]” z =res(f, 20)-

Remark 1.11.5. The previous formula also explain the reason for the terminology residue. Indeed,
if f has an isolated singularity at zg and
= Z en (2 —20)",

nez
then by Theorem 1.6.12 we have
1
— [ (z—20)"dz =0, for every n € N,
2mi Jy
while by Example 1.10.10 we have
1
— [ (2 —20)"dz =0, for every n < —2.
2mi Jy
Thus by integrating term by term the Laurent series expansion, the term corresponding to n = —1

is the only one giving a non-zero integral.
Proposition 1.11.6. Let f : A — C be an holomorphic function and let zg be an isolated singu-
larity. Let

z) = Z en (2 — 20)",

nez
be its Laurent series in a punctured disk centered at zy. Then we have:

o 2o is removable if and only if ¢, = 0 for every n < —1;
e 2 is a pole of order m if and only if c_m # 0 and ¢, = 0 for everyn < —m —1;

e 2y is essential if and only if the singular part of the Laurent series has infinitely many
terms different from 0.

Proof. If ¢, = 0 for every n < —1, then

o
= Z en (2 — 20)",
n=0

and thus the limit
lim f(2) = co,

Z—r20
exists, which means that zg is removable. Viceversa, if zy is removable then the Laurent series
must reduce to the Taylor series, i.e. ¢, = 0 for every n < —1.

If 2g is a pole of order m, then by Corollary 1.10.7 the function z — (z — 29)™ f(z) is homolorphic.
By Theorem 1.8.2, we thus get

(z —2z0)™ Zanz—zo , with ag # 0,
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that is for z # 2g

o0 oo
f(z) = Z an (z —z0)" ™ = Z an (2 — 20)",
n=0 n=—m
where @, = an4+m for every n > —m. This shows that the singular part of the Laurent expansion
of f contains only the first m terms (and a_,, = ap # 0). Viceversa, if

o
f(z) = Z an (z — 20)", with a_,, # 0.
n=—m
then we clearly have
o
: m I n+m __ *
Zlgr;g(z —20)" f(2) = Zlgrzlo Z an (z — 20) =a_,m € C,
n=—m

as desired.
By exclusion, we get the case of an essential singularity. O

Theorem 1.11.7 (Partial fraction decomposition). Let P,Q : C — C be two polynomials such that
n = deg (P) < deg(Q) = m.

Let us call z1, . .., zx, the zeros of Q, each one having order my, ..., my (recall Definition 1.8.4), so
that
mi+---+mp =m.

Then the function f = P/Q coincides with the sum of the singular parts of the Laurent series

centered at the zeros z1,...,zi. In other words, we have

P(z) (& aj,
1.11.3 f(z) = = — ).
an SEEER e

Moreover, each coefficient a;y, is given by

(1.11.4) ajp = res ((z — 2zt gg; , zj> .

Proof. We give a sketch of the proof. Let us set
o)=Y U e\ (y)
= (2= )"
then the function
k
F(2):= f(2) = Y_0j(2),
j=1

is entire, i.e. holomorphic on the whole C. Indeed, in the neighborhood of each pole z;, the function
f can be written as

[o¢]
F(2) = 0j(2) + > ealz —2)"
n=0
thanks to Proposition 1.11.6. Moreover, the function F'is vanishing at infinity, i.e.

(1.11.5) lim F(z) =0.

|z| =400
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By Theorem 1.9.1 (Liouville’s Theorem), F' is constant. By using this information in conjunction
with (1.11.5), we finally obtain

k
F(z) =0, ie. f(z)= z_: o;(z).

This concludes the proof of (1.11.3).

We now show formula (1.11.4) for the coefficients: for every ¢ = 1,...,k, we take 7, to be the
positively oriented regular loop

() = 2+ R, teo,2n),

where the radius R > 0 is chosen small enough, in order that all the other zeros of () falls “outside”

the circle 0BR(z¢). For every n = 1,...,my, we thus obtain
P 1 P(z)
res( z— 2z "_1—,24) = — z—z)" ! dz
G ) = e L g0
k. mj
1
=3 — / (2 — zg)" L — 2k - dz
Flh:127rz e (z — 2j)
1 / apm 1 ag.p,
— T dz : dz
2mi Jy, (2 — 20) %2#1 o (2= zg)hr
ME| a
_ ih
+ — / (z — zg)" 1 2, dz
j;hz::l%m e (z — z)h
We now observe that for every j # ¢, the function
— Qj h
— . n—1 7>
z (Z Zf) (Z — Zj)h7

is holomorphic inside the region entoured by I',,, thus by Theorem 1.6.12 (Cauchy’s Theorem), we

have

1 n—1 ajh .
— - ———dz =10 fi l.
5 w(z 2y) G2 z =0, or j #

On the other hand, by recalling Example 1.10.10, we have

1 apn 1
- —— dz = ay, res J20 ) = .
27mi J,, (2 — 20) ' Z— 2y ’

Finally, for h # n we have two possibilities:

e if h < n, then n — 1 > h and thus we have again that the function
)nfl aé,h
(z — zo)’

is holomorphic inside the region entoured by I',,. As before, by Theorem 1.6.12 (Cauchy’s
Theorem), we have

z (2 — 2

L (2 — 2"t L

————dz=0;
2mi J,, (2 —zp)
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e if h >n, then h —n+1 > 2 and thus
1 n-1_ Gk ( 1 )
— z— 2y ————dz=aypres | —————=, 2 | =0,
271 w( ) (z — z)h (z — zp)h—ntl
again by Example 1.10.10, by keeping into account that h —n 4+ 1 > 2 in this case.

By spending these informations in the chain of equalities above, we get

P
n—1
res ( 22—z - Ze) = Qyn,
( ) 0’
as desired. O
Corollary 1.11.8. Let P,Q : C — C be two polynomials such that
n = deg (P) < deg(Q) = m.

Let us suppose that all the zeros z1, ..., zm have order 1. Then the formula (1.11.3) above becomes

f(2) Z

Z—ZJ

and each aj is given by
P
(1.11.6) a; = res (Q,zj>, j=1,....,m.

Proof. It is sufficient to observe that each z; have order 1, thus in formula (1.11.3) we have m;, =1
for every k. O

12. Exercises
Exercise 1.12.1. Show that for every z € C we have
[Re (2)] + |Im (2)|

V2

Solution. Let us write z = z + iy, then we have to prove that

+
(1.12.1) |x|\/§|y\ < Va2 +y? <zl + |yl

Let us prove the first inequality. For this, it is sufficient to recall that the function of one real
variabile t — v/t is concave, that is

\/(1 — N to+At1 > (1= M) Vio+ AVt for every tp,t1 > 0and 0 < A < 1.
By using this inequality with

< Jz[ < [Re (2)] + [Im (2)].

1
to = .7}2, t1 = y2 and A= —,

2
[y Jol+ 1yl
2 - 2

After a simplification, we get the first inequality in (1.12.1).

we obtain

In order to prove the second inequality in (1.12.1), we observe that

| + [yl = /(] + [y])2 = Va2 + 2|z]Jy] + 42 > Va2 + 2,
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where we used that the square rooth is a monotone function and |z||y| > 0. This gives the desired
inequality. (]

Exercise 1.12.2. Let u: R? — R be the function defined by

u(z,y) =2 —y°.

Verify that this is a harmonic function and find v such that u and v are conjugate harmonic
functions.

Write the corresponding holomorphic function f(z) = u(z,y) +iv(z,y).
Solution. We first observe that
Ugy = 2 and Uyy = —2,
thus the function is harmonic. In order to find v, we need to solve the system
Vy = Uy = 2T and Vg = —Uy = 2.
It is not difficult to see that the choice
v(z,y) =22y,

is feasible. The corresponding holomorphic function is given by

f(2)= (@ —y*) +2izy =2+ 2izy+ (iy)* = (x +iy)? =22
This concludes the exercise. O
Exercise 1.12.3. Let u: R? — R be the function defined by

u(z,y) = 2® — 39>

Verify that this is a harmonic function and find v such that uw and v are conjugate harmonic
functions.

Write the corresponding holomorphic function f(z) = u(z,y) +iv(z,y).
Solution. By direct computation, we have
Ugz + Uyy = 62 — 62 = 0.

In order to find v, we argue in an indirect way: we observe that

u(z,y) = 2° — 3z y? = Re(23).
Indeed, we have

B =(r+iy)P=24+3iz’y—3xy® —iyd=(®-329°) +i(32%y —1°).

Then we can choose

v(z,y) =Im(2%) = 322y — o>
By Corollary (1.4.9) we know that u and v are conjugate harmonic functions. Of course, by
construction we have

f(2) = u(z,y) +iv(z,y) = Re(z) 4+ iIm(z°) = 2°.
This concludes the exercise. O

Exercise 1.12.4. Find the partial fraction decomposition of the rational function

16)= 7=
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Solution. By writing P(z) = z and Q(z) = 2? + 2z — 6, we have

P(z)
6= G
and the function has two simple poles at 21 = —3 and z3 = 2. By using Corollary 1.11.8, we know
that
z _res(f,—3)  res(f,2)
224+2-6  2+3 T

Observe that we have
Q(-3)=0, Q(-3)#0 and P(-3)#0,

thus we can use formula (1.10.2) and obtain

P(-3) 3
’—3 = = —
res(f, —3) e
Similarly, we get
P(2) 2
2) = = -.
reS(f? ) Q/(2) 5
In conclusion, we get
2 3.1 21
242—-6 5z2+3 H5z—-2
as desired. O

Exercise 1.12.5. Find the partial fraction decomposition of the rational function
z

&)= =1ee o

Solution. By writing P(2) = z and Q(z) = (2 — 1)? (2 — 2), we have

and the function has one simple pole at z; = 2 an a pole of order 2 at zo = 1. By using formula

(1.11.3), we have
z a1 az,1 a2

)

GCo12(:=2) z2-2 (-1 -0

where the coefficients a1, a2, and ag 2 are given by formula (1.11.4). Thus we have

91,1 :res((z—1)§(z—2)’2>’

e :“”((z—l)z <z—2>’1>’

122 =S ((z pRlETe 2)’1) e ((—1)(—2) 1) |

We are left with computing these residues. For a1 ; we can use formula (1.10.2) and obtain

i 2)=2_9
= I — .
IS D2z - 2) 1

and
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Similarly, for a2 we can still use (1.10.2) and get

= © )=t -1
a2,2—res<(z_1)(z_2),>—_1——.

Finally, in order to compute az; we use the formula (1.10.1) of Proposition 1.10.11, with m = 2.
Thus we get

.od 9 z . -2
az =l 72 <<Z‘” <z_1>2<z_2>> "Gt 2
This concludes the exercise. O
13. Advanced exercises

Exercise 1.13.1. Let A C C be a connected open set and let f : A — C be an holomorphic function.
For every zg, 21 € A we have

Fe1) = £o) + £/20) (1 = 20) + [ £7() (21 = )
¥
where v : [a,b] = C is any piecewise reqular curve such that I'y C A and
7(b) = =1 and  ~(a) = z.

Proof. We first observe that, since f is holomorphic, by Theorem 1.8.2 it can de differentiated as
many times as we wish. In particular, f” is well-defined. We now use the definition of curvilinear
integral in the complex plane, i.e.

b
/ () (21 — 2) dz = / F((0)) (21— A() 7 (2) .
¥ a

Observe that J
F'O@E)A' (@) = 2 ((#),

thus we can use an integration by parts

b b
/ F(G®) (21 = ¥(0) Y (#) dt = | f/(5(1)) (=1 —v<t>>}2+ / F'(v(£) ¥/ () dt

Thus, up to now, we obtained

f'(20) (21 — 20) + / f(2) (21 — 2)dz = / f'(2)dz.

gl gl
We can now apply Lemma 1.6.7 to the last integral and obtained the desired conclusion. O

Exercise 1.13.2. Show that the function

tan z =

forze(C\{k% : keZ},

cosz’

is invertible on the set S = {z € C : —w/2 < Re(z) < w/2}. Then compute its inverse function
z — Arctanz,

by paying attention to its domain of definition.
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Exercise 1.13.3. By using the Residue Theorem, verify that

27
/ cos’tdt = .
0
Solution. We start by recalling that
ity it 2
2

27 2w (it —it\2 2w (it —it\2 )
/ cos2tdt:/ Me)dt:/ e ) itay
0 0 4 0 4Z€Zt

We now observe that if we introduce the positively oriented curve

v(t) = e't, te0,27],

thus we get

this is a parametrization of the boundary dBj(0) of the disk of radius 1, centered at the origin and

2w 2w (it —1t\2 2
0 0 ¥

44 et 4iz
2 1 2
_ / ErD,,
~ 41z
‘We now observe that the function
(22 +1)2
f(z) = i3 z#0,

has an isolated singularity at z = 0 inside B;(0). More precisely, z = 0 is a pole of order 3 and by
observing that

z 1 1
T =gt o
we get from (1.11.2) that
1
0) =—.
res(£.0) = -

By appealing to the Residue Theorem, we finally obtain
27
/ cos’tdt = 2mires(f,0) =,
0

thus concluding the exercise. O

Exercise 1.13.4 (Fresnel’s integrals). By using Cauchy’s Theorem, verify that

oo oo 1 /=
/ cos(t?) dt = / sin(t?) dt = = \/j
0 2 V2

0

Solution. We first observe that both integrals have to be intended as follows

400 R 400 R
/ cos(t?)dt = lim cos(t?) dt, / sin(t?)dt = lim sin(t?) dt.
0 R—+o00 0 0 R—+00 0

Let us consider the positively oriented piecewise regular loop I' obtained by gluing
7(t) =t t € [0, R],
Yo(t) = Re't, t €[0,m/4],
v3(t) = (R—t)e'T,  te[0,R)]
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—22

By Cauchy’s Theorem (Theorem 1.6.12) for the holomorphic function f(z) = e™*" we obtain

0= / f(Z) dz _/ e_tQ dt+RZ /4 (B_RZGQM5 e”dt _/ e—(R—If)ZzezZ dt
r 0 0 0

R 2 . I R2e2it 4t R 2 =
:/ e~ dt+Rz/ e e el dt—/ e " et dt.
0 0 0

e el T =l h (cos(tQ) —1 sin(t2)) ,

R +o00
lim e_t2 dt = / e_t2 dt = \/27?
0

R—o00 0

‘We now observe that

and

Thus from the previous identity we get

.o R 1 i .
e's lim (cos(tQ) -1 sin(tQ)) dt = \/27? + lim 'Ri /4 e e git gy
0

R—o0 /o R—oo

In order to conclude, we only need to compute the last limit. We start by observing that

’Ri /4 e’ it gl < R /4 |€_R262”|dt =R /4 e R cos(20) gy,
0 0 0

On the interval [0, 7/4], the function ¢ + cos(2t) is concave, thus there exists ¢ > 0 such that®

4
cos(2t) > 1 — —t, for t € [0, 7/4].
m
We obtain
R [femetig g [T 00 = R 4 [ 0-20) ]
0 B 0 4 R? 0
T 1 _R2
=1r -]

and the latter converges to 0 as R goes to co. We thus obtained

S

R
i T 1i 2\ .o 9 _ ‘
etv lim ; (cos(t ) — @ sin(¢ )) dt 5

im/4

By multiplying both sides by e~ , we get

e}

R .
lim (cos(tQ) —1 sin(t2)) dt = e ﬁ

This gives the desired conclusion. ([

Exercise 1.13.5. By using the Residue Theorem, verify that

27 dt
o 1+sin“t

61t is easy to see that

SIS
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Solution. By using that

we get

2 dt 27 1 2 4
2, it —g At = it —it\2 dt
o Ll+sin“t 0 et —e) o 44— (et —ett)

where now

y(t) = e't, t € [0,2m].
In other words, v parametrize the boundary of the disk of radius 1, centered at the origin (with
positive orientation, as usual). The function

f(z) =

1 z z

B <4—(z—1)2> :422—(22—1)2:_24—67524—1’

z

has isolated singularities at the zeros of 6 22 — 2% — 1. These are given by

ZLQZi 3+2\/§ and 2’3,4:j: 3—2\/5,

and they are simple poles. We are only interested in those poles which fall inside B;(0). We observe
that

‘ZLQ‘ >1 and ’2374‘ < 1.
By the Residue Theorem, we thus obtain
27
dt 4
(1.13.1) /0 Trenli i 27Ti(res(f, z3) + res(f, z4)> =87 (res(f, z3) + res(f, 24)).

We need to compute the residues. We have

res(f,zs) = Jim (= = 25) f(=) = = lim 55— zzm (z — 2a)
— 3
(3 -3-2V2) (23— )
_ 1L
42 23— 2
and
res(f, z4) = zh—>Hzl4(Z —a)fE) == Zh—g{l (22 -3 — 22\:/§) (2 — z3)
_ 4
(23 =3 -2V2) (24 — 23)
1 z4

T AV2 (2 2)
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We thus get

1 Z3 — 24 1
res(f,25) +res(fyz) = L5 = s

By spending this information in (1.13.1), we get

2
/0 i 1+an2t = %27Ti(res(f, z3) + res(f, 24)) =—m,
as desired. 0
Exercise 1.13.6. By using the Residue Theorem, verify that for every a > 1 we have
/2” a 2«
o a-+cost a? —1

Solution. By proceeding as above, we have

/2# dt _/271' dt _/Zﬂ 2i€it "
o a-+cost J, +e”+e*” Jo (2a+eit femit)jeit
ar o T°C

2

[aerra
= z
yiz(2a4+z+1/2) 7
where as above we set

v(t) = et te0,2m].

The integrated function is
2

f(z)= i(2az+224+1)

which is analytic, except that at the singularities
zlz—a—l—m and 29 =—a—+Va?—1,
which are simple poles. We observe that
2] =a— Va2 -1<1 and |22 =a+ Va2 —1>a>1,

thus only the first pole z; falls inside the region delimited by 7 (which is again the disk of radius
1 and center the origin). We thus obtain

27
dt _ o 2(z—21)
_— =2 =2 1
/0 a-+ cost mires(f,z1) Flzlgllz'(Qaz-i-zz—kl)
9 (5 —
—omi lim 2=
=214 (2 — 29) (2 — 21)
1 2
:47‘(‘ = T s
z1 — 22 a? —1
as desired. O

Exercise 1.13.7. By using the Residue Theorem, verify that we have

/‘“ dt _ Anm
o 2-+sintcost /15
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Solution. We have

27 dt 27 dt 2w Z'eitdt
_— = , — =49 . . .
/0 2+ sint cost /0 e2it — =20t /0 (84 e2it — e=2it) it

2
+ 44

/ dz

= 4 - s
42 (81422 —1/2%)
where (t) = e't, for t € [0,27]. We study the singularities of the function

1) = : -
T LIt 2 1)) A18i- 1

This has four simple poles at the roots of z* +8i 22 — 1, i.e.

a=V4+V15e T and 2= V4+V15e T,
23 =V4—V15e 11 and 2 =V4—VI5e Tl

It is not difficult to see that only the second ones fall inside the disk B;(0) delimited by ~y. Indeed,

2] = |2a] = V4 — V15 < V4 — VO = 1.

‘We thus obtain

27
dt .
A m =427 (res(f, 23) + res(f, 24))
z
=8 li
T (z—21) (2 —22) (2 — 24)
z
8mi li
tom (z—21) (2 —22) (2 — 23)
8 z3
=8mi
(23 — 21) (23 — 22) (23 — 24)
. Z4
—8m1

(24 — 21) (22 — 22) (23 — 24)
We observe that for every z # z1, z2, we have

(2 —21) (2 — 22) = 22+ (4 + V15) i,

thus by observing that 232, = zz we obtain
z3 z4
(23 —21) (23 — 22) (23 — 24) (21 — 21) (21 — 22) (23 — 24)

23
(22 + (4+V15)i) (23 — 24)

4
(23 + (A VI5) i) (23 — 21)
zZ3 — %4

(23 + (44 V15)4) (23 — 24)
1 1

T2+ @A+VIn)i 2v154

This gives the conclusion. U
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Exercise 1.13.8. By using the Residue Theorem, verify that for every n € N\ {0, 1} we have

/+°° dr 7w 1
o 14z nsin(ﬂ->

Solution. We consider the function

1
f(Z):m, ZQ{ZO,...,Zn_l},
which is analytic in C\ {zo,...,2p—1}, with
zk:ei(%Jr%ﬂk), k=0,....,n—1.
Each z; is a simple pole and we have
1 1
res(f,z0) = ; = —-

(1+ z”)|Z:ZO nenT_l
We now fix R > 1 and integrate the function f on the piecewise C'! loop I'g obtained by joining
7 (t) =t, t €10, R],

2m it

v2(t) = Ren **, t €[0,1],

ya(t) = (R—t)en’  te[0,R)
It is not difficult that the interior of I'g contains only the pole zg, thus from the Residue Theorem
we obtain
271

Sr = [ @de= [ g@des [ @ [ e

nen " T'gp " V2 3
/R dt 2w ! Rie™ it

o 1+t n Jy 1+ Rre?mit

R 2
_/ eidt.
0 1+(R—-t)"

‘We now observe that

1 Riearit /1 R we R
0 1_|_Rn627rit — 0 ‘1+Rne27rit| —Rn_l’

and
27

R ) R _£%i
—/ edt:—/ g,
0 1+(R—t)n 0 14 s™
s too 1 21
0 1+ R—oco FRl—I—Z” T

/+°° 1 b — 27 1
0

—1 . PR
1+t new i1 —ent

Thus we obtain

that is
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In order to conclude, we observe that

enﬂl(l_enl):enﬂ'l_enﬂ'l
n—1 n+1
COS ™| — COS s
n n

+ 1 |sin ™| — sin T
n n
= 2 sin7 sin (E) + 214 cos T sin (—E)
n n

=217 sin <§)
n

This gives the desired conclusion. ([

Exercise 1.13.9. By using the previous exercise, compute

T dy
/0 8+ a3’

Solution. It is sufficient to use a simple change of variable to reduce the integral to the one
computed in the previous exercise. We have

/+°° dz _1/+°° dz _1/+°° dt
o 8+x3 8 Jy 1+<m>3 4 Jo 14t

Since we already knows that

/+°O dt 7 2
o 1+t 33
we can conclude. O

Exercise 1.13.10. By using the Residue Theorem, verify that

oo o3 27
[T
oo 1+e V3

Solution. We consider the piecewise regular loop I' obtained by linking the segments
m(t)=2Rt— R, t € [0,1],
Y2(t) = R+2mit, te0,1],
v3(t) =27mi+ R — 2 Rt, t e 0,1],
Ya(t) = —R+2mit, te[0,1].

Since the function

wln

e
1+e?’
has a simple pole at zp = ¢ 7 and the latter is contained in the bounded region entoured by I', we
get

i

3 3 5
(1.13.2) /Fliezdz:QWires<1iez,i7r>:27T2'Zm:—7Ti—|-\/§7r.
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We now analyze the integral on the left-hand side. We have

z z

RS
1+ e? %l—i—ez

2Rt—R

2R/  _dt+2 '/1 ‘ dt
= o 1+ 2Ri-R T, 14 Rt

27 i+R—2R¢t _ R+2mit
3

1 e 3 . 1 e
_2R/0 1+ e2mitR—2R1 dt—27”/0 1+6—R—27ritdt

R s R 2Rt

Rt2mit
3

es3
/R1+e8ds 2R/ 14 cr2r U
1 Ri2mit 1 _ R42mit
. e 3 i e 3
+27TZ/O 1—|—6R+27”tdt_27r2/0 Wdt
R C% 273 1 €R7§Rt
= — 3 -
/R1+65d8 2Re /0 1+€R_2tht
R+237rit 7R+237rit

[t [t e
+27TZA 1—|—8R+27”tdt_27r2/0 Wdt

‘We now observe that

OR 27 1 e 3 dt 2mi R G% d
e 3 ——— 557 =€ 3 S
A 1+6R—2Rt /R1+€S ’

while for R large we have

1 Rt2mit 1 _ Rt2mit
(& 3 e 3
/0 ]__|_€R+27rit dt /0 1+67R727Tit dt| <

and the last quantity goes to 0 as R goes to +00. By using these informations in (1.13.2), we obtain

_m+¢§7r:(1—e%) lim /R s

R—o0 7R].+6’S

+

This gives

/+oo 6% \/g :

U o 3
2

as desired. O



Chapter 2

The Z—transform

1. Definitions and examples

Definition 2.1.1. Let {x,},en C C be a sequence. We say that this is Z—transformable if
(2.1.1) R :=limsup {/|z,| < +o0.
n—oo

Definition 2.1.2. Let {x,}neny C C be a Z—transformable sequence. We define its Z—transform
by

o0

Z[{an}l(z) =)

n=0
By Remark 1.11.3, we know that this is an analytic function on the region {z € C : |z| > R}, with
R defined by (2.1.1).

Tn

Zn’

Remark 2.1.3 (Bounded sequences). We observe that if {z,, }nen C C is bounded, i.e. there exists
M > 0 such that
|zn| < M, for every n € N,

then the region of convergence of its Z—transform Z[{z,}] contains the set {z € C : |z| > 1}.
Indeed, it is sufficient to observe that in this case R defined in (2.1.1) is smaller than 1, since

hﬂsolip V| zn _nh_g)lo VM =1
Let us compute some basic Z—transforms.

Example 2.1.4. Let {x,},en be the constant sequence x,, = 1 for every n € N. This is of course
Z —transformable, with
R = limsup V1 = 1.

n—oo
By recalling the expression for the sum of the geometric series, its Z—transform is given by
=1 1 z
=Y m=—1=—7 frll>1
n=0 1—-—
z
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Example 2.1.5 (Delta sequence). We fix j € N and consider the sequence {d;, }nen defined by

5 1, ifn=j,
P10, otherwise.

This is of course Z—transformable, with
R = limsup {/|d; | = 0.
n—oo

Its Z—transform is then given by

> 0, 1
Z[Sall(x) = > L= =, forfz] >0,
n=0

Observe that for the particular case j = 0, we get

Zl{oon}l(z) =1, for z € C.
Example 2.1.6. Let {z,},en be the sequence
zo=0 and Ty = %, for every n > 1.
We have
R =limsup { 1 =1.
n—soo Y n

By recalling Example 1.7.9, we have
Z*=—L0g 1-s), ls|<1,
and using this formula with s = 1/z, we get

Z[{1/n}](z Z——:—Log (1—%), |z| > 1.

Example 2.1.7. Let {z,},en be the sequence x,, = 1/n!, for every n € N. We have!

1
R =limsup {/— =0,

thus the Z—transform is now a holomorphic function in C*. By recalling that (see Remark 1.8.3)

s

E — =é°, for s € C,
n!

n=0

and using this formula with s = 1/z, we get

ZH1 /) = 3 % Zin _ef, sec
n=1""

Observe that this function has an isolated singularity at z = 0, which is an essential singularity
thanks to Proposition 1.11.6.

1We use here that
n

n!l~ —, for n — oo.
e
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2. Basic properties

We collect here some important properties of the Z—transform. In what follows {x,, },en C C and
{Yn}nen C C are two Z—transformable sequences.

Proposition 2.2.1 (Linearity). Let {zy }nen and {yntnen be two Z—transformable sequences, with
r = limsup {/|x,| and o = limsup {/|yn|.
n—00 n—00
For every a, B € C, the sequence {a xy,+ 3, Yn }nen is Z—transformable with a radius of convergence
R < max{r, o}.

Moreover, we have

Z[{azn + Byn}l(z) = a Z{zn}(2) + B Z[{yn}(2), Jor |z| > max{r, o}.
Proposition 2.2.2 (Time delay). For every k € N\ {0}
(22.1) 2lraill(s) = 2 (2Heatl(z) — 20— 22— = Tt

Proof. We have

Zlfml() = D =k S Tt kS 2

n=0 n=k
x k—1 x
—_ Sk on on
O3
n=0 n=0
which gives the desired conclusion. (Il

Definition 2.2.3. Let {x,}nen and {yn tnen two sequences. We define their convolution as the
new sequence {p * Yn }nen such that

n n
T * Yn = Z Tk Yn—k = Z Tn—k Yk, for every n € N.

Proposition 2.2.4 (Convolution). Let {zp}nen and {yn}nen be two Z—transformable sequences,

with
r = limsup {/|zy] and o0 = limsup {/|yn|.
n—oo n— o0
Then the convolution {x, * yp tnen is Z—transformable and we have
Z[{zn x yn}l(2) = Z[{zn}](2) Z[{yn}](2), for |z > max{r, o}.

Proof. By definition of convolution, we have

Ty % Yp = Z Tk Yn—ks for every n € N.
k=0

It is known that if >°% (=, and >°°% v, are absolutely convergent, then >"°° ; z, *y, is absolutely
convergent as well and we have

(2.2.2) i Ty * Y = (i a:n> (i yn> ;
n=0 n=0 n=0
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see Exercise 2.8.1 below. Thus we get

Z{xn xyn}l(2) = Z In *y” Z Z mkyn k

n=0 n=0 k=0
_Z&l

n

nZOz

We observe that if we take |z| > max{r, o}, then

oo oo
TIn Yn

>,  and ot

n=0 < n=0 z

are absolutely convergent (and totally, indeed). We can apply (2.2.2) and get the conclusion. [

Proposition 2.2.5 (Derivative). If {z,, }nen is Z—transformable, then {n x, }nen is Z—transformable

as well, with
limsup {/n |z,| = limsup {/|zy|-
n—oo n—oo

Moreover, we have

(2.2.3) Z[{nzn}l(z) = —Z* Z[{zn}](2).

Proof. We first observe that if {z,},en is Z—transformable, then {n x, },cn is Z—transformable

as well, since
limsup {/n|z,| = hmsup V|zn| < +oo,
n—00
lim /m = 1.

where we used that

n—oo
We then compute
n —n—1 - d —-n
Z[{nzp}](z) = an =z ann :22£<—xn2 )
n=0 n=1
d > n
=z —;xnz ),

as desired. In order to exchange the summation and the differentiation, we used the fact that a
power series is an analytic function on its region of convergence, whose derivative can be computed
by differentiating term by term (see Proposition 1.7.5). O

Proposition 2.2.6 (Scaling). For every g € C*, we have
(224) Zl{a" e })) = 2] (2).
Proof. This is by direct computation, we first have to observe that
limsup {/[q|" 2] = lq| limsup {/Ja| = [g| R.
s 00 n—»c0

Then for |z| > |¢| R we get

2l (o) = 3 T = 3 o = 2l (2),

n=0 n=0

as desired. 0
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Example 2.2.7. As a particular case of the previous result, if we take ¢ = e*? for some ¥ € (—, 7,
we obtain

Z{e'"? 2,}](2) = Z[{zn}](z 77, for |z] > 1.
If z,, = 1 for every n € N, we thus get from Example 2.1.4
ze MY z

Z[{e™"}](2) =

Proposition 2.2.8 (Periodic sequences). Let us suppose that there exists m € N\ {0} such that

popsenr Rl 1 for |z] > 1.

Tntm = Tn, for every n € N.

In this case we say that the sequence is m—periodic. We have

m m—1

x
Z Z—Z, for|z| > 1.

n=0

z
m_1

(2.2.5) Z[{za}(2) = -

Proof. We first observe that a periodic sequence is bounded, thus by Remark 2.1.3 is Z—transformable
and its Z—transform is well-defined for |z| > 1. By appealing to the definition, we have

o . o (k+1)m-1 .
n n
Z{zall(2) = > =2 n
n=0 k=0 n=km
-1 Took oo m—1
— thkm
3 T = > e
k=0 £=0 k=0 £=0
(%)
= km D
k=0 \* " =0 *
In order to conclude, we only need to compute the sum of the geometric series
<01 1 zm
szm: 1 :melj ‘Z|>1'
=0 1— —
zm
This concludes the proof. O

Remark 2.2.9. From formula (2.2.5), we can easily see that the Z—transform of a m—periodic
sequence {zy}nen can be extended to the whole

C*\{z05---s2m-1},

where 2g,...,zm—1 are the solutions (which are all distinct) of 2 = 1. By using formula (1.5.2)
with w = 1, these are given by
. 9 9
zj:e%lz(cos<£)+isin(£>), j=0,1...,m—1.
m m

In other words, the function

m m—1 x
Z[{ea})() = an_l >
n=0

has simple poles at z = e i forj=0,. — 1, and it is otherwise holomorphic for z # 0.
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3. Inversion formula

We now face the problem of how to recover the sequence {zy}neny C C from the knowledge of its
Z—transform
2z Z{zpH(2), |z| > R.

For this, we need to recall that for a holomorphic function f defined in {z € C : R < |z|}, by
Laurent’s Theorem (see Theorem 1.11.4), we have

k
= a z —
>+
k=0 k=1
and the coefficients ag, by are given by

ay = B O dz and by, = 1 /f(z) 7l dz,
g

27 ,yzk“ 2mi

thanks to formula (1.11.1). In particular, by using this information for the function

[ee]
Z{an}](2 Z S=w+d o
=1~

we obtain the following relation between a Z —transformable sequence {xy, }nen and its Z—transform

(2.3.1) = —— [ ZHea(z) 2 Vdz,  kEN.
Y

211

Here ~ is any positively oriented piecewise regular loop entirely contained in {z € C : |z| > R} and
entouring the origin. Formula (2.3.1) can be referred to as inversion formula for the Z—transform.

Proposition 2.3.1 (Injectivity of the Z—transform). Let {x,}neny C C and {yn}nen C C be two
Z—transformable sequences, with

Ry = limsup {/|zy] and Ry = limsup {/|yn|.
n—00 n—00
If there exists |zo| > max{Ri, Ra} and a radius o > 0 such that
By(#) € {z €C : |2| > max{Ry, Ra}},

and
Z[{zn}](2) = Z[{yn}](2), for every z € By(20),

then we have
Ty = Un for every n € N.

Proof. We first observe that if Z[{z,}] and Z[{yy}] coincide on the open disk B,(zp), then they
actually coincide on the whole set

{z € C : |z| > max{Ry, Rg}},

thanks to Corollary 1.8.7. If we now take  a positively oriented parametrization of the circle
centered at the origin and with radius » > max{R;, Ra}, by the inversion formula (2.3.1) we get

o L O R e (N O TS

2mi
for every k € N. This gives the desired conclusion (and observe that this also proves that R; =
Ry). O

T =
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Remark 2.3.2 (Exploiting the Residue Theorem). In the applications, very often we can com-
pute the inverse Z—trasform by joining (2.3.1) and the Residue Theorem, i.e. Theorem 1.10.14.
Indeed, let us suppose that the Z—transform Z[{z,}] admits an extension to the whole C, with

the exception of a finite number of singularities z1, ..., z; inside the region entoured by ~. Then
we obtain
1 k=1
(2.3.2) T =5 / {zn}](z dz = Zres H{zn}] 2777, 25), k e N\ {0},
and
L [ Z{za}l(2) [{ {l’n}]
(2.3.3) To = 5 [y . dz = res + Z res

These formulas are particularly useful in the case all the smgularltles zj and 0 are poles. Indeed,
in this case

res(Z[{zn}] 2571, 25),

can be easily computed, by appealing to formula (1.10.1) of Proposition 1.10.11. In this situation,
by denoting with m; the multiplicity of the pole z;, formulas (2.3.2) and (2.3.3) reduce to

¢ m;—1
g = g(ml_l), Ji <§lm ((z = 2z)™ Z[{za)] z“)) . ReNA{O:

—Zj

o= (moll), liny ( il (’" ZM))

Example 2.3.3 (Fibonacci’s numbers). We want to use the Z—transform, in order to determine
the sequence {z, }neny C C inductively defined by

and

Tn+2 = Tn4l + Tn,
rg = 1,
r; = 1.

We introduce the Z—transform
D
=Y e
n=0

then from the relation defining {z, }nen and by using property (2.2.1) of the Z—transform, we get
the relation

2X(2) =22 —z2=2X(2) -2+ X(2),
that is

This finally gives
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which is a holomorphic function on C\ {2, 21}, with two simple poles in

1-+5 1++/5
= 5 and 21 = 5

From the inversion formula, for n > 2 we get

1 1 Zn-i—l
=— [ X(z)z"tdz = d
n 2WiL (2) 2 *T o /722—2—1 %

where vy is a positively oriented loop, whose image entours zp and z;. In order to compute the last
integral and conclude, it is sufficient to use the Residue Theorem, i.e. formula (2.3.2)

1 Zn+1 J Zn—i—l N Zn-i—l
: z=res | ——, 2 res| —, »1
2mi J, 22 —2z—1 22—z—-1 22—z-1’
Z{L—H Zg+1

20

Z1 — 20 Z1 — 20 '
Observe that we used the formula of Corollary 1.10.13, in order to compute the residues. This
finally gives

1
Ty = —F=

V5

We refer the reader to Section 7 for some further examples.

<1+\/5)"“_ (1—\/5

n+1
— 5 ) ] , for every n € N.

4. The Initial and Final Value Theorems

Theorem 2.4.1 (Initial value). Let {zy}neny C C be Z—transformable, then we have
(2.4.1) xo= lim Z[{z,}](2).

|z| =>+o0

Proof. Let R < 400 be the radius of convergence, then for every |z| > R + 1 we have

> Ty |7 |z, 1
st -of - 2«5 -5 4
1 & |7, |
< -
~ |z nz:l (R+1)n1
_R+1 &K |z
|2| nZ::l (R+1)n

By assumption, the last series converges and thus by taking the limit as |z| goes to +oo

= |z . R+1
< (Sl )y —0,
= (Z R+ 17 ) Jotes 7]

n=1

lim (Z[{z,}](2) — zo

|z| >+o00

we get the desired conclusion O

Remark 2.4.2. The previous result implies in particular that the Z—transform is a bounded
function at infinity. Observe that this is not in contradiction with Liouville Theorem, since a
Z—transform is never an entire function (i.e. analytic on the whole C), unless in the trivial case

Ty =0, for n € N\ {0}.

In this case, we clearly have Z[{z,}](z) = x¢ for every z € C.
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Theorem 2.4.3 (Final value, non-tangential version). Let {zy}nen C C be Z—transformable such
that

(2.4.2) lim x, = 2. € C.
n—oo
Then we have
2.4.3 o = i — 1) Z{x, .
(243) rao= D (= 1) Z[{za}](2)

Proof. We first recall that by Remark 2.1.3, the function Z[{z,}] is holomorphic for |z| > 1. We
now write

Tp = Too + (xn - w00)7
then taking the Z—transform and using its linearity we obtain
Z[{zn}](2) = 200 Z[{1}](2) + Z[{zn — 200 }(2)

= oo 5 + Zl{zn — 70}](2),

(2.4.4)

where we used Example 2.1.4. We thus obtain
lim (z — 1) Z{z,}|(2) = oo + lim (z — 1) Z[{zy, — 20 }](x).
z—1+ z—1+

Finally, by using Lemma 2.4.4 below with the choice v, = x, — T, we get that the last limit is
zero. This gives the desired conclusion. O

Lemma 2.4.4. Let {yp}nen C C be such that
Jim v =0
Then Z[{yn}] is holomorphic for |z| > 1 and
(2.4.5) lim (x—1)Z[{yn}](z) =0.

R3z—1+

Proof. We first observe that by hypothesis, we have

limsup {/|y,| < 1.
n— oo

Thus z — Z[{yn}](2) is holomorphic for |z| > 1. In order to prove (2.4.5), we observe that for
every € > 0 there exists n. € N such that

lyn| < &, for every n > ng,

since y,, converges to 0. Thus we obtain for z = 2 € R with? z > 1

ne—1 %)

Yn 1

(@ =1 Z[{ga}l@)| < |z =11 | 30 Tl +elz—1] 3 —
n=0 n=ne
nE—ly T

<(z-1) 7;);“ +5(a:—1)m_1.

2In the second inequality we use that
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By taking the limit as x goes to 1, we thus get

lim |(z —1) Z[{ya}(z)| < e

r—1t

By arbitrariness of € > 0, we get the desired conclusion. O

Remark 2.4.5. If we remove the assumption (2.4.2), Theorem 2.4.3 does not hold anymore.
Indeed, if we take the sequence

we get

Thus we have

lim (1 —2) Z[{z,}](z) =

R3z—1+

On the other hand, the sequence {z, },en does not converge.

Remark 2.4.6 (Periodic sequences and the Final Value Theorem). Let us consider a m—periodic
sequence {xy }neny C C. Thus we have

Tntm = Tn, for every n € N.

Such a sequence can not converge, unless it is constant. Thus in this case we can not apply Theorem
2.4.3. However, by recalling the formula (2.2.5) for its Z—transform, we have

m m—1

z x
Z{z, = = f 1.
el = 7y X 3 or || >

In particular, by evaluating this function for R © 2 > 1, multiplying by the factor (z — 1) and
taking the limit, we get

b (- 1) 2l = tm S DR e LR
1m xr — T zZ) = 1m _— _—= — .
R3z—1+ " Rzt ™ —1 = n om "

Observe that we used that
oM —1
lim
z—1 1 —1

=m.

In other words, for a m—periodic sequence, we get

lim (2 — 1) Z[{zn}](2 ;Z

Roz—1+

and observe that the sum on the right-hand side is the average of the values assumed by the periodic
sequence {Ty }nen.
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5. Relations with Fourier series expansions

Let {zy},n C C be a Z—transformable sequence, with
limsup {/|z,| = R < +o0.
n—oo

We have seen that its Z—transform is holomorphic in |z| > R. In particular, for every ¢ > R the
following function of one real variable is well-defined

f(t) = Z[{za}](0e'),  te(0,27],

and can be periodically extended to the whole R. By definition of Z—transform, this is nothing
but

[e.o]

(2.5.1) fit)y=3temint 0,27,

n=0 Qn

On the other hand, by appealing to the inversion formula (2.3.1) and taking v = ge'! for t € [0,2 7],
we have

! k—1
T = —— ZHz)M(2) 2 dz
21 OB, (0) [{ }]()
1 27 ' . |
o [ 2 e et
k 27 ‘
- = ft)etrtat.
27 Jo

By inserting this information in (2.5.1), we finally obtain
o0 1 2w . .

(25.2) =3 (% F(#) et dt) et e 0.2m],
n=0 0

which is the Fourier expansion of the periodic function® f. We recall that the latter is the restriction
of the Z—transform on the circle 0B,(0).

6. Applications to signal processing

The main application of the Z—transform is in signal processing. It can be used to solve finite
difference linear equations. These are important since they provide an approximation to solve
numerically ordinary differential equations. We try to explain the idea with a simple example.

Example 2.6.1 (First order finite differences). Let us consider the linear ordinary differential
equation with constant coeflicients

{ Y'(t) +ay(t) = b1), t>0,
y(0)

I
<
S

3We recall that the Fourier expansion of a (2 7)—periodic function g is given by

1 2T

90 =) gt tefoza,  with g = [ gmemnta
nez

see the Appendix C. Then formula (2.5.2) implies that in this particular case g(n) = 0 for n > 1.
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The idea of the finite difference method is to replace derivatives by incremental ratios, since by
Taylor formula
y(t+h) —y(t)
(o = L=
and discretize the problem. In a nutshell, we fix a time step 7 > 0 and look at values of the
functions on the regular grid {0,7,27,...,n7,...}. By setting

+o(1), for 0 < h < 1,

Tn =y(nT), b, =b(nT), n €N,

the initial first order differential equation is replaced by

x -
{an—i—axn = b,, neN,
-

Lo = Yo
that is
(2.6.1) .~
The unknown of the problem is now the sequence {x,},en, which by construction is a regular
sampling of the values of the original solution y (more precisely, a regular sampling of the values
of an approzimation of y). If we are able to determine these coefficients, then the graph of an
approximate solution of the original problem can be obtained by interpolating the points

{xn+1 = tby+(1—ar)x,, neN,

(0,20), (1y21), ..., (nT,20),

In order to solve (2.6.1), we can employ the Z—transform. Indeed, from (2.6.1), by linearity of the
Z—transform we get

Z[{zni1}](z) = 7 Z{bn}](2) + (1 — a7) Z[{z0}](2).
By recalling the translation relation (2.2.1) and taking into account the initial condition, the pre-
vious identity becomes

2 Z{an}](2) = zyo + 7 Z[{bn}](2) + (1 —a7) Z[{2a}](2),

that is
-

Z[{aa)l() = et ey ).

Thus we found the explicit expression of the Z—transform. In order to find the coefficients {x,, } nen,
we now have to use the inversion formula (2.3.1).

Example 2.6.2 (Second order finite differences). In the case of

y'(t) +cy'(t) +ayt) = bt), t>0,
y(0) = o
y(0) = n

we can discretize this problem by observing that
y(t+2h) —y(t+h) ylt+h)—y)

J(t) ~ L h}i —y®) h ; _ h
Cy(t+2h) — 2yt + h) + y(t)
— 2 :
and
4(0) ~ y(h) —y(0)
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By introducing the time step 7 > 0 and setting as before
Tn =y(nT) and b, = b(nT),

the initial problem can be approximated by

Tpt2 — 2Tpy1 + Ty +ec Tn4+1 — Tn

5 +ax, = b,, mEN,
T T
o = Yo
Tl — X0
= yl
-
This can be also rewritten as
Tnio = (2—cT)wpy1+(ct—1—=72a)2y, +72by, nEN,
(2.6.2) To = Yo
T1 = Yo+ TN

In this case as well, one could employ the Z—transform in order to solve this initial value problem
for the second order finite differences equation.

Let f: R — C be a causal signal, i.e. a function such that f(¢t) =0 for ¢t < 0. If we fix a time
step 7 > 0, we can consider its regular sampling

{f(n7)}nen C C.

Definition 2.6.3. Let 7 > 0, we say that f is Z—transformable with time step T if the sequence
{f(n7)}nen is Z—transformable, i.e. if

limsup {/|f(n7)| < +o0.
n—oo
Then we call Z[{f(n7)}] the Z—transform of f with time step 7.

Remark 2.6.4 (A sufficient condition for transformability). It is easy to see that if the signal f
has exponential growth, then it is Z—transformable with every time step 7 > 0. More precisely, if

[f()] < Ce,

for some C' > 0 and « > 0, then it is Z—transformable. Indeed, in this case for every time step

7 > 0 we have
limsup {/|f(n7)] < e*™ limsup ¥C = 7.

n—oo n—oo

Observe that this also gives the following estimate for the radius of convergence
R<e*".
Example 2.6.5 (Heaviside step function). Let H(t) be the Heaviside step function, defined by

1, fort>0,
H(t) = { 0, fort<DO.

For every given time step 7 we have H(n7) = 1. Thus it is Z—transformable and we have

1 z

Z[H(nf)](Z)ZZ[{l}](Z)Ziz_"z11Zz_l, 2| > 1.
n=0 —

z
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Example 2.6.6 (Ramp function). Let t — R(t) be the ramp function, defined by
t, fort>0,
R(t) =tH(t) = { 0, fort<D0.

Given the time step 7 > 0 we have R(n7) = n7. Thus it is Z—transformable with every time step
7 > 0 and we have

Z{R(n7)}](2) = Z[{Tn}](z) = 7 Z[{n}](2).

In order to compute the last transform, we observe that by using (2.2.3), we have

Z[{n}](z) = Z[{n - 1}](2) = —Z* Z[{1}](2).

In conclusion, for the ramp function we get
Tz

Z[{R(TLT)}](Z) = m, for ‘Z‘ > 1.
Example 2.6.7 (Periodic signals). Let f : R — C be a positively periodic causal signal, with
period T' > 0. In other words, we have
ft+T)= f(t), fort>0.

We fix m € N\ {0} and take the time step 7 = T//m. Then the regular sampling {f(n7)}nen is a
periodic sequence, with period m. Indeed, we have

fint+m7)=fnt+T)= f(nr), for every n € N.
By using (2.2.5), we thus get
gm mol (nT)
2SN = oy X TR

7. Exercises
Exercise 2.7.1. Compute the Z—transform of the sequence {n}nen.
Solution. We first observe that the sequence is Z—transformable, since
Aizg, Y =1.
Thus Z[{n}] is an analytic function on {z € C : |z| > 1}, defined by
Z[{n}](z Z nz "
By (2.2.3), we know that
2[{in}l(z) = 2[in - 1}(2) = —2 o~ Z[{1}](),

thus we only need to compute the Z—transform of the constant sequence x,, = 1. We have

1 z

(2.7.1) ZH{1}(= Zz = — =

e

We thus obtain

(2.7.2) Z[n)](2) = —= d%z — - _ZDQ, 2] > 1.
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This concludes the exercise. O
Exercise 2.7.2. Let us consider the two sequences
Tp=n and Yn = 1, for every n € N.

Compute the convolution {,, * yp tnen and its Z—transform.

Solution. By definition of convolution, we have
- - n(n+1
Tp * Yn = Zxk’yn—k’ = Zk: (2)
k=0 k=0
By using Proposition 2.2.4, we then obtain

2| {1 ) = 2o 210

By recalling that (see previous exercise)

z
Z[{n}](z) = [T 2] > 1,
and (see Example 2.1.4)
z
ZNGE) = — > 1
we finally obtain
n(n+1) 22
Z|——" = — 1
R e TE
thus concluding the exercise. O

Exercise 2.7.3. Compute the Z—transform of the sequence {n?}en.

Solution. We first observe that the sequence is Z—transformable, since

lim Vn2 =

n—oo

Thus Z[{n}] is an analytic function on {z € C : |z| > 1}. We can proceed as in the previous
exercise, by exploiting (2.2.3). Indeed, we have

ZHn2}](2) = Z[{n - n})(=) = — - Z[{n}(2)

dz
thus we only need to use previous Exercise to compute the Z—transform of {n},cn. We thus obtain
d =z z(1+2)
Z[{n? =—2— = > 1.
@) = o = oo M
This concludes the exercise. U

Exercise 2.7.4. Let us consider the causal signal f(t) = cos(t) H(t). Given a time step T > 0, let
us compute the Z—transform of f with time step T.

Solution. We first observe that the sequence

{f(n7)}nen = {cos(n 7)}nen,
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is bounded, thus by Remark 2.1.3 it is Z—transformable and the Z—transform is well-defined for
|z| > 1. In order to compute the Z—transform, we observe that
INT + efin‘r

2 )

cos(nt) = ¢

thus by linearity of the Z—transform we get

Zlfeos(n)}(z) = 5 Z{e™N() + 5 Z[{e "N (2).

By recalling Example 2.2.7, we get

. e inT . z
NG = o= and ZHTTTHE) = S
Thus we obtain
1 =z 1z 1222 z( e

Z[{cos(n7)}](2) =

T 2z—¢e7 2z—eiT 2 (z—€7)(z—eiT)"

With simple manipulations, we finally obtain

z(z —cosT)

2.7.3 Z = .
(2.7.3) [{cos(n 7)}(2) 7 92 cosr i1
We observe that
. . z(z—cosT) z
1 =1 d 1 =
rg(r)l+ cos(n ) an Ti)rél+ 22—-2zcost+1 z—-1’
which agrees with (2.7.1). O

Remark 2.7.5. We point out that even if the causal signal f(¢) = cost H(t) is positively periodic,
with period 27, its regular sampling

flnT),

in general is not periodic. This is the case if we take the time step 7 = 27/k, then the sequence
{f(n7)}nen is k—periodic. Thus from (2.2.5) we would get

A2 = oy Bone2) o

By comparing (2.7.3) and the previous expression, we get in particular (for k > 1)

et 27

- 9 k_q z—cos(—)

E cos <n—7r) P i ) |z[ > 1.
k 2k—1 27

n= 22 — 22 cos - +1

Observe that for £ > 2, we can take the limit z — 1 on both sides and obtain the well-known

relation
k—1 9
E cos (n —) =0.
— k
n=0

Exercise 2.7.6. By using the Z—transform, determine the sequence {xp}nen C C inductively
defined by
Tpng2 = 2Tpp1 — T,
rg = 0,
xrT = 1.
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Solution. We introduce the Z—transform
oo
X(z) = Z Tpz ",
n=0

then from the relation defining {z, }nen and by using property (2.2.1) of the Z—transform, we get
the relation

2 X(2)—2=22X(2) — X(2),
that is
X(2)[z2—22z+1] =2

This finally gives
z

(-1

which is an analytic function on C\ {1}, with a pole of order 2 in z = 1. From formulas (2.3.2)
and (2.3.3), for n > 1 we get

1 / » 1 / o
=— [ X(2)2" "dz = — ——dz
2mi J, ) 27i Jo, ) (2 —1)?

= res <(zin1)21>

We used the formula of Proposition 1.10.11, in order to compute the residue. This finally gives
T, =n forn > 1. O

X(2) =

Tn

Exercise 2.7.7. By using the Z—transform, determine the sequence {xp}nen C C inductively
defined by

Ip+2 = —In,
xrg = 0,
r, = 2.

Solution. We introduce the Z—transform
o
X(z) = Z Tp 2z "
n=0

then from the relation defining {x,, }nen and by using property (2.2.1) of the Z—transform, we get
the relation

2X(2)—-22=-X(2),
that is
X(2)[2+1] =2z
This finally gives
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which is an analytic function on C\ {—4,i}, with two simple poles in s = +i. From the inversion
formula and Remark 2.3.2, for n > 2 we get

1 22"
X(2)2" Yz = — [ =5—d
2771/ ® 274 ,yzz—i-l ‘

. 22" .
= res (m, Z) + res (T—H’ _'L)
— [1 + ( 1)n+1] n— 1
We used the formula of Corollary 1.10.13, in order to compute the residue. This finally gives

0, if nis even,
Ty = 2, ifn=2k+1 with k even,
-2, ifn=2k+1 with k odd,

thus concluding the exercise. O

8. Advanced exercises

Exercise 2.8.1. Let us suppose that > 72 xy and Y o2 yy are absolutely convergent. Then

[ee)
(2.8.1) > |an % yal < +o0,
n=0

and we have
(2'8'2) Z Tp *Yn = <Z l‘n) (Z yn) 5
n=0 n=0 n=0

Solution. By hypothesis, we have

[e.e]

oo
D an| < +o0 and > Jynl < +o0.
n=0

This means that the sequences of the associated partial sums are converging, i. e.

M

]\/}lm z:o|xn\ < +o0 and hm Z [yn| < 400.

We first prove (2.8.1). We fix M € N and consider the partial sum

M M n M n
(2.8.3) Yo lzn s ynl = DD vn k| < DD k] lym, |
n=0 n=0 |k=0 n=0k=0

Now, we would like to exchange the order of the two sums above. At this aim, we observe that the
set of indices n, k in the sums can be rewritten as

{(n,k) eENxN:0<n<Mand0<k<n}={(n,k) e NxN:0<k<Mandk<n<D>M}
This implies that

M n M
S el el = 5° 5 e | = z 2 (z yr> |
n=0 k=0 n==k

k=0n=~k
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In the last sum, we make the change of index m = n — k, thus from (2.8.3) we obtain

:Z:Il‘n *Yn| < ’:Z:Imkl (jg:lymo < é\wkl <§i:0|yml>
- (&) (5 )

M
SM = Z [T * Ynl,
n=0

(2.8.4)

Observe that |z, * y,| is positive, thus the sequence

is monotone increasing and it admits limit. By estimate (2.8.4), we get that such a limit is finite,
i.e. we proved (2.8.1).

The proof of (2.8.2) can be accomplished by using the same trick of exchanging the order of
the sums, we leave the details to the reader (see also [2, Teorema 14.15]). O

Exercise 2.8.2. Let us consider the Cauchy problem

y'(t) +y) = 0,
y(0) = 0,
y'(0) = L

Discretize the problem and find an approrimate solution, with the aid of the Z—transform.

Solution. Let y be the solution of the Cauchy problem (we consider it to be equal to 0 for t < 0),
we fix a time step 0 < 7 and consider the regular sampling

{zn}tnen = {y(n7)}nen.
From formula (2.6.2) with

10 = 0, y1 =1, c=0 b=0 and a=1,

we get
Tpnio = 2xp11— (1+72) 2, nEN,
Trog = 0
xrT = T

We introduce the Z—transform
oo
X(z) = Z Tpz ",
n=0
by using property (2.2.1) of the Z—transform, we get the relation
2 (X(2) - 1) =2:X() - (1 + ) X(2)
z

With some manipulations, we get
Tz

22 —224+ 1472

We observe that X is an olomorphic function on C\ {s1, s2}, where

X(z) =

s1=1+711 and So=1—1711.
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The function X has two simple poles at this points. By using the inversion formula (2.3.1) and
Remark 2.3.2, we obtain

/X 1y / T d
s = 2z
T o 2mi 22 —2z41+72

TZ
_res(z2—2z+1—|—72’ >+res<z2—2z+1—|—72’82>

T n
:2<81—1 2—1)
T 1+7’z (I—Ta)"
2 T1
(1+T —(1=7)"

21
Observe that we used the formula of Corollary 1.10.13, in order to compute the residue. Notice
that for n = 0 and n = 1 we are back with

z9=0 and T =T.
By using Newton’s formula, we get for n > 2

(L+7)"—(Q—7i)" 1 [an

24 24

L € R for k odd. Thus z, € R and we have

) o e

k=1
Let us compute the first terms

T0=0, z1=7, ®e=27T, x3=3T7—7°, x4=47—47°
JJ5Z5T—1OT3+T5, x6:67'—207'3+67'5.
see the figure below. O

Exercise 2.8.3. Let {b,}nen C C be a given sequence and let {3on}nen be the Delta sequence

centered at 0, i.e.
P 1, ifn=0,
0= 0, ifn>1.
Prove that if {yn}nen solves

Yn+2 + A Ynt1 +Byn = 50,n7
(2.8.5) Yo = 0,
= 0,
then the convolution {by, * yn }nen solves
Tpy2 + Axn—&—l +Bxz, = by,
(2.8.6) g = 0,

rT = 0.
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4,32

40,24

40,16

0,08 0,16 0,24 0,32 0,4 0,48 0,56

Figure 1. The blue line corresponds to the linear interpolation of the first 7 terms of the se-

quence {(n 7, y(n7))}nen computed in Exercise 2.8.2, with time step 7 = (27)/100. The black line
corresponds to the graph of the exact solution of the ODE, i.e. y(t) = sint.

Solution. We observe that if {y, }nen is solution of (2.8.5), then its Z—transform satisfies
22 Z[{yn})(2) + A2 Z[{ya}](2) + B Z[{ya}](2) = 1,

where we also used that (see Example 2.1.5)

Z[{00n}](2) = 1.

In other words, we find
1

2l = a5

By using Proposition 2.2.4, we have
_ Z[{ba}i(z)

(2.8.7) Z[{bn * yn}](2) = Z[{bn}](2) Z[{yn}](2) = P A+ B
On the other hand, if {zy }nen solves (2.8.6), then its Z—transform must satisfy

22 Z[{xn}](2) + Az Z[{za}](2) + B Z[{zn}](2) = Z[{ba}](2),
that is

Z[{bn}](2)

Zell(2) = 3 B

By comparing this with (2.8.7), we get
Z[{zn}](2) = Z[{bn * yn}](2).

Thus we get the desired conclusion by Proposition 2.3.1. U

Remark 2.8.4. The sequence {y,}nen in the previous exercise is called impulse response for the
problem (2.8.6). Observe that it can be explicitly determined, in terms of the coefficients A, B.
Indeed, we have

2w} = s
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thus by the inversion formula

1 anl
_ d for n > 1.
Un 2m'/7z2+Az+B = o=

Here v is a positively oriented circle, entouring the two singularities

~A—+/AZ 4B _ —A+VAT—4B

20 = 5 and 21 5

Thus, as always, the integral above can be computed by using the Residue Theorem. However, we
have to distinguish two cases:

o if A? #£ 4 B, then zy # 2 are two simple poles. Accordingly, we get

anl anl
= xes <2+A+BO> e <2+A+Bl>

T2t A 2m A
where we used Corollary 1.10.13, in order to compute the residues;

e if A2 = 4B, then 29 = z; = —A/2 and this is a pole with multiplicity 2. The integrand
now rewrites

anl _ anl
224+ Az+B ( A)Q'
Z+ =
2
Accordingly, we get
Yn = ( A)Q’ 2
Z+ 5
A 2 n—1 A n—2
N O R I
s A dz 2 A 2
i (= + §>

Exercise 2.8.5 (Bessel’s equation of order 0). Find a solution of the following Cauchy problem

YO+ O+ = 0 fort20,
y(0) = 1,
y'(0) = 0.

Solution. We look for a solution which can be written as a power series centered at 0, i.e.
o

(2.8.8) y(t) =" aptF, with o = »(0) =1, z; = ¢/(0) = 0.
k=0

By Corollary 1.7.6, we know that such a function can be differentiated infinitely many times for
1

limsupy,,o 4/J]

|t < R, where R =
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We now proceed formally to identify the coefficients x; and then compute the radius of convergence
and justify a posteriori the computations we will make.

By inserting (2.8.8) in the equation, we get

1 o0 o0 o0
y'(t)+ () +ylt) = Sapk (k=124 mkth 2+ >y th
k=2

k=1 k=0
o o o
=Yk (k=D 24> gk tF 24 oyt
k=2 k=2 k=0
o0
= {:):erg (m+2)(m+1)+ zpmio(m+2) + xm] tm
m=0

[a;m” (m+2)? + xm] m

I
NE

0

3
Il

Thus, if we want y to be a solution, we need to impose that

o
Z [l’m+2 (m+ 2)2 + xm} " =0, for t > 0,

m=0

that is we want

Tmio(Mm+2)2+2, = 0
ro = 1
r, = 0.

This means that we are lead to solve a linear recurrence, similar to those already previously solved
by means of the Z—transform. However, the use of the Z—transform now would not give easily
the solution. We proceed to determine the sequence {x;, }men directly “by hand”.

We first prove that
Ton+1 =0 for n € N.
This can be proved by induction: indeed, for n = 0 this is true by the initial condition. Let us not

suppose that x2,41 = 0 for an index n € N, we need to prove that this entails that z9,13 = 0, as
well. However, this follows directly from the relation which defines the sequence, indeed

T2n+3 (2n + 3)2 + Toan+1 = 0 that is L2n+3 (27”L + 3)2 = 0,

which proves z2,43 = 0, as desired.
We now prove that
—1)"
T2n = ( ) 2
(27 - (n!))
We argue again by induction. For n = 0, this is true since zg = 1 by constuction. We now assume
that for an index n € N, we have

for n € N,

()"
@ @)

€T2n =

then by using the recursive relation

1 1 (_1)n _ (_1>n+1

BT T T TR D2 @) @ (nt D))
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as desired. In conclusion, we get that a solution y to the initial Cauchy problem is given by

y(t) — i (_1)71 t2n.

= (27 (n)))?
By using that?
(-1
(27 - (n!))?

lim ¢ =0,
n—oo

we have from Theorem 1.7.3 that the power series above totally converges in [—r,r|, for every

r > 0.

dWe use again that

O



Chapter 3

Lebesgue integral and
LP spaces

1. A flavour of Lebesgue measure and integration

The construction of the Riemann integral is quite simple and intuitive, but unfortunately it produces
a theory which is not “sufficiently rich”. Two typical problems are that:

e the class of integrable functions is too narrow;

e the theorems on the exchange between limit and integral signs are quite rigid.

Let us stick for the moment to the case of a positive function f : [a,b] — [0,+00). The idea of
Riemann integral is to define
b
[ t@aa.
a

by partioning the interval [a, b] through points tg = a < t; < t3 < -+ < t,, = b and approximating
the area of the subgraph {(z,y) : 0 <y < f(z)} with rectangles. Roughly speaking, by taking this
process to the limit, this is like saying that we are computing the area of the subgraph by summing
up the lengths of all its “vertical slices”, i.e. the vertical segments in R x R connecting (z,0) to
(z, ().

The idea of Lebesgue integration is to change the point of view and compute the area of the
subgraph by summing up its “horizontal slices” in correspondence of the values y of the function.
These slices are given by the sets

{z € [a,b] : f(z) >y} x{y},

and observe that, differently from the previous case, these sets are not segments (see Figure 1).
Indeed, if the function f is very “wild”, these sets may be very nasty.

Thus, first of all we need a way to quantify the “length” of these general sets, which extends
the ordinary notion of length of a segment (if we are in dimension 1; in general this would be a
generalization of the notion of area, volume and so on). This way of measuring is the Lebesgue

75



76

3. Lebesgue integral and LP spaces

Figure 1. Vertical slices (Riemann) VS. horizontal ones (Lebesgue)

measure of a set: roughly speaking, this is defined through inner and outer approximations through
countable unions of intervals.

We do not give here the detailed construction of the k—dimensional Lebesgue measure on R¥,
we just recall some of its fundamental properties that will be used in what follows. If a set A C R*
is measurable with respect to the k—dimensional Lebesgue measure, we will indicate by |A| its
measure (this could be +00). We then have:

the empty set () is measurable and || = 0;

if A C R¥ is measurable, then R \ A is measurable as well;

{A;}ien C R* is a countable collection of measurable sets, then their union UjenA; is
measurable and

A

1€EN

<> 1Al

i€EN

if {A;}ien C R¥ is a countable collection of measurable disjoint sets, we have

U 4| =D 1Ail;

i€N i€EN

if A C B C RF are measurable sets, then
Al < |B;
A = [ay,b1] X [ag,ba] X -+ X [a, bk] is measurable and
[ Al = (b1 — a1) (b2 — az) ... (br — ak);

for a ball B.(zg) = {x € R¥ : |[z—mx0| < r}, then | B,(20)| coincides with its k—dimensional
volume. Thus for example

4
|B,(20)] = wr? for k=2 and | B, (z0)| = §7r7“3 for k = 3;

any affine subspace of dimension 0 < £ < k — 1 (i.e. a point, a line, a plane etc.) in R” is
measurable, with measure 0.
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Definition 3.1.1 (Measurability). We say that f : R¥ — R is measurable if for every A € R the
set
Er(\) ={z €eR* : f(z) > A},
is (Lebesgue) measurable.
If f is complex-valued, i.e. f:R¥ — C, then we say that it is measurable if the two real-valued
functions Re(f) : R¥ — R and Im(f) : R¥ — R are measurable in the sense precised above.

Definition 3.1.2. We say that a positive measurable function f : R*¥ — R, is summable if

+oo
/ E;(\)] d\ < +oo,
0

where the last integral is intended in the Riemann sense. Indeed, observe that the function A —
|E¢(\)| is monotone decreasing, as E¢(A1) C Ef(A2) if Ay > Xo. In this case, we set

+oo
(3.1.1) /R fda ::/0 E; (V)] dA

If f is sign-changing, then we say that it is summable if f; = max{f,0} and f_ = max{—f,0}
are summable and in this case we set

[ ra={ rea- [t

Finally, if f is complex-valued we say that it is summable if both real-valued functions Re(f) and
Im(f) are summable. In this case, we set

»/kadx:/RkRe(f)d$+i/Rklm(f)dx'

Remark 3.1.3 (“Much ado about nothing”). If a function f : R¥ — [0, 00) is Riemann integrable,
then it is Lebesgue integrable as well and the value of the integral is unchanged. This is based
on the fact that for the case of the Riemann integral one can prove the validity of formula (3.1.1)
(which goes under the name of Cavalieri’s principle).

Remark 3.1.4. If f : R¥ — R is summable, then we have that |f| is summable as well, since
|f] = f+ + f—. Moreover, we have the simple but useful inequality

/kadx /ﬂ{kardx—/ka_dx S/kaer;UJr/ka_dm_/kadx.

The vice versa is true as well, i.e. if |f| is summable, then f is summable. Indeed, observe that for
every A > 0 we have

{IF1> A ={Ff > AU {f <=2},

and the two sets are measurable and disjoints. Thus we get

I > A =K > A+ K < =AY,

and

+oo +o0 +oo
woo> [ A = [T > A v+ [T s> )
+o0o +o0
= [T [ > 2
0 0
= ka+d$+/ka_dCU
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This shows that

frdr < 400 and f-dx < +o0,
Rk Rk
thus f is summable.
By using this, we can also show that f : R¥ — C is summable if and only if | f| : R* — [0, 00)
is summable, we leave the details to the reader.

Definition 3.1.5 (Characteristic function). Let  C R* be a measurable set, we define its char-
acteristic function 1o : R¥ — R as the function such that

1, ifx e,
lo(z) = { 0, otherwise.

Remark 3.1.6 (Summability of characteristic functions). It is not difficult to see that 2 measurable
entails that 1q is a measurable function. Indeed, we have

0, if\x>1,
Ex(lg)={ Q, ifo<i<]1,
RE, if A <O.

thus (1) is measurable for every A\ € R. Moreover, we have that

+o0o
lg summable <= / |Ex(1q)|dA < 400
0
1
= / |Ex(1q)] dX\ < 400
0

1
= |Q|:/ 1] dX < +o0
0

Remark 3.1.7. For example, the Heaviside function ¢t — H(t) coincides with the characteristic
function of the set [0, +00). The latter has not finite measure, thus H is not summable.

Definition 3.1.8 (Integral on a set). Let E C R* be a measurable set, we say that f: E — C is
measurable if its extension by 0 to R*, i.e.

~ {ﬂ@, ifreE

f= 0 otherwise,

is measurable. We say that f is summable on E if ]‘N’ is summable. In this case, we set

Lfm—éjm.

2. Some results on Lebesgue integration

One of the main advantages of the Lebesgue integral is the greater flexibility in exchanging the
limit and integral signs. However, some care is needed in any case. We first need a definition.

Definition 3.2.1. Let {f,}n,en be a suquence of (possibly complex-valued) measurable functions
defined on a measurable set £ C R¥. We say that the sequence converges pointwisely almost every
where if

nh_}n(go fu(z) = f(2), for almost every x € E.

This means that the set of points z € F for which the convergence above does not hold has Lebesgue
measure zero.
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In general, if we only have almost everywhere pointwise convergence, we can not take the limit
under the integral sign.

Example 3.2.2. Let {f,}nen be the sequence of measurable functions defined on [0, 1] by

_fn, f0<z<1/n,
f”(“:)_{o, if1/n <z <l.

Then we have

lim f,(z) =0, for a.e. x €[0,1],
n—oo
while on the other hand )
1 =
lim / frndx = lim n/ der=1>0.

However, we have at least an inequality. This is the content of the first result.

Lemma 3.2.3 (Fatou Lemma). Let E C R¥ be a measurable set and {fn}ner a sequence of non-
negative summable functions defined on E. Let us suppose that

Jim () = f(x), fora.e. x € E.

/ fdx < liminf/ fndx.
E n—o0 E

Theorem 3.2.4 (Monotone Convergence Theorem). Let E C R¥ be a measurable set and {fn}ner
a monotone increasing sequence of non-negative summable functions defined on E, i.e.

Then we have

0< fo(z) < filz) < folz) < ..., fora.e. xe€ L.
Let us suppose that
T}Lrgo fn(x) = f(2), fora.e. x € E.

Then we have
fdr = lim / fndx.
/Evv n—oo E
The following result will be extremely important. The hypothesis (3.2.1) below is crucial.

Theorem 3.2.5 (Lebesgue Dominated Convergence Theorem). Let E C R¥ be a measurable set
and { fn}ner a sequence of complex-valued measurable functions defined on E. Let us suppose that

nh_}rrgo fu(z) = f(x), fora.e. x € E,
and that there exists a positive summable function g : E — R such that
(3.2.1) |fu(z)] < g(x), for everyn € N, fora.e. x € E,

Then we have

fdr = lim / fndx.
/E" n—oo E

We now present a couple of results that will be useful in order to exchange the order of inte-
gration.

Theorem 3.2.6 (Fubini). Let f: R¥ x R™ — C be a summable function on RF x R™. Then:

(A) for a.e. y € R™ the function x — f(x,y) is summable on R¥;
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(B) the function y — [gi. f(x,y) dx is summable on R™;
(C) there holds

/kaRm flz,y)dedy = /Rk( - f(ac,y)dx) dy.

Theorem 3.2.7 (Tonelli). Let f: R¥ x R™ — R be a positive measurable function, i.e.
flx,y) >0, for ae. (x,y) € R¥ x R™,
Let us suppose that
(A) for a.e. y € R™ the function x — f(x,v) is summable on R¥;
(B) the function y — [on f(z,y) dx is summable on R™.

Then f is summable on R* x R™.

3. L? spaces

Starting with this section, we will confine ourselves to consider subsets of R only. However, all the
statements that will follow can be easily generalized to R”.

Let 1 < p < 400, we define its conjugate exponent p’ by
1 1
-+ =1, that is p’:L.
p P p—1

In the extremal cases p = 1 or p = +o00, we define the conjugate exponent by p’ = +oo and p’ =1,
respectively.

Definition 3.3.1. Let £ C R be a measurable set and 1 < p < 400, we define the space of
p—summable functions on E by

LP(F) = {f : E — C measurable : / |fIP dx < +oo}.
E

In the limit case p = +o00, we define
L>®(E) = {f : E — C measurable : 3M >0s.t. |f(z)] < M for a.e. x € E}

The functions of L*°(F) are called essentially bounded functions on E.

Let E C R be a measurable set and f € LP(FE), for 1 < p < +oo we define its LP norm

| fllr () = <[E |f!pdx);.

£l oo () :inf{M | f(z)] < M for a.e. xEE}.

In the limit case p = +o0, we set

We first need a couple of basic results on convex functions.

Lemma 3.3.2 (Young’s inequality). Let 1 < p < 400, then for every a,b € R we have

P |y
(3.3.1) labl < Ja? + Q
p p
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Proof. Without loss of generality, we can suppose that ¢ and b are both positive. Moreover, if
a =0 or b=0, then (3.3.1) holds true. Thus, let us assume a > 0 and b > 0. We fix b > 0 and

consider the function )
a

fla)=ab— —, a > 0.
p

By direct computation we see
1
flla)>0 <= b> ! = b1 >a.

This implies that f is increasing on the interval (0,bY®~Y] and decreasing on (b'/®~1), +00). In
other words, we obtain

fla) < f (bp%l) , for every a > 0.
By using the definition of f, this is the same as
P 1 1, N, e W
ab—a—gbbpil ey N :(1—7) = =—, for every a > 0,
p p p p
which is (3.3.1). O

Lemma 3.3.3. Let f: R — R be a C? function, such that
f"(t) >0, for everyteR.

Then for every tg,t1 € R we have

£ (0T < 3 st0) + 5 1)

Proof. We recall that for a C? function, we have the following Taylor formula with integral re-
mainder term

10 =16+ 7@ =)+ [ ) e

This can be directly verified, by using an integration by parts in the last integral. By using this
formula with

t t
t=tg and 5= 2 —; 1,
we then get
t0+t1) ,<t0+t1>to—t1 o,

39 s .
332 )= (B57) + s (BF0) B [, SO e
We can also use the formula above, with the choices

t t
t=11 and 5= 2 i 1,
2
so to get this time
to +t to+t1) t1—t h
(3.3.3) s =7 () v () B L P 6 -
0+t

2

By summing up (3.3.2) and (3.3.3), we then get

B34 @)+ 100 =27 () L SOt d s [ ) )b

2




82 3. Lebesgue integral and LP spaces

We now suppose without loss of generality that ¢ty < ¢;. This entails

o< 0N <y
2
and thus
to t1
1 1!
/ﬁo+t1 f(r) (to— 1) dr + /tOH1 fr)(ty —71)dr
2 2 .
o th
—— [ T - [ @ 6
tO O;tl
t0+t1 ¢
P} 1
— / (1) (r —to) dr + / . () (ty — 1) dr.
to z02'51

By recalling that f”(7) > 0 for every 7 € R, we obtain that the sum of these two integrals is
non-negative. By using this in (3.3.4), we thus get

Ftn) + f(t0) > 2 £ (

as desired. 0

t0—|—t1>
2 )

Remark 3.3.4 (A property of convex powers). By using the previous result, we can prove that
for every 1 < p < +00 we have
L L ]

%ﬂ §7+7’ for every z,y € R.

Indeed, when p > 2 this follows by using directly Lemma 3.3.3 with f(¢) = [¢t|P. Indeed, this is a
C? function such that f” > 0. For 1 < p < 2, this function is not C?, but we can circumvent this
problem as follows: we consider f.(7) = (€2 42)P/2, which is now a C? function if ¢ > 0. Moreover,
it is easy to see that

(3.3.5)

(1) >0, for every 7 € R.
By applying Lemma 3.3.3, we then get

1 1
fe (m—;—y) < §fg(x)+§f5(y), for every z,y € R.

By recalling the definition of f., this is the same as

2\ 5 2, ,.2\8 2, ,2\2
<§+<x;y)> Lt (EHy)e

) 5 , for every z,y € R, ¢ > 0.

If we now take the limit as ¢ goes to 0, we get (3.3.5) in the case 1 < p < 2, as well.

Proposition 3.3.5 (Holder’s inequality). Let E C R be a measurable set and let 1 < p < +o0.
For every f € LP(E) and g € L (E) we have, f - g € L'(E). Moreover, it holds

(3.3.6) [ @ g@ds] < [ 1@lo@)de < 17z ol

Proof. Let us consider the case 1 < p < +00, the remaining cases being simpler. If f =0or g =0
almost everywhere in F/, then there is nothing to prove. Thus let us assume that

Hzx e E : f(x) #0} >0 and {z € E : g(x) #0} > 0.
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By (3.3.1) with the choices

_ V@l gyl @l
T lee Il o ()
we obtain
/()] \g() @F 1 @)
1 zoey Nl i P Ty Y gr
/\f )P da [E\gm)r v

which is valid for almost every « € FE. By taking the integral over E, the previous gives

/!f o) do /|f pas /|g Vo

This finally shows that

| 1#@ @ dz < 17l ol e
In order to conclude, we have to show that
< [ 1@ (@) da.

‘/Ef(m) x)dx| <

If f and g are real-valued, then this follows from Remark 3.1.4. If f or g is complex valued, let us
set I'= fg=u+1iv, with u and v real-valued. By definition of modulus of a complex number, we
have

(3.3.7) ’/ Fi| ‘/udx ‘/vdx

We can now use Holder’s inequality for real-valued functions as follows:

2
‘/ udx V| F|dx /dw/ |F| dx,
E ||

’/Evde:/E\/%y

By using these in (3.3.7), we get
2 w2 2
Fdx S/ Fldx (/dm—l—/dx)
I, VAR 1
2
_(/ Flde) .
E

By recalling that F' = f g and taking the square root, we get the desired conclusion. O

okl

and

\/|F\dm |F|dx/|F|dac

Remark 3.3.6. Observe that in the previous result we proved that if F' is a complex-valued

summable function, then
/Fdx §/|F\dx,
E E

which generalizes the estimate of Remark 3.1.4 to complex-valued functions.
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Proposition 3.3.7 (Minkowski’s inequality). Let E C R be a measurable set and 1 < p < +o0.
For every f,g € LP(E) we have f + g € LP(E) and

(3.3.8) 1f +9lleey < 1 fllzeey + 19l Le(E)-

Proof. Let us focus on the case 1 < p < 400, the extremal case p = 400 being simpler. We first
prove that

f+geLlP(E).
At this aim, we observe that

P _
(3.3.9) @) + 9@ < (1F@)]+lg@))’ <27 (@) + o)),
thanks to the inequality (3.3.5). By integrating (3.3.9) and using that f,g € LP(E), we thus get

/ |f(x) 4+ g(x)|P dx < +o0,
E
ie. f+ge LP(E).
We now come to the proof of (3.3.8). By using that
|2|P = |2|P72 |2|* = |2|P2 2 2%, for z € C,

and Holder’s inequality (3.3.6), we have

I+ 0l = 17+ 012 +0) (F +0)" da

=/ |f+g|p_2(f+g)f*d:c+/ F+glP2(f +g)g" da
E 1 E .

<(Lir+oran)” ([ 1ras)”

+([E!f+g\‘p1>p'dx)”l' (/E!g!pda;)’l’

= f+altlg (1fllre) + llgllzoe))

where we used that (p — 1) p’ = p. By simplyfing on both sides the term ||f + 9||IL);(1E), we get the
conclusion. 0

1

Remark 3.3.8. The previous result permits to infer that f + ||f||z»(g) is a norm” on the vector

space LP(E).

Definition 3.3.9 (Compactly supported functions). We say that a measurable function f : R — C
has compact support if there exists a bounded closed interval [a,b] C R such that

|f(z)| =0, for a.e. z € R\ [a,b].

1This is not fully correct, there is a subtility here. Indeed, the fact that

lfllze(zy =0,

only implies that f = 0 almost everywhere and not everywhere. The issue is easily fixed by considering LP(E) as a collection
of equivalence classes of functions coinciding on E almost everywhere. We will not enter into these details here, which are
beyond the scopes of these notes.
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Proposition 3.3.10 (Inclusion properties). Let E C R be a measurable set with finite measure.

Let 1 < p < q < 400, then we have
LYE) C LP(E).

More precisely, we have
| liney < 1B 0 1 llzagmy,  Jor every f € LI(E).
Proof. Let us start with the case ¢ < +00. We observe that if f € LI(FE), then
1P € Lr(B).

We can now use Holder’s inequality (3.3.6) with conjugate exponents

/
4 and (Q) -4
p p
so to get

a-p P
[ipar= [ vimpar<([va) " ([ 1s10)°
E E E E
ok P
<|E['® HfHLq(E)-
By taking the power 1/p on both sides, we get the conclusion.
If f € L°°(F) the proof is even simpler, it is sufficient to observe that
Lf(@)] < (| fllzee () for almost every x € E,

thus we get

1
P 1
([ 1P az)” <181 Ul
This concludes the proof.

O

Remark 3.3.11. The previous inclusion LY(E) C LP(E) is false if |E| = +o00. Indeed, let us take

E =[1,400) and consider the function

Then it is easy to see that f € LI(E) for every ¢ > 1, but f & L*(E). Indeed, we have
+o0 1 1—q

/|f|qu—/ dx—{m
E e q—1

too 1 M
/ |f\dm:/ —dr = lim {logw} = lim logM = +oc.
E 1 1 M —+o0

’.1“ M —+oc0

+o0 1

1 q—1

and

The following two simple technical results will be useful in the sequel.

Lemma 3.3.12. Let g € L'(R) be such that
lim g(z)= L.

r—r-+00

Then we necessarily have L = 0.
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Proof. Let us assume by contradiction that L # 0. By assumption, if we fix € = |L|/2 > 0 there
exists A > 0 such that

L
lg(x) — L| < ‘2’, for every x > A.
In particular, by triangle inequality we get
L L
‘ | =|L| - ’ | <lg(z)], for every x > A.

By using that g € L'(R), we Would get

+o00 |L‘ +o0
/yg |dx>/ |(m)|dm>2/ dt = +oc
A

which is a contradiction with the fact that g € L*(R). O

Definition 3.3.13 (Local Lebesgue space). We say that a measurable function f : R — C is locally
summable if

f € L'([a, b)),
for every couple of real numbers a < b. The collection of all locally summable functions will be
denoted by L{ (R).

Example 3.3.14. Of course, we have
LY(R) € Ligc(R),
but the two spaces does not coincide. For example, the function z + 22 is in L] _(R), since

b 3_ 3
b3 —
/:L’le': a < +o0,
a 3

but of course this does not belong to L'(R).

Example 3.3.15. Another important example of L%OC(R) function is the cardinal sine function

sin(mz) .
sinc (x) = rr if 7 0
1, ifx=0.

Indeed, this is continuous function on R, thus we have sinc € L*([a,b]) C L!([a,b]), for every

a < b. On the other side

) Ll sin(r z)
lim
L—oo L

dx = 00,

T

thus sinc € L!'(R), see Exercise 3.7.3. On the other hand, by using the Cauchy’s Theorem for
holomorphic functions (see Exercise 3.7.4) one can prove that

L -
lim / sin(m ) dr = 1.

L—oco L ™

Finally, observe that sinc € LP(R) for p > 1, since

/ sin(ﬂx)pdx_Q/l sin(7 ) pdw—i—Q/OO sin(ﬂm)pdx
R ™ 0 T 1 ™
2 [>1 2
<24+ = | —dz=2+4——,
P Jy P (p—1)7P

where we used that sinc is an even function, smaller than 1.
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4. Finer properties of L” spaces

Definition 3.4.1 (Cauchy sequence). Let E C R be a measurable set and let 1 < p < 4+00. We
say that {fn}neny C LP(E) is a Cauchy sequence if:

Ve, Ing € N such that for every n,m > ng we have ||f, — fimllr(g) < €.

Theorem 3.4.2 (Riesz-Fischer). Let E C R be a measurable set. Then for 1 < p < 400 the space
LP(E) is a Banach space. In other words, LP(E) is a normed vector space such that every Cauchy
sequence { fntneny C LP(E) is convergent, i.e. there exists f € LP(E) such that

lim || f, — fHLp(E) =0.

n—oo
In what follows, we denote
Co(R) = {f : R — C continuous : f compactly supported},
and more generally for £ € N\ {0}
C'(])C(R) = {f : R — C derivable k times : f, f',..., f®) continuous compactly supported}.

Finally, we also set

C*(R) = () CH(R).
keN

We then have the following remarkable result (which is not true for p = +00). We omit the proof.
Theorem 3.4.3 (Density Theorem). Let 1 < p < 400 and f € LP(R). For every € > 0, there
exists g. € Co(R) such that

1f = gellr(w) < e
Thus for every f € LP(R), there exists a sequence {gn fnen C Co(R) such that

lim || f — gnl zr®) = 0.

n—00

Remark 3.4.4. The previous result asserts that even if elements of LP(R) may be very irregular
functions, we can always approximate them (in the sense of LP norm!) with more regular functions.
We will see that we can do definitely better and approximate with C'*° functions, see Theorem 3.5.13
below.

Proposition 3.4.5 (Translations are continuous in LP). Let 1 < p < 400 and f € LP(R), for
every h € R we define the translated function

Tnf(z) = f(z +h), z eR.

Then we have

Jim I7nf — fllrr) = 0.

Proof. By using the Density Theorem (i.e. Theorem 3.4.3), we know that for every ¢ > 0 there
exists g. € Cp(R) such that
(3.4.1) 1f = gellrw) < e

By using Minkowski inequality, we have

(3.4.2) |Tnf = flleew) < If = gellow) + I Thge — GellLo®) + 1 Tnge — Thf | Lo (w)-
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We now observe that by a simple change of variable we have

g = Tad liwgey = ( [ loato+0) = fla+ mpPda)”

1
p
= ([ lo:t0) = 5P )" = g = o < =
where in the last inequality we used (3.4.1). By using these information in (3.4.2), we obtained
|Thf = fllorw) <2+ (|Thge — Gellzow)
We are left with estimating the last term. By continuity we have

lim |7h9:(x) — ge(z)| =0, for every x € R.
h—0

Moreover, since g. is compactly supported, there exists an interval [a,b] such that g. identically
vanishes outside [a,b]. Then for every |h| < 1 the function T,g. — g- identically vanishes outside
[a —1,b+ 1]. We can thus infer?

| Thge(x) = ge(@) P < 2P (19|17 oo ) Lia1,641)(2) € L(R), for every |h| <1.
We can apply Lebesgue Dominated Convergence Theorem 3.2.5 and get
]{5% I Thge — QSHLP(]R) =0.

In conclusion, this gives
Jim |Thf = fllrr) < 2e.
By arbitrariness of € > 0, we conclude. O

Remark 3.4.6. The previous result is false for p = +o00. Let us take the Heaviside function H (z),
for h > 0 then we have

1, if —h<x<0,

0, otherwise.

Tif(a) - H(a) = |

In particular, we get
|ThH — Hl|poor) = 1, for every h > 0,

and this does not converge to 0.

5. Convolutions

Definition 3.5.1. Let f,g € L'(R), we define their convolution f * g by

f*glx /f:n— y) dy, for a.e. z € R.

Observe that by making the change of variable y = x —t, the previous definition can also be written
as

f*glx /f gz —t)d for a.e. x € R.

2We used that la — b|P < (la| + |b])P < 2P~ (|a|P + |b|P), which follows from (3.3.5).
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Remark 3.5.2 (Causal signals). We observe that if f,g € L'(R) are causal, i.e. identically
vanishing for x < 0, then

Feaa) = [ s =)oty
It is sufficient to observe that by causality
g(y) =0 fory <0 and flx—y)=0 forx—y <0ie. fory>uwz.
Moreover, f * g is still causal (exercise: prove the last assertion!).

Remark 3.5.3 (Convolution of sequences). We have seen in Chapter 2 that the convolution of
two sequences {xy, }neny C C and {y, }neny C C is defined by

n
Tn *Yn = Z Tn—k Yk-
k=0

We now take two causal signals f,g € L'(R) and fix a time step 7 > 0. Then we consider the
regular samplings

zn = f(nT) and yn = g(n 1),
and observe that

f*g(m)=/Omf(w—y)g(y)dyNTZn:f(nT—kT)g(kT)

k=0
n
=7 an,kyk =7 (Tn * Yn).
k=0

Here we (formally) replaced the integral by a Riemann sum. Thus the convolution of sequences
can be seen as a discretized version of the integral definition for causal signals.

It is not difficult to see that for f,g € L'(R), the convolution is well-defined and we have
f *g € LYR). This follows from the following more general result (just take p = ¢ = 1 below).

Proposition 3.5.4 (Young’s inequality for convolutions, part I). Let f € LY(R) and g € LP(R),
for 1 <p,q < oo. Let us suppose that

1 1
- +->1
p q
Then their convolution f * g is well-defined and we have f x g € L"(R), with
1 1 1
—=—-4+--1
r p g
Moreover, there holds
(3.5.1) 1f * gllrw) < 1fllLaw) 19l Lo (m)-

Proof. We first observe that by definition of r, we have r > g and r > p. Indeed

1 1 1 1 11 11
S=Z4--1<-  and —=--14-<-.

Moreover, we have
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For almost evey z € R we have

If*g(:c)\Z‘/Rf(y)g(x—y)dy‘ S/R|f(y)||g(x_y)|dy
= [ 1)1 lote = )l 171~ loto = )" ~* dy

r—1
T

< (/R\f@/)\q\g(:c—y)\pdy)1 ([ 1@ gte =i an)

thanks to Holder’s inequality (3.3.6) with exponents r and ' = r/(r — 1). We now observe that by
definition of r, we have

r—gq r—p 1 (r T ) 1
= - —14+--1) = —-1)=1
q(r—1)+p(r—1) r—1 \q +p r—l(r ) ’

thus we can further use Holder’s inequality in the last integral, i.e.

(f o o) < (i)™ ([l —wra) ™.

By resuming, we obtained

|f #g(@)]" < /R\f(y)\q l9(@ — )P dy | Fll o) 190 2o ()

We now integrate with respect to z and get

LU s @l de < 1155 lolistey [ [ £ ota =)l dyda:

Observe that the function (z,y) — F(x,y) = |f(y)|?|g(x — y)|P is positive on R? and satisfies the
hypotheses of Tonelli’s Theorem: indeed, for almost every y € R, the function

z = [f) lg(z —y)lP,

is summable, since g € LP(R); moreover, the function

v [ £ gle =l do = ol £

is summable, since f € L(R) by hypothesis. This implies that F' € L*(R x R) and by Fubini’s
Theorem we can exchange the order of integration, i.e.

1+ a@l de < 1815 lolistey [ @7 ( [ lote =P dz) dy

By changing variable in the integral of g, we thus get

[ Lot =P dz = gl v,

and finally

/R 1 x 9@ dw < 1F 1 ate 191755 1%y 1917y = 1oy 5oy,

By raising to the power 1/r, we finally get (3.5.1). O
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Remark 3.5.5. Very often, we will use the previous result with f € L}(R) and g € LP(R), for
some 1 < p < 400. Accordingly, by taking ¢ = 1 in the previous result, we get » = p and thus we
have

fxge LP(R).

When p and ¢ are conjugate, the convolution is a bounded continuous function. This is the

content of the next result.

Proposition 3.5.6 (Young’s inequality for convolutions, part IT). Let f € LP(R) and g € L¥ (R),
for 1 < p < 4o00. Then their convolution f * g is well-defined and we have f* g € L*°(R) N C(R).
Moreover, there holds

(3.5.2) 1 * gllee®)y < N low) 91l Lo ()

Proof. We start with the case 1 < p < co. For almost every x € R, we have

If*g(x)\=‘/f(y)g(w—y)dy‘é /!f(y)!pdy /!gw— ) dy) :

thanks to Hélder’s inequality (3.3.6). By observmg that with a sunple change of variable we have

/Igm I”dy /Ig I”dy :

£ 2 9@ < Ifllow gl forace. zeR.
This shows at the same time that f+g € L*°(R) and (3.5.2). We now prove that f g is continuous.
We take x € R and h € R, then we have

[fxg(xz+h)— fxg(x)]=

==

we thus obtain

g<m+h—y>dy—/Rf(wg@—y)dy\

gz +h—y)—gx y)]dy‘

/R!f(y)!pdy); ([ lot@+n= o= ay)’

As above, with a simple change of variable we get

=

\\H

([ 1ot n=n=g=nran)” = ([ loth+0 - g0 at)” = 1Tg = gl ey
In conclusion, we get
lim [f + g(z +h) = fx g(@)] < [ ey Tm [1Thg = 9l 1 ) = 0,
thanks to Proposition 3.4.5.

The cases p = 1 or p = oo are even simpler. For example, if p =1 then g € L°°(R) and we have
£ra@] = [ 19— 0 dy| < o~ [ 1701

which gives again the desired conclusion. The continuity is proved as above, we leave the details
to the reader. (]

Corollary 3.5.7. The convolution of two L*(R) functions is in L>°(R) N C(R).
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0,51

Figure 2. The graphs of the functions z — rect(z) and z — tri(x) = rect * rect(x).

Example 3.5.8 (Rectangular and triangular functions). Let us consider the rectangular function
defined by

L iec|-L]]
rect(z) = o BEE Tyl
0, otherwise ,

i.e. this is the characteristic function of the interval [—1/2,1/2]. We want to compute the con-
volution rect % rect. Observe that rect is comptacly supported and belongs to LP(R) for every
1 < p < 00. Thus we already know that rect *rect is a bounded continuous function by Proposition
3.5.6.

By using the definition of convolution and a change of variable, we have

2
rect * rect(x) = /

_1
2

x+%
rect(z — y) dy —/ ) rect(y) dy
T3
0, ifx>1,
1—z, if0<z<l,
14z, if —1<z<0,
0, ifx< -1,

Observe that this function is indeed continuous. The convolution rect * rect can be written in
compact form
0, ifl|z|>1,

rect * rect(z) = { 1—|a|, if|z] <1

This function is called triangular function, we use the notation x + tri(x).

From the previous result, we get in particular that the convolution between f € L!'(R) and
g € L>®(R) is a continuous bounded function. We can define the convolution also for functions
fe Llloc, by enforcing a bit the hypotheses on the second function g. Rather than giving the most
general result, we give some particular cases which will be particularly useful.
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Proposition 3.5.9 (A first regularization result). Let f € L (R) and g € L>°(R). Let us suppose

loc
that g has compact support, i.e. there exists a bounded closed interval [a,b] such that
lg| =0, for a.e. z € R\ [a,b].

Then the convolution f x g is well-defined and is a continuous function. Moreover, we have the
estimate

(3.5.3) £r0@I < ol [ Ufldy Jorac aeR

Proof. We first show that the convolution is well-defined. By definition of convolution and thanks
to the hypothesis on g, for almost every z € R we have

[f(x—y) g < lgllpew) [f( =) 1ap(y),  yER,

and the last function is in L'(R), since f is locally integrable. This also shows the validity of the
estimate (3.5.3).

Let z € R, we want to show that

lim [f + g(z + h) — f + g(2)| = 0.

For every |h| < (b — a) we have
|f*g<x+h>—f*g<x>r='/Rf<x+h—y>g<y>dy—/Rf<x—y)g(y)dy]
[ (G +n=y) - @) )
R
</R fa+h=y) = f(e =) lotw)] dy

b
< lgllz=@ /

With a simple change of variable x — y = ¢, this gives

f<x+h—y>—f<x—y>1dy.

r—a

Frg(e+h) — Frg(@) < lgliem /

r—b

Flt+h) — f(t)‘ dt.
We now introduce the new function F(t) = f(t) Ljz1q—2b0+5—24)(t), this is in L' (R) by hypothesis.
Observe that by construction
[ —b—h,x—a—h|Clz+a—2bx+b—2al, for every |h| < b—a,
thus in particular for every |h| < b — a we get
F(t+h)—F(t)=f(t+h)— f(t), te€[x—bx—al
Thus we get
|
Thus in particular we obtained

£+ 1) = 9@ < lalmmy [ [F(E+R) = PO ar

r—a

F(t+h) — F(t)‘ dt.

fe+0) - fo)|de = [

r—b

F(t+h) —F(t)‘dt < /R
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If we now pass to the limit as h goes to 0 and use Proposition 3.4.5 in the right-hand side, we get
the conclusion. O

Remark 3.5.10. Under the assumptions of Proposition 3.5.9, the convolution f * ¢ in general is
not in LP(R), for any 1 < p < oo. Indeed, if we take f(z) = x and g(x) = rect(z), then we have

frale /f:r— dy—/l(x—y)dy

f ]
{ x—i)z} — 2 ¢ IP(R).

Proposition 3.5.11. Let f € L} (R) and let g € CA(R). Then the convolution f x g is a C!
function. Moreover, we have

(3.5.4) %(f xg) = f x %g.

| ol=

=

1
T2
1
T2

Proof. By the previous result, we already know that fxg is well-defined and is continuous (indeed,
observe that g has compact support and C}(R) € L*®(R)). We only need to show that f g
is derivable and formula (3.5.4) holds, then continuity of its derivative will follow again from
Proposition 3.5.9, since ¢’ is L*°(R) with compact support.

Let x € R, for every |h| < 1 we have

frglx+h)—f*gz glx+h—y)—glx—y)
Y / fly . dy.

We have

h—a) — _

i 9@+ h—y) —g(z —y)
h—0 h

in order to pass the limit under the integral sign, we need to find a domination with an L' function.

We first observe that by the Mean Value Theorem?

ﬂw+h—w—g@—yw
h

=g (z —y),

=19 < gl L r)

where ¢ in a point belonging to interval (z —y,x — y + h). Moreover, if g is supported in [a, b], for
every |h| <1 the function
gz +h—y)—glz—y)
h )
has compact support contained in [x — 1 — b,z + 1 — a]. In conclusion, for every |h| < 1 we get

gx+h—-y)—glz -y
f(y) Y

We can apply Lebesgue Dominated Convergence Theorem and obtain

<19 1o ®) 1 f W) Lp—1—b21-a) € L' (R).

* h *
pim T FIT ) 2 gl /f y)dy = f * (@),

This shows at the same time that f % g is derivable and that formula (3.5.4) holds. ([

3In italian “Teorema di Lagrange” .
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By iterating the previous result, we get the following.
Corollary 3.5.12. Let f € Li, .(R) and let g € C§(R) for some k > 1. Then the convolution f * g

is a C* function. Moreover, we have

d
(f g) = f*dximgj

Theorem 3.5.13 (Smooth approximations by convolution). Let k > 1 and let g € CE(R) be a
function such that [, gdx = 1. For every e > 0, we define

9e(x) = ég (g) :

If f € LP(R) for some 1 < p < oo, we have f- = f * g. € C*(R) N LP(R) N L=(R) and
51351 | fe = fllrm) = 0.

m

e for everym=1,... k.
x

Proof. Since LP(R) C L{_(R), from the previous Corollary we already know that f. € C*(R).
Moreover, since
ge € CE(R) c LY(R) N LF'(R),
we can apply Propositions 3.5.4 and 3.5.6 and get f. € L (R) N LP(R) as well, with
[ felle@y < 1 flrr) [19ell 21 (m)
and
[ fellzoo@®) < 1fllzr(r) ng”Lp/(R)
We now compute

e = Py = [ 17202 - f\pda:—/\/fa:— V)g-() dy — f(@)| do

~ [|[ =0 - s@]owyas|
<L

/Rgs(y)dyz(i/Rg(@ dyZ/Rgdyzl.

Moreover, by using Holder’s inequality

/\far— — 1) lg:(y rdy—/|fx— - f()

dx

Wldy) do

flz—y)— f(z)

where we used that

W[ |9 ()7 dy

1
L p P
<laelfiey (. ]f(aa—z»—f(zc) o
By observing that
HgEHLl(R) = HQHLl(R)
we thus obtain
e = Moy < ol [ [ |la =9 = 7@ ool dy o

~lallfidy [ 17200 = £l lo(O
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Finally, by Proposition 3.4.5 we know that
: _fP —
;IL%HT—«etf fHLp(R) =0,
and

ITce £ = FIB e L] < 27 £, l9(0)] € LA (R).

We thus conclude by applying Lebesgue Dominated Convergence Theorem and taking the limit
under the integral sign. O

Remark 3.5.14. Of course, if in the previous Theorem we take g € C§°(R), then f. = f * g- is
C* as well. An important instance of function g € C§°(R) which is used very often is the standard
mollifier

1 )
g(m)z{ CeXp(_l—x2>’ if 2] <1,

0, otherwise,
where the constant ¢ > 0 is chosen so that [, gdx = 1. Observe that g € C§°(R).
The following simple result will be useful in the sequel.

Lemma 3.5.15. Let us that f,g € L*(R) both have compact support. Then f x g has compact
support as well.

Proof. Let us assume that
|f(x)| =0, for a.e. z € R\ [a,b],

and
lg(x)| =0, for a.e. z € R\ [¢,d].

By definition of convolution, we have

res@ = [ Se-vowar= [ 16— vsway
We now observe that
lf(x —y)| =0, fora.e. y e R\ [x — b,z — a.
This implies that for every x € R such that
r—a<c or r—b>d,

we have f(z —y) = 0 for almost every y € [¢,d] and thus
d
fra@ = [ ey = [ o) oy =0,
in this case. Thus we proved that

|f*g(x)| =0, fora.e. x<c+a or x>b+d.

In other words, f % ¢g vanishes almost everywhere in R\ [a + ¢, b + d]. O



6. Exercises 97

6. Exercises

Exercise 3.6.1. Let us take a < b and consider the generalized rectangular function 1i, . Compute
the convolution 14y * 1[4 4 and verify that we have

—a—2b
(3.6.1) Vg * Loy () = (b — a) tri (%) .
Solution. In order to do this, we first observe that
— 1
(3.6.2) Lig,p(7) = rect (z_ Z - 5) ;

thus we obtain

Ligp) * o) (2) = /]R Liap)(z = y) Loy (y) dy
_ rToy-—a 1) (?/ —a_ 1)
—/Rrect< T 5 rect b—a 2 dy

r—2a y—a 1 y—a 1
e = e
/Rrec b—a b—a+2 ree b—a 2 y

If we now perform the change of variable

the previous chain of identities gives

Ligp) * Lap(z) = (b—a) /

R

-2
rect (:Eb ¢ 1= Yy ) rect (y') dy’
—a

a:—a—b)

—a

:(b—a)tri(%m>,

—a

= (b — a) rect * rect (

where in the last identity we used Example 3.5.8. U

Remark 3.6.2. For example, if in (3.6.1) we take a = 0 and b > 0, we get
o (r=b\ [ b—Jr—b|, f0<x<2D.
Loy * oy (@) = btr1< b ) o { 0, otherwise.
If instead a = —L and b = L, then

L rn)* g r)(x) =2 Lt (%) ,

Exercise 3.6.3. Let a < b and ¢ < d be real numbers. Generalize the previous exercise and compute

the convolution 1(,p) * 1ic q-

Exercise 3.6.4. Compute the convolution tri * tri.

Proof. By using that tri vanishes outside the interval [—1, 1], it is easily seen that for |z| > 2 we
have
tri(x — t) tri(¢) = 0, for every t € R.
Thus we have
tri * tri(x) = 0, for every |z| > 2.
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We also observe that by using tri(—t) = tri(¢), we have
b # ri(—7) = / bri(— — £) tri(t) dt = / iz + £) tri(—t) dt
R R
= / tri(z — s) tri(s) ds = tri * tri(z),
R

where we used the change of variable —t = s. The last identity shows that tri = tri is an even
function. Finally, we take = € [0, 2], observe that
tri(z —¢) # 0 = |z —t] <1 = te[-1+x,14 ]

and compute the convolution:

tri*tri(x):/tri(ac—t)tri(t) dt:/ (1= |z —t) (1 — [t]) dt
R [—1,1]N[-14=,14x]

1
=/ (1~ e — t]) (1 — [¢]) dt

14z
We now distinguish two cases: x € [0,1] and z € [1,2]. In the first case, we have —1 + 2 < 0, thus

1 0 T
/ (1= |z —t)(1—|t)d 1—x+t(1+t)dt+/(1—x+t)(1—t)dt
—14x 0

14z

-/
+/ql—t+x ) (1 —t)dt

2 13]° 2 3]
l-z)t+2—2z) =+ = +{(1—m)t—|—x—
2 3] e 2 3]
2 3]
(I4+a)t—(2+2) =+ —
2" 3],
(x—1)2 (z—1)3 R
1- 2 — - 1— R
=20 L ra-na+ T -2
9 1 2 3
+ﬂ+m%—(;@ﬁ¥{%1+@x+@+$f2—€;
After some simplifications, we get
2 3
tri * tri(z) = g—xZ—i-%, for x € [0,1].

In the second case, we have 1 > —1 4+ x > 0 and thus

1 1
/ (1—|$—t)(1—|t|)dt:/ (Il—z+t)(1—t)dt

—1+x —1+4x

—1)2 —1)3
:(l—x)+£—7+(x—1)2—:p($ 5 ) +(m 3 ) .
With some algebraic manipulations, we then get

3

4
tri*tri(:c):§—2x+m2—%, for x € [1,2].

By putting all the informations together, we thus finally found
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05T

-0,5T

Figure 3. The graph of the convolution tri * tri

2

J/®

§—$2+7, 1f’x‘§1,
. . — 4 3
tri * tri(x) *—2’.21?‘4-.%'2—@, 1< |2 <2,
3 6
0, otherwise.
This concludes the exercise. O

Exercise 3.6.5. Let H be the Heaviside function and g(z) = e~ I*|, justify that the convolution
H x g is well-defined and prove that

e, if v <0,
= g(x) = { 2", ifz>0.

Solution. We observe that H € L*(R) and g € L!(R), since

+o0
/6_1’|d$:2/ e Tdr=2< +oo.
R 0

Then H x g is well-defined and H x g € L*°(R), by Proposition 3.5.6. We now compute the

convolution: we have
X

H*g(ff)Z/RH(fﬂ—y)g(y)dyz/ e vl dy,

—00

T T
/ e W dy = / eVdy = e,
—00 —0o0
while for z > 0

T 0 T
/ el dy:/ e’ dy+/ eVdy=14+(—e"+1)=2—-¢",
—o0 —o0 0

as desired. 0

thusif z < 0
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7. Advanced exercises
Exercise 3.7.1. Let a < b be two real numbers and let f € L*([a,b]). Prove that

hm e qaen = 11z b

Solution. We first observe that
1
Il ze(ap)) < (b —a)? [|fllLoo((a,p))s
which follows from Proposition 3.3.10, with ¢ = 400. This implies that
1
msup || fll o (jap)) < 1l zoe a5y limsup(b —a)? = || fll oo ([a,))-
p—+0co p—>=+00
On the other hand, by definition of L* norm, for every € > 0 the set
E. = {37 € [a,b] : [f(@)] = [ fllLoo(jap)) — E},

has positive measure. Thus we get

b . 1
Hfuma,bp:(/ If(w)l”dx> z(/E f(ﬂf)!”dw>
> (£l z (ap)) — ) (/E d33>p

1
= Eelv (£l oty — ) -
This implies

timinf £ soasn) = (1112 osy — <) amin |2l

p—+
= || fllzo (ja,p)) — &
By arbitrariness of £ > 0, we obtain
lp@ig Il zeqap)) = 111 zoo((a,8))-
This concludes the proof. O

Exercise 3.7.2 (Interpolation inequality). Let f € LY(R) N LP(R), for 1 < g < p < +o0. Prove
that f € L"(R) for every ¢ < r < p and we have

(3.7.1) 11l zr@) < 1N tey 1117y
where the exponent ¥ € (0,1) is given by
4 u, if p < 400,
9 — Tp—4g
%, if p= +o00.

Solution. We first consider the case p = 400, which is simpler. In this case we have

Lur@rde= [ 1f@rif@pds < 171 [ 1f@id
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which implies

e = ([ 1F@F dz) < 112 ([ @) = 1152 1oy

This proves (3.7.1) for p = +o0.
We now suppose p < +o0o. We observe that if ¢ < r < p then there exists a € (0,1) such that

r=q+a(p—q).

With a simple computation, we find
r—q
[R— q :

T
We now write
/ (@) de = / @) ()70 de,
R R

then we use Holder inequality with conjugate exponents

1 1
— and .
o l—«o

[e} l-a
Jurarae< ([is@pas) ([ i)

By taking the power 1/r on both sides and recalling the definition of «, we get the desired conclusion

This gives

(3.7.1) for p < 400, as well. O
Exercise 3.7.3. Show that the function
. sin(m :v)7
T
does not belong to L'(R).
Solution. We show that
k .
im [ 2O g e,
k—oo J_p T

Since the integrand is even, this is the same as

k
lim
k—o0 0

SIT2) | g — oo

™

We now write for every k£ > 1

/k sin(7 x) g z’“: /n sin(7 x) i,
0 ™ n—0Jn—1 ™I
and observe that
1 1
—_— > for z € [n — 1,n].
|rx] — mn
Thus we get
k
sin(7 )

1 /M
dr > — - i dx.
T2~ Zn /nl|sm(ﬂ'x)| x
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Figure 4. The positively oriented loop I'r of Exercise 3.7.4.

On the other hand, since the function x + |sin(w x)| is 7—periodic, we have

In conclusion, we get
sin(7m a:)

r

™

k .
lim sin(m )
k—o0 0 ™

as desired.

Exercise 3.7.4. Show that

/sm(ﬂx) d —
R T

n 1
/ ]sin(ﬂx)|d:v:/ |sin(rz)|dx = [ sin(rz)dr = {—
n 0

2 &1
x> —
— 2 Z_:n

By recalling that the harmonic series is divergent, we obtain

Ziz—i-oo,
n

—n

2
der > — lim

cotra))'_2

s

Solution. We first observe that if we change variable mx =, we can equivalently prove that

t
/Smdx_w
R

We fix 0 < e < 1 and R > 1. We consider the positively oriented piecewise regular loop I'p

obtained by glueing the following regular simple curves

T(t) =t,
72(t) = Re',
v3(t) =t,

n(t) = —ce™"

t € [-R, —¢],

t € [0, 7],

We then consider the function of a complex variable f(z) = €'#/z, which is holomorphic in C¥,
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with a simple pole at z = 0. The region entoured by I'r does not contain the origin, thus by

Cauchy’s Theorem (see Theorem 1.6.12) we have

eiz Reit T i
0_/ dz—/ dt—i—i/ et Re qt
rp % e 1 0
—e it ™ .
+/ edt—i/ e~ice T g,
_r t 0

We now recall that et = cost + i sint, thus the first and third integral above give

R _it —e _it R R _:
e e cost sint
/ dt—l—/ dt—/ dt+i/ —dt
e ¢ _r 1 c t e t
e ‘ —e gint
+/ cos dt+i/ sin gt
_p t _r t

R .
sint
:2@'/ sinf g,
e t

(3.7.2)

thanks to the fact that sint/¢ is even, while cost/t is odd, thus we have a cancellation. From (3.7.2)

we thus obtained

R s T
sint o L
2/ ldt:—/ eZRetdtJr/ et at
e 0 0 0
T . 3 T .
:_/ echoste—R81ntdt+/ C_IECOSte_Etdt.
0 0

We now pass to the limit as € goes to 0. Observe that

’e—is cost6—5t| —_ e—st < 17 te [0,7’[‘]
and

lin(l)e*” cost gmet — 1, for t € [0, 1],

E—
thus by using Lebesgue Dominated Convergence Theorem we obtain

R _; ™
(3.7.3) 2 / SlTntdt = —/ gl fcost p=Rsint gy 4 7o
0 0

Finally, we want to take the limit as R goes to +00. Observe that

s s
/ ezR cost efR s1ntdt’ < / efR sint dt,
0 0

and

lim e f¥sint = for a.e. t € [0, 7],

R—o0

e ftsint <1 t € [0, 7).
Thus again by Lebesgue Dominated Convergence Theorem
lim " eiR cost efR sint dt‘ < lim T efR sint dt =0
By (3.7.3) we thus get
R .
t
lim [ ldr=_.

By recalling that sint¢/t¢ is an even function, we get the desired conclusion.
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Remark 3.7.5. In the previous exercise the use of the Lebesgue Dominated Convergence Theorem
could be avoided. We prefer to use it, in order to shorten the presentation.

Exercise 3.7.6. Let f € L®(R) be a compactly supported function. Show that for every a < 0,
there exists Cy > 0 such that

1f()] < Cyeltl) for every t € R.

Solution. In order to show the claimed estimate, we set

M = || fll oo (w)
and we suppose that
lf(t)] =0, for a.e. t e R\ [-T,T].
We then observe that by definition
|f(t)] < M, for a.e. t € [0,T].
On the other hand, by using that for o < 0 the function t + e*? is decreasing, we have
et > T for t € [0,T7.
We then obtain
]f(t)\gMzeaﬁTeaTg (%) et for a.e. t €0, 7).

By recalling that |f(t)] = 0 for t > T, we then conclude that
M
(3.7.4) F(8)] < (QTT) et forace ¢ >0.

We are left to prove the upper bound for ¢ < 0. However, this is similar: indeed, for a < 0 the

function t — e~ ! is increasing, thus we get
et > 0T for t € [-T,0].
As above, this entails
M aT M —at
@l <M= el < (STT) e forae t€[-T,0]

By recalling that |f(¢)| = 0 for ¢ < —T', we then conclude that
M
(3.7.5) F(8)] < (ea—T> e forae t<0.

By keeping together (3.7.4), (3.7.5) and defining C,, = M/e*'T, we finally get the desired estimate.
[l

Exercise 3.7.7 (The Kallman-Rota inequality). Let 1 < p < +oco and let f € C*(R) be such that
f, " € LP(R). Prove that we have " € LP(R), as well. Moreover, show that we have the inequality

(3.7.6) 1 o) < 2/ 1 ey 177 ey
Solution. Let s > 0 and ¢ € R, by using an integration by parts we have
/(;S(S—T)f”(t-i-’l')d’f—{(s—’l') t+T /f (t+7)d
= —sf(t )+f(t+8)
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This identity can be rewritten as

SPW) = Ft+s)— F(t) - /0 (s —7) (¢ 4+ ) dr.
that is s
S0 = Tof(8) — F(1) — /O (s — 1) T/ (1) dr.

As always we denote by 7}, the translation operator. We now take the LP norm (with respect to
the variable t) on both sides and use Minkowski inequality, so to get

(3.7.7) s f ey < NTsfllpe@y + 1 fllLe ) +/0 (s = )T f" | Lo (r) dr-
This already shows that f € LP(R).

We now prove inequality (3.7.6). By using the definition of translation operator and a simple
change of variable, it is not difficult to see that

| Tsflle@) = 1flr(r) and 1T f oy = 171l Lo (m)-
Thus from (3.7.7) we get

S 52
s ey < 20 ey + 1" o) /O (s —7) dr =2|fllr(w) + 5 1" Lo w)-
This in particular gives

2
S
(3.7.8) s o m) — 5 1 ey < 20 fll e )

which is valid for every s > 0. We now observe that the function

S
s 8[| Fllrr) — 5 1| e w)

is maximal for

. 1] Lo (m)
17| e )
By making such a choice above in (3.7.8), we end up with
1 HfIH%p(R)
= R o e
2 ooy = 217 1@

This finally gives the desired inequality (3.7.6), up to some simple algebraic manipulations. O






Chapter 4

The Laplace Transform

1. Definition and first properties

In this chapter, we will use the following notation
R4 = [0, +00) and R_ = (—00,0).
We will also use repeatedly the following fact: by recalling formula (1.5.3), for every z € C we have
7| = eRe(2).
We recall that this is just a plain consequence of the definition of complex exponential.
Definition 4.1.1. Let f : R — C be a causal signal, i.e. a measurable function such that
f(t) =0, for t < 0.
We say that f is L—transformable if there exists o € R such that
e P f(t) € LY(Ry).
In this case, we define its Laplace transform by
L[f](z) := /0+Oo e *Lf(t)dt, z € C such that Re(z) > a.

Remark 4.1.2. We observe that the definition is well-posed. Indeed, for every z € C such that
Re(z) > a, we have

|72t (1)) = e e B f(1)| = R £(1)] < e[ F(2)], for ¢ > 0.

By observing that the last function is in L'(R4) by hypothesis, we then get e *! f(t) € L'(R})
and thus L[f] is well-defined.

Definition 4.1.3. Let f : R — C be an L—transformable causal signal, we define
or=infla € R : e f(t) € L'(Ry)}.
Then its Laplace transform is well-defined on the right half-plane
{z € C : Re(z) > o¢}.

107
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The number o is called abscissa of convergence. The axis
{z € C : Re(z) = oy},
is also called critical axis.

Remark 4.1.4. It is not difficult to see that for an L—transformable causal signal f, we have
(4.1.1) et fe LYRy), for every o > o.

Indeed, if a > oy, we can take
a—oy
= > 0.
T

Then, by definition of infimum, we have that there exists a. < oy + € such that

et f e LY(Ry).

Observe that by construction, we have

a—af Ot+0f
e <0opt+e=o0f+ 5 = 5 <

.
This implies that

+o0o +oo
| et [ et de < o,
0 0
and thus the claimed property (4.1.1).

Example 4.1.5 (Laplace transform of the Heaviside function). Let us consider the causal signal
given by the Heaviside function H. We observe

—at . €7at, tZO,
€ H(t)_{o, t <0,

and this function is in L'(R,) if and only if o > 0. Indeed, we have
[Teman| 1 fazo
0 1/a, ifa>0.

Thus the Heaviside function is L—transformable, with o = 0. Its Laplace transform is thus the
function of a complex variable defined on {z € C : Re(z) > 0} by

L[H](z) =/O+Ooe‘”dt: {—C_Zt o

1
= -, for Re(z) > 0.
z z

0
Observe that in order to compute the last integral, we used that for Re(z) > 0

] e—2t . e—Re(2)t
lim = lim — =0.
t—00 t—00 ’z|

z

Remark 4.1.6 (Link with the Z—transform). Let f be an L—transformable causal signal, with
abscissa of convergence oy. Let us fix a time step 7 > 0 and consider the regular grid

{0,7,27,...,n7,... }.

We can imagine to discretize the integral defining the Laplace transform by using Riemann integral
sums, i.e.

/+00 e *t f(t) dt ~ i e “"" flnT)T, Re(z) > oy.
0 n=0
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If in the last sum we make the change of variable e*™ = w € C, we thus get

/—S_OO e_th(t) dt ~ 1 i 7f(nn7)7
0 n=0 w

and the last expression is exactly the Z—transform of f with time step 7 > 0, in the complex
variable w. Observe that the map

z= et =w,
send the half-plane {z € C : Re(z) > oy} into the annular set {w € C : |w| > e/}, by recalling
property (1.5.5).

Lemma 4.1.7 (A necessary condition for transformability). Let f be a L—transformable causal
signal. Then for every T > 0 we have f € L*([0,T)).

Proof. By hypothesis, there exists o € R such that

+00
/ e~ f(t)] dt < +o0.
0

In particular, we get
T

400 T
oo > /0 et | ()] dt > /O et £(®)] dt > min {1,707} /0 F(0)] dt,
where we used that the real exponential is a monotone function. By observing that
min {1,e*°‘T} >0,
we finally obtain .
| 1rold <+
as desired. ’ (]

Example 4.1.8. For example, the causal signal

is mot L—transformable. Indeed, we have

1 11
/0 |f(t)|dt:/0 S dt = +oo.

2. L—transformable signals

On the other hand, the condition of Lemma 4.1.7 is only a necessary one and does not guarantee
that a causal signal with that property is L—transformable.

Example 4.2.1. Take the causal signal

f(t) =" H(t).
It is easy to see that this function belongs to L'([0,T]) for every T' > 0. However, for every o € R
the function
et f(t) = T H (),
is positive and such that
lim e ! f(t) = +o0.

t—+o00
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Thus e~ f ¢ LY(R, ), for every a € R. This shows that the set
{aeR: e feLY(Ry)},
is empty and f is not L—transformable.

Proposition 4.2.2 (A sufficient condition for transformability, I). Let f € Li (R) be a causal

loc

signal having exponential order, i.e. such that there exists C,'T' > 0 and B € R such that
(1) < C €Y, fora.e. t>T.

Then f is L—transformable and oy < 3. Moreover, we have the estimate

T
< / e PLIf()| dt + elB—Re(@) T for Re(z) > B.
0

(4.2.1) 'ﬁ[f](Z)

Re(z) — 3
Proof. We prove that
(4.2.2) if @ > B3, then e ! f € LY(R,).
Indeed, we first observe that for almost every ¢ € [0,7] and every a € R, we have
et < max{l,e_aT}.
This entails that -
| el < max {1,627} flusgom) <+

thanks to the fact that f € Ll _(R). On the other hand, by using the assumption on f, for a > 3,
we have

e f(t)) < Ceatell for a.e. t > T,
and the last function is in L' ([T, +00)), thanks to the fact that 3 — a < 0. The last two estimates
show (4.2.2), thus we get in particular that f is L—transformable.

In order to prove the estimate on the abscissa of convergence, it is sufficient to observe that
(4.2.2) implies the following

{aeR: e fec L' (R} D (B, +00).
By taking the infimum of both sets we would get
or=infla € R : e*' f € L'(R})} < inf(B, +00) = S.
as desired.

Finally, we come to the proof of (4.2.1). For Re(z) > 3, we estimate

“+oo +0o0
cnE| = [ e < [ e )
0 0

T 400

= [ e e [ e po)ar
0 T
T +o00

< / e PLIF@)|dt +C / elF=Re@D1 gy
0 T

By computing the last two integrals, we get the desired estimate. ([

Corollary 4.2.3 (Compactly supported causal signals). Let f € L}OC(R) be a compactly supported

causal signal. Then f is L—transformable and oy = —o0, 1. e. its Laplace transform is defined on
the whole C.
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Proof. Since f has compact support, there exists 7' > 0 such that
|f(t)] =0, for a.e. t > T.

This means that f satisfies the assumptions of the previous result, for every a@ < 0. Thus we
conclude that oy < « for every a < 0, i.e. oy = —00. U

Example 4.2.4. Let L > 0, let us compute the Laplace transform of the function
Lo (®) = H(t) — H(t - L).
Then we get

L —zt1L —Lz
e 1—e
L{1o,))(2) :/ e ldt = {— } —
0 0
The results is apparently in contrast with Corollary 4.2.3, since we have a singularity at z = 0. But
this is indeed remowable, since
1—e L= 1—e L= e —1

Iim —=LIlim ——— =L lim
2—0 z z—0 Lz w—0 W

z z

=1L.
Thus the Laplace transform is entire.

Proposition 4.2.5 (A sufficient condition for transformability, IT). Let f be a causal signal such
that f € LP(R), for some 1 < p < co. Then f is L—transformable and oy < 0. Moreover, we have:

o if 1 <p < oo, it holds

1
ol

1 P
(1.23) 16| < () Ml Jor Rete) > 0
o if p=1, then L[f] can be extended up to the imaginary azis {z € C : Re(z) =0} and
(4.2.4) LIAE)| < fllprw)s for Re(z) = 0.

Proof. It is sufficient to observe that for every a > 0, the function t — e~®! belongs to LY(R,),
for every 1 < q < o0o. Indeed, for 1 < ¢ < oo we have

+oco efaqt ) 1
(4.2.5) / et gt = {— } = — < 4o,
0 aq |, agq

while for ¢ = oo we just observe that
0<e <1, for every t > 0.

By choosing ¢ = p/, we thus get by Hélder’s inequality (Proposition 3.3.5) that e=* f(t) € L'(Ry)
for every a > 0, i.e.

+oo
| e @1 < eyl e < oo
This shows that f is L—transformable and that oy < 0, since o > 0 is arbitrary.

Let us now suppose 1 < p < oo, then we have

+oo +o0o
/ e f(tydt| < / R £ (1)) dt
0 0

< 1 fllzeryy ||67Re(2)t||LP’(]R+)7

£i5e)
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again thanks to Holder inequality. By using formula (4.2.5) above, with ¢ = p’ and a = Re(z), we
get the estimate (4.2.3).

Finally, we take f € L'(R,) and prove the last part of the statement. This is a plain consequence
of the Dominated Convergence Theorem 3.2.5. Indeed, we have

(4.2.6) lim L[f](z +iy) = lim +OO e T £ (1) dt.

z—0t z—0t Jo

We now observe that for every x > 0 we have
e T F ()] = e FO) < |F(B)],  for every £ >0,

and the latter is in L' and independent of the parameter . We can thus pass the limit under
the integral sign in (4.2.6) and obtain the desired conclusion. The estimate (4.2.4) is left to the
reader. ([

3. Properties of the Laplace transform

Theorem 4.3.1. Let f be an L—transformable causal signal, with abscissa of convergence oy.
Then for every oo > oy its Laplace transform L[f] is bounded and continuous on Re(z) > oy.
Moreover, we have

(43.1) L) =0,
and
(4.3.2) lim  L[f](z) =0, for Re(z) > oy.

[Im(2)|—+o0

Proof. Let us fix 09 > oy, then for every Re(z) > og we have

+o0 400
IL[f1(2)] g/o e‘Re(Z)t|f(t)|dt§/O et f(1)] dt < +o0,

where the last term is finite thanks to the definition of abscissa of convergence.

We now prove that £ is continuous on Re(z) > og, for every o9 > oy. Let us fix z € C such
that Re(z) > 09, we need to prove that

lim |L[f](z + h) — L[f](2)| = 0.

h—0

For every h € C such that
R _
(4.3.3) Ih| < e(z)zaf

we have

L[f1(z+h) = L[f1(2)

+o0
/0 [e—(z-‘rh)t _ e—zt} f(t) dt

+oo
< [T e p)e - 1
0

In order to conclude, it would be sufficient to pass the limit as o — 0 under the integral sign.
Indeed, observe that

lim e Rt £(1)]|e "t — 1] = 0, for a.e. t > 0.
h—0
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We want to use the Dominated Convergence Theorem: observe that by triangle inequality and
recalling (4.3.3)

e—Rc(z)t |f(t)| |€—ht _ 1‘ < e—Ro(z)t ‘f(t)| (e—Ro(h)t + 1)
_ e—(Re(z)+Re(h))t|f(t)| + e—Re(z)t |f(t)|

Re(z

)+o
<em T ()] 4 e R F(t)).

In the last inequality we used that, thanks to (4.3.3), we have

Re(h)| < ] < "2 =1,
which implies that
Re(h) > _Re(z)Q— of,
and thus
(4.3.4) Re(z) + Re(h) > Re(z); a1
Observe that the function above
Re (=

)+o
tes e 2 HF)] 4 e RO £ ()],

is independent of h and is in L', since

Re(z) 4+ oy -
2

Thus we can apply the Dominated Convergence Theorem and obtain

oy and Re(z) > oy.

“+oo
< lim/ e Re@E F(p)| et — 1) dt = 0,
h—0 0

lim 1£[f)(z + k) = L[f]()

as desired.

In order to prove (4.3.1), we observe that z = x + iy we have

+o00o
ILIfi(z+iy)] < /0 et f(t)|dt.

and for x > oy,
eI < et ()] € LY R).
Moreover, we have that
lim e ! |f(t)| = 0.

T—r+00
We can use Lebesgue Dominated Convergence Theorem and get the conclusion.
At last, we prove (4.3.2). We recall that

Tty — _prti (y+m) ’

thanks to the definition of complex exponential. Thus for every z > oy and y > 0 we have

Ll +in) - [ T e () a,
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and also

Lfl(x+iy) = — /O+oo o (@tHiytrin) f(t)dt

= —/+OO e () £ p) at
0

Observe that in the last equality we used that, by causality, we have

f(T—E)zo, for()ngz.
Y Y

By summing up the two expressions above, we obtain for z > oy and y # 0
1 [t~ Ce(tem
Lifl(z+iy)= 3 / e 'yt {e_“f(t) _ e () f (t— E)} dt.
0 Y
By taking the modules on both sides, we obtain

'E[f](a:%—iy)‘ < % /;OO ‘e’“f(t) _ e (F) f (t— W)‘ dt

(4.3.5)

T

LY(Ry)’

where we used the usual notation for the translations, i.e.
Thg(t) = g(t + h).

It is only left to observe that if y — 400, then —7/y — 0, thus we get the desired conclusion by
applying Theorem 3.4.5 in (4.3.5). In order to prove (4.3.2) for y — —oo, as well, we can reproduce
the proof above, by using this time

ew—l—iy _ _6x+i (y—ﬂ)'
We leave the details to the reader. O

Remark 4.3.2. The result (4.3.2) goes under the name of Riemann-Lebesque Lemma for the
Laplace transform.

Before proving further properties of the Laplace transform, we need to record the following
technical result.
Lemma 4.3.3. For every z € C*, we have
ef—1

z

’ < el

Proof. Recall that we have
3

=z
ezzzy, z € C.
k=0 "



3. Properties of the Laplace transform 115

Thus, by taking the modulus and using the triangle inequality, we get for every z € C*

z oo _k—1 o0 k—1
e 1' _ Z z < Z |z '
z = K =k
(R SR
T k=D =y oml |z
This concludes the proof. O

Theorem 4.3.4. Let f be an L—transformable causal signal. Its Laplace transform L[f] is a
holomorphic function on the half-plane Re(z) > oy. Moreover, the function t — t f(t) is still
L—transformable with the same abscissa of convergence and we have

d

(4.3.6) aﬁ[f](z) = —L[t fl(z), for Re(z) > o5.

Proof. We divide the proof in 3 steps, for ease of readability.

e Step 1. In this step, we prove that ¢ — ¢ f(t) is still L—transformable, with abscissa of conver-
gence

(4.3.7) OLf=0f.

Let oo > o and fix

Q79 L.

g = 9

Observe that by definition we still have

thus we know that e=(@=9)t f ¢ L1(R, ), thanks to Remark 4.1.4. We now observe that

(4.3.8) et f(t) = (7 f(1)) (b,
We now use that € > 0, thus the function
t—tect,
is bounded on R;. On the other hand, we already observed that
ts te (@ F(p),
is in L!'(R,). In conclusion, from (4.3.8) we get that
ts et (1),
is still in L'(R}), for every a > 0. By resuming this discussion, we obtained

(4.3.9) for every a > o, we have e 't f(t) € L'(R,).

We point out that this already shows that ¢ — ¢ f(¢) is L—transformable. Moreover, (4.3.9) shows
that

(0f,400) C{aeR : e @'t f(t) € LY(Ry)}.
Thus by taking the infima of the two sets, we have

oy =infla € R : e ¥t f(t) € L'(Ry)} < inf(oy, +00) = 0.
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In order to conclude this step of the proof, we only need to show the reverse inequality
Ot = 0f.

This would eventually show (4.3.7). We take 8 > oy, thus we have e P!t f € L1(R,), again by
Remark 4.1.4. By using the elementary inequality

1 §t+1[071](t), t€R+,
we get
e P f@) < e PO+ e P F ) 1oy (1), tE Ry
Both functions in the right-hand side are in L'(R.) (for the second one, we can use Lemma 4.1.7),
thus this is true for e A f as well. Since this holds for every 3 > oy #, we proved the inclusion

(01p,+00) C{BER : e P f(t) € L'(Ry)}.
By taking the infimaof the two setw, we finally obtain
or=inf{B e R : e PLft) e LYRy)} < inf(oy 5, +00) = 04 4,
and thus (4.3.7).

e Step 2. In this step, we prove that L[f] is derivable and formula (4.3.6) holds.
Let z be such that Re(z) > oy, for h € C such that

Re(z) —
(4.3.10) h| < e(z)?”f
we still have Re(z 4+ h) > o, thanks to (4.3.4). Then we consider

LIfl(z+h) — L[f](z tooemht 1
NC D L) [
Observe that z — e~** is holomorphic and
li © o g
nso h kS0 —ht

Thus, in order to conclude we need to pass the limit under the integral sign. We would like to use
Lebesgue Dominated Convergence Theorem (see Theorem 3.2.5), thus we need to find a summable
domination for

e ht 1 ‘ e~ht _ 1 R
—z _ —Re(2)t
C e ) = | S RO ()
independent of h satisfying (4.3.10). By using Lemma 4.3.3, we obtain
—ht _ 1 Re(z)—0o
C TR e ()] < Mt () < e e ()

Re(z

)+o
ez Uf().

By observing that
Re(z) + oy
2
we obtain that the last function above is summable on Ry (by Remark 4.1.4) and independent of
h. By keeping everything together, we get for every h verifying (4.3.10)

> 0f = 0¢f,

efht -1 Re(z

(4.3.11) ; e Ptft)| <e” 3+th\tf(t)l, t>0.
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We can thus conclude by applying Lebesgue Dominated Convergence Theorem as described above
and obtain

L) - L) et o1
Jimn, 3 =Jim | e @

“+o0o
_ _/0 et f(t) dt = —L[t f](2).

Thus we have shown that £[f] is derivable and formula (4.3.6) holds.

e Step 3. In order to prove that L£[f] is holomorphic, we only need to prove that its complex
derivative

d
Ll

is continuous. From formula (4.3.6), we know that this derivative coincides with the Laplace
transform of a causal signal, i.e. ¢ — ¢ f(t), thus Theorem 4.3.1 implies that this is continuous. [J

By recalling that a holomorphic function can be derived infinitely many times (see Theorem
1.8.2), we can iterate the previous result and get

Corollary 4.3.5. Let f be an L—transformable causal signal. For every n € N\ {0} the function
t— t" f(t) is still L—transformable with the same abscissa of convergence and we have

dn

4.3.12 -—
( ) dzm

L[f1(z) = (=1)" L[t" f1(2), for Re(z) > 0.

Example 4.3.6 (Unitary ramp). We consider the unitary ramp function R(t) = t H(t). By
Theorem 4.3.4, this is still L—transformable and the abscissa of convergence is

orp =0y = 0.

Its Laplace transform is given by

L[R|(z) = L]t H](z) = —aﬁ[H](z) =——-=—= for Re(z) > 0,

thanks to formula (4.3.6).

Example 4.3.7. More generally, for k£ € N\ {0} we consider the causal signal ¢ +— t* H(t). By
formula (4.3.12), we get

it ) = (0L e = DL o Re() > 0
2= dzF 9= dzk 2’ rels ’

If we now observe that

1k

ks = Y
we obtain

k!
LIt H|(2) = = for Re(z) > 0.

ISk
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4. Remarkable formulas

Proposition 4.4.1 (Linearity). Let f,g be two L—transformable causal signal, with abscissa of
convergence oy and o4. Then for every ci,co € C the causal signal c1 f + c2 g 1s L—transformable
and

(4.4.1) Llei [+ cag] = e L[f] + c2 Lg], Re(z) > max{oy,04}.
Proof. We just observe that for every z such that Re(z) > max{cy,o,} we have

e (er f(8) + eag(t)| < e (jea] [F()] + leal l9()]) € L' (Ry),

thus the linear combination is L—transformable, with abscissa of convergence smaller than or equal
to max{os,o,}. Formula (4.4.1) follows from linearity of the integral. O

Proposition 4.4.2 (Temporal dilations). Let f be an L—transformable causal signal. For A > 0,
we define f\(t) = f(At). Then fy is L—transformable with abscissa of convergence oy, = Aoy and

we have
z

L) =2l (2), forRe(s)> Aoy

Proof. By definition of Laplace transform and a change of variables we have

+00 +o0
cple) = [ et ana = [ ek s

and observe that

z
A
This concludes the proof. O

e f(s) e LN(Ry) if Re( ) > oy, that is if Re(z) > Aoy.

Proposition 4.4.3 (Phase multiplication). Let f be an L—transformable causal signal. For a € C,
the function €' f(t) is still L—transformable, with abscissa of convergence given by os + Re(a).
We have

L[ f1(2) = L[f](z — a), for Re(z) > o7 + Re(a).
Proof. For every z € C such that Re(z) > o + Re(a), we have
et et f(1)] = e~ ReIRE | (1) € IR,
thanks to the definition of oy and the fact that Re(z) — Re(a) > o¢. We thus have for every
Re(z) > o5 + Re(a)
+oo 00
clent f)e) = [ et feyde = [ e ey de = L)z - a),
0 0
as desired. 0

Example 4.4.4. Let a € C, by Proposition 4.4.3 the Laplace transform of the causal signal
t — et H(t) is given by

1
(4.4.2) Ll H|(2) = L[H](z — a) = , Re(z) > Re(a).

Z—a
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Example 4.4.5. Let k£ € N and a € C. By using Proposition 4.4.3 and recalling Example 4.3.7,
we get

at 1k
(4.4.3) E{e i !

: } (2) = %E[tk =)= e Rel) > Re(a).

Proposition 4.4.6 (Time delay). Let f be an L—transformable causal signal. Forto > 0, we define
T i, f(t) = f(t—to). Then T4, f is L—transformable with abscissa of convergence OT o f = 0f and
we have

LIT 4, f1(z) = e7* L[f](2), for Re(z) > oy.

Proof. Observe that the function 7_4, f is still a causal signal, indeed it vanishes for ¢ < 5. We

have
400

LT o)) = [ T e (- to)di = [ e s ds = et Lo,

to 0
as desired. O

Lemma 4.4.7 (L—transformability of periodic signals). Let f : R — C be a positively periodic
causal signal, i.e. there exists T > 0 such that

ft+1T)=f(t), for every t > 0.
Then we have

f is L—transformable = f € LY([0,T)).

Proof. We first observe that if f is L—transformable, then f € L'([0,T]) by Lemma 4.1.7.

We now suppose f € L([0,7]) and prove that f is L—transformable. We take o > 0 and
observe that for every k € N we have

(k1) T (k+1)T T
/ ! e—at|f(t)ydt§e—”"‘/ ’ !f(ﬂldt:e_k“/ @)l dt,

kT kT 0

where we used the monotonicity of ¢t — e~** and the periodicity of f. We thus have

+o0 N (k+1)T
/ e | f(t)|dt = lim Z/ e @t f(t)| dt
0 kT

N—oo =0
T
; |f ()] dt

N
< lim E e~ kT
N%ook_0

N
= fllzrqo,m) ]\}flookz e kT
—0

The last series is a geometric one, with argument 0 < e=®”7" < 1. Thus it converges and we have
(4.4.4) et fe L'(Ry), for every a > 0,
which shows that f is L—transformable. O

Proposition 4.4.8 (Periodic signals). Let f be an L—transformable causal signal. Let us suppose
that f is positively periodic. Then

(4.4.5) o =0,
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and we have

T
(4.4.6) LIA(2) - /0 e f(t)dt,  for Re(z) > 0,

E e

Proof. Of course, the proof has some similarities with that of the corresponding result for the
Z—transform, see Proposition 2.2.8.

In order to prove (4.4.5), we first observe that we already know that oy < 0, thanks to (4.4.4).
We are left to prove that

e f ¢ LH(Ry),

for every a < 0. The proof runs similarly as above, it is sufficient to observe that for o < 0

(k+1)T (k+1)T T
[ etz ke [ pola =T [ at
k 0

T ET
then by summing with respect to £ € N, we now get

+oco N T
/ e~ | f(1)] dt > lim Ze—a”/ ()] dt,

and the latter diverges to 400, since the argument of the geometric series is now bigger than 1
(indeed, e=*T > 1 because a < 0).

We now come to formula (4.4.6). For z such that Re(z) > 0, we write

T
:Z/ e *FT =78 f(s+ kT) ds,
keNv0

where we used the change of variable t = s + kT'. We now use the hypothesis of periodicity on f,
thus we get f(s+kT) = f(s) and

T
Clf)(z) = 3 e=hT /0 5 f(s) ds.

keN
The integral does not depend on k and the sum is just a geometric series, with argument e %7,
This series is convergent provided |[e™*7| < 1, i.e.
e—Re(z)T <1,
which is true, since we took Re(z) > 0. By observing that
1
Z (e—z T)k — —,
keN 1—e™*
we get the conclusion. O

Remark 4.4.9 (Critical axis and periodic signals). By recalling the properties of the complex
exponential, we have that

_27rk:_

1-eT7=0 — —Tz=27ki, kel — 2 Tz,keZ
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Thus, from formula (4.4.6), we obtain that the Laplace transform of a T'—periodic causal signal
can be extended to a holomorphic function defined on

2wk |
i.
T
Each point z; lies on the imaginary axis and represents an isolated singularity for the function

T
! Z/ e *tf(t) dt, z&{z + kel
0

C\{zr : keZ}, where z;, =

F@) =10

which is the extension of L[f] to the whole C\ {2z : k € Z}.

It is not difficult to see that every zj is indeed either a removable singularity or a simple pole.
Indeed, by observing that 1 = e * T we have

zZ— 2z 22, 1 — e 27T

1 T —27k ;4 . (z—2)T
= (T/o e T f(t)dt> Jim T g
LT ey | (2= 2)T
- (T /0 e T ) dt) Jim, e T (1 — e~ == 7T)

1 (T onk,
:T/O ei¥”f(t)dt.

Remark 4.4.10 (Laplace transform VS. Fourier series). The formula found in the previous ob-
servation gives a remarkable link between the Laplace transform of a periodic signal f and the

coefficients of its Fourier series expansion. Indeed, by observing that the latter are given by (see
Appendix C)

lim F(2) (2 — z) = lim ———%_ /T et f(¢) dt
0

~ 1 (T annyy
f(k:):T/ e T "' f(t)dt, for k€ Z,
0
we have just shown that (with a slight abuse of notation)
. 27k
lim L[f](z) (z — z) = f(k), where zj = ——" i, ke Z.
22k T

By recalling that if zg is a simple pole for a function F', it holds (see Proposition 1.10.11 with
m=1)

res(F, zp) = Zli_}rglo(z — 20) F(2),
we can rewrite the previous link between the Laplace transform and the Fourier coefficients as

follows
(4.4.7) res(L[f], z) = f(k), where z;, = 2mk

T

The following result is analogous to the formula for “time delay” for the Z—transform, i.e.
Proposition 2.2.2.

i, keZ.

Proposition 4.4.11 (Laplace transform of the derivative). Let f be an L—transformable causal
signal, which is continuous on Ry. Let us assume that f’ is piecewise continuous, with f' having
only jump discontinuities at {xo,...,xN,...} C Ry and'

|z — x| >6 >0, for every i # j.

IThe hypothesis assures that the discontinuity points are well detached and do not accumulate somewhere.
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Let us suppose that f’ is L—transformable. Then we have the formula

(4.4.8) LIf(z)== {E[f] (2) — f(ZO)} , for Re(z) > max{of,op0}.

Here f(0) has to be intended as lim;_,q+ f(t).

Proof. We will perform the proof under the stronger assumption that f’ is continuous on R, the
general case is left as an exercise to the reader.

We idea of the proof is very simple: it is based on the integration by parts formula. However,
since we are integrating on the unbounded set R, some care is needed. We take M > 0, then an
integration by parts gives

(4.4.9)
M M
/0 e [ty dt = [ f(t)};w +2z /0 et f(t) dt

M
= e *M f(M) - f(0) + 2 / e *t f(t) dt, for Re(z) > max{oys,op}.
0
By L—transformability of f and f’, we know that both limits
Mo A
. —2t gl . —z
Ml_l)rﬁoo ; e *fi(t)dt and Mlig-loo ; e *tf(t)dt

exist. Then from (4.4.9) we obtain that the limit

li =M gpp
Mirﬂooe f( )’

exists as well. Since t — e=*? f(t) is L' (R ) by assumption, this limit must be 0: it is a consequence
of Lemma 3.3.12 with g(t) = e~*! f(t). By taking the limit as M goes to +o0 in (4.4.9), we obtain

+o0 +oo
/ e #Lf(t)dt = —f(0) + 2 / e *Lf(t)dt, for Re(z) > max{of,op}
0 0
By recalling the definition of Laplace transform, this gives the desired conclusion. U

The previous result can be iterated, provided f is sufficiently regular.

Corollary 4.4.12. Let f be an L—transformable causal signal of class C" 1(R,) for some n €
N\ {0}. Let us suppose that the derivative =1 satisfies the hypotheses of Proposition 4.4.11.
Then we have
n—1 k)
LIF™](z) = 2 [C[f](z) - Z ZkJEI) , for Re(z) > max{op,0op,...,0m}

k=0

We recall from Chapter 3 that if f, g : R — C are causal, then their convolution (provided this
is well-defined) can be written

(4.4.10) fxg(t)= /0 f(s)g(t—s)ds= /0 f(t—s)g(s)ds.

It is easy to see that f * g is still causal, i.e. it vanishes for negative t.



4. Remarkable formulas 123

Proposition 4.4.13 (Laplace transform of the convolution). Let f, g two L—transformable causal
signals. Then fxg is L—transformable with abscissa of convergence of.q < max{oy,o4}. Moreover,
we have

(4.4.11) LIf * g)(2) = LIFI(=) Llg)(z),  for Re(2) > max{oy, ).
Proof. We first show that f x g is L—transformable. Indeed, let us take
a > max{of, o4},
then we know that
F(t)y=e ' f(t) e L'(R)  and  G(t)=e*'g(t) € L'(R),

by definition of L—transformability. From Proposition 3.5.4, we know that the convolution F x G
is well-defined and is in L'(R). We thus get

+oo
FeGO)= [ e flo) e gt —s)ds

+o0
:/ f(s)e *tg(t —s)ds
= eg‘”f xg(t),
which shows that e=*? f x g(t) € L'(R). Thus f * g is L—transformable and
Ofeg < @, for every a > max{oy,04}.

In order to prove (4.4.11), we write

E[f*g](z):/O+Ooe_2tf*g(t)dt:/ </ f(s)g(t—s)d )dt
= /0+<>0 (/Ot e f(s) e *) g(t — 5) ds) dt,

where we used (4.4.10). Observe that for every z such that Re(z) > max{oy, 04}, the function

(,) = [e77 fl5) €77 g(t — s) ds| = 7R 7| ()] TR ) g (1 — ),
satisfies the hypothesis of Tonelli’s Theorem. Thus we obtain that
(5,8) > €25 fs) e 27 g(t — ),

is summable and thus by Fubini’s Theorem we can exchange the order of integration. We thus
obtain (by further using the change of variable t — s = 7)

el = [ e ([ e - gar) as
= /0+00 e *% f(s) (/0+00 e T g(T) dT) ds

= L[f](z) L]g](2),
as desired. -
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5. Inversion formula

We have the following inversion formula.

Theorem 4.5.1. Let f be an L—transformable piecewise C' causal signal. Let us assume that f
and f" have only jump discontinuities at {xg,...,Tk,... }} C [0,+00), with

|z —xj] >0 >0, for every k # j.

We normalize f so that

f(mk):% [lim £(z) + lim f(x)], keN.

I*)Ik I*)Ik

Then for every t € R we have

1 . a+1 L i
&) =5 Jm . L[f](z)e*" dz
(4.5.1) .
1 :
= — lim Lfl(a+iy)e*te ¥ dy,

27T L—+o00 L

where o is any real number such that o > oy.

Proof. We will prove this formula in Section 5 of the next chapter, as a consequence of the Inversion
Formula for the Fourier Transform. O

Corollary 4.5.2 (Injectivity of the Laplace transform). Let f and g be two piecewise C' causal
signals, which are L—transformable. Let us assume that they both satisfy the hypotheses of Theorem
4.5.1. If

L[f](z) = L[g](2), for every z € Br(zp) C {w € C : Re(w) > max{af,ag}},

then we have
f(t) =g(1), for every t € R.

Proof. We first observe that, by using that the Laplace transform is a holomorphic function, from
the unique continuation principle (see Corollary 1.8.7) we get that

L[f](z) = L[g](2), for every z such that Re(z) > max{os,04}.

We now take o > max{oy, 04}, then by using the previous information and formula (4.5.1) for f
and g, we get
1 a+i L

f(t) = — lim L[f](z) et dz

27TZL*>+OO —a—i L

oz+zL
lim / z)e*tdz = g(t).

2 1 L—+00
This concludes the proof. O
The following result is very useful in order to avoid the use of the inversion formula in some

particular situations. It assures that every rational function is indeed the Laplace transform of a
suitable causal signal.
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Proposition 4.5.3 (Inversion of a rational function). Let P,Q : C — C be two polynomials such
that

(4.5.2) n = deg (P) < deg(Q) = m.

Let us call z1, ...,z the roots of Q, each one having multiplicity m1, ..., myg so that
mi—+---+mp=m

Let us consider the function of the complex variable z

P(z)

Q(z)’

Then there exists an L—transformable causal signal f : R — C such that

F(z) = L[f](2), for Re(z) > max{Re(z1),...,Re(zk)}.

F(z) =

for z € C\ {z1,..., 2}

More precisely, the signal f is given by

m;

(4.5.3) Ze% (Z h“i’hl)!th—l) H(t), teR,

h= 1

where ajp € C are the coeﬁ‘iczents of the partial fraction decomposition of F', which are given by

ajj = res ((z — 21 ggz;, Zj> :

see Theorem 1.11.7.

Proof. From Theorem 1.11.7, we already know that we have the partial fraction decomposition

k m; py
(4.5.4) F(z) = gz; = (Z ]hh> ,
j=1

= (2= 2)

for suitable coefficients a; , € C. We know recall that for every k € N and every a € C (see Example
4.3.7)

1 _r thert H
(z —a)k+1 k!
By using this formula with ¢ = z; and ¥ = h — 1, we thus get for every 7 € {1,...,k} and
hE{l,...,mj}

} (2), for Re(z) > Re(a).

Qs h—1 eZi t
(4.5.5) ]7h)h =L {aj’h t(hl)‘H} (2), for Re(z) > Re(z;).

(2 =z

By using (4.5.5) in (4.5.4), we thus obtain for Re(z) > max{Re(z1),...,Re(zx)}

P(Z) . k e ajh th 1 est |}
ac) ‘Z<Z ) Z<Z‘ o W)

=1 \h= 1(2_’2])

(L th—1
=L Lzzze g (hZ::l aj’hi(h — 1)!> H} (2),

and the latter is the Laplace transform of the signal defined by (4.5.3). This concludes the proof. [
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Remark 4.5.4. The signal (4.5.3) considerably simplifies if all the zeros z1, ..., z; of the denomi-
nator () are simple. In this case k = m and m; = 1 for every j = 1,...,m, thus we obtain

m
t):ZaiezitH(t), teR.

The a; € C are still the coefficients of the partial fraction decomposition of F' = P/Q.

Remark 4.5.5 (Some words on formula (4.5.3)). We can resume Proposition 4.5.3 by saying that:

every rational function F(z) = P(2)/Q(z) verifying (4.5.2) and with k distinct poles is the
Laplace transform of the sum of k causal signals, each one of the form

olzero of Q)t o polynomial of degree “(order of the zero) — 1"

In particular, if all the poles are simple, this is just the sum of k£ exponential signals.

6. Solving linear ordinary differential equations

One of the main applications of the Laplace transform is to the solution of initial value problems
for linear ordinary differential equations, with constant coeflicients.

For n € N\ {0}, we fix the coefficients Sy, ..., € C (with S, # 0) and the initial conditions
Yo, - - -, Yn—1 € C. We also fix an L—transformable causal signal f. Then we want to find a causal
signal y of class C™(R4) such that

By (1) + Baory V@) + -+ By (1) + Boy(t) = (1),

y(O) = Yo,
(4.6.1) y'(0) = w,
o)

e Preliminary discussion. It is useful to separate the difficulties in the problem (4.6.1):
in other words, we consider the two problems

By ™ (@) + By (@) + -+ By (8) + Boy(t) = 0,

y(0) = o,

(4.6.2) y'(0) = w,
ym00) = gy,

and

By ™ (@) + Buor y™ V@) + -+ By () + Boy(t) = f(t),

y(0) = 0,

(4.6.3) y(0) = 0,

i 2o

Thanks to the linearity of the derivative, it is easy to verify that if ypom solves (4.6.2) and
ys solves (4.6.3), then

Y = Yhom +yf
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(4.6.4)

is a solution of the original problem (4.6.1). In order to solve (4.6.2) and (4.6.3), let us
introduce the characteristic polynomial

n
Pcar(z):ﬂnzn‘kﬂnflzn_l‘|‘"‘+B12+ﬁ0:Zﬂizza zeC.
=0

We denote by z1,..., z; its roots, each one having multiplicity my,...,mg, so that m; +

e Solution of problem (4.6.2). We call yo, the solution of this problem. By taking the

Laplace transform, using its linearity and Corollary 4.4.12, the problem (4.6.2) becomes

n i—1
Pear(2) L[Yhom](2) — Z Bi (Z Ye Zilé) =0.
i=1 £=0

Thus we easily get the Laplace transform of ynom, this is given by
n i—1 )
> B (Z Ye Zz_l_f)
(=0

L{ynom|(2) = = Pear(2)

Though the expression on the right-hand side seems ugly, we can observe that this is the
ratio of two polynomials. Moreover, the degree of the numerator is (at most) n — 1
(just take k = 0 and ¢ = n), while P, has degree n, thus (4.5.2) is verified. We can thus
apply Proposition 4.5.3 in order to find ynom. We get

k mj
b
Yhom (t) = > € <§ - “’1 'th_1> H(t), teR
j=1 hmy (R =1

where b;; € C are the coefficients of the partial fraction decomposition of the rational
function in (4.6.4), that is

n 1—1
S5 (z ” )
/=0

)hfl i=1
Pcar(z)

bjn=res | (z—z; ) 25

Solution of problem (4.6.3). We call y¢ a such a solution. As before, we take the Laplace
transform, use its linearity and Corollary 4.4.12, thus problem (4.6.3) now becomes

Pcar(z) E[yf](Z) = [’[f] (Z)a

where we used that in (4.6.3) all the initial conditions are 0. The Laplace transform of yf
is easily found to be

The function of one complex variable
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is called transfer function? of the system. We observe that the transfer function is a rational
function, thus by Proposition 4.5.3 again we know that there exists a causal signal Y, such

that
1
LIY](z) = .
[ ]( ) Pcar(z)
More precisely, by formula (4.5.3), we have
k m; ain b1
Y(t)=> et 2" H(t teR
0=y (L) e, rer

with
(2 = 2)"" )
ajp =1res | ———"~—,z |.
’ ( Pear(2) !
The causal signal Y is called impulse response® of the system. We thus have obtained

Llysl(z) = % LIf1(z) = LIY](2) L[f1(2) = LY * f](2),

car(z)

where we used Proposition 4.4.13 in the last equality. Since yy and Y * f have the same
Laplace transform, if they are regular enough we can apply Corollary 4.5.2 and finally
obtain

t
(4.6.5) yf(t):Y*f(t):/O £t —5)Y(s) ds.

e Conclusion. The solution of the original problem (4.6.1) is thus given by

y(t) = yhom(t) Ty (t)

k mj A
_ Z ozt <Z (hbihl)' th_1> H(t)+Y = f(t).
j=1 h=1 )

7. Solving linear integral equations

The Laplace transform is also a useful tool to solve integral equations. Without any attempt to
offer a rigorous or complete treatment of the subject, let us present some ideas and computations.

Let us consider the Volterra integral equation of the second kind

t
(47.1) o) = £0+ [ K(t.s)uls)ds, ez
0
where:
e y is the unknown, which we consider as a causal signal ;
e K is a given function, called kernel of the equation;
e f is a given causal signal, called source.

2« Funzione di trasferimento” in italian.
3“Risposta impulsiva”’ in italian.
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We observe that if the kernel has the following form
K(t,s)=K(t—s),

for some function K : R — R which is causal (i.e. K(¢) =0 for ¢t < 0), then by considering y as a
causal signal as well we get

t t
[ s ds = [ K9y ds = K sy
0 0

and thus (4.7.1) rewrites

y(t) = f(t) + K xy(t).
Let us suppose that both f and K are L—transformable. By passing to the Laplace transform,
using its linearity and Proposition 4.4.13, we thus get

Llyl(2) = LIf1(2) + LIK](2) Ly](2)-
By supposing that the kernel K is such that

LIK](z) # 1, for Re(z) > ok,
then we can determine the Laplace transform of y, which is given by

L[f1(2)
L Nt T A
If we are now able the to compute the inverse transform of the right-hand side above, we can then
find a solution to (4.7.1). We refer to the exercises below for some examples.

, for Re(z) > max{of,ox}.

Remark 4.7.1 (Integro-differential equations). It should be clear that we can still use the Laplace
transform to solve a combination of the last two types of equations, i.e. ordinary differential
equations with constant coefficients and Volterra equations of the second kind. For example, we
could use the Laplace transform to solve an integro-differential equation of the type

t

SO +ayt) = f1) +/ K(t—s)y(s)ds,  fort >0,

0
y(0) = yo,

with a,yo € C given. We do not insist on this point.

8. The bilateral Laplace transform and the Mellin transform

The Laplace transform can be defined also for general functions f : R — C, not necessarily causal.
However, some care is needed.

Definition 4.8.1. Let f : R — C be a measurable function. We say that f is L—transformable if
there exist o < 8 € R such that

e vl fe LY(Ry) and e Plfe YR,
i.e.

+o00 0
/ et f(B)]dt < 400 and / B ()] dt < +oo.
0 —00

In this case, we define its bilateral Laplace transform by

B[f](z) :== /+O<> e *tf(t)dt, z € C such that o < Re(z) < 5.

—00
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Remark 4.8.2. We observe that the definition is well-posed. Indeed, for every z € C such that
a < Re(z) < 3, we have

e Pt f(t)], fort<O.

By observing that the last function is in L!(R) by hypothesis, we then get e=*¢ f(t) € L'(R) and
thus B[f] is well-defined.

. —at
|e—zt f(t)’ _ |6—Re(z)te—z1m(z)tf(t)| _ e—Re(z)t |f(t)| < { € |f<t)‘7 for t > 0,

Definition 4.8.3. Let f : R — C be an L—transformable signal, we define
or=infla e R : e ® f(t) € L'(Ry)},
and
Yr=sup{B €R : e P f(t) € LY(R_)}.
Then its Laplace transform is a well-defined function on the strip
{z€C: or <Re(z) <Xy}
The number X is called upper abscissa of convergence.

By proceeding as in the proof of Lemma 4.1.7, one can easily get the following

Lemma 4.8.4 (A necessary condition for transformability). Let f be a L—transformable signal.
Then for every T > 0 we have f € L'([-T,T)).

Without any attempt of completeness, we give a sufficient condition for L—transformability.
Proposition 4.8.5. Let f € Li (R) be such that for some C,T >0 and B > 0 we have
\f(t)| < Ce Pl fora.e. |t| >T.
Then f is L—transformable, with
o < —p and Xp>p.

Proof. The proof is the same of Proposition 4.2.2. The fact that f € L%OC(R), implies that

T
/ e~ f(t)] dt < +oo,
-T

for every a € R. In order to check the summability on R\ [-7,T], we use the assumption on f.
Then for every a > —f we have

+00 +o00 400 —(B+a)T
/ e f(B)]dt < C / et Pt = C / ety g _ G
T T T B+ o
and for every o < f3
- - -1 ~(6-a)T
| ertweso [Cenetanc [ s GO o
—0 —00 —00 —
This concludes the proof. O

As in the case of causal signals, from the previous result we immediately get the following

Corollary 4.8.6 (Compactly supported signals). Let f € L%OC(R) be a compactly supported signal.

Then f is L—transformable, with oy = —o0 and Xy = 400, i. e. its bilateral Laplace transform is
defined on the whole C.
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The following result is analogous to Theorem 4.3.1.

Theorem 4.8.7. Let f be a L—transformable signal, with abscissae of convergence oy < Xy. Then
for every o9 > oy and Xo < Xy its bilateral Laplace transform B[f] is bounded and continuous on
the strip o9 < Re(z) < Xg. Moreover, we have

(4.8.1) lim  B[f](z) =0, for oy <Re(z) < Xy.

[Im(z)| —+o0
Remark 4.8.8. We recall that in the case of causal signals, by (4.3.1) we also have

Re(gIB+OOB[f](Z) - Re(z%IBJrooﬁ[f](Z) =0

However, if f is not causal, then this property in general fails. See Example 4.8.10 below for a
counterexample.

Finally, with a proof similar to that of Theorem 4.3.4, one can prove

Theorem 4.8.9. Let f be an L—transformable signal. Its bilateral Laplace transform B[f] is a
holomorphic function on the strip

{z€C : or <Re(z) <Xy}

Moreover, the function t — t f(t) is still L—transformable with the same abscissae of convergence
and we have

d
dz
Example 4.8.10 (Bilateral Laplace transform of the rectangle). The rectangular function f(t) =
rect(t) is L—transformable, with

(4.8.2) Blfl(z) = =Bt f](2), for oy < Re(z) < Xy.

of = —00 and Y = +o0.
Indeed, for every o € R and every 8 € R we have

+o0 1/2
/ e ! rect(t)| dt = / e tdt < +oo
0 0
and

0 0
/ e Plirect(t)| dt = / e Pldt < 4o0.
o ~1/2

Its bilateral Laplace transform is the entire function given by

_ 1/2 z _z
ezt}/ e e 5

Blrect](z) = /_%

1
2

e Ftdt = {—
I z

Observe that z = 0 is a removable singularity, thus the function is truly holomorphic on the whole

C.

Example 4.8.11. The function f(t) = e~ is L—transformable, with
or=-1 and =1

Indeed, for every o > —1 we have

+oo +oo
/ e f(t)dt = / e e tdt =
0 0

< 400,
a+1
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and for every 5 < 1
0 0 1
/ e_ﬁtf(t)dt:/ e Pleldt = —— < +o0.
For every z € C with —1 < Re(z) < 1, the bilateral Laplace transform is given by

+o0 0
:/ —zt —t dt—|—/ e—zt tdt
0 —00

—(z41)¢ o~ (z=1)t70
_{ T2+ 1 0 +{_ z—1 }Oo
1 2

z+1 21 221

Once we defined the bilateral Laplace transform, we can define the so-called Mellin transform.
This is again well-defined for causal signals.

Definition 4.8.12. Let f : R — C be a causal signal. We say that f is M —transformable if the
function

g(t)=f(e™"), teR,
is L—transformable, i.e. (see Definition 4.8.3) if there exist a < 5 € R such that

+00 0
/ e~ f(e™)|dt < +o00 and / e Pt f(e™)| dt < 4oo0.
0 —o0

In this case, we define its Mellin transform by

+00
M([f](2) := Blg](z) = / e *t fle™h) dt, z € C such that « < Re(z) < .

—0o0

Remark 4.8.13 (Another form of the Mellin transform). We observe that if f is M —transformable,
by making the change of variable

e ==z i.e. t =—loguz,

we can also write

+o0 oo x
M[f](z):/ e_”f(e_t)dt:/o ¢ lozw p(p) I

oo x
+0o0
- [T
0

2
400
= / 2*71 f(z) dz, z € C such that a < Re(z) < g.
0
Example 4.8.14. The causal signal

f(t) =rect(t —1/2) = {

is M —transformable. Indeed, we observe that

1, ifo<t<1,
0, otherwise,

)

e LIy 1, ift>o0,
9(t) = fle >_reCt<e 2)‘{0, if t < 0.

In other words, we have
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i.e. it coincides with the Heaviside function. By definition, we thus obtain
Mirect(- — 1/2))(z) = BIH](z) = LIH)(z) = -,

where we used that the bilateral Laplace transform coincides with the Laplace transform for a
causal signal and Example 4.1.5. By using the alternative expression for the Mellin transform

+oo
Mf](2) = /0 w1 f(z) de,

the computations above imply that

1

1

/ e* tdr = —, for Re(z) > 0.
0 z

Example 4.8.15 (The Gamma function). We consider the causal signal
ft)=e " H(t).

This function is M —transformable, since the function
t

g(t) = fle™) =",
is L—transformable, with
o4=0 and Yy = +oo.

Let us prove this assertion: for every a > 0, we have

+oo +00 . +oo 1
/ e g(t)dt = / e e dt < / e dt = — < 0.
0 0 0 o

This shows also that o4 = 0. On the other hand, for every 8 > 0, we have

0 0
/ e Plg(t)dt = / e~ Bt gt < 400,

thanks to the fact that

e~ (Btte™) = o(e_tQ) for t - —o0,
and the last function is summable on (—oo,0]. This is true for every 8 > 0, thus this also shows
that X5 = +00. We can then define the Mellin transform of f, by

+oo
M[f](z) = / t*~te tat, for z € C with Re(z) > 0.
0

This function of the complex variable z is called Gamma function. We observe that the restriction
of M[f] to N\ {0} has the following properties:

o« MIfI(D) :/O+ooe_tdt: 1

e the recursive formula for n > 1

+0oo
/\/l[f](n+1):/ et dt
0
+o0
— [—t”e—t]+°°+n/ et gt
0 0

=n /OJroot"l e tdt = n M[f](n).
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The previous relations imply that
M) =1, MA@ =1, MIB) =2 MIfI(4)=2-3=6
and so on....in other words we obtained the following remarkable relation
M(f](n) = (n—1), for every n € N.

For this reason, the Gamma function can be seen as an extension of the factorial function.

9. Exercises

Exercise 4.9.1. Let w > 0, show that the Laplace transform of the causal signal cos(wt) H(t) is
given by
z

Llcos(wt) H|(z) = Fo—

Re(z) > 0.

Solution. We recall that
eiwt + efiwt

cos(wt) = 5 ,
thus from (4.4.2) with a = iw we get
1 - .
Llcos(wt) H](z) = 3 {E[eZ“tH}(z) + Lle™!t H}(z)}
1 { 1 1 } z
== - R 0
2 z—iw+z+iw 22 + w?’ e(z) >0,
as desired. ]

Exercise 4.9.2. Let w > 0, show that the Laplace transform of the causal signal sin(wt) H(t) is
given by
(4.9.1) Llsin(wt) H](2) d

= m, Re(z) > 0.

Solution. This is very similar to the previous one. We recall that
eiwt _ e—iwt
sin(wt) = —————,
in(wt) 5
thus from (4.4.2) with a = iw we get

Llsin(wt) H](z) = i {E[ei“t H](z) — Lle™ ! H](z)}

21
1 { 1 1 } w
= — — = , R > 0,
27 lz—dw z4+iw 22 + w? o(2)
as desired. 0

Exercise 4.9.3 (A positively periodic signal). Let us consider the following positively periodic
causal signal (sawtooth wave?)

SW(t) = i(t — k) [H(t— k)= H(t -k —1)],
k=0

see Figure 1. Compute its Laplace transform.

44Onda a dente di sega” in italian.
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/

Figure 1. The graph of the sawtooth wave

Solution. Observe that the period of this signal is 7' = 1. Also notice that SW € L([0,1]), thus
by appealing to Lemma 4.4.7, we obtain that SW is L—transformable. Moreover, ogy = 0 thanks
to Proposition 4.4.8.

From formula (4.4.6), we get

:l—e_z

1
LISW](2) ! / e *ltdt, for Re(z) > 0.
0

We compute the last integral: by using an integration by parts

1 —zt 1 1 —=zt
e e
/ e Flidt = {— t} +/ dt
0 z 0 0o <

_ _ 1
e z N |: e zt}
- T2
z z 0
e 1 e

= — —_ - — for R > 0.
. —I—Z2 2 or Re(z)

After some elementary manipulations, we thus get

E[f](Z)Z%— ! =€Z7Z71 ! for Re(z) > 0.

22 z(e#—1) 22 er —1’

This concludes the exercise. O

Exercise 4.9.4. Solve the following intial value problem for the linear ordinary differential equation
of second order with constant coefficients

y'(t)+4y' () +3yt) = 0, t>0
y(0) = 3,
y(0) =1

Solution. Observe that this is a homogeneous equation. Let us introduce the characteristic poly-
nomial

Per(z) = 22+ 42+ 3.
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By passing to the Laplace transform, from formula (4.6.4) we find the Laplace transform of the

solution
a1y(0) +az (y(0) 2 +4'(0))  32+13

Llyl(z) = Pear(2) 2244243
We now compute the partial fraction decomposition of the last rational function: observe that
N 3z+13
224+4z+3

has two simple poles, in correspondence of
z1=—3 and z9 = —1.

We thus seek for two coefficients A, B € C such that
32+13 A B
2+4z+3 z+3 + z+1
By recalling Corollary 1.11.8, we have

3z+13 3z+13
Azres(m,—>:—2 and B:res(m,—):&
Thus we have 5 .
Llyl(z) = ~ 13 + P Re(z) > —1.
This finally gives
y(t) = —2e 2 +5e", >0,
thanks to Proposition 4.5.3. (]

Exercise 4.9.5. Solve the following initial value problem for the linear ordinary differential equa-
tion of second order with constant coefficients

y'(t)+2y'(t) +5y(t) = 0, t>0
y(0) = 2,
y'(0) = —4

Solution. Again, this is a homogeneous equation. Let us introduce the characteristic polynomial
Per(2) =22 +22+5.

By passing to the Laplace transform, from formula (4.6.4) we find the Laplace transform of the
solution

a1y(0) + az (y(0) = + ¢/ (0)) 2z
Llyl(z) = = — :
Pcar(z) 24+22+5
We have to compute the partial fraction decomposition of the last rational function. The function
2z
F(z) = 5——F——
) 224+22+5

has two simple poles, in correspondence of
z1=—1—214 and z9 = —1+2i.
We thus seek for two coefficients A, B € C such that
2z A B
F(z) = — = -+ -
z¢+2z+5 z+1+4+27 z41-21
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By using Corollary 1.11.8, we get

Y .
A=res(F,z) = S +,Z:1—£,
z1+1 21 2

and
Z2 —1421 )
ves(Fyz2) = =5 23 3

Finally, we obtain

; 1 i 1
qy](z)_(l_§> z+1+2¢+(1+§) c+1-20

which gives

y(t) = (1 — %) etem2it ¢ (1 + %) ettt >0,

thanks to Proposition 4.5.3. Observe that we can rewrite the solution in a different fashion as

o[ i 2ae e
y(t)=e" |e +e —l—zf

=et [2 cos(2t) — sin(2 t)}, t>0,
concluding the exercise. ([

Exercise 4.9.6. Solve the following initial value problem for the linear ordinary differential equa-
tion of second order with constant coefficients

y'(t)+y(t) = R@E), t>0
y(0) = 0,
y'(0) = 0.

where as above t — R(t) =t H(t) is the unitary ramp function.

Solution. As always, let us introduce the characteristic polynomial
Peor(2) = 22+ 1.

Observe that this is a non-homogeneous equation (due to the presence of the source term R), but
with homogeneous initial conditions. Thus we already know from formula (4.6.5) that the solution
can be written in the form

y(t) =Y = R(t), t>0,
where Y is the causal signal such that

1 1

YD) = iy = my T

for Re(z) > 0.

We recognize that the right-hand side is the Laplace transform of the causal signal ¢ — sint H(t),
thanks to Exercise 4.9.2. Thus we obtain Y (¢) = sint H(t) and

t t
y(t)—Y*R(t)—/(t—s) sinsds—t—/ cos(t — s) ds
0 0
=t —sint, for t > 0,

thus concluding the exercise. O
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Exercise 4.9.7. Solve the following intial value problem for the linear ordinary differential equation
of second order with constant coefficients

y'(t)+y(t) = R@E), t>0
y(0) = 1,
y'(0) = -1

where as above t — R(t) =t H(t) is the unitary ramp function.

Solution. As always, let us introduce the characteristic polynomial
Peor(2) = 22+ 1.

Observe that now we are in the general situation faced in Section 6. We thus decompose the
problem in the two problems

y't)+yt) = 0, t>0
y(0) = 1,
y'(0) = —1,
and
y'(t)+y(t) = R(t), t>0
y(0) = 0,
y'(0) = 0.

The seeked solution of the initial problem will be the sum of ypom (solving the first one) and yy
(solving the second one). We observe that ys has already been computed in the previous exercise.
In order to find the solution ypom, we cans use the Laplace transform and obtain from (4.6.4)

a1y(0) +az (y(0) 2 +4'(0))  z—1
Pear(2) 22417

L[Ynom](2) = for Re(z) > 0.

We could now proceed to compute the partial fraction decomposition of the right-hand side. Oth-
erwise, we can recognize directly that

z—1 z 1 .
Srl 21 2l Lcost H|(z) — L[sint H|(z),

thanks to Execises 4.9.1 and 4.9.2. We thus get

Yhom (t) = cost — sint, for t > 0,

and finally
Y(t) = Ynom + yy(t) = cost — 2 sint + ¢, for t > 0,

thus concluding the exercise. O

Exercise 4.9.8. Solve the following initial value problem for the linear ordinary differential equa-
tion of third order with constant coefficients

y"'(t) = 3y'(t) + 2y(t

)
(0)
y'(0) =
(0)

= ¢t t>0

coon
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Solution. The characteristic polynomial is given by
Pear(2) = 22 —3z+2.

This is a non-homogeneous equation (due to the presence of the source term e'), but with homo-
geneous initial conditions. By formula (4.6.5), we know that the solution can be written as

y(t) =Y xe',  t>0,

where Y is the impulse response, i.e. the causal signal such that

1 1
Pear(2) 23 —-32+2

We observe that
B —3242=(2-1)%(2+2),

thus we have
1

(z—1)2(z+2)

In order to find Y, we need to perfom a partial fraction decomposition, i.e. we need to find
A, B,C € C such that

LIY](z) =

1 A B C
MO =Ty "1 e Ty

Observe that we have a multiple pole, thus we need to use the general formula of Theorem 1.11.7.
We thus get

d 1 1

res((z_1)2(2+2), ) dez 2 9’

1

1
(z—1)2(2+2)’1> 3

B :res<(z— 1)

and

CZY@S((Z_1);(2+2)’_2> =5

We used Proposition 1.10.11 in order to compute the residues above. We thus obtained

1 1 1 1 1

1
M =5+ 3o Y5 T

This implies that

1 1 1
Y(t) = (—§et + gtet + §e*2t> H(t).

Finally, we solution is given by

1

1 t t 1 t
y(t) =Y et = ~3 / e el ds + 3 / sefet % ds + g / e 25 et 5 ds.
0 0 0

The previous integrals can be easily computed, we leave the details to the reader. O
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10. Advanced exercises

Exercise 4.10.1. Let a € C be such that Re(a) > 0. Compute the bilateral Laplace transform of
the signal f : R — C defined by
e 4t fort>0,
1) = { et fort<O.
Solution. We first observe that f is L—transformable, since
e fe LY(R,), for every oo > —Re(a),
and
e Ptfe LYRy), for every 8 < Re(a).
This also shows that
or = —Re(a) and Y = Re(a).

We now compute the bilateral Laplace transform. For every z € C with —Re(a) < Re(z) < Re(a),
we have

B[f](z)_/R€th(t>dt—/o+ooe(Z+a)tdt+/0 e*(zfa)tdt

67(z+a)t M ef(zfa)t 0
= lim |————| 4+ lim {—}
M —+00 z+a 0 M——oc0 zZ=a |
1 1 2a
Cz4a z—a a?—2z2
Observe that we used that
6—(z+a) M
lim — =0, for Re(z) > —Re(a),
M —+o00 zZ4+a
and
e—(z—a) M
lim —— =0, for Re(z) < Re(a).
M——oc0 zZ—a
This concludes the exercise. ([

Exercise 4.10.2. Show that the causal signal
F(t) = (sinct) H(1),

is L—transformable and compute its Laplace transform.

Solution. We have already seen that sinc € LP(R) for every 1 < p < oo, see Example 3.3.15. Thus
f is L—transformable by Proposition 4.2.5 and we have

or <0.

In order to compute L[f], we introduce the causal signal

o) = % sin(7) H(t).

Then by recalling the definition of the cardinal sinus, we get

g(t) =t f(1).
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By Theorem 4.3.4, we have that g is L—transformable, as well. Moreover, o4 = oy and

Llolz) = L[t f(2) =~ Ll7(), for Re(2) > oy,

On the other hand, we can use Exercise 4.9.2 to compute L[g]: by using formula (4.9.1) with w = 7,

we find
1 s 1

Llg)(z) = s s for Re(z) > 04 = 0.
This shows that oy = 04y = 0 and that
d 1
aﬁ[f](Z) = —m, fOI' Re(Z) > O

We now introduce the function .
F(z) = —= Arctan (i> ,
T

T
where Arctan is the function of Exercise 1.13.2, and observe that
1
Fl(2) = ————.
(2) 22 + 72

This shows that L[f] — F has derivative constantly equals to 0, on the connected set {z € C :
Re(z) > 0}. Thus there exists a constant C' € C such that

L[fl(z) =F(z)+C = —% Arctan (%) +C.

It is only left to compute the constant C: we take the limit as Re(z) — 400 in the previous identity.
By using Theorem 4.3.1, we obtain

0= lim 1 Arctan (E) +C, that is C= Ilim lArc‘can (i) = %
0 T

N Re(z)—+o00 T Re(z)—+oo T

In the last computation we used that Arctan has the explicit expression

1 1412 1—2
Arctan(w):§Arg(1i—23)+ilog ‘1+ZZ, for w e C\ {—1, i}.
In conclusion, we get
1 1
LUf(z) = F(z) + C = 5 — — Arctan (%) .
This concludes the exercise. U

o~

Exercise 4.10.3. Compute the Fourier coefficients {f(k)}rez of the sawtooh wave.

Solution. We already observed that the sawtooth wave is T'—positively periodic, with T'= 1. We
set

ef—z-1
F(z)=L =5
() = L) = Fr—y
then we want to use formula (4.4.7) with 7' = 1, to infer that
F(k) = res(F, z1), where 2z, =27k, kel
For k = 0, we have 25 = 0 and thus
22 9
ef—z—1 o ef—z—1 5 to(z%)

f(O):res(F,O):ll_r)r(l)z%(ez_l) = 2(e” — 1) :Z%m

where we used the second order Taylor expansion of the exponential.
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-0,25

Figure 2. The sawtooth wave (in black) and the first 30 terms of its Fourier series (in red).

For k # 0, we can observe that the function F' can be written as

h(z) ) ef—z—1 1
F(z) = 7)) with h(z) = — and ¢g(z) = 1
We can then compute the residue at z; by using Corollary 1.10.13 and get
SN _ h(z) e -z —1
f(k) - res(F, Zk) - g/(zk) - Z]% e
If we now recall that e* = 1, we finally obtain
~ 1 — Rk — 1 1 1 Z
1 (k) z%l 2k 2nki 27k \ {0}
This concludes the exercise. O

Exercise 4.10.4. Find a causal signal y solving the Volterra integral equation of the second kind

y(t) = £() + / K(t—s)y(s)ds, >0,

where
ft)y=te P H(t), K(t)=e " H(t).

Solution. The equation can be rewritten as

y(t) = f(t) + K xy(t), t=0,

and f and K are both L—transformable, with oy = ox = —1, thanks to (4.4.3). By taking the
Laplace transform, the previous equation becomes

Llyl(2) = L[f1(2) + LIK](2) LIy](z),  for Re(z) > —1.
This gives
(1 — E[K](z)) Lly|(z) = L[f](=), for Re(z) > —1.
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We now observe that
£1A)() = Llt e H(z) = o Lfe™ ]
a1
odzz+1 (241)%

where we used Theorem 4.3.4 in the first equality and Proposition 4.4.3 in the second one. Similarly,
we compute

for Re(z) > —1,

1
LIK](z) = Lle " H](2) = Pt for Re(z) > —1,
and observe that L[K](z) # 1 for Re(z) > 0. By confining our analysis to this half-plane, we thus

obtain

L[f1(z) 1 1
Llyl(z) = =
=TT (zl—i— I Re(z) > 0.

We can use the partial fractional decomposition of the last term: in this case, this is particularly

simple since we have
1 1 1

z(z+1) TS
The last two terms are two known Laplace transforms, indeed

1 1
2 = L[H](z) and P

z# 0 and z # —1.

= Lle' H](2).
Thus we get the solution
y(t) = H(t) — e H(t), teR.

concluding the exercise. We can easily verify that this causal signal is indeed a solution of the
initial Volterra equation (check it!). O






Chapter 5

The Fourier Transform

1. Fourier transform of L' functions

Definition 5.1.1. Let f € L'(R) be a complex-valued function, we define its Fourier transform
by
FIf](w) = / it F)dt, weR.
R
The definition is well-posed, since for every w € R we have
e F@)] = e ] [F ()] = 1£ ()] € L} (R),

where we used that

‘e—itw‘ — 1’

thanks to (1.5.3).

Remark 5.1.2 (Relation with the Laplace transform). To every function f € L!(R) we can
associate two L—transformable causal signals: these are given by

fo(t) = f(t) H(t), teR (forward signal),
and
f(t) = f(—t) H(t), teR (backward signal).
Observe that by construction we have
f(t) =)+ f(—1), for every ¢t € R.

They are both in L'(Ry), thus by Lemma 4.2.5 they are L—transformable with oy o7 < 0.
Moreover, the L' hypothesis entails that their Laplace transforms

z = L[f5](2) and z = L[f](2),

can be extended up to the imaginary axis {z € C : Re(z) = 0}, still by Proposition 4.2.5. We can
thus consider

clp-iw) = | et fma, weRr

145
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and oo
Clf(iw) :/ it F(—tdt,  weR.
0

Finally, we observe that with a simple change of variables

—+o00 ) —+o00o )
QAW@+EMK%@=Z;eﬂ”ﬂ®ﬁ+A e f(—t)dt

oo 0 )
:/ amwwﬁ+/ eI f(s) ds = FIf](w).
0

—0o0

This gives the relation between the two transforms.

Remark 5.1.3 (Relation with the bilateral Laplace transform). If f € L*(R) is L—trasformable
with bilateral Laplace transform

B[f](z):/+ooe_2tf(t)dt and o <0< Xy,

—0o0

then the relation with the Fourier transform is more direct. Indeed, we just have

Flfw) = B[f(iw),

i.e. F[f] coincides with the restriction of the bilateral Laplace transform to the imaginary axis.

Example 5.1.4 (Fourier Transform of the rectangular function). We recall that the rectangular

function is defined by
. 11
rect(t) = { L ifte {_5’ 2

9

0, otherwise.

This is an L' (R) function, thus we can define its Fourier transform. Observe that rect is L—transformable,
as seen in Example 4.8.10, with abscissae of convergence given by

Orect = —0O0 and Yrect = +00.

Its bilateral Laplace transform is given by the entire function

§ e
Blrect](z) = e-e’
z
By taking the restriction of this function to z = iw, we get
. eiTw — e_%d
Flrect](w) = Blrect](iw) = ,
Tw
By recalling that
6119 . e—iﬂ
- = sin 1, ¥ € R,
21
we get
n (5)
S1n 5
Flrect)(w) = —5—.
2

By recalling the definition of the cardinal sine function

sin(mw) .
sincw = { .,  Hw#0,

W
1, fw=0,
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we can also rewrite the previous formula as

(5.1.1) Flrect](w) = sinc (%) .
Example 5.1.5. The Fourier transform of the function f(t) = e~ !l is given by
2
Flflw) = 1+w2

Indeed, we recall that the function f(t) = e~ !l is L—transformable and its bilateral Laplace trans-
form is given by

Blf](2) = ——%— for —1 < Re(z) <1,

see Example 4.8.11. Thus by Remark 5.1.3 we get

FIf)w) = Blf](iw) = —— 2

“w -1 w241

2. Properties of the Fourier transform

Theorem 5.2.1. Let f € L'(R) be a complez-valued function. Then its Fourier transform F|f] is
a bounded and continuous function on R. Moreover, we have

(:21) A <l
L>(R)
and
(5.2.2) lim ‘]—"[f] (w)‘ =0 (Riemann-Lebesgue Lemma).

|w|—o0

Proof. We start by proving (5.2.1). By definition and properties of the Lebesgue integral, we have

Fie) = | [ s < [ | ) a= [ i)

where we used again that |e=?!“| = 1 for every ¢,w € R. Since the previous estimate is valid for

every w € R, we thus obtain
< [ 1rwla,
L>(R) R

|71

as desired.

Let us now prove that w — F[f](w) is a continuous function. We fix wg € R, we need to prove that

FIAw) = Flf(wo)

By definition and elementary properties of the Lebesgue integral, we have

FIf)(w) - FIf)(w) /R e F(1) dt — /R et (0 ar
= /R(e_““—e_“”()) f(t)dt‘
< /R et — et (o) d.

lim =0.
w—rwQ
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We now observe that
lim —itw e tTwWo
w—rwQ

e

=0,

thus in order to conclude we want to pass the limit under the integral sign. By noticing that

FO1 < (el + le7=<0)) 1£ ()] = 2| f ()] € L'(R),

we can invoke the Lebesgue Dominated Convergence Theorem and conclude.

—ttw —iTw
—e 0

e

We now prove (5.2.2). We notice that the proof is exactly the same as in the case of Laplace
transform, see Theorem 4.3.1. We start by observing that for w € R we have

FIfw) = = [ e pe) .
since e '™ = —1. Then if w # 0 we have

Fifw) = = [ e peyae = - [ 0D sy

-
R w
On the other hand, by definition of Fourier transform
Fiflw) = [ e soyat
By summing up the two previous identities and dividing by 2, we thus obtain
1 ivw ™
A =5 [ (1w -1 (v-T)] an
R w
By taking the modulus, we get
1 T 1
Fie)| <5 [ |1 -1(s=5)| dy= 310 =T 2l
R w 2 w

where we used the usual notation 7, f(t) = f(t + h) for translations. We conclude by using the
continuity of the L' norm with respect to translations (see Proposition 3.4.5) and the fact that
7 /w converges to 0, as |w| goes to +oo. O

Remark 5.2.2. From Theorem 5.2.1 we can infer that if f € L!'(R), then F[f](w) is indeed
uniformly continuous on R. We do not insist on this point.

Proposition 5.2.3 (Higher regularity of the transform). Let f € LY(R) be such that the function
t >t f(t) is in LY(R) as well. Then the Fourier transform F[f] is a C*(R) function and we have

(5.2 = FUfw) = —i Flt flw)

Moreover we have
d N 1 -
TFNEI®®)  ad  dm | FIA (w)’ 0.

Proof. We first observe that since t + t f(¢) is in L!(R), we already know from Theorem 5.2.1
that Ft f] is continuous, bounded and converges to 0 as |w| — +o00. Thus it is sufficient to show
that F[f] is derivable and that formula (5.2.3) holds.
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We start by observing that

. Flflw+h) = Flflw) . A P
(5.2.4) }lg% Y = flLli)l}) A . e f(t)dt,
and since
—ith _ 1
lim —— = —it
h—0 h ’

in order to conclude we just need the take the limit under the integral sign. We observe that
leith — 1| = \/(cos(t h) —1)2 4 sin®(t h)
= /22 cos(th)
sin (@)
2

=V/24/1 —cos(th) =2

I

thus we get

where we used the well-known trigonometric facts

sin® (%) =1-—cosa and

o'

Thus for the function under the integral sign in (5.2.4), we have

—ith
-1

h

(&

B <N, teR.

The last function is in L' by assumption and does not depend on h, thus we can apply the Lebesgue
Dominated Convergence Theorem and get

%IL% f[f](w_‘_h})L_‘F[f](w) — 4 /Rte—itw f(t) dt,

as desired. 0

Corollary 5.2.4. Let f € L'(R) be such that the function t — t" f(t) is in L*(R) as well, for some
n € N\ {0}. Then the Fourier transform F[f] is a C"(R) function and we have

dk .
w]:[f](w):(—%)kf[tkf](w), k=1,....,n.
Moreover for every k =1,...,n we have
dk ) dk

Remark 5.2.5. The hypothesis “t — t* f(t) is in L'(R)” holds true if f is such that

lim |t“ f(t)| < +o0, for some a > n + 1.
[t|—=+o0

Thus from the previous result we could say that “the faster the signal decays at infinity, the more
reqular its Fourier transform is”.
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Proposition 5.2.6. Let f € LY(R), then:
e if f is real-valued and even, then F[f] is real-valued and even;

o if f is real-valued and odd, then F|[f] is purely imaginary and odd.

Proof. Let us suppose that f is real-valued and even, i.e. f(—t) = f(t) for every t € R. Then
with a simple change of variable we get

+o0 0
Im (F[f](w)) = —/Rsin(tw) f(t)dt = —/0 sin(tw) f(t)dt —/ sin(tw) f(t) dt

—00

+o0 oo

= —/ sin(tw) f(t) dt —/ sin(—sw) f(—s)ds
0 0
+o0 oo

= —/ sin(tw) f(t) dt —i—/ sin(sw) f(s)ds =0,
0 0

where we used the fact that f is even, while the sinus is odd. This shows that F[f] is real-valued.
Moreover, it is an even function since

Flfi-w) = [ e pode= [ e -sds= [ e fis)ds.

R R R
In the case f is real-valued and odd the proof is similar, it is left to the reader as an exercise. [J

3. Remarkable formulas

The following properties of the Fourier transform are analogous to the ones for the Laplace trans-
form.

Proposition 5.3.1 (Linearity). Let f,g € L*(R), then for every ci,co € C the function c1 f +cag
is in L' and

(5.3.1) Flev f +eagl = a1 FIf] + ca Flgl.
Proof. This is an easy consequence of the linearity of the Lebesgue integral. ([

Proposition 5.3.2 (Dilations). Let f € L'(R) and A > 0. We set fy(x) = f(\x), then we get

Flile) = 3 F111 (%)

Proof. It is sufficient to use the definition and a change of variables, we have

FIplew) = [ s ae =5 [ pwersay

This concludes the proof. O
Proposition 5.3.3 (Translations). Let f € L'(R) and h € R. We set Tof(t) = f(t + h), then we
get

FlTuflw) = " Flf](w).
Proof. We use the change of variable z + h = y, so to get
FITfl(w) = / (4 h) et dt — / £y et 61 gy,
R R

which concludes the proof. O
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It may be useful to state explicitely a formula for the composition of dilations and translations.

Corollary 5.3.4 (Dilations & translations). Let f € L'(R), A > 0 and h € R. Then for the
function t — fyp(t) = f(At+ h) we have

TS

eiw

Flhalw) = == F111(%5).

Proof. It is sufficient to observe that
h
f@t+h):f(k<t+x)>:(T%0A@L

thus from the previous formulas we get

Fltsalt) = L Fm (2) = 2 Fip (2).

Alternatively, we can prove the formula directly, by using a simple change of variables

ﬂhﬂ@ﬁz/kiwf@pwnﬁz/

- s—h dS
et X Y f(s)—
A . (5)

- h
6ZXDJ

- /Re % f(s) ds,

which gives the desired formula. O

Proposition 5.3.5 (Phase multiplication). Let f € L'(R) and wg € R. Then the function t
e'two £(t) is in LY(R) and
Fle'* 0 fl(w) = FIf)(w — wo).

Proof. By using the definition we have

J,—_-[eitwo f](w) _ / e—itweitwo f(t) dt = / e—it(w—wo) f(t) dt,

R R
which proves the formula. O

Proposition 5.3.6 (Fourier transform of the derivative). Let f € L'(R) N C°(R) be a continu-
ous summable function. Let us assume that f’ is piecewise continuous, with f’ having only jump
discontinuities at {xo,...,zN,...} CR and

|zj — x| >0 >0, for every j # k.
Let us suppose that f' is in L'(R). Then we have the formula
(5.3.2) Flf'l(w) = iw F[f](w).

In particular, we get

(5.3.3) 1m‘wfm@ﬂ—o

|w|—00

Proof. We first observe that (5.3.3) is a plain consequence of (5.3.2) and the Riemann-Lebesgue
Lemma applied to f’, which is in L'(R) by assumption. Indeed, we would have

lim ‘w]—"[f](w)

|w|—o00

— lim ﬂﬂ@ﬂ:&

|w|—00
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Let us prove formula (5.3.2) under the stronger assumption that f’ is continuous on R. The general
case can be handled as we did in the analogous case for the Laplace transform, we leave the details
as an interesting exercise for the reader.

In this case, we observe that by basic calculus

£(t) — £(0) = /0 £'(s) ds,

and since we are assuming f’ € L'(R), then the limit

t
. /
tllgloo/o f (S) dS,
exists and is finite. By using the identity above, this implies that the limit

lim f(¢t),

t—+00

exists and is finite. Since f € L!(R), this limit is 0 by Lemma 3.3.12. With a similar argument, we
also get

lim f(t) =0.

t——o0

We now observe that by using an integration by parts

FIFlw) = Jim [ e peyde = i [e () = P (D)
L
. : —itw
+iw L1—1>I}—loo . e ft)dt

= lim [T hf(L) — e f(-L))
+iwFIfl(w),

and this gives the desired conclusion, since we proved above that

L1_1>I_I'_100 [e—iLw f(L) _ 6iLu.) f(*L)} —0.

This concludes the proof in the case that f’ is continuous. O

Corollary 5.3.7. Let f € L'(R) N C"D(R) be such that f',..., f™ 1 € LY(R). Let us suppose
that £~V verifies the hypothesis of Proposition 5.3.6. Then we have the formula for k =1,...,n

(5.3.4) FIf®(w) = (w)* FIfl(w), weR.

In particular, we get

(5.3.5) hm'wwﬂﬂ@ﬂ_u

|w|—o00

Remark 5.3.8. The previous result can be summarized by saying that “the more regular the signal
f is, the faster the Fourier transform decays at infinity”. This is the converse of Remark 5.2.5.

Proposition 5.3.9 (Fourier transform of a convolution). Let f,g € L'(R), then we have

Flf + gl(w) = FIfl(w) Flgl(w)-
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Proof. We already know that f*g € L'(R), thus we can compute the Fourier transform. We have

(5.3.6) FIf * g)(w / /ft— )e‘““’dt.

We now observe that for every w € R the function
(ty) = f(t—y)gly)e ",
is summable over R x R, since

f(t=y) g(y) e I < |fE=y)llg)l,
and the function (¢,y) — |f(t — y)| |g(y)| is positive and such that:

e for a.e. y € R the function t — |f(t — y)| |g(y)| is summable on R;
e the function y — [ |f(t —y)||g(y)|dt is summable on R.
By applying Tonelli’s Theorem, we thus obtain summability of

(ty) = |f(E=y)llg(y)l
and this in turn implies summability of (¢,y) — f(t —y) g(y)e”

1tw

We can thus apply Fubini’s Theorem in (5.3.6) and exchange the order of integration, so to get
(with a simple change of variable in the second identity)

Fifsalw) = [ ([ fe=menear) gy ay
= ([ rmyeimear) gwrev=ay

— Flf)w) /R 9(y) e~V dy = Ff](w) Fla)(),

as desired. O

Example 5.3.10 (Fourier transform of the triangular function). We recall that the triangular
function is defined by

o 0, ]t >1,
tri(t) = { Lot i ] < 1.

We have already seen in Example 3.5.8 that
tri(t) = rect * rect(t).
By Proposition 5.3.9 and Example 5.1.4, we thus get
2
Flori](w) = Flrect % rect](w) = (Flrect](w))? = (smc (;)) .
T
By recalling the definition of cardinal sine function, we can also write
4
Fltri](w) = 2 sin? <%) .

Observe that this is an L! function.
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4. Inversion formula

At first, we need the following variant of the Riemann-Lebesgue Lemma above. The idea of the
proof is the same already exploited in Theorems 4.3.1 and 5.2.1

Lemma 5.4.1. Let F € L([a,b]), then we have

b b
lim F(y) sin(Ly)dy = lim F(y) cos(Ly)dy = 0.

L—+oo /g, L—+o0 [,
Proof. The proof is the same as that of (5.2.2). Let us focus on the first limit, the proof for the

second one being exactly the same. By elementary properties of the trigonometric functions, we

have
b—x .
F <s + Z) sin(L s) ds.

/ab F(y) sin(Ly)dy = _/ab F(y) sin(Ly — ) dy = _/a

S

Thus we can infer

/ab F(y) sin(Ly)dy = % [/ab F(y) sin(Ly)dy — /abf F (y + %) sin(L y) dy]
= % /ab_z {F(y) - F <y+ %)} sin(Ly) dy
- % /:z F(y) sin(Ly)dy — % /(:z F (y + %) sin(Ly) dy,

and the 3 integrals converges to 0. For the first one we have to use the continuity of translations
with respect to LP norms (see Proposition 3.4.5), since

‘/ab_z [F(y) —F<y+%)} sin(Ly) dy| < /:_z [F(y) = T3 F (9)] dy.

where we used the usual notation 7, F(t) = F(t+h). The other two integrals converge to 0 because
they are the integral of a summable function on an interval which is “squeezing” (i.e. the width of

the interval tends to 0). O
Theorem 5.4.2 (Inversion for piecewise C! signals). Let f € LY(R) be a piecewise C' function.
Let us assume that f and f' have only jump discontinuities at {to, ..., tg,...}, with

[ty —t;| >0 >0, for every k # j.

We normalize it so that

Then we have
(5.4.1) f(t) = — lim Flf])(w) et dw.
In the case F[f] € LY(R), the formula can be written directly as

10 = 5= [ FUl) et o
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Proof. Let us fix t € R, we set
f(tT) = lim f(s) and ft7) = lim f(s).
s—tt

s—t—

For every L > 0, we observe that by Fubini’s Theorem for every t € R we have!

/_LL Flf(w) et dw = /_LL (/Rf(:v) e ) 1 dao
- /R f(z) ( /_ LL e_i(x_t)wdw> dx
- [ 1@ Fligra)@-pde
=/Rf(t—y)f[1[_L,Lﬂ(—y) dy.

In the last identity we used a change of variable. We now observe that (see Remark 5.8.2)

.F[l[_LL]](—y):QL sinc —£y = 2L sinc £y , y € R,
s T

where we also used that sinc is an even function. Thus we have obtained for every t € R

(5.4.2) L[ A e ao =L [ oy sme(Ly) a
4. — w)e w = — — inc | — .
27 J_p T Jr Y T vy
In order to conclude the proof, it is sufficient to show that
: L [t . L 1,
(5.4.3) Jim 2 [ gy sine (Ly) dy =5 100,
and
1
— P +
LEIEOO - / f(t smc( ) dy f(t ).

If we are able to prove this, then (5.4.1) will follow from (5.4.2). We focus on proving (5.4.3), the
other formula is then obtained exactly in the same manner.

We recall that (see Exercise 3.7.4)

R
sincsds = lim sincsds = 1,
R R—+o00 R

and y — sincy is an even function, thus

“+00 0 1
/ sincsds:/ sincsds = —.
0 —00 2

With a change of variable, we also have

1 +oo L [te° L
— = sincsds = — sinc ( —y | dy.
2 0 T Jo T

IThe summability of the function (z,w) — f(x)e 1@~ w (needed to apply Fubini’s Theorem) can be inferred from
Tonelli’s Theorem: indeed, observe that the positive function (z,w) — |f(x) e~ (@~ «| = |f(x)| defined on R x [—L, L] is such
that

e for a.e. w € [~L, L], the function = ~ |f(z)| is summable on R (because f € L'(R))
e the function w — [ |f(z)| dz is summable on the bounded interval [—L, L] (indeed, this is a constant function).

By Tonelli’s Theorem this entails that (z,w) — |f(z)e  (*=9“| is summable and thus the same can be said for (z,w) —
flz)e i (== w a5 desired.
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Thus we can write

% /0+oof(t—y) sinc <§y) dy—%f(t_)

=z /Om[f(t —y) — f(t7)] sinc (% y) dy.

s

In order to prove (5.4.3), it is sufficient to prove that the last integral converges to 0, as L goes to
+00.
We now take T' > 1 and write

L /Om[f(t—y) —f(t’)} sinc (% y) dy

™

(5.4.4) = L /OT [f(t —y) — f(t_)] sinc (% y> dy

s

+ L /+Oo [f(t— y) — f(tf)] sinc <§y) dy =: 11 + Is.

T Jr

We have to handle carefully the two integrals Z; and Z», due to the fact that sinc ¢ L'(R) but we
only have sinc € Li. (R).

Estimate of the first integral 7,. We start with the first one: we have

T T —y) — f(t+
= [ s (Ey)ay= 1 [0 Gy 0

s

and observe that for every ¢ € R the function

ry = LU=0= 1)

is in L'([0,77]). Indeed, since f € L*(R) we have that F € L'([g,T)), for every ¢ > 0. Moreover,
when y € [0, €], we can use the mean-value Theorem? to infer existence of &, € [t — y,t] such that

F(y)] = 'f “‘y)y‘ ) ‘ 1) < max (1)

E€ft—e ]

i.e. the function F is in L°°([0,¢]) C L(]0,¢]). By using Lemma 5.4.1 we thus get

T N _
lim 7Z; = lim 1/0 J(t y)y J(t )sin(Ly)dy:O.

L—+o00 L—+oco T
Up to now, from (5.4.4) we obtained that

L /0+oo ft—y) sinc(%y) dy—;f(t_)’

s

lim
(5.4.5) L—+o0

L—+o00 L—+o00 L—+o00

2 Teorema di Lagrange, in italian.
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Estimate of the second integral 7,. In order to conclude, we need to show that the last limit
is 0. We have

] = ]ﬁ [t - s sne (£ ) dy]

+o00
<L / £t — )

™ Jr

L +0o0
sinc <y)’ dy + ‘/ f(t7) sincsds
e L
+o0

/ sinc s ds
Lp

™

1 [t _
g/T F(t— )| dy +|f(t)]

)
™

where in the last inequality we used that
L L 1 |sin(L 1
sinc(y)’:mn(y)‘_, fory>1T > 1.
Tyl ™

™
By using an integration by parts, for every L > 7 we get

™

/+oosincsds = /Jroosmws)ds’_ COS(LT)_/JFOO COSQ(TF;) ds’
LT £T m™Ss 7TLT AT T4 8
LT +oo
T LT L 71'282
T 3 —ds
_7TLT 7T2 AT 32
1 1 2
= < =
LT «LT — wL
This implies
“+o00
lim / sincsds| = 0,
L—+oo|JL
and thus
1 +oo p
li To|l < — t— )
| 2|—W/T 1f(t—y)| dy

Conclusion. By resuming everything, from (5.4.5) we obtained

L [t . (L 1, 1o [ree
| =y sine(Zu) ay=g 00y < = [ 10—l an

™

lim
L—+o00

which is valid for every 7' > 1. In order to conclude, we just have to observe that since

/If(t—y)ldy< too,
R

then we have

+oo
i [ dy=o
This finally gives
. L [t : L r, . -
Jlim /O f(t —y) sinc (;y> dy — 5 f(t )' =0,

as desired. 0
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Remark 5.4.3. Observe that (5.4.2) can also be written as

™ e

1 L itw L : L
5 Flflw)e'*®dw = f«Hp(t), where  Hp(y) = — sinc (—y) .
T J-L
Then in the previous proof we have shown that for every ty € R we have
li =
Jim fxHi(to) = f(to),
provided that f verifies the hypotheses of Theorem 5.4.2 and is continuous at tg.

Corollary 5.4.4 (Duality formula). Let f € L'(R) verify the hypotheses of Theorem 5.4.2. Let us
suppose that F[f] € L*(R), then

(5.4.6) FlFf]w) =27 f(-w), weR
Proof. From the inversion formula we know that

[ FA@ e do =27 ().
By changing the name of the variabﬂfes we get

[ PO ar = 2m o).

It is now sufficient to observe that the left-hand side coincides with the Fourier transform of F|[f],
evaluated at —w. This shows that

FIFIf)(—w) = 27 f(),

and thus concludes the proof. O
Remark 5.4.5. When F[f] ¢ L*(R) formula (5.4.6) still holds in the following form
L
lim Flflt) e "t dt = 27 f(~w), weR.
L—+o00 _L

Let us record the following more general result.

Theorem 5.4.6 (Inversion for L! signals). Let f € L'(R) be a function such that F[f] € L*(R) as
well. Then we have

f(t):% /R}"[f}(w)e”“’dw, for a.e. t € R.

Proof. Let us take g € C3°(R) a function such that [; g(t) dt = 1. For every n € N\ {0}, we define
the sequence

gn(t) =ng(nt).
By Theorem 3.5.13, we know that
(5.4.7) i lgn * f = fllrw) =0,
and g, * f € C®°(R) N LY(R). Observe that thanks to Proposition 5.3.9, we have
Flgn * fl(w) = Flgnl(w) FLf](w).
Since by assumption F[f] € L!'(R) and thanks to Proposition 5.2.1 we have F[g] € L>=(R), from

the previous identity we get
Flgn * fl € Ll(R)’
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thanks to Holder’s inequality (see Proposition 3.3.5). By smoothness of g, * f and integrability of
its Fourier transform, we thus obtain from Theorem 5.4.2

gn * [ () /}'gn*f Je'tdw,  teR.
We now observe that from (5.4.7) we can suppose to have?
nlgngogn x f(t) = f(t), for a.e. t € R,
which implies
f(t) =5 nl;ngo/ Flgn * f](w) 't duw, for a.e. t € R.

In order to conclude, we need to take the limit under the integral sign. Let us start by observing

that
w

Flow » fl(w) = Flanl(@) FIAw) = Flg) (2) FIf).

n
where we used Proposition 5.3.2 and the definition of g,. This shows that

7113{.10]:[971 s fl(w) et = Flg](0) F[f](w) et¥, for a.e. w € R.

Moreover, we can easily produce a uniform L' domination of this function: indeed

Flgn = flw) €] = | Flg) (£ < |1 Flgll ey |F LA,

Flo) (2) 7))

and the last function is L' (by assumption) and independent of n. We can thus apply Lebesgue
Dominated Convergence Theorem and obtain

f(t):]:[g](o)/}“[f](w)eitwdw, for a.e. t € R.
27 R
In order to conclude, it is only left to observe that

Flg)(0) = /R g(t)dt =1,

since g has been chosen at the beginning with this property. This concludes the proof. ([

5. Back to the Laplace transform

We already seen in Remark 5.1.2 how the Fourier transform of a signal f € L!'(R) is linked to
the Laplace transform of two causal signals obtained from f. Conversely, if f : R — C is an
L—transformable causal signal and

of = inf{oz cER:efc LI(R)} < 400,
for o > oy we can define the new causal signal

g(t) = e " f(1),

3We use the following remarkable fact: if {fn}nen C LP(R) converges in LP norm to a function f € LP(R), then there
exists a subsequence { fn, }ren such that

lim fn, (t) = f(t), for a.e. t € R.
k—o0
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and take its Fourier transform. Indeed, observe that this is in L!(R) by construction. We thus get
the relation for w € R and o > o

(5.5.1) Flol(w) = / =it o=t (1) df — / @D 1) dt = L[] (0 + i w).
0 0
We can now exploit this relation in order to prove the Inversion Formula for the Laplace transform.

Proof of Theorem 4.5.1. With the notation above, we further assume that f verifies the hy-
potheses of Theorem 4.5.1. Then the signal g(t) = e~ " f(t) verifies them, as well, and from the
Inversion Formula for the Fourier transform of Theorem 5.4.2 we get

g(t) = — hm/ et Flg|(w) dw.

2 T L—+o0

By using this in (5.5.1) and recalling the definition of g, we get
1 L

—Oét iwt .
ft) =5  tim c L{fl(a+iw) dw,

that is, multiplying both sides for e

1 L a+iw ;
f(t)—27r Ll_l)rfoo Le( HOE Lo + i w) dw
1 a+i L .
= om0, O AR
This proves Theorem 4.5.1. ([

Theorem 5.5.1 (Uncertainty principle). Let f € L'(R) be a such that there exist C,T > 0 and
a > 0 for which
|F()] < Ce It fora.e. |t|>T.

Let us suppose that f does not identically vanish. Then the set
{weR : Flfl(w) =0},
s either empty or made of isolated points.
Proof. By using Proposition 4.8.5 and Theorem 4.8.9, the function f is L—transformable and its
bilateral Laplace transform B[f] is holomorphic in the strip
{zeC: —a<Re(z) < a},

thanks to the growth assumption on f. This strip contains the imaginary axis in its interior, thus
we have

Flflw) =Blf](iw), weR.
In order to conclude, we can now use the properties of the zeros of holomorphic functions, see
Proposition 1.8.8. U

By observing that a compactly supported function satisfies the hypothesis of the previous
theorem (recall Lemma 3.7.6), we get the following

Corollary 5.5.2. Let f € LY(R) be a compactly supported function. Then its Fourier transform
F1f] can not be compactly supported, unless f identically vanishes.
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6. The Schwartz class and the Fourier transform in L?

We recall that C*°(R) is the set of functions ¢ : R — C which are differentiable infinitely many
times. The Schwartz class S is an important subset of C°°(R), which plays a major rdle in the
theory of the Fourier transform.

Definition 5.6.1. Let ¢ € C*°(R), we say that ¢ belongs to the Schwartz class S if for every
m, k € N we have

(5.6.1) [@]m & = sup
teR

W&Wﬂ<+m

In other words, a function from S is such that it and all its derivatives decay to 0 at infinity faster
than any polynomial. It is easy to verify that S is a vector space over C: if a, 5 € C and p,¢ € S,
then we have

ap+pyYeS,

as well.

The following simple result will be quite useful in order to verify that a function belongs to S.

Lemma 5.6.2. Let ¢ € C*°(R), then we have

peds — lim
[t| =400

" ) (t)‘ =0, for every n,k € N.

Proof. Let us suppose that ¢ € S, we want to show that

lim [t" o) ()| = 0, for every n,k € N.
[t| =400
For every |t| > 1 and every n,k € N, we have
1 1 1
" o) (t)‘ = 7 [ e @) < o sup e (t)‘ = 7 [Plntiie
i lt| ter i
By taking the limit as |t| goes to +o0, we get
1
lim |t"o®) ()| < lim — =0,
|| —+o0 P 0)] = [Plntn |t|—+oo |¢]

as desired.
We now prove the converse implication. We suppose that

lim  |t" ") (2)

[t| =400

=0, for every n,k € N,

we need to show that

[So]m,k = sup
teR

By hypothesis and using the definition of limit, for every € > 0 there exists M, > 0 such that

W&Ww<+m

" (k) (t)‘ <e, for every [t| > M..

On the other hand, the function t ~— [t" ¢(¥)(t)| is continuous on R, thus by the Weiestrass’ Theorem
we have

su o™ () =  max " 0" (1) < +o0.
mkﬁWJ e\ ()] H%%%H e\ (t)]



162 5. The Fourier Transform

In conclusion, we get

tm o®) (t)' < sup
[t|>M.

B[+ s 90|
te[—Me, M|

[@lm,k = sup
teR

< " o®) ()] < +o0,
6+te[32}fME]| e (t)| < +oo

as desired. 0
Example 5.6.3. We give some examples:

(1) it is not difficult to see that if ¢ € C§°(R), then ¢ € S. Indeed, by assumption, there
exists an interval [a,b] C R such that

™ ()] =0 for every t € R\ [a,b] and every k € N.

This implies that for every m, k € N, we have

[@]m.k = sup [t" go(k)(t)‘ = max |t™ go(k)(t)‘
teR te(a,b]
< max{]a|™, [b|™} max ]cp(k)(t)\ < ~o00,

t€a,b]
thanks to the Weierstrass’ Theorem;

(2) as an example of function in § not having compact support, we can take the standard

Gaussian function ¢(t) = e~t*. In order to verify that it belong to S, it is sufficient to
recall that
et = o(|t|™™), as [t| = 400, for every n € N.
In other words, we have
lim [¢|" e =0, for every n € N.

[t| =400
By using Lemma 5.6.2, we can now easily prove that et belongs to S;
(3) on the other hand, the function
1
)= ——
p(t) = 1 el

is C*°(R), but it does not belong to S. Indeed, we have

for t € R,

t3

W = +00.

[@]3,0 = sup
teR

Proposition 5.6.4. For every 1 < p < oo, we have S C LP(R).

Proof. Let ¢ € S. We first consider the case p = oco. In this case, it is sufficient to observe that
by definition

@l oo (ry = sup |@(t)| = [ploo < +oo,
teR

thus ¢ is bounded on R, i.e. ¢ € L*(R).
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We now prove that ¢ € L'(R). We have

/R\sO(t)\dtz/R(lthQ) |<p(t)|H1tht
= [ (100l + 2 100)])

+ 12
< ([¢lo,0 + [#]2,0) /Rl—l%tz

as desired. Finally, by using that ¢ € L'(R) N L>(R), we can easily prove that ¢ € LP(R) for
1 < p < 00, as well. Indeed, we have

L reopde= [ 1o@F el < lolig [ lo®ld < oo,

This concludes the proof. O

dt

dt =7 ([¢loo + [¢]2,0) < +o0,

Proposition 5.6.5. Let p € S, then we have
tpeS and o' es.
More generally, for every n,f € N, we have

t"peS and ok e s,

Proof. We observe that it is sufficient to prove the first part of the statement, the second part just
follows by iterating this result.

In order to prove the first fact, we notice that both ¢ — ¢ and ¢ — ¢(t) are C* functions, thus
their product is C* as well. We now take m € N and k € N\ {0}, by recalling that

d* N AT () (k-1)
o) =2 ) gt =100 + kD),
j=0

we get
k

)

By taking the supremum over R, we obtain

< [t @ (@) + ke oD ().

[t Qlmk < [Qlm1k + K [@lmpk—1 < +00.

As for the case k = 0, it is sufficient to observe that

[t Qlmo = Sup [t t | = [Plm+1,0 < +00.
te

We now prove the second fact. The fact that ¢’ € C°°(R) is a plain consequence of ¢ € C*(R).
Moreover, for every m, k € N we have

dk
" /(¢

This concludes the proof. O

[¢']in,k; = sup
teR

= sup " o*V(B)| = [Plms1 < +00.
teR

The class § is important for its remarkable properties with respect to the Fourier transform.
These are collected in the following result.

Theorem 5.6.6 (“Schwartz meets Fourier”). We have the following facts:
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i) for every p € S, we have Flp] € S as well;
i1) for every ¢ € S there exists 1 € S such that

o = FlY;
iii) for every o, € S we have*
1
(5.6.2) / e(t) ()" dt = P / Flp)(w) FlY])(w)* dw, (Parseval’s formula);
R T JR
iv) in particular, for every ¢ € S we have
1 2
2 _ = s

(5.6.3) lollz2m) = P Hf[(p] . (Plancherel’s formula).

Proof. We prove 7). Let ¢ € S, thanks to Proposition 5.6.5, we have
t"peS, for every n € N.

We can thus use Proposition 5.6.4 and infer that

(5.6.4) t" p € LY(R), for every n € N.

By using (5.6.4) and Corollary 5.2.4, we get that F[¢] belongs to C*°(R). In order to conclude the
proof of point i), we need to prove that
[]: [cp]} < 400,
m,n

for every n,m € N. Still by Proposition 5.6.5, this time applied to t" ¢ € S, we also obtain

dm

dtm
By applying Proposition 5.6.4, we obtain

(t"p) €S.

(5.6.5) i—m (t" ¢) € LY(R), for every n,m € N.
By using the informations (5.6.4) e (5.6.5), we thus get
W T FIRW)| = ™ ()" FlE ()
= W™ F[t" @l (w)]
= [(iw)™ FIt" o] (w)]
am }

— ("
9] ()
where in the first equality we used Corollary 5.2.4 with the choice,

f(t) =" (1),
while in the last equality we used Corollary 5.3.7 with the choice

F) = 2.

The identity above, in conjunction with the Riemann-Lebesgue Lemma, guarantees that

7]

)

dTL
lim |w™ —Flp](w)| =0, for every n,m € N.
|w|—4o0 dwn

4Recall that for a complex number z = z 4 7y, the symbol z* denotes its complex conjugate, i.e. 2* =z —1iy.



6. The Schwartz class and the Fourier transform in L2 165

This finally shows that F[y¢] € S, thanks to Lemma 5.6.2.

We now prove point 7). Let ¢ € S, we want to prove that there exists 1) € S such that F[ip] = ¢.
From the duality formula (5.4.6) we get

27 p(~w) = F| Fle]] ().
We now set
n(t) =2mp(-t) €S,
and use again the duality formula, so to get
1 1

plw) =g _n(-w) =1

FFm]w).
If we set .
Y= A2 Fnl,
we get the desired result, since n € S and thus F[n] € S thanks to the first part of the proof.

Let us prove the identity (5.6.2). By using the definition of Fourier transform and exchanging the
order of integration®, we have

| Fiel) ol do = [ Flaw ([ e euwr) d
:/R]-"[cp](w) (/Re“w(t)*@ dw
= [ ([ A e ) v

We finally observe that ¢ € S verifies the hypotheses of the Inversion Formula Theorem 5.4.2, thus
from (5.4.1) we get the desired formula.

Formula (5.6.3) is a direct consequence of (5.6.2), it is sufficient to take ¢ = ¢. O

Proposition 5.6.7. Let f € L'(R) and let ¢ € S. Then we have f*p € C°(R)N LY(R) N L®(R).
Moreover, we have
k

(5.6.6) (f p)=[fxoqe

dtk
Proof. By Proposition 5.6.4, we have ¢ € L'(R) N L>°(R). By using Proposition 3.5.4 with the
choices ¢ = p =1, we get

f*pe LY(R).
Moreover, by using Proposition 3.5.6 with p = 1, we also get
fxee L®R)NC(R).

50bserve that the positive function
= [FAe)| v
is such that
e for a.e. w € R, the function ¢ — |F[f](w)| | (t)| is summable on R (since ¢ € S C L'(R));
e the function w — [p [F[f](w)][4(t)| dt is summable on R (since F[y] € S C L}(R)).

By Tonelli’s Theorem, these entails that the function is in L! (R x R). We can thus apply Fubini’s Theorem and exchange the
order of integration.
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We are left to show that the convolution is C*°, the proof is similar to that of Proposition 3.5.11.
Let t € R, for every |h| < 1 we have

frot+h)—fxe) pt+h—y)—et—y)

f d
h h

Thanks to the regularity of ¢, we have

hm¢@+h—w—¢u—m
h—0 h

Y.

= (pl(x - y)a

in order to pass the limit under the integral sign, we need to find a domination with an L' function.
We have

. = ¢/ < 9l ey < +00,

where £ in a point belonging to interval (¢ — y,t — y + h). In the last inequality we used that

‘¢@+h—w—w@—w

16"l oo ) = [0, < 4-00.
In conclusion, for every |h| < 1 we get

ot +h—y)—p(t—1y)
h

/() < ¢ ooy | £ (y)| € L (R).

We can apply Lebesgue Dominated Convergence Theorem (Theorem 3.2.5) and obtain
ot +h) = fxop(t)
iy LA [ 1) e -y = 50

h—0 h

This shows that f * ¢ is derivable and that formula (5.6.6) holds for & = 1. Finally, by observing
that ¢’ still belongs to S by Proposition 5.6.5, we can iterate the argument and obtain the desired
result. (|

The Fourier transform of an L? function can be defined through an approximation procedure,
using the functions in §.

Theorem 5.6.8 (Fourier transform of an L? function). Let f € L?(R), then we have:

(1) there exists a sequence {fn}nen C S such that
(5.6.7) lim || f — fllr2®) = 0;

n—o0

(2) there exists F € L*(R) such that

=0.
L2(R)

The function F is called Fourier transform of f and denoted by Fr2(f];

i

(3) the function F' does not depend on the particular choice of the sequence { fy }nen;
(4) if f,g € L*(R), we have

(5.6.8) /R F(t) gty / Fralf)(w) Fralg)(w)* dw,

and

(5.6.9) / )Pt = / Fra () 2 dw.
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(5) finally, if f € LY(R) N L%(R), then

Frelflw) = Flf)w) = /R et f(1) dr.

Proof. We construct explicitely the sequence { fy}neny C S of point (1). We take ¢(t) € C5°(R)

such that
[ etwar=1.
R

on(t) = ne(nt), n € N.

and define

Then we set "

Fal®) = 0n 5 (f Limm)(8) = / onlt — 3) f(s) ds.

—n
By using Minkowski’s inequality and Young’s inequality for convolutions (see Proposition 3.5.4),
we have

£ = fllize@w) < llon * (f L—nn)) — o0 * fllo2m)
+ lon * f = fllL2m)
< flnm — fllizew) lonll o m)
+ lon * f = fllL2m)-

(5.6.10)

Observe that )
2
i 13 = Py = i, ([ | Pa)” o
>n

lonllim = [ le®ldt, for every n e,
and by Theorem 3.5.13 of Chapter 3
Jim [ln  f = fllz2@) = 0.
By using these informations in (5.6.10), we thus get
T [[fo — flrage) = 0.

It is only left to verify that f, € S. The fact that f,, € C*°(R) follows from Theorem 3.5.13 of
Chapter 3, by choosing € = 1/n. Moreover, since both ¢, and f1[_,,, have compact support, by
Lemma 3.5.15 their convolution as well has compact support. Thus we get f, € C§°(R) C S.

The proof of point (2) uses Plancherel’s formula for S and completeness of the space L?(R), i.e.
Theorem 3.4.2. Indeed, observe that {f,},en C S is a Cauchy sequence in L?(R), since we proved
in point (1) that it is converging. On the other hand, by Plancherel’s formula (5.6.3), we have for
every n,m € N

I1Ffn] = Flfmll 22y = 1F o = ful 22y = 27 [ = Fnll 22m);

which shows that also {F|[fn]}nen is a Cauchy sequence in L2(R). By using Theorem 3.4.2, there
exists F' € L?(R) such that

Jim | Ffn] = Fllp2w) =0,
ad desired.
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Let us prove point (3). Let us take another sequence {hy}nen C S such that
Jim |7y, — fllz2() = 0
By repeating the argument of point (2), we know that there exists H € L?(R) such that

=0.

lim || Flh,| — H
”—>°°H [ L2(R)

We need to prove that F' = H, where F' is the function found at point (2). By using Minkowski
inequality (Theorem 3.3.7) and Plancherel’s formula (5.6.3) for functions in S, we have

IF— Hlpw < |F-Flr)|  + \ﬂm —Fhal| | Fhal - H

L2(R) L2(R) L2(R)
—\r-F| Hf[fn AT Hf[hn] - "

L2(R) L2(R) L2(R)
—F = Fip V| £ = n Hf[hn] H

L2(R) L2(R) L2(R)
§ F_F[fn] +V27[' fn_f‘

L2(R) L2(R)
+V27 ’ By — f + H]—“[hn] - H 30,

L2(R) L2(R)

thus F' = H as desired.

We now prove Parseval’s formula for functions in L?(R), i.e. point (4). We start by observing that
since

f.g € L*(R) and F,G € L*(R),
then the two integrals

/ f)gt)*dt  and / F(w) G(w)* dw,
R R

are well-defined, thanks to Holder inequality. Let {g,}nen be the sequence of point (1) for the
function g, then we observe that

/an(t)gn(t)*dt—/Rf(t)g(t)*dt’ _

/(fn(t) — f(t) gn(t)" dt + / Ft) (gn()* — g(t)*) dt
R R

[0 = s0) ey ar

+| [ 10 a0 = 9

<|[fn = fllz2@) lgnllL2(m)
+ 122wy lgn — 9l 2wy

<

where we used Holder inequality in the last estimateS. By using that
Jim | fo = fllz2w) = lim flgn — gllz2w) =0,
6We also used that if
lim {lgn — gll L2 () = 0,

then
lgnllL2®)
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from the previous estimate we conclude

tiw | [ Aty o0y dt — [ 090 de =0,
that is
(5.6.11) lim / L) gu(t)* dt = / (1) glt)" dt.
Observe that with the very argument, we can also prove that
(5.6.12) 1Lm Flfnl(w) Flgn)(w)* dt = / F(w) G(w)" dw.

On the other, by Parseval’s formula (5.6.2) for S, we know that

w1 .
| 5 ®autey @t =5 [ Flflew) Flae)” e

By taking the limit as n goes to co on both sides and using (5.6.11) and (5.6.12), we finally get
Parseval’s formula for L? functions. We can now obtain Plancherel’s formula by simply taking

g=1r.

In order to conclude, we need to prove point (5). We observe that if f € L'(R) N L%(R), a closer
inspection of the proof of point (1) reveals that the sequence { fy, }nen is also such that

Jim [ fn = fllrr) =0,

(verify this assertion!). By recalling (5.2.1), we then get

Fipl - FA|, = |7t~ 1

) < ||fn - f||L1(R)7

Lo Loo(R

thus we obtain

= 0.
L(R)

This shows that F[f,,] converges uniformly to F[f]. In particular, for every M > 0 we get

tiw | (1] - F11

n—oo

Jim |75 - #1) ~0,

L2([—M,M])

thanks to Proposition 3.3.10, used with E = [-M, M], p = 2 and ¢ = oco. On the other hand, we
also know that

lim ’]—"[fn] _F o,
oo L2([-M,M])
thanks to point (2). By Minkowski inequality, we then get
Fif) - F < |71 - 71 +|F180 - F ,
L2([-M,M)) L2([-M,M]) L2([-M,M))

and by taking the limit as n goes to oo

H]—"[f] F 0.

L2([-M,M])

is uniformly bounded. This easily follows from Minkowski inequality, i.e.
lgnllL2@®)y < llgn — gll2@) + l9llL2(R)

and the first term on the right-hand side is converging to 0, while the second one does not depend on n.



170 5. The Fourier Transform

This shows that
F(w) = F[f](w), for a.e. w € [-M, M].

By arbitrariness of M, we get the desired conclusion. O

7. Band-limited signals and a sampling formula

Definition 5.7.1. Let f € L'(R), we say that f is a band-limited signal if there exists M > 0 such
that

Flf](w) =0, for |w| > M.
In other words, a band-limited signal is such that its Fourier transform has compact support. For
such a function, we call band limit the number

wy =inf{M >0 : F[f](w) =0, for |w| > M}.

Lemma 5.7.2 (A necessary condition for being band-limited). Let f € L'(R) be a band-limited
signal. Then we have f € C*(R) with

k
4y € L (R) and

dk
lim
dtk |t|—>+oo0

dt’ff( )| =0, for every k € N.

Proof. Let us call wy the band limit of f, then we first observe that
2wy < +o00,

wyf
/ Fw)] dw = / F ()] dw <
R —wy L= (R)

thanks to (5.2.1). Thus in particular F[f] € L*(R) and by the duality formula (5.4.6) we have

fl-w) = 5= F[FIfl| @), weR

which shows that f is the Fourier transform of a compactly supported L' function. By Corollary
5.2.4, we get the desired conclusion. O

71

Remark 5.7.3. The previous conditions are necessary but NOT sufficient. Indeed, f(t) = e~t?

verifies the properties above, but its Fourier transform is not compactly supported (see Exercise
5.8.5).

Example 5.7.4 (An example of band-limited signal). We will construct an example of band-limited
signal as follows: recall from Example 5.3.10 that

2
w
Ftri :(' (—)) L'(R).
[tri](w) = ( sinc 5 € L' (R)
We then take g(x) = Fltri](x), then by using the duality formula (5.4.6) and the fact that the
triangular function is an even function, we obtain
(5.7.1) Flgl(w) = F [Fltri]] (w) = 27 tri(w).
This shows that the signal g is band-limited with band limit wy, = 1, since tri identically vanishes
outside [—1,1].
Starting from this example, we can construct more general band-limited signal as follows: take
f € LY(R) and define the new signal

F(t) = f=g(t) /f smc y)) dy.
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Observe that this is a L'(R) function, as a convolution of two L' functions. We thus can take its
Fourier transform, by Proposition 5.3.9 we get

FIF)(w) = Flfl(w) Flgl(w) = 27 F[f}(w) tri(w),
which is again band-limited, with band limit wr < wy = 1.

Remark 5.7.5 (Low-pass filters). In signal processing, the operation of taking the convolution of
a signal f with a band-limited signal g corresponds to apply an (ideal) low-pass filter. In this case,
the band-limited signal g is also called low-pass filter.

Remark 5.7.6 (Band-pass filters). More generally, one could be interested in using a filter that
admits only frequencies in a given range [a, b]. This means that we want to take a convolution f*g,
with a filter g having the property

|Flg](w)| =0, for w ¢ [a, b].

In this case, we say that ¢ is an (ideal) band-pass filter. We observe that we can always construct
a band-pass filter starting from a low-pass filter: indeed, if h is a band-limited signal with band

limit wp, > 0, by taking
bta b—
g(t):e’b%th< at),

2wh
we obtain
b+a 2wy, 2wy, 2wy b+a
i) (- 247) - B i),
Flol(w) f|:gwh v 2 bfa]:[] bfaw b—a 2

Observe that this Fourier transform is not identically zero if and only if
2wy, 2wy b+a

w — <
“b—a b—a 2 —
With simple algebraic manipulations, this is the same as

Wh.

a<w<hbh,

thus the Fourier transform of the signal g has compact support, given by the interval [a, b]. In other
words, the new signal g is a band-pass filter.

The main result of this section is the following sampling formula. The proof exploits the theory
of Fourier series expansions in L?, for which we refer to Appendix C and the books [1, 2].

Theorem 5.7.7 (Shannon-Whittaker formula). Let f € LY(R) be a band-limited signal with band
limit wg > 0. Then for every M > wy we have the following formula

(5.7.2) ft) = ZZf (n %) sinc ((t — n%) %> , forteR.

s

In other words, the signal f can be completely reconstructed from its reqular sampling

Vi)

Proof. We first define the (2 M)—periodic extension on F|[f], i.e.
F(w)=> Flfl(w—2kM).

keZ



172 5. The Fourier Transform

The Fourier coefficients of F' are given by

—~ M o M .
(5.7.3) F(n) = 2;\4/_M F(w)e " v dw = 2];\4/_1\4 Flf)(w) e i1 ¥ du.

We already know by Theorem 5.2.1 that F|f] is bounded. Moreover, by assumption it is compactly
supported, thus in particular F[f] € L'(R). Observe that thanks to the choice of M, we have

Flfl(w) =0, forw e R\ [-M, M].

We can use the inversion formula of Theorem 5.4.6 and get
(5.7.4) 27 f(— / Flf)(w) e " dw, for a.e. t € R.
By joining (5.7.3) and (5.7.4), we get
= 7r 7
F = — <— 7) .
For every fixed t € R, we now consider the function

gie(w) = "Y1y (W),

and its (2 M)—periodic extension

Gi(w) = th(w —2kM),

keZ
whose Fourier coefficients are given by
x 1 Mo
t 2M/ Gt znﬁwdw: / 61(7n)ﬁw
n—t
2Mf[ sl ( M ”)
= sinc(t — n),

where we used Remark 5.8.2 and the fact that sinc is an even function. We now observe that by
Parseval’s formula for Fourier series (see Theorem C.2.7) we have

M
/ F(w)Gy(w)* dw=2M ZF =27 Zf( n—) sinc(t — n).

-M nez nez
On the other hand, by definition of G; we have

M M o T
/_M F(w) Ge(w)" dw = /_M Flflw)e i do =2 f (1),

where we used again the inversion formula. We thus get

( ) Zf( n—) sinc(t — n).

By changing variable k = —n in the sum, we get
f (—t %) = Z f (k‘ %) sinc(t + k).
kEZ
If we finally change variable s = —t w/M and observe that x + sincz is an even function, we get

the conclusion. O
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Figure 1. The continuous line is the graph of the band-limited signal

ft)=10 (sinc (%))2

The dotted red line represents the partial sum

F0= 32 (0 XY sine (t-n 1) )

n=-—2

in (5.7.2).

Remark 5.7.8 (Aliasing). The requirement
M > wy,

is crucial. In other words, if we take a regular sampling

Vi)

with M < wy, in general it is not possible to reconstruct the signal. Take for example the two
band-limited signals

f(t) = (sinc <;ﬂ))2 and g(t) = f(2t) = <sinc (;))2

We have seen in Example 5.7.4 that f has band limit w; = 1. Moreover, we have

Flolw) = 5 7111 (%),

thus g has band limit w, = 2. Let us now take

1
M:§<Wf<w9,

i.e. we consider the regular samplings

{f@nmie,  and  {g(2nm},cqp-

We observe that from the definition of cardinal sinus, we have for every n € Z \ {0}

f(2nm) = (sincn)? =0 = (sinc(2n))? = g(2nn),
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Figure 2. The two band-limited signals are indistinguishable if we consider the sampling corre-
sponding to the dots. In this case the crucial requirement M > wy is violated.

and also

F(0) = (sinc(0))* = g(0),
Then of course the Shannon-Whittaker formula (5.7.2) can not hold now. Observe that we can not
distinguish between the two signals f and g, just by looking at their values on the regular sampling
grid {2n7},ez (see Figure 2). This phenomenon is called aliasing in signal processing.

Remark 5.7.9 (An equivalent form of the Shannon-Whittaker formula). Let f € L'(R) be a
band-limited signal, with band limit w; > 0. In many textbooks on Signal Processing, the Fourier
transform is defined by

X(fiw) = [ 27 pe)an
The relation with our definition is thus given bﬂif
(5.7.5) X[f](w) = FIf)@27w).
If we then define the corresponding band limit as
wp =inf{M >0 : X[f](w) =0, for |w| > M},
by (5.7.5) we get the relation

G = 2
Wr=5_
This implies that the sampling step
%, for M > wy,
needed for the validity of (5.7.2) in our notation, can be read as
s 2m 1 ~ M _wp
M~ 2M  92af o or —onx

In this way, we end up with the statement of the Shannon-Whittaker formula which is commonly
stated in the textbooks, asserting that to reconstruct the signal, the sampling rate should be at least
the double of the band limit. This threshold rate is called Nyquist frequency in Signal Processing.
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Remark 5.7.10. We observe that if we set

then {e,}nez is an orthonormal family in L?(R), with respect to the standard scalar product of
L?(R), given by

o) = [ fOa0)"
Indeed, let us recall that (see Exercise 5.9.5)
Fre [Sinc] (w) - 1[—7r,7r] (W),

thus by the translation and dilation properties of the Fourier transform (Corollary 5.3.4) we have

Frelealw) = /57 €7 5% 1 (@),
We now use Parseval’s formula for the Fourier transform in L?(R) (see Theorem 5.6.8), this gives

/ =5, /f len] Fralex] do = = = /M e g
€ € = — e & w = —- — e W
& n €L 2 & L2(En| S L2(€Ck M 2n Y

1, ifn=k
10, ifn#k.

Thus from the Shannon-Whittaker formula we get in particular that if f € L'(R) N L?(R) is

band-limited, then
T T
P dr= "3 f(n )
[ irwpae= 5 50| (0
nez

i.e. the energy of the signal can be computed from the sampling.

2

)

8. Exercises

Exercise 5.8.1. Let a < b, show that the Fourier transform of the generalized rectangular function
f(t) = 11ap)(t) is given by

Flf](w) = (b—a) e~ T 1w gine (b2—wa w> )

Solution. Rather then computing it directly, we appeal to Example 5.1.4 and Corollary 5.3.4.
Indeed, we already seen (recall formula (3.6.2)) that

t—a 1
Ljq,p)(t) = rect (b— i 5)

Thus by setting

we have
Liap)(t) = rect(At + h).
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-2,5T

Figure 3. The Fourier transform of the generalized rectangular function 1j_p ), for L = 1/2
(black), L = 2 (green) and L = 4 (red).

By using Corollary 5.3.4 we get

- h
e

w w
‘F[l[a,bﬂ (w) = Frect] <X)
T bh—
=(b—a) eaiwtgtiw sinc( aw) .
27
By observing that
o b—a_ b+ta
T T e
we get the desired conclusion. O

Remark 5.8.2. In particular, by taking a = —L and b = L in the previous formula, we get
L
F 1 = 2L si (— ) ,
[ [ L,Lﬂ (w) sine { —w

see Figure 3. We recall that this is essentially the family of functions entering in the proof of the
inversion formula, see Remark 5.4.3.

Exercise 5.8.3. Compute the Fourier transform of the function

Show that this is given by
Flg)(w) = el

Solution. We could compute the Fourier transform directly, but here we prefer to take advantage
of the duality formula (5.4.6). Indeed, if we set f(t) = e~ I!l, this function satisfies the hypothesis
of Theorem 5.4.2. Moreover, from Example 5.1.5 we have

Flfiw) = 7,
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and this function is in L!'(R). From Corollary 5.4.4 we obtain
f{f[f]} (W) =27 f(—w) = 2me ¥,
By using the explicit expression for F[f], this can be rewritten as

/ 2 e it gt =2 eIl
r 1+¢2 ’

that is

/ 1 e it gt = eI,
r1+12

Flgl(w) = we !,
thus concluding. O

Finally, this proves

Exercise 5.8.4. For every n € N, compute the Fourier transform of
f(t)=t"e M,

Solution. For n = 0, we have already computed this transform in Example 5.1.5. For n > 1, it is
sufficient to use Corollary 5.2.4, which gives
1 a 1 dar 2

Flfl(w) = F[t" ei‘ﬂ](w) = W dw™ le ‘t|](w) = (—i)" dw™ 1 w2

For example, for n = 1 we get
1 4w diw
Flte () = — - _ |
bl = =5 e T T e

This concludes the exercise. O

Exercise 5.8.5. Show that the Fourier transform of the function f(t) = et is given by

w2

Flf)(w) = Vre 5.
Solution. We observe that f satisfies

Flit) = —2te " = —2¢ f(b).
By taking the Fourier transform, from (5.3.4) we thus get

iwF[fl(w) = F[f(w) = =2 F[t fl(w).
By using formula (5.2.3), we thus get

d : w
CFw) = i Flt flw) = =5 FIf(@)-

Also observe that
FA1(0) = / e dt = /7.
R

Thus the function w — F[f](w) solves the linear differential equation

{y’<w>+jy<w> =0

y(0) = Vm
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The solution of this problem can be easily computed to be (see Example B.1.1 of Appendix B
below)

w2

ylw) =Vmre 1,

which thus coincides with the Fourier transform of f. ]

Exercise 5.8.6 (Fourier transform of a Gaussian function). Let a > 0 and ty € R, show that the

—a (t—tp)?

Fourier transform of the function f(t) =e s given by

w2

Flfl(w) = \/ge_ﬁ (cos(to w) — 4 sin(ty w))

Solution. We can use the previous Exercise and Corollary 5.3.4. Indeed, observe that if we set
g(z) = e, then

f(t) =g(Wa(t —to)) = g(vat — Vato).
Thus from Corollary 5.3.4 we get

fUWﬁZigwﬂdQ%):¢jfm“€i.

This gives the desired formula, by recalling that e*¥ = cos® + i sin 9. O
Exercise 5.8.7. Let f € L'(R), prove that a solution u to the equation
(5.8.1) —u"(t) +u(t) = f(t), t € R,

can be written in the form

u(t) = G * f(t), with  G(t) = %e"t‘.

Solution. We take the Fourier transform of the equation, so by Corollary 5.3.7 we get
w? Flu)(w) + Flul(w) = FLf](w).

This in turn implies that

1
Flul(w) = 17— FIflw)
By using Exercise 5.1.5, we know that
1
= FIG)w),

thus we obtained
Flu(w) = FIG|(w) FIf](w) = FIG * fl(w).
In the last identity, we used Proposition 5.3.9. This finally gives that
u(t) = G = f(1),
as desired. (]

Exercise 5.8.8. Let f,g € L'(R), show that
R

(/ f(t)dt) (/Rg(t)dt) :/Rf*g(t)dt'
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Solution. By definition, we have

/ f()dt = FIf)0)  and / g(x) dt = Flg)(0).
R R

From Proposition 5.3.9, we know

([ rrae) ([ atwrde) = F1110) Flsl©) = Fi7 < 910) = [ 70
This concludes the proof. 0

Exercise 5.8.9. Let f € L}(R) N C?(R) be such that f" € L'(R). Show that F[f] € L'(R).
Proof. By using the Kallman-Rota inequality (see Exercise 3.7.7), the hypotheses imply that we
have f' € L'(R), as well. By Corollary 5.3.7, we have that

lim  w? F[f](w) = 0.

|w| =400

This implies in particular that, by using the definition of limit, there exists M7 > 0 such that

|w? F[f](w)| < 1, for |w| > M.
We can thus write
My
/R FUf1(w)] dew = /M FLf](w)] dw + / )]

1
< / — o+ | FIS]| e i) 2 M.
\w\>M1 w

By observing that the integral of 1/w? converges, we get the desired conclusion. ([

Exercise 5.8.10. Show that for every ¢ € S we have the estimate
(5.8.2) el < 4v/[#loo [©l2,0-

Solution. We fix M > 0, then we write

M 2 dt
Jleoia= [ ewnas [ el

<2 sup [p(t)| M + sup [t o(1)
teR teR

W

> t2
T gt

= 2[ploo M +2[pl20 / =

M

2
=2[ploo M + i [¢]2,0-

The previous estimate is valid for every M > 0 positive. In particular, we get
1
t)|dt <2 inf ( M+ — ) .
[ le®lde <2 it (Ieloo M+ 57 oo
It is not difficult to see that the quantity

1
[Yloo M + i [©]2,0,
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_ /[90]2,0
M= [90]0,0'

By replacing above, we finally get the desired result. O

is minimal for

Exercise 5.8.11. Prove that for every p € S, we have

3 1
| PR o < 87 (o) (o)
Solution. Observe that by definition, we have
(5.8.3) [l Loy = sup [@(t)] = [¢]ojo-
teR

By using the interpolation inequality (3.7.1) with
r=2 p=1qg=o0,

we obtain

lell 2y < \/||<PHL1(R) ol oo (R)-
We can use (5.8.2) and (5.8.3), so to obtain

lell e < 2y VIeloo [0 [eloo.

By taking the square on both sides and using Plancherel’s formula (5.6.3), we get the conclusion. [

Exercise 5.8.12. Let 0 < 7 < 1, show that for every f € L'(R) N L*(R) we have

/ L F )P dw < o
R |W\

More precisely, prove that we have the estimate

(/R ’;‘T f[f](w)Zdw)% <c </R\f(t)]dt)T (/R|f(t)\2dt>1;,

for a constant C' depending on T and which blows-up as 7 7 1.

Solution. We take A > 0 and decompose the integral in the left-hand side as follows

w|™TIF wzdw: w|TT\F w2dw w|™MFI A (w
/Rr | Flw) /{W}r | FUAw) +/{le>k}\ M Fw)

Since f € LY(RY), by Theorem 5.2.1 we have that its Fourier transform is in L°°(R), thus we

2
dw.

obtain
2 2 A
[t |Fne] awe|qn) [ e
R LOO(R) -
AT / Ffw)] dw
A | .
By Theorem 5.6.8, we know that
Fr2lf] = FIf],

since f € L'(R) N L%(R). Thus we can use the Plancherel’s identity (5.6.9) and the fact that

Flf

<[ fllr(w)s
L(R)
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thanks to (5.2.1). We then arrive at

el |7

This is valid for every A > 0 and the right-hand side is minimal for

2
> . .
fllw)| dw < 37— AT @y + 27 AT (11l 2wy

. Hﬁp@
i
This in turn gives
—T 2 2 1—7 2 T 2 1-7
e |w| ™" | FfHw)| dw < m” (”f”Ll(R)) (”fHL2(R)) )
as desired. O

Exercise 5.8.13. Let us take the two signals

g(t) = ((sinc (;))2 and  h(t) = cos(24) g(t).
Show that g x h = 0.

Solution. We observe that g,h € L*(R), then g * h € L*(R). We use that
2it | ,—2it
cos(2t) = %,

thus we have
Flg = h](w) = Flgl(w) Fleos(2t) g](w)
e2it 4 o—2it

~ Al F | 5] @)

We now recall that by (5.7.1)

and by Proposition 5.3.5
F [62”9] (w) =27 tri(w — 2) and F [6_2“9} (w) = 2tri(w + 2).
Thus we obtained
Flg# h)(w) = mtri(w) (27 tri(w — 2) + 27 tri(w + 2))
= 272 tri(w) tri(w — 2) + 2 7% tri(w) tri(w + 2).

The last two products identically vanish, since the functions have disjoint supports. By using the
Inversion Formula, we thus obtain

g *h(t) /fg*h ”“’dt:O,
27T

as desired. 0
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Exercise 5.8.14. Let f € LY(R) be a band-limited signal, with band limit wy > 0. Let us take the

two signals
g(t) = cos(2wyt) f(t) and h(t) =sin(2wyt) f(t).
Prove that f xg= fxh=0.

Solution. This is similar to the previous exercise. Indeed, by using that
e2int + e—QiUth

cos(2wyt) =

5 :
and Propositions 5.3.9 and 5.3.5, we get
FIf » 6l(w) = FI)w) Flollw) = 3 FIfw) (FI2r* fllw) + Fle ™" fl(w))
= & FUAIW) FIflw — 20)
1

+ 5 FUAW) Flfl(w +2wyp).
We now observe that, since F[f] identically vanishes outside [—wy,wy], we have
FUw) Flflw = 2wp) = FIfl(w) FIfI(w+2ws) =0, for every w € R.

Then we can conclude as in the previous exercise. O

9. Advanced exercises

Exercise 5.9.1. Fora > 0 and b,c € R, we consider the second order polynomial
P(t)=at® +bt+c.

Let us suppose that P does not have real roots, i.e. b> —4ac < 0. Compute the Fourier transform

of the function
1

g(t) = iZ08
Solution. This can be computed starting from the one of Exercise 5.8.3. Indeed, let us set
A=4ac—b
then we observe that

Pit)=at® +bt+c=a (t2+9t+5) -
a a

Q
/N
~
_|_
o
@‘®
N———
[\
+ +
S
Ve
Qo
|
W
2|
Do
N———
| I

4a | A 2a
-2 (22 L)
da [\VA VA
Thus we can write
1 da 1
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If we set

We can now apply Corollary 5.3.4 with

h="  aa a=24

VA VA

so to get

Pl = 4 2 va (L),

If we now use Exercise 5.8.3 to compute the last transform and recall the definition of A, we finally
get

2 T - b Vidac—bs 4 ac—b2
f[g](w)zimelQGwe Jeo I
This concludes the exercise. U

Exercise 5.9.2 (Heat equation). Let ¢ € L'(R) and let us consider the following initial value
problem for the heat equation in R

(';z: = g:;, for (t,z) e Ry xR
u(0,2) = ¢(z), z eR.
Show that the solution u can be written as
ult.a) = G = o(o) = [ Gilo = 9)ota) do
where the function Gy is given by
Gi(x) = ! e_%, reR, t>0.

Vamt

Solution. We have to pay attention to the fact that we have 2 variables, i.e. we are dealing with
a partial differential equation. We set

y(t,w) = Flu|(w) = / e 1Y y(t, z) de,
R
then we take the Fourier transform of the equation in the spatial variable x, so to obtain
0
ay(tv w) = _w2 y(tv w))
with initial condition
y0.0) = [ a0, 0)de = [ I pla) da = Flgl(w).
R R

This means that for every fixed w € R, the function ¢ — y(¢,w) is a solution of the first order linear
differential equations

y'(t) = —w’y(t)
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with initial condition F[p](w). It is not difficult to see that such a solution is given by
tes Flplw)e ™™,
thus ,
Flul(w) = y(t,w) = Fle](w) e ™",
We now observe that for every fixed ¢t > 0, the function

2
w e @t

is a Gaussian function. By using Exercise 5.8.6 with
1

CL:Zt

and to = 0,
we have that
Wi e
is the Fourier transform (with respect to the variable z) of the function

1 x
(5.9.1) Gi(x) = e i, xz €R.
4t

[¥]

:

We thus obtained that

Flu)(w) = Flel(w) FIGi](w) = FIGy * ](w).
This finally gives the desired conclusion. O
Remark 5.9.3. The function u of the previous exercise represents the evolution in time of the
temperature of an infinite thin bar (modeled by R), starting from the initial temprature ¢. In other

words, we have
u(t,z) = “temperature of the point x at the time t”.
Such a temperature evolves in time and space according to the equation
ou 0%u
ot Oz’
which is called heat equation. The time-dependent function Gy defined in (5.9.1) is called heat
kernel.

Exercise 5.9.4. Compute the Fourier transform of the function

1
f(t):m-

Solution. We will rely on Exercise 4.10.1. We first observe that
L+t = (£ —0) (£ + 1),

iy L 1( 1 1 )

E—i) (2 +i) 20 \£2—i £+i
We now observe that ¢ and —¢ can be written as
T N2 T N2
1= (eZZ> and —1= (e_zz) .
By using Exercise 4.10.1 with a = e ?, we then obtain that

: : s = 5 Blallit) = S BlglGn)

thus we get

2+i i-(it)2 a2—(it)2 2a
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where ¢ is defined by

g(t) =

e~¢*'t fort >0,
eezzt, for t < 0.

In a similar way, by using Exercise 4.10.1 with a = e~ 7', we obtain
1 1 1 i
g i sy ris iy e M WG
where h now is defined by

T o

e_e_zit, for t > 0,
eeizlt, for t < 0.

By putting everything together, we obtained
1 (e ¢ ) e’ ) 1 e i’ e’ )
0= 37 (S5 Blallin) - 5 B0) = 38| 50 o o

We now recall the relation between the bilateral Laplace transform and the Fourier transform (see
Remark 5.1.3), so to obtain

1) =57 | 0= n)

By taking the Fourier transform on both sides and using the Duality Formula, we thus get

Flflw) =T ( o)~ & h(—w>> .

_x
e 4
2

2

. ectw e® Zi“’, for w < 0,
e 1’ ez’ 2 2
g-w) - oh-w)) = -
—Iq T, ) _n,
624 e—¢? w_€; e ¢ " v forw>0.

In conclusion, we obtain

This concludes the exercise. O

Exercise 5.9.5. Show that
FLQ [Sinc] = 1[_71.77‘.].

Solution. We recall that by Remark 5.8.2, we have
Flerml(w) = 27 sincw.

Moreover, the function 1_ ;) satisfies the hypotheses of the inversion formula of Theorem 5.4.2,
thus we have
L L

_ 1tw _ : : itw
27 ) (t) = LEIEOO . Fllegml(w) e dw =27 LETOO » sinc(w) ' dw.
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In other words, we get

L_rm(t) = Lgrfoo Flsine-1_p, j](=1), for every t € R.
Observe that sinc-1_y, ;; € L'(R) N L*(R), thus we can use Plancherel’s formula (5.6.9) and obtain
) 2 1 ' 2
/ Flsine-1_p, 11](t) = 1_r q ()| dt = oy Fr2 [F[smc -1[_L7L]]] (W) = Fr2[lj—p ] (w)| dw
R T JR
1 . 2
=5, . .F[f[smc -1[,L7L]]] (W) = Fllepm(w)| dw

= % /R‘Zﬂ' sinc(w) - 1[7L,L} (W) —27 Sinc(w)|2 duw

=27 / |sinc(w) - 1_p )(w) — sine(w)|? dw.
R

In the second equality we used the property (5) of Theorem 5.6.8. In the third equality we used
the duality formula (5.4.6), for the even function sinc-1_y ;; € L'(R) N L?(R). We now observe
that

lim sine(w) - 1, z)(w) = sinc(w), for every w € R.

L—+o00 ’

Moreover, for every L > 0 we have
2 2, for every w € R.

|sinc(w) - 11—, )(w) — sinc(w)|* = | sinc(w) 1g\(— 1,1 (w)]? < |sinc(w)

Since the last function is in L'(R) and independent of L, we can use the Lebesgue Dominated
Convergence Theorem (see Theorem 3.2.5) and obtain
2

. . . . . 2
Ll_lffoo A Flsine 1z gj](t) = 1—am(t)| dt = L1—1>I—ir-loo 27 /]R | sinc(w) - 11—, 1) (w) — sinc(w)|* dw = 0,
that is
5.9.2 li inc-1;_ —1_ =0.
(5.9.2) Jim|[Flsine 1]~ 1ira

Finally, as in the proof of point (1) of Theorem 5.6.8, we take ¢ € C5°(€2) such that

/R Py dt =1,

and define ¢, (t) = np(nt). We have seen in the proof of Theorem 5.6.8 that

lim |[(sinc-1j_, 1]) * @n — sinc =0,
n—oo ( [ ’ ]]) ¥ LQ(R)
and
5.9.3 lim || F|(sinc-1i_,, n1]) * @n] — Fr2|sinc =0.
[-n,n]

By Minkowski’s inequality (see Proposition 3.3.7), we have for every n € N

’ . = H (]:Lz [sinc] — F[sinc -1[_n7n]]) — (]—"[Sinc -1[_n,n}] - 1[—7r77r]>’

]:LQ [Sinc] - 1[—7r,7r}

L3( L2(R)

<|

Fre [Sinc] — ]-[Sinc -1[_n7n]] Il 12 (R)

+ H (}' [sinc -1j_pm] — 1[*“’”0 L*(R)
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By taking the limit as n goes to co and using (5.9.2), (5.9.3), we finally get

=0.
L2(R)

This concludes the exercise. [l

H]:LQ [SiDC] — 1[_7T’7r]






Chapter 6

Tempered distributions

1. A brief and rough introduction

The concept of distribution is a fundamental tool in Physics and Engineering. It can be seen as a
generalization of the concept of function. Such a generalization is useful in order to extend some
usual operations like derivatives or integral transforms beyond their natural domain of definition.

The central idea behind the definition of distributions can (very roughly) be summarized as
follows:

“try to define a function NOT through its pointwise values

but through the effects it makes when tested against good functions”

Of course, this is NOT the mathematical definition of a distribution. To clarify this point, let
us start with a concrete example.

Example 6.1.1 (Derivative of a step function?). We considered many times the Heaviside step
function H. We know that this is a piecewise constant function, which assumes only two values
and has a unit jump at ¢ = 0. In particular, we have

H'(t)=0 for ¢ # 0,
while for t = 0 the function is not derivable. Indeed, we know that

H(h)—H(0
i )~ H(O)
h—0 h
does not exist. Let us try to apply the rough idea presented above: rather than trying to define
the derivative at t = 0 by computing the limit of the incremental ratio (as we have seen, this is

not possible), let us “test” the incremental ratio against a “good” function, for example a function
¢ € C§°(R). More precisely, we consider

/H(t—i_h})L_H(t)cp(t)dt, h #0 and ¢ € C5°(R).
R

189
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We can make a simple change of variable as follows

H(t+h)—H() ) dt — Ht+h
AR
/H )sO)

_ p(s —h) — <P(8)
= /0 Y ds.

Finally, we observe that since ¢ € C§°(R), we can pass to the limit under the integral sign in
the last expression (as always, this can be justified by appealing to the Dominated Convergence
Theorem). Thus we obtain

. H(t+h) —HE) [T, _ oo
iy [ R = — [ s ds = =[] = 00)
In other words, while we can not always compute the pointwise limit
lim H(t+h) —H(t)’
h—0 h

t €R,

the limit of this incremental ratio “tested” against a smooth compactly supported function can
be always computed. This defines the derivative of H “in the sense of distributions”. Observe
that (as announced above) this does NOT define a function in the usual sense: rather, it defines a
“functional” defined on the space C5°(R) and with values in C. More precisely, this is the functional

CPR) — C
e = 9(0),
called Dirac delta centered at 0. Thus one could say that

“H'(t) = Dirac delta centered at 0" in the sense of distributions.

We will come back on this in the next sections, by giving a precise mathematical framework for
the ideas presented above.

2. Definitions and examples

As a space of “test functions” we want to use the Schwartz class S presented in Chapter 5. We
first need to introduce a notion of convergence on this space.

Definition 6.2.1 (Convergence in the Schwartz class S). Let {¢n}neny C S and ¢ € S. We say
that {¢n }nen converges to ¢ in S if we have

lim [y, — @lmi =0, for every m, k € N.

n—oo

We recall that for every m, k € N the quantities [ -], » are defined by

wmk:amtm¢“m|<+m.

teR

We will use the notation ¢, 5,  for this convergence.
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For a functional F': S — C, we use the notation

(F @),
for the value of F' computed at ¢ € S. We recall that F' is said to be linear if
(Foap+ B9Y) = a(F, ) + B(F, ), for every o, 3 € C, p,9 € S.

We can now give the definition of tempered distribution.

Definition 6.2.2. Let F : § — C be a functional on §. We say that F' is a tempered distribution
if:

e it is linear;
e it is continuous on S, i.e. if for every sequence {@p, }neny C S such that
©n i ©, as n goes to 0o,
we have

lim (F, p,) = (F, ).

n—oo
We indicate with S’ the collection of all tempered distributions.
Remark 6.2.3. Observe that by linearity of F', we have

and the sequence ¢, — ¢ converges to 0 in §. Thus, if we want to verify that a linear function
F : S — C is a tempered distribution, it is sufficient to show that

lim (F, p,) =0,

n—oo
S
for every sequence ¢, — 0.
Example 6.2.4 (Dirac delta). Let tp € R, we define the linear functional d;, : S — C by

(01, ) = p(to), for every ¢ € S.

This is called Dirac delta centered at to. Let us verify that &, € S'.
We first verify that d;, is a linear functional: for every o, 8 € C and ¢,y € S we have

<5t07a90+ﬂ¢> = O‘@(tﬂ) +ﬁ¢(t0) = a<5t0790> +ﬁ<5tov¢>'

We now show that d;, is continuous on §. We take a sequence {yp, tnen C S such that ¢, N}
In particular, this implies that

S (ig}g |¢n<f>l) = it [enloo = 0.
We thus obtain
i (6,1 = i i) < Jim (supleno)]) =0

By taking into account Remark 6.2.3, this shows that d;, is a tempered distribution.
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Example 6.2.5 (Regular tempered distributions). Let f € Ll (R) be a locally summable function
such that there exists m € N for which

[0

r 1+ [t[™

We then say that f is a slowly growing function. To such a function f we associate a linear
functional Fy : S — C, defined by

(Fy, ) = /R [ eyd, eSS

Observe that the integral is well-defined for every ¢ € S, since
t
O e a

dt’ _
g 1+ [t|™
</ DLy imy (o)) e

g 1+ [t

£ ()]
< dt <
< (ieho + ehwo) [ 7200 dt < ¢
Moreover, the linearity of Fy is a straightforward consequence of the linearity of the Lebesgue
integral.

We call F reqular tempered distribution generated by f. We can easily verify that Fy is indeed
a tempered distribution. In order to verify the continuity on S, we take a sequence {¢,tneny C S

such that ¢, 550, We get

[ 10euod] = tim, ‘ | [ 20 L+ ) e d
im [ 2O s ) oo

n—oo [p 1+ ‘t‘m
|f(t)]

< nle ([‘Pn]ﬂ o+t [Qpn]m 0) /R 1t |t|m dt = O7

IN

thanks to the fact that

10 | )

Proposition 6.2.6 (L? functions are slowly growing functions). Let 1 < p < oo and let f € LP(R).
Then f is a slowly growing function and thus, in particular, Fy € S'.

Proof. Let us start with the case p = co. Then we have
(0) [
dt < oo —— < ,
s < N fllzeo ) TP +00
which shows that f is slowly growing.

Let us now consider the case 1 < p < oo, then by Holder’s inequality (see Proposition 3.3.5)

1
dt o’
pdt T ) < +oo,
1+]t! /'f ®) </R<1+|t|>p) >

and the last integral is finite, since 1 < p’ < +oo0.




2. Definitions and examples 193

Finally, for the case p = 1, the function f € L!(R) verifies the definition of slowly growing
function with m = 0. O

Example 6.2.7 (Principal value of 1/t). An important example of tempered distribution is the
one generated by the function

=7, teR\{o}

Observe that this function does NOT fall in the class of slowly growing functions, since f ¢ LllOC (R)
(the singularity of 1/t is not summable near the origin). However, we can associate to this function
a tempered distribution defined by

1 t
(6.2.1) <P.V.¥, g0> = lim () dt, for every ¢ € S.

e—0t [t|>e

This is called principal value of 1/t. We first observe that for every £ > 0, we have

[ e
[t|>e t

#(t) o)l 4, - 1
Aw fﬁ§4m|ﬂﬁ§eéwm%

and the latter is finite, since ¢ € S C L*(R) (see Proposition 5.6.4). In order to verify that (6.2.1)
defines a tempered distribution, we want to rewrite it in a different form, which is easier to handle.
We then fix 0 < ¢ < 1 and write

Ax@dt:/jmfdw/_:wf)dt
:/%w@“hﬁ—/%w¢(ﬂdt:/%w¢@)<Mﬂﬁ,

t t t

< +00.

Indeed, it holds

where we used the change of variable ¢t — —t in the integral performed on (—oo, —¢). We now split
the last integral as follows

o) —e(—t) [T e(t) = p(—t) T p(t) — p(—t)
/6 dt_/s dt+/1 el = ol=t)

t t t
Lo(t) — o(—t O (1) — (-t
[y [ RO,
For the first integral, we have'
t) — p(—1t t) — (-t
(6.2.2) M 1y (6] < ‘p()t‘P() <2[glor,  fortelo,1],

1By the Mean Value Theorem (i.e. Lagrange’s Theorem, for italian readers), we have
P(t) — p(=t) = (&) (t = (=1)) = 2t (€),
for some ¢ € [—t,¢]. Since we are working with ¢ € [0, 1], this in particular gives

lot) —(=t)| <2t sup |¢'(€)] < 2tsup ¢’ (&) = 2t[plo,1.
cel-1,1] 35
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thus by the Dominated Converge Theorem, we can infer
1 1 1
t) — —t t) — —t t) — —t
lim / e = (=1 4y iy / 20 =D | ydr = / P = o(=) 4
e—0t J, t e—0t Jo t ' 0

In conclusion, we can write
1 oo o(t) — p(—t
(6.2.3) <P.v.z,¢> :/ o) = (=0 4,
0

We can take the latter as definition of the principal value of 1/t. Before going further, we observe
that

(6.2.4) /0+oo ‘M’ dt < +00,

i.e. the function t — (p(t) + p(—t))/t is in L}(R4).

With this definition, it is now easy to verify that this is a tempered distribution. Linearity is
trivial and it just follows from linearity of the Lebesgue integral. Let us verify that (6.2.3) defines

a continuous functional on S. We take a sequence {p, }neny C S such that ¢, 5, 0, then we have

1 L on(t) — on(—t +0 o (t) — o (—t
'<P.V"%> _ / n(t) = ¢n( )dt+/ on(t) = n(=1)
t 0 t . t
1 . . +00 _ _
< / pult) = pn(=t) +/ pult) —pn(=t)
1 _ _ +o0o _ _
S/ Pn(t) = @n( t)‘dH/ en(t) —on(=t)] o
0 t . t
We now observe that by (6.2.2)
1
. Son(t) — @n(_t) . .
%, i dt <2 g lenlon = 0.
As for the integral on [1,+00), we proceed as follows
+00 . _ +00 _
i ’wn(t) ol 4 < fim [Pn®] + lon(=1)] .
n—oo [q t n—oo Jq t
+oo t [[n(8)] + ln ()]
= lim dt
n—oo [q t2
, oo dt
<2 Ju sl [

=2 nh_}rgo[wn]lvo = 0.
This finally gives
1
lim <P.V.¥,g0n> =0,

n—oo

as desired.

Example 6.2.8 (Series of Dirac deltas). Let 7 > 0 be a given time step and let {c;}rez C C be a
bounded sequence, i.e.
lek| < C, for every k € Z.
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The functional F': S — C defined by

F=> ¢

keZ
is a tempered distribution. We first verify that the definition is well-posed, i.e. for every ¢ € S the

series
= Z Ck SO(T k)7
keZ

is converging. Indeed, we have

C
S aplr k)| < 3l lotr )] = 32 1y (1 () (e )
kEZ kEZ kEZ
1
< C (suplp(t)| +sup [t p(t ) —_—,
(s e s o01) - 1

which implies

(6.2.5) ()] < C ([ploo + [plan) Y- 1

— < +o00.
212
k€Z1+T k

The fact that F' is linear is straightforward, let us verify that F' is continuous on §. We take a
sequence {yp neny C S such that ¢, 550, then by formula (6.2.5)

kEZ

nh_ggo ‘(F, <Pn>‘ <C <Z 1+17'2k2> n1—> ([(Pn]OO + [‘Pn]? 0) 0.

This shows that F' is continuous on S.

3. Elementary operations on distributions

3.1. Linear combinations. Given F,G € §' and «, 8 € C, we can define their linear combination
a F + 5 G by simply posing
(a F+ BG,0) =a(F @)+ B(G, ), for every p € S.

It is left as an (easy!) exercise to verify that a F' + G is still a tempered distribution. This in
particular entails that S’ has a stucture of vector space over the field C.

Remark 6.3.1. It is not difficult to see that if o, 8 € C and f, g are two slowly growing function,
then we have

aFy+BF;=Fapipg

Indeed, by using the definitions of linear combination and of regular distribution, we have for every
pes

(aFp+ B Fg0) =al(ly, o)+ B(F,

= /f ﬁ+5/

::/é{aj(ﬂ +w3g@ﬂ p(t)dt = (Foftpg: #)-
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3.2. Change of variable. Let A € R\ {0} and h € R, we define the affine change of variable
Axp i R — R such that

Axn(t) = At + h, for every t € R.
If F €S, we can then define its “change of variable” as the linear functional F'o Ay; : S — C
given by
(6.3.1) (FoAxn,p) = |>\| < goofh _%>, for every ¢ € S,

where the symbol o on the right-hand side the usual composition of functions, i.e.

t—h
¢0A§7_%(t):g0(¢4%7_%(t))ZQO(T>, for every t € R.
It is easy to see that with this definition F' o A, is still a tempered distribution.

The previous definition is better appreciated with an example.

Example 6.3.2 (Change of variable for regular distributions). If Fy is a regular tempered distri-
bution, generated by the slowly growing function f, from the previous definition (6.3.1) we have

(FfoAxn, ) = i <Ffa</3 oA, _g = /f )dt

— [ 0+ et ds,
R

thanks to the change of variable ¢ = Ay j(s) = As + h. This shows that in this case FroAxn
coincides with the regular tempered distribution defined by the function foAy p,i.e. t = f(At+h),
ie.

(6.3.2) Fy oAy = FfOAA,h'

Example 6.3.3 (Change of variable for a Dirac delta). Let d;, be the Dirac delta centered at
to € R, then for every A € R\ {0} and every h € R, we have

1 ! to—h>
<5too~/4)\,h,§0>—|)\|<5toa900“4/1\,_§>—’)\|90< )

Thus we get that
1

[Al
i.e. this is still a Dirac delta, this time centered at the point (¢y —h)/A and multiplied by the factor
1/|A]

51‘,0 o) “4>\7h 51&0 hy

3.3. Multiplication by a function. We first need to define a suitable class of functions.

Definition 6.3.4. We say that ¢y € C*°(R) is a multiplier of the class S if for every k € N, there
exists a constant C} > 0 and an index mj € N such that

»®) (1)

In other words, every derivative of 1 has at most polynomial growth. We indicate by Ojs the
collection of all functions with this property.

(6.3.3) < Ck (14 [t|™*), for every t € R.

The importance of the class Oy lies in the following technical result, which also explains the
terminology we used.
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Lemma 6.3.5. Let v € Oy and ¢ € S. Then we have

YpeS.

Proof. We first observe that 1 ¢ € C*°(R), since both functions are infinitely times differentiable.
We fix m, k € N and observe that we have

k
COEUI LY @ $O(1) o= (1)
7=0
ERY .
< [t™ Z ) 109 @) 1D (1)

N

Cj (1 + [t [ (1)

IN
E
™=

<
I
=}
— C\
v v

<.
Il
o
.

G (Jt"™ + [¢57™) [ (2)].

<.
I
o
o

Il
]~
—
>

We now take the supremum over ¢ € R, so to get

k
k m mj+m —J
6lmn <5 |3 (5) € + im0 )
(6.3.4) ) 7=0
k
< Z (]) Cj ([Sp]m,k—j + [Qp]mj-l—m,k—j) < o0,
j=0
thanks to the fact that ¢ € S. O

Example 6.3.6. It is easy to see that S C Oy, i.e. every function of the Schwartz class S is a
multiplier of the class S. Indeed, if ¢ € §, then in particular we get

[plos = sup [ ()] < +o0.
teR

Thus we have

P ()] < [Plog, for every t € R,
i.e. ¢ satisfies (6.3.3) with Cy, = [¢]o /2 and my = 0.

Example 6.3.7. Every polinomial is a multiplier of the class S. Indeed, if

m
sp(t)zzajtj, for some aq,...,am € C,
7=0
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then for k € {0,...,m} we have?

(k) P LR B e B | ok

2 (t)‘ = Za] : t < Z aj - t]
. J' m—k
Jj=k ’

thus definition (6.3.3) is satisfied with

@:<§

j=k

j!
7(jik)! ) and my =m — k.

On the other hand, for k > m we directly have ¢ (t) = 0.

a;j

Definition 6.3.8. Let F' € &’ and v € Oy, we define the multiplication ) F as the linear functional
Y F: S — C defined by

(W F, o) = (F,9p), for every p € S.
We observe that this is well-defined, thanks to the fact that ¢ ¢ € S, see Lemma 6.3.5.

It is not difficult to see that ¢ F € &’. Indeed, the linearity is straightforward. In order to
verify that it is continuous on S, it is sufficient to use the estimate (6.3.4) (the reader should try to
write the details, as an exercise).

Example 6.3.9. Let us compute the multiplication of the tempered distribution P.V.(1/t) with
the function ¥ (t) = t. Observe that we have 1) € Oy by Example 6.3.7, thus the multiplication is
well-defined. By recalling (6.2.3), we have

<tP‘V%7@> _ <P.V%7w> _ /0+°0 te(t) = (=te(=1)

t

= [ (e + o) a
:/+°° (t)dt+/+oo (—t) dt
0 4 0 4

:/0+°° (1) dt-i—/(; go(s)ds:/ch(t) dt.

In other words, the product ¢t P.V.(1/t) coincides with the regular tempered distribution F, gen-
erated by the constant function f(t) = 1. We can rewrite this result informally as

1
tP.V.—=1.
t
Written in this way, this result looks of course very natural...

2In the second inequality, we use that
[t]® < (14 [¢)%), for every t € R,

whenever 0 < a < .
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Example 6.3.10. We now compute the multiplication of the Dirac delta dy by the function ¥ (t) =
t*, where k € N\ {0}. We first observe that still by Example (6.3.7) we have 1) € Oy, thus the
multiplication is well-defined. For every ¢ € S we have

(t* 60, 0) = (do,t* ) = (tk“’<t)>|t:o —0

In other words, t* &g is the zero distribution, for every k € N\ {0}. Of course, the same is still true
for 1§y, for every ¢ € Oy such that 1(0) = 0.

3.4. Convolution with a function.

Definition 6.3.11. We say that a measurable function ¢ : R — C is a convolver of the class S if
we have

(6.3.5) thy e LY(R), for every k € N.
We indicate by O¢ the collection of all functions with this property.

Example 6.3.12 (The class S). By recalling that S € L'(R) (see Proposition 5.6.4) and that for
every ¥ € § and k € N it holds

t* ¢ € L'(R),

by equation (5.6.4), we have S C O¢. Thus every function of the Schwartz class is a convolver of
the class S.

Example 6.3.13 (Compactly supported convolvers). Let ¢ € L'(R) be a compactly supported
function, i.e. such that

l¥(t)] =0, for almost every ¢t € R\ [a, b].

Then we have ¥ € O¢. Indeed, for every k € N we have

b b
k = k max ak k Q.
/Rtr |w<t>rdt—/ 5 [4(8)| dt < max{Jal*, |b| }/a p(t)] dt < +

a
Remark 6.3.14. We observe that if b € O¢, then by Corollary 5.2.4 we get in particular

k
Fl¥l € C*(R)  with %f{w] € L®(R), for every k € N.

This implies that
Y € Oc = Fl) € Owm.

The following expedient result justifies the name for the class O¢.

Proposition 6.3.15. For every ¥ € O¢ and ¢ € S, we have

pxyYeS.
Moreover, for every k,m € N it holds

(6.3.6) [ % Wl < C ([l 19l 1y + [Plok £ Dl 12 cs),

for a constant C' > 0 depending on m only.
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Proof. We first observe that ¢ x 1 € C*°(R), thanks to Proposition 5.6.7. In order to conclude,
we need to prove that for every m,k € N we have

[50 * ¢]m,k‘ < +00.

By recalling formula (5.6.6) and the definition of convolution between functions, we get
" ) B 1) = [em (v (o [ v eV =wdy
<™ [ 1wl =)l dy

= [t"

<c [0l (It=vm + 1) [¢9¢ )] dy
= [ wlle=ui" [¢9 )]

+C [ wlll™ |49 =) du.

where C' > 0 depends on m only. From the previous chain of inequalities, we then get for every
teR
e 0)®0| < C (e [ [W@Idy+ o [ 0™ o)l dy) <-+c.

This shows that ¢ x ¢ € S, as well as the validity of the estimate (6.3.6). O

We can now define the convolution of a tempered distribution with a convolver of the class S.

Definition 6.3.16. Let F' € S’ and ¢ € O¢. The convolution of 1 and F is the linear functional
Y * F: S — C defined by

(Y« F,p)=(F, (o A_1p) *p), for every ¢ € S.

As usual, the definition of convolution may look weird, but it is designed so to coincide with
the usual operation of convolution between functions, when F' is a regular tempered distribution.

Example 6.3.17. Let f : R — C be a slowly growing function and let ¥ € O¢. We denote as
usual by F; the regular tempered distribution generated by f, then for every ¢ € S we have

(5 Frop) = (Fy. (60 Avo) ) = [ 1(0) (60 Aovo) s olt)
=[50 ([ 0o asale =) pls)ds) a
= [ 10 ([ wts=n0(as) a
/ /f )ih(s — 1) dt) p(s) ds

= [ 15005 ds = (P,
where in the fifth equality we exchanged the order of integration. This shows that
Y* Fp = Fiyy.
Proposition 6.3.18. Let ¢ € O¢ and F € §'. Then ¢y x F € S'.
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Proof. We first observe that ¢ x F' is well-defined, since 1) o A_; o € O¢ and thus for every p € S
we have

YpoA_10*xp €S,
by Proposition 6.3.15. Then the expression

(F,po A_10% @),

makes sense. Linearity of ¢ x F' is easy to verify, in order to prove 1) * F' € S’ we only need to

check that it is continuous on S. We take a sequence {¢, }nen C S such that ¢, i> 0. Then by
definition
lim (v * F, @p) = nh_{glo<F7 (Yo A_10) * n)-

n—oo

By using the estimate (6.3.6), we have

Jim |00 Aro)xgn] <O lim fonlmp 00 Arollzrey

+C lim [palo [ 9 0 A-1,0]l L1 () = 0.

This shows that the sequence {(1) 0 A_1 ) * ¢©p }nen converges to 0 in S. Since F' is continuous on
S, we thus get

Jim (¢ Fypp) = lim (F, (Y0 A1) * ¢n) = 0,
as desired. O

Example 6.3.19. Let us compute the convolution of a Dirac delta d;, with a convolver ¢ € Oc¢.
By definition, for every ¢ € S we have

(1% 01y, 0) = (Ot (Y 0 A10) x ) = (Y 0 A_10) % p(to) = /R@ﬁ(t —t0) p(t) dt = (Fyoa, s #)-

In other words, the distribution 1 * d;, coincides with the regular tempered distribution generated
by t — ¥ (t — tp). In particular, for to = 0 we have that v * §y coincides with the regular tempered
distrbution generate by 1. Informally, we could write this as

Y * g = 1.
3.5. Convergence of distributions. On the vector space of tempered distributions, we can
define in a natural way a notion of convergence.

Definition 6.3.20. Let {F,},eny € S8’ be a sequence of tempered distributions. We say that F,
converges to F' € 8" if
7}1_{{.10<Fn780> = (F,¢), for every p € S.
In this case, we use the notation F}, il) F.
The following result shows that a Dirac delta can be obtained as limit in S’ of regular tempered
distributions.

Proposition 6.3.21 (Regular approximations of a Dirac delta). Let tg € R and let f € L*(R) be

such that
/ f(t)dt =c.
R

For every € > 0, we define the L' function

fg(t):éf(t_t()), fort € R.

3
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Then we have )
Ffs i) C(;tm
that is

(6.3.7) lim / fe(t) o(t) dt = cp(to), for every p € S.

e—=0t Jr

Proof. Let ¢ € S, by definition of regular tempered distribution and of f., we have

(Fft., ¢) /fa . /f(t_gto) o(t) dt

/f p(es +to) ds.

We now observe that

lim (F(s)ples+10)) = f(s) plto),  forae. sER,
and that
‘f(s) wles+1to)| < |f(s)¥loo, for a.e. s € R.

The last function belongs to L'(R) and does not depend on € > 0, thus we can apply the Dominated
Convergence Theorem and obtain

hm(Ff ®) —hm/f ss—l—tg)ds:go(to)/Rf(s)ds:ccp(to),

e—0

as desired. O

The following result is quite sophisticated. It will be useful in order to compute the Fourier
transform of some tempered distributions.

Theorem 6.3.22 (The Sochocki-Plemelj formula). For every a > 0, let us define

t pu—
9a(t) t—ia’

Then the sequence of regular tempered distributions {Fy, }a>0 C S" generated by the family {ga}a>0
converges in S’ to the tempered distribution

teR.

1
PV ; + iﬂ'é(),
as a goes to 0. In other words, we have
/ 1
F, 5PV, ST,

that is

lim / #(t) dt = <P.V. %, <p> +im(0), for every p € S.

a—0t t—il«

Proof. Let ¢ € S, we use the same trick that we used to define the principal value of 1/t. We split
the integral and use a change of variable, so to get

/ tsi(z)a dt = /0+OO tgi(?a di+ /_io t(P—(?a dt

+oo “+o0o o
:/ #(t) dt_/ Pt g
0 -t 0 tHia
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With simple algebraic manipulations, we obtain
t oo t —t
/ #(t) dt:/ o) _ et
RI—ta 0 t—i1a t+ia
[T eltlrie) et zia),
0 t2 + Oé2
T o(t) — p(—t oo o(t —t
[T gy [T
0 2 +a 0 2 + a?
We now need to take the limit as a goes to 0 in the last two integrals, i.e.

+o0 _ _
Ti(a) :/0 Wtdt,

and

+oo _
Ir(a) = /0 W adt.

For Z; («), it is sufficient to observe that

‘w(t) —p(—1)

t2 4+ o2 t=

for t > 0,

‘cp(t) — (1)
t

and the last function is in L!(Ry) (recall (6.2.4)). Thus we can apply the Dominated Convergence

Theorem and get
T p(t) — o(—t 1
lim Il(a):/ o) = o(=t) 4, <P.V.¥,¢>.
0

a—0t t
As for the second integral above, i.e. Zs(«), it is sufficient to apply Exercise 6.8.10 below, which
guarantees

lim Zy(a) = (wdo, ) = 7¢(0).
a—0t
By keeping everything together, we obtained

a—=0t Jpt — 1« a—07t a—0

as desired. O

1
lim o) dt = lim Zj(«) 4+ lim+Ig(a) = <P.V.¥,<p> + i (o, ),

4. Distributional derivatives

Definition 6.4.1. Let F € &', its distributional derivative is the linear functional F/ : S — C
defined by
(F' @) = —(F,¢'), for every ¢ € S.

More generally, for every k € N\ {0} the k—th distributional derivative of F' is the linear functional
F®) defined by

(F®) o) = (=1)F (F, o)y, for every ¢ € S.
Observe that the definitions are well-posed, since if ¢ € S, then ¢¥) € S for every k € N\ {0}.

The distributional derivative of a tempered distribution still defines a tempered distribution.
This is the content of the next result.

Proposition 6.4.2. Let F € S, then for every k € N\ {0} we have F*) € §' as well.
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Proof. Let us prove the result for k = 1. We take a sequence {¢, }neny C S such that ¢, i> 0 in
S. This means that

lim [¢p]me =0, for every m, ¢ € N.

n—oo

Observe that ¢}, € S thanks to Proposition 5.6.5. Moreover, for every m, ¢ € N we have

dé {+1
" Pn(t)] = sup |t £t

teR

(Phms = sup (t >\ — [onlmsr.
eR

This implies that the sequence {¢),}neny C S is such that ¢, S, 0in S. Finally, by using the
definition of distributional derivative, we get

Jim (F, o) = = lim (F,¢p) =0,
where in the last passage we used that F' € &', so in particular it is continuous on S. O

The following result is important, it enables one to compute the distributional derivative of a
piecewise C'! function.

Theorem 6.4.3. Let f : R — C be a piecewise C' function, such that f and f' have only jump
discontinuities at the points {ty }nen, with

lty, —t;] >0 >0, for every k # j € N.
Let us suppose in addition that there exists C > 0 and m € N such that
(6.4.1) FOI+1F B < C A+ [E™), for every t € R.
Then the distributional derivative of Fy is given by
(6.4.2) Fp=Fp+ Y (f(t5) = f(t)) 6,
n=0

Proof. In order to give a better understanding of the proof, we confine ourselves to prove the
result in the case where f and f’ have only one jump discontinuity, in correspondence of the point
to.

We first observe that (6.4.1) guarantees that both f and f” are slowly growing functions, thus
it is possible to consider Fy and Fy. For every ¢ € S, by using the definition of distributional
derivative we then have

(Fh ) = —(Fy. &) / £(0)
to

— [ soewa- [ oo

=—[f< " / f

- [ so(t)] ey / 0 () d.

to

In order to conclude, we just need to observe that since ¢ € S and f verifies (6.4.1), we have

Jim f(t)o(t) = lim f(2)e(t) = 0.
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Thus we obtain
(Fh o) = F(t) olto) — F(ty) olto) + /R 11(8) () dt

= {((f(t) = f(t3)) Or0r0) + (Fpr, o).
This concludes the proof. [l

Example 6.4.4 (Distributional derivative of the Heaviside function). Let us consider the regular
tempered distribution Fpy, generated by the Heaviside step function H. From formula (6.4.2), we
find again

F],{ = 50a
as we computed “by hand” in Section 1.

Example 6.4.5 (Distributional derivative of rect). Let us compute the distributional derivative of
the rectangular function or, more precisely, of the regular tempered distribution Fie.t generated by
the rectangular function. Observe that ¢ +— rect(t) verifies the hypotheses of Theorem 6.4.3, since
it is a piecewise constant function, with compact support. Observe that

1
rect’(t) = 0 for |t| # 3

and rect has only two discontinuity points
tyg = —% and t1 = %,
with jumps
rect(ty) —rect(ty) =1 and rect(t]) — rect(t;) = —1.
Thus from formula (6.4.2) we get
Flow = 57% — 5%.

In other words, for every ¢ € S we have

(Fect:9) = ¢ (—%) — (%) :

Example 6.4.6 (Distributional derivative of the sawtooth wave). Let us compute the distributional

derivative of the sawtooth wave
o0

SW(t) =3 (t—k) [H(t—k)— H(t—k-1)|, teR
k=0
Observe that this verifies the hypotheses of Theorem 6.4.3. Indeed, SW is piecewise C', with SW

and SW' discontinuous at the points ¢,, = n for n € N. More precisely, we observe that for to = 0
the function SW is continuous, thus

SW(0™) = SW(0t),
while for n > 1 the jump is —1, i.e.
SW(n*t)—-SW(n")=-1.
Also observe that
SW'(t) = H(t), for t ¢ N.
Thus from (6.4.2) we obtain
Flyr = Fir — 3 b,

n=1
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where Fy is the regular tempered distribution generated by the Heaviside step function SW’(t) =
H(t). In other words, for every ¢ € S we have

400 x
<%m@=A ot dt— 3 p(n).
n=1

Corollary 6.4.7. Let f : R — C satisfy the hypothesis of Theorem 6.4.3. Let us suppose in addition
that f is continuous. Then the distributional derivative of Fy is the regular tempered distribution
generated by f', i.e.

F} = Fp.

In other words, we have
<F}, ) = / () p(t) dt, for every ¢ € S.
R

Remark 6.4.8. The previous result can be rephrased informally by saying that “the distributional
derivative of f coincides with the classical one f'”, under the previous assumptions.

Example 6.4.9 (Derivative of the ramp function). We consider the unitary ramp function R(t) =
t H(t). This verifies the assumptions of Corollary 6.4.7, thus by observing that

R'(t) = H(t), for t # 0,

we obtain

Fp, = Fp.
Informally, this means that the Heaviside step function is the distributional derivative of the unitary
ramp function.

Example 6.4.10 (Derivative of the absolute value). We consider the function f(¢) = [t|. This
function verifies the assumptions of Corollary 6.4.7 and

1“‘_ 1, ift>0,
a'' | -1, ift<o.

Then the distributional derivative of the regular tempered distribution F is the regular tempered
distribution generated by %|t|.

Proposition 6.4.11. Let F € 8’ be such that F' =0, i.e.
(F' @) =0, for every p € S.

Then F' is the regular tempered distribution generated by a constant function, i.e. there exists ¢ € C
such that

(F, o) =c /Rgo(t) dt, for every ¢ € S.

5. The distributional Fourier transform

The following simple result suggests a way to define the Fourier transform for a tempered distribu-
tion.

Lemma 6.5.1. Let f,g € L*(R), then we have

[ A o= [ 1) Flal(w) do
R R
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Proof. We first observe that both sides are well-defined, since by Theorem 5.2.1 we have
Flf] € L*(R) and Flg] € L= (R),

thus by Holder’s inequality
Flflge LYR)  and  fF[g] € L'(R).

By applying Fubini’s Theorem and exchanging the order of integration, we get

/]—" dw_/R</Re—“w f(t) dt) g(w) dw
—/(/ e >dw) fde
- [ 107

which is the desired formula. O

Definition 6.5.2. Let F € &', the Fourier transform of F is the linear functional F[F]:S — C
defined by

(FIF), @) = (F, Flel), for every ¢ € S.
Observe that for every ¢ € S, we know by Theorem 5.6.6 that F[p] € S as well, thus
(F, Flel),

is well-defined.

The next result shows that this definition of Fourier transform extends to S’ the definition we
gave for L'(R). In other words, for regular distributions generated by L' functions, we are back to
the usual definition.

Proposition 6.5.3. Let f € L'(R) and let Fy be the regular tempered distribution generated by f.
Then we have

FFf] = Friyp,

i.e. the distributional Fourier transform of Fy coincides with the tempered distribution generated
by F[f]. This implies that

o) = /R FUI@) o) do,  for cvery p € 6.

Proof. By using the definition of Fourier transform for a tempered distribution and Lemma 6.5.1,
for every ¢ € S we have

(FIFY), ) = (Fy, F / fw

This shows the desired identity. O

The same can be said for the distributional Fourier transform of regular tempered distribution
generated by a function in L2.
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Proposition 6.5.4. Let f € L*(R), then we have
FIEfl = Fr o155

i.e. the distributional Fourier transform of Fy coincides with the tempered distribution generated
by Fr2[f] defined in Section 6 of Chapter 5.

Proof. For every ¢ € S, by definition of distributional Fourier transform we have

(6.5.1) (FIFY), ) = (Fy, F / fw

We now use Parseval’s formula in L? (see Theorem 5.6.8) for the two functions®

foand o Flol,

[ 1) Fielw) dw = 5= [ Falie) F[Flel] @) do.

We now observe that
FIFter)wr = ([ e Flele ) = [ et Fpltydt = 2m o)

where in the last identity we used the inversion formula, i.e. Theorem 5.4.2. This shows that

/f dw_/ng (w) duw.

By using this information in (6.5.1), we get the conclusion. U

which gives

Example 6.5.5 (Fourier transform of a Dirac delta). Let typ € R, we have shown that d;, € S’
Let us compute its Fourier transform. By using the definitions, we have

(Floio), ) = (00, Fligl) = Flgl(to) = /R e () du.

This shows that F[d;,] coincides with the tempered distribution generated by the bounded function
w — e~ Thus we could informally write

Flbt,)(w) = et
Observe in particular that for ¢) = 0 we have (by still using the informal writing as above)
Fldo)(w) =1,
i.e. the Fourier transform of g is the constant function valued 1.

Example 6.5.6 (Fourier transform of a constant function). We now consider the regular tempered
distribution Fj generated by the constant function, valued 1. For every ¢ € S we have

(FIF), o) = (F1, F / Fly

Since ¢ € §, it verifies the hypothesis of the Inversion Formula of Theorem 5.4.2. Then we have

o0 = 5= [ Flel(w) et o,

3Recall that for a complex number z, we have (z*)* = 2.
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and by taking ¢ = 0 we get
270(0) = [ Flel(w)d.
This shows that
FIRL9) = (APl = [ Flelw)do = 2740,
that is
FIFy] =276

The following result collects the properties of the Fourier transform of a tempered distribution.
These are analogue to those for L' functions seen in Chapter 5.

Theorem 6.5.7. Let F € S, then F[F] is a tempered distribution as well. Moreover, the following
formulas hold in the sense of distributions

dk

(6.5.2) T F = (—i)* F[t* F), for every k € N,

(6.5.3) FIF®)] = (iw)k FIF), for every k € N,

(6.5.4) FIF o Ayy) = %ei%“ FIFJoAry, — foreveryA>0,h€R,
(6.5.5) Fle'“*t F] = F[F] 0 A1 _wp, for every wy € R,
(6.5.6) F|FIF]| =27 FoA g,  (dudlity formula)

(6.5.7) Fly * F] = Fly] FIF), for every ¢ € O¢.

Proof. At first, we need to show that F[F] is linear and continuous on S. Linearity easily follows
from its definition and the linearity of the Fourier transform for functions. In order to verify the
continuity, we have to show that

lim <~7:[F]a Qpn> =0,

n—oo

for every {¢}nen C S such that ¢, S50 By definition of distributional Fourier transform, we
have

<~F[F]790n> = <F>~F[90n]>a

then we get the conclusion by using that F' is continuous on § and

(6.5.8) on -0 = Flea 0.

In order to prove the last result, we recall that by proceeding as in the proof of Theorem 5.6.6, we

have
m

— |7 [ en)] @

I

thus by taking the supremum we get

[Flenl] |, = HF {dfm(t’“ on)]

L (R)
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If we now use Theorem 5.2.1 and in particular the estimate (5.2.1), we obtain

[Fleal],, <[t on

L®)
We can further use the estimate of Exercise 5.8.10 for the function

dm
so to get

{f[%ﬂm’k <4 \/L;Z;(tk @n)} 00 L;%(tk son)} -

It is now quite easy to prove (6.5.8) by using this estimate.

Let us prove formula (6.5.2). By using first the definition of distributional derivative and then the
definition of distributional Fourier transform, for every ¢ € & we get

k
<d(ik]:[F],80> = (_1)k<]:[F],(p(k)> — (_1)k <F,]:[Qp(k)]>‘
We now recall that by Corollary 5.3.7, we have
Fle®)(w) = (iw)* Flelw),

and observe that the function w — w* belongs to the class Oy (recall Example 6.3.7). Thus we
get

k
<dcfu’€f 7], w> = (-~ {F, (iw)* Flelw)) = (—i)" (o F, Fle])
= (—i)f (FI* Pl ),

which gives the desired result.

We prove formula (6.5.3). We take ¢ € S, then we get
dk
FIFOLg) = (P, Flel) = (-1F (F. gz 7le]).
On the other hand, by Corollary 5.2.4 we have
d* .
L FlAw) = (i) Flt* ().
Thus we can proceed similarly as before, i.e.

(FIF®), o) = (F® | Flg]) = (=1)F <F ’ CZZCHSO]>
ik (F, FltF o)

i (F[F), " )

= ((it)* F[F), o),

which proves the formula. Observe that the function ¢ + (it)* belongs to Oy (recall Remark
6.3.7), thus the multiplication is well-defined.

The proofs of (6.5.4), (6.5.5) and (6.5.6) are achieved in a similar way, by appealing to the relevant
formulas for the Fourier transform of functions.
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As for formula (6.5.7), we observe that by Remark 6.3.14 we have F[y] € Oy for every ¢ € O¢.
Thus the product F[¢] F[F] is well-defined in &’ and the formula does make sense. In order to
prove it, by first using the definition of distributional Fourier transform and then the definition of
convolution, for every ¢ € § we get

(6.5.9) (Flo = Fl, ) = (Y * F, Fl]) = (F, (o A1) * Flegl)-

‘We now observe that

(W0 A1) * Flg] /w — 1) Flo| () dy
—/‘()WOA%HM%
R

thanks to Lemma 6.5.1. We can use that (see Proposition 5.3.5)
Flo Av—d(y) = e V' FlYl(y),

thus in conclusion

(Yo A_1p0)* Flp /w — 1) Flpl(y) dy
_/ o(y) Fl o A1 4]y dy
R
= /Re‘”%(y) Fll(y) dy = f[sof[wﬂ(t)-

By using this in (6.5.9), we obtain
(Flp+ Fl,0) = (F, Flo Flyl] ).

If we now use the definition of distributional Fourier transform and the definition of multiplication

in &’ by the function F[¢], we get the conclusion. O
Definition 6.5.8. Let P : S — S be a linear differential operator with constant coefficients, i.e.
Ui d*u
u)zz_:akw, forue S,
where aq, ..., a, € C. We say that a tempered distribution F' € &' is a fundamental solution of
the operator P if
P(F) =4y, in &,

i.e. if it holds

m

Z(—l)k ar (F, o)) = ©(0), for every p € S.

k=0

Example 6.5.9. Let us consider the operator
P(u) = —u" + .
We look for a fundamental solution of this operator, i.e. we look for a solution in S’ of the equation
—F"+ F =6.
By using the Fourier transform in &’, the previous equation gives

—F[F") + F[F] = Fldo).
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By using (6.5.3), we get

that is
1

T l+w?
This shows that the Fourier transform of F' is the regular tempered distribution generated by the
function

FIF]

Fy.

1
1+w?
We then observe that this function is the Fourier transform of the L function

W —

1
ts —e
2¢

thanks to Exercise 5.1.5. We can thus conclude that the regular tempered distribution generated
by the last function is a fundamental solution of the operator P. In other words, we can informally
write

21 1
f% <§ e_m) + 3 e 1t = g, in S

We refer to Exercise 6.9.2 below for a generalization of this example.

6. Periodic distributions

In this section, we still make use of the notation Ay 5 (t) = At + h.
Definition 6.6.1. Let F' € 8’ and 7 > 0, we say that F' is 7—periodic if
(FoAir )= (F ), for every p € S.

By recalling the definition of A; -(t) =t + 7 and formula (6.3.1) for the change of variabile, this is
the same as

(F,poAi,—7) = (F, ), for every ¢ € S.

Informally, this property could be written as
F(t+71)=F(t).

Example 6.6.2 (The Dirac comb or sampling function). An important example of periodic tem-
pered distribution is the so-called Dirac comb (also called sampling function) with time step 7 > 0

Pr=> ks
kezZ

This is a particular case of the family of tempered distributions encountered in Example 6.2.8. By
definition, it acts as

(Pr,p) = Z o(T k), for every p € S.
keZ

Theorem 6.6.3 (Poisson’s summation formula). Let f € S, then we have
(6.6.1) Yo fk) = Flfl2mn),
keZ nez

where both series are absolutely convergent.
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Proof. We first observe that the absolute convergence of the two series follows from the fact that
both f and F[f] belong to S (recall Theorem 5.6.6). Then, we have

and the latter is the k—th term of a converging series. The same computations apply to F[f].

for every k € Z,

Let us now prove (6.6.1). We define the 1—periodic repetition of f, i.e. we consider the function
= f(t+k), teR.
keZ

We observe that this series of functions converges totally on closed and bounded intervals and f; is
a C* function (thanks to the fact that f € S). Thus, by Theorem C.2.3 we can write the Fourier
expansion of fi, which is given by

(6.6.2) fit) = Z cpe2mint,
nezZ

The coefficients ¢, are given by

1
e = 2 fl(t) 27r1ntdt / Zf t+k 727Tzntdt

1
2 2 k:eZ

_Z/ ft—i—k? —27rintdt
kEZ

\ =

[T

+k )
= Z/ f(s)e 2™ins g,
ez’ —gtk

where in the last equality we used the change of variable ¢ + k = s and the fact that

e?ﬂzn(s—k’) _ e27rzns.

We now observe that

%+k s e—27rins s = s e?ﬂ'ins s = n
>[5 ds = [ Fl)eminds = Fiplmn),

kez’ — 5tk
that is
cn = F[fl(27mn), for every n € Z.
By using this in (6.6.2), we get
Z Flfl(2mn)e2mint,
nez
and by recalling the definition of f;, this is the same as
S ft+k) =Y Flfl2man)e*m "
kEZ neZ
If we now use this identity with ¢ = 0, we get (6.6.1) as desired. O

Remark 6.6.4. The hypothesis f € S of the previous Theorem can be considerably relaxed. For
simplicity, we avoided to state the result in its most general form.
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Example 6.6.5 (Fourier transform of a Dirac comb). Let us consider again the Dirac comb P, of
Example 6.6.2. We use Poisson’s summation formula (6.6.1) to compute its Fourier transform. By
using the definition of Fourier transform for a tempered distrbution, i.e. Definition 6.5.2, for every
@ € S we have

(FIP:), @) = (Pr, Flol) = Y Fle
kez

/ ztk‘r

kEZ
Z/ 27rzsk ) ds
keZ

7 Z}"[gpoflg ](27rk),

keZ

where we used the change of variable t = (27 s)/7. We can now use Poisson’s summation formula
for the function ¢ o Ayr /7o to infer

7Zf[gpo,4%0] (27 k) —ZcpoA'wo Z <2m)

kEZ neEL

We now observe that the last series coincides with a suitable Dirac comb applied to ¢, i.e.
2ﬂn) 27T
P 2x,
T X () =T (Pre).

In other words, for every time step 7 > 0, we showed that

.F[PT] 27rP27r,

T

which shows that the Fourier transform of a Dirac comb is still a Dirac comb.

7. Hilbert transform

In this section we give a brief treatment of the so-called Hilbert transform. At a formal level, this

is the operator defined by
[ ()
Hlpl(s) = /]R - dt.

In other words, H[p] is the convolution between ¢ and the function ¢ — 1/t. However, since the

latter is not even in Li (R) as already observed, the correct definition of H[¢] needs some care.

We have seen in Example 6.2.7 that we can treat 1/t as a tempered distribution, i.e. we may
consider the distribution P.V.1/¢ in place of the function 1/¢t. Then, for every ¢ € O¢, we can
define the convolution in distributional sense, as in Definition 6.3.16. This leads to the

Definition 6.7.1. The Hilbert transform of a function ¢ € O¢ is defined by

Hlp] = ¢ * (P.V%) ,

i.e. for every v € S we have

(Hlgl, ) = (PN (po Aro v )
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Observe that by definition H[¢] € S’. In other words, the Hilbert transform of a function ¢ € O¢
is a tempered distribution.

Proposition 6.7.2 (Hilbert VS. Fourier). Let us define the sign function

. ~1, ift<0,
sten(t) = { 1, ift>0.

For every ¢ € Oc we have
F|Hlgl] = =i Fagn Flg,
where as usual Fgg, denotes the regular tempered distribution generated by sign.

Proof. By using the definition of Hilbert transform and formula (6.5.7) for the Fourier transform
of a convolution, we have

1
FIHig)] = Flol F {P.V.ﬂ .
Then the conclusion follows by using Exercise 6.8.5, which computes the last Fourier transform. [

Remark 6.7.3. The previous result can be informally rephrased as
FH[e)] (w) = —misign(w) Flp](w).

Example 6.7.4. Let us take the rectangular function and recall that
w

Flrect)(w) = sinc (2—) :

v
By observing that rect € O¢ (thanks to Example 6.3.13), from the previous result we get that
w

f{?—l[rect]} = —i7 sinc (ﬂ) Fiign.

In other words, the distributional Fourier transform of H[rect] is the regular tempered distribution
generated by the slowly growing function

—im sinc (i), if w> 0,
2m

17 sinc <2£), if w<0.

7r
The Hilbert transform of rect can be computed explicitly, see Exercise 6.9.8 below.

8. Exercises

Exercise 6.8.1. Prove the following formula
t 5 = —o, in S
Solution. By using the definition of multiplication, we have
(t 80, ) = (80, t @), for every p € S.
We now use the definition of distributional derivative, so to get
{t 80, ) = — (0, (tp)'), for every ¢ € S.

By observing that
(tp(t) = o(t) +t' (1),



216 6. Tempered distributions

and using the definition of dy, we now get the conclusion. O

Exercise 6.8.2 (Distributional Leibniz rule). Let ¥ € Oy and F € S’. Prove the validity of the
Leibniz rule for the distributional derivative of the product i F, i.e. show that

(WF) =/ F+ ¢ F, in S

Solution. We take ¢ € S, we have to show that

(WF), o) =W F+yF o)

We first observe that if 1 € O, then by definition we have 1/ € Oy;. Thus the previous formula
makes sense. We start computing: by using the definition of distributional derivative and that of
multiplication, we get

<(wF),790> = —WFMP) = —<F>¢90/>
= —(F,(¢9)) +(F{ o).

In the last identity we used the Leibniz rule for functions, so that

W) =v oty

We now use again the definition distributional derivative and that of multiplication, so that

—(F,(Yp)) = (F',vp) = (¥ F,¢),

(6.8.1)

and
(F,d' @) = (V' F, ).

By using the last two identities in (6.8.1), we end up with
(WF) )= (W F o)+ () Fp) = (@ F' +¢' F o),
as desired. O

Exercise 6.8.3. Prove that if f(t) = sinc(t), then Fy is a tempered distribution. Show that its
Fourier transform is the reqular tempered distribution generated by

h(w) = 1[771',7r] (w)

Solution. We know from Example 3.3.15 that sinc € LP(R) for every 1 < p < oo, thus it is a
slowly growing function by Proposition 6.2.6. This gives that F} is a tempered distribution. We
can use two different methods to compute its Fourier transform.

First method. We recall that
w
[rect](w) = sinc o

thus we get

sincw = Flrect](2mw) = 2i f[l[,ﬂm]] (w).

s
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By using this identity and Lemma 6.5.1, for every ¢ € S we get?

(FIFfl, ) = /R sine(w) Flg)(w) do = o | Pl @) Flel(w) do
1

= 57 [, 1er (@) F[Flil] () do

- / 1) (@) () doo,
R

thanks to the duality formula (5.4.6) applied to ¢ € S. By using the simple change of variable
w + —w and the fact that 1|_; - is an even function, we get the conclusion.

Second method. We have seen in Exercise 5.9.5, that
FLQ [sinc] = 1[_71.77‘.].
By appealing to Proposition 6.5.4, we directly get the conclusion. [l

Exercise 6.8.4. Prove that the Fourier transform of the reqular tempered distribution gemerated
by the Heaviside step function is given by

1 1
.F[FH] = gP.V.;'ﬁ‘ﬂ'(So.

Solution. We want to compute this Fourier transform by restricting the Laplace transform of H
to the imaginary axis. However, since the imaginary axis is the critical axis for such a Laplace
transform, much care is needed in this operation. We first recall that (see Example 4.1.5)

1
L[H](z) = —, for Re(z) > 0.

z

We now use the definition of Fourier transform for a tempered distribution and get
+oo
(FIFul,¢) = (Fu, Flgl) = ; Flel(w) dw.
Then we observe that
+o0 +o0
Flol(w) dw = lim e Y Flp)(w) dw,
0 a—0t Jo

thanks to the Dominated Convergence Theorem. Let us take o > 0 and consider the last integral:
we have
+oo +o0o )
/ e Y Fly|(w) dw :/ e v </ e "t o(t) dt) dw
0 0 R

+o0 .
—/ </ e_(o‘+’t)“dw> ©(t) dt,
R \Jo

where we used Fubini’s and Tonelli’s Theorems in order to exchange the order of integration. We
can now recognize that the integral in w is a Laplace transform: we have
1

—_—, fOTO[>O,t€R
o+t

+o00 )
/ et gy, = LIH)(a 4 it) =
0

4Observe that we could also use Parseval’s formula in the third passage and get directly the conclusion.
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By keeping everything together, up to now we obtained

L o(t)
QFWth%—Jﬂﬁ ot

By recalling that 1/i = —i, we get

/ w@)dt:_i/‘w@)dt
R(X‘i‘it Rt—ia ’

and thus ®
Lo p(t
F =—q 1 dt.
(Fllul o) = =i lim | =
We can now conclude by appealing to the Sochocki-Plemelj Formula, i.e. Theorem 6.3.22. O

Exercise 6.8.5. Let us consider the piecewise constant function

. ~1, ift<0,
S%Mﬂ:{ 1 ift>0.

Show that the Fourier transform of the principal value of 1/t is given by
1
f |:PV¥:| = —FiFsign.

Solution. We already know from Exercise 6.8.4 that
1 1
.F[FH] =-P.V.— 4+ 7,
i w

that is .
P.V. o= i F[Fyg) —imdo.

We take the distributional Fourier transform on both sides, so to get
1
FFV;}#FVW&—ME,

where we used that the Fourier transform of Jy is the regular tempered distribution generated by
the constant function 1 (recall Example 6.5.5). By using the duality formula (6.5.6) in S’ , we get

1
f{PVfJ:QWU%OAAD—MMH:iﬂ@FhoAAQ—E)
w
By recalling (6.3.2) and Remark 6.3.1, we get

2FgoA 10— F1=2Fpou_o— F1=Fogoa_ -1

Finally, by observing that
2H o A_1(t) — 1 = —sign(t),

we get the conclusion. O

Exercise 6.8.6. Show that the Fourier transform of Fign is given by
1
]:[Fsign] — —2ZPV;

Solution. Here we just need to use the previous exercise and the duality formula in &', i.e. formula
(6.5.6). We leave the details to the reader. O
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Exercise 6.8.7. Let wg € R and let us consider the reqular tempered distribution Fitw, generated
by the bounded function t — e't“0. Show that

FlF itwg) = 27 -
Solution. By using the definition of distributional Fourier transform, for every ¢ € S we have

(FlFitan)s 0) = (Fivun Flgl) = /R ¢/t Flig (1) dt.

By using the inversion formula, we know that

/ eltwo Flol(w) dw =27 p(wp).
R

This implies that
FlEitwy] =27 Oy -

as desired. 0

Exercise 6.8.8. Let us consider the reqular tempered distributions Fios and Fg, generated by the
bounded functions t — cost and t — sint, respectively. Show that

FlFeos) =7 (814 61),

and
FlFan] =i (04— 01).

Solution. We recall that

it —it it _—it
cost = i and sint = i,
2 21
that is
1 1 1 1
FCOS:§F6i1+§Fe—it and FSin:?iFeit_?iFe_it'

By using the linearity of the Fourier transform and the previous exercise, we thus get
FlFeos) =7 +7md_1,
and
FlFeos] = % 61— = 61,
as desired (recall that 1/i = —i). O

Exercise 6.8.9. For every a > 0, we define the function

1 t2
W)= ——e¢"a, teR.

Prove that )
Fr. S5 /mbo.

Solution. We define the function
f(t) = et for t € R,

and observe that this is in L*(R) (indeed, it is a function belonging to the Schwartz class S). We
also recall that

/R F(t)dt = 7.



220 6. Tempered distributions

If we now observe that

o=21(22).

the conclusion is readily obtained by applying Proposition 6.3.21, with ¢ = /a. ([
Exercise 6.8.10. For every a > 0, we define the function
e
Ja(t) = Pra2 teR.
Prove that
Fy, S 0.

Solution. This is very similar to the previous exercise. If we introduce the L!(R) function
1

t) = —— teR
HOR el €R,
it is not difficult to see that )
t
= r(Y)

falt)= (5

By observing that
d 1 d +o00
/Rf(t) t= /R e t = {arctant}_oo =,

we get the desired conclusion again by Proposition 6.3.21. O

Remark 6.8.11. We refer to Exercise D.5.3 for an interesting application of the previous exercise.

9. Advanced exercises

Exercise 6.9.1. Prove that the distributional derivative of the reqular tempered distribution gen-
erated by the function t — log |t| is given by the principal value of 1/t, i.e.

1

Solution. We first observe that ¢ — log|t| is a slowly growing function. Indeed, we have

log |t T | ogt L' _ogt T Jogt
|Og|!dt:2/ Og?)‘dt:Q/ Oggdt+2/ Og3dt
r 1+ [t] o 1+t o 1+t 1 1+t

1 +ool
§2/ (—logt)dt+2/ (;—%tdt
0 1

1 +o0 1
§2/ (—logt)dt+2/ - dt,
0 1t

where in the last integral we used that
logt <'t, for t > 0.
By computing the last integrals, we get
| log |¢]|
r 1+t
Thus we know that Flog |y € &', thanks to the discussion of Example 6.2.5.

dt < +o0.
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In order to compute its distributional derivative, we take ¢ € S. Then, by using the definitions
of distributional derivative and of regular tempered distribution, we get

(Flogu)» ) = —(Flog 1, ¢) = —/Rlog|t|g0'(t) dt
+oo —€
= — lim logt¢'(t) dt — lim/ log(—t) ' (t) dt
e=0 /) _

e—0t J,

= Im <logs<p(6) - /:Oo “’f) dt)
lim {log(a) o(—¢) — / el dt}

e—0t [ee) t

N

+ lim
e—07t [t|>e

20 g
t

By using a first order Taylor expansion, we have

o(e) = p(=2) = ((0) + ¢'(0) £ + 0e) ) — ((0) = ' (0) & + 0() )
=2¢'(0) e + o(e), for e — 0T,
thus we get
. _ _ — / . —
51—1>I(€1+ loge (go(s) o( s)) 2¢'(0) 61_1)r61+e loge = 0.
In conclusion, we obtained

t
<Fl’0g|t‘, ) = lim () dt, for every p € S.
e—0t [t|>e
By recalling the definition (6.2.1), we conclude the exercise. O
Exercise 6.9.2. We consider the second order linear differential operator
d? d
P(u):—aﬁg—ibd—;ﬁ—i—cu, forueS.

Let us assume that a,b,c € R, with a > 0 and that b*> —4ac < 0. Find a fundamental solution
F € 8 of the operator P.

Solution. We need to find a tempered distribution F' € S’ such that

P(F) = o, in S
We take the distributional Fourier transform, i.e.

FIP(F)] = Floo] = F1.
By using (6.5.3), we obtain

FIP(F)] = —aF {sz} ~ibF|SF| 4 AR
dt? dt
= [-aliw?—ib(iw) +c|F[F]

— (aw2+bw+c)f[F].
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Thus a seeked fundamental solution F' € S is such that
1

FlF]=—
L] aw? +bw+ec

Flv

i.e. in other words F[F] is the regular tempered distribution generated by the slowly growing
function

(@) !
W)= ——————.
Jasb,e aw?+bw+c
We now recall from Exercise 5.9.1 that
2 T ;b _V4dac—bs 4ac b2
Flgapel(w) = ——=¢€"2a"e" = hape(w),

dac—b?

which implies from the duality formula (5.4.6) that
]:[ha,b,c] (w) = 27rga,b,c(7w) = 271—.ga,—b,c(w)-

By using this formula and exchanging b with —b, we get

1
F {ﬂ ha,fb,c} (w) = ga,b,c(w)~

This in turn implies that

1
FIF = F |5~ Fa,_,.].
[ ] 27T ha,fb,c
and thus as a fundamental solution we can take the regular tempered distribution
1 . 27‘(’ b \/4ac b2
F = P Fho o with hg —pc(t) = e e t2ale” ltl
This concludes the exercise. (]

Exercise 6.9.3. We consider the second order linear differential operator
d2
P(u) = ﬁ+)\u foruesS,

where A > 0. Find a fundamental solution F € 8’ of the operator P.

Solution. As before, we need to find a tempered distribution F' € 8’ such that
P(F) :50, in S/.

We take the distributional Fourier transform, i.e.
FIP(F)] = Fldo] = F1

By using (6.5.3), we obtain
2

FIP(F) = F LZQ

= [(1w)? + M| FIF] = (A — w?) FIF].

}Jr)\]-"[]

From the equation, we formally get
1 1 { 1 1

=——F = — .
N2t 2V [VA4+w  w—VA !
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25T

-7,5 -2,5 0 2,5 75

-2,5T

Figure 1. The function f generates a fundamental solution of P(u) = ‘;tg + Au.

Observe that this computation only holds at a formal level, since the function 1/(A — w?) is not a

multiplier of the class S. We can interpret the previous formula as
1 1 1 1
FlF|=— P.V. + P.V. .
= ntVeoaen Ve

By recalling that
1
.F[Fsign] == —2'LPVE,

from formula (6.5.5) we get
1

1
‘F[ thFmgn] - _2ZPV7 and f[ _thFSIgn] - _QZPVm

w—VA

Thus, if we define (see Figure 1)

P iVt —ivae] _ sign(t)
f(t):—4ﬁs1gn(t) {eﬁ — VA ]: 2gﬁ sin(V/\t),

we get that

1 1
R v S v SN S e

as desired. Thus the regular tempered distribution generated by the function f is a fundamental
solution. n

Exercise 6.9.4. For everyn € N\ {0}, we set
n

Hn(t) = = sinc (ﬁt) .

™
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Prove that if we consider the sequence of reqular tempered distributions {Fy,, }n>1 C S', we have
By, =5 6.

Solution. We first observe that H,, € L>(R), thus by Proposition 6.2.6 we have that Fy, is a
tempered distribution. We point out that in this case we can not directly apply Proposition 6.3.21,
since the function

1 . 1
t— — s1nc(—t),
T s

is not in L'(R). We take ¢ € S, we need to show that
Jim (Fy,, ) = ¢(0).
By using the definition of F}, and the fact that H,, is even, we have

lim (Fy,,,p) = lim /Hn(t) o(t)dt = lim /’Hn(O —t)p(t)dt = lim ¢ * H,(0).

n—oo
If we now recall Remark 5.4.3, we get the desired conclusion. ([

Exercise 6.9.5. By using the Poisson’s summation formula, compute the sum

Z 1
wep L+ n®
Solution. We consider the L' function
1
) =17
By Exercise 5.8.3, we already know that
Flfl(w) = me .

By using Theorem 6.6.3, we then get

> 1_:n2 =Y fn) =S Flfl@nk) =7 3 e 27 M

neZ neZ keZ kEZ
k=-1

o0
=747 26727”64-77 Z e2mk
k=1 —0o0

o
=n14+27 26_2”1‘7
k=1

=7+2m (i (e727)" - 1)

k=0

1
In conclusion, we get®
1 e—27r 627r_}_1 T
nz:qun? ™ 7T176*27r ﬂ-€2ﬂ'*1 tanh

5We recall that
sinh ¢ et —e”?t e2t — 1
= = t eR,

tanht = =
cosht et+e-t e2t41’

is the hyperbolic tangent.
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This concludes the exercise. U
Exercise 6.9.6. Generalize the previous exercise, by computing the sum
Z 1
2 27
nen @ +n
where a > 0 is given.
Solution. We can proceed as above, by taking the L' function
1 1 1
fO)=5—%H5=5—"7+=
t2 2 t 2
a® + a 14 (7)
a
By using Proposition 5.3.2; we then get
1 T
F = —ame @l = Zgmalvl,
f@) = S am :
We now proceed as in the previous exercise. By using Theorem 6.6.3, we then get
1 T —27alkl|
> = 2 f) = FlRrk) =2 e
ez TV kez @ ez
T T [ee) T k=-1
_ " o —2mak o 2mak
= + a Z e + a Z e
k=1 —00
oo
— E+2z Ze—Zﬂ'ak
a a =
71' T [ k
=—-4+2- ( (6727”1) 1)
a a \=
T s 1
5 ()
a + a \1—e2ma
In conclusion, we get
L _myr e _mettHl 1 ma
=, 0% +n? a al—e2ma g e2ma 1 g2 tanh(ma)
This concludes the exercise. U

Remark 6.9.7. We can use the previous exercise to compute the sum

Indeed, observe that

i 1
72-
n=1 n
e | 1 1 1
Z — lim - _ =
7;1 n2  abot 2 L;z a2 + n? a21
1 Ta 1
= im - | ——— —
a—0+ a? |tanh(mwa)

ma — tanh (7 a)

lim
a0t a2 tanh (7 a)

N~ N~
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We now use the third order Taylor expansion
3

t
tanh(t) =t — 3 +o(t?), for t — 0,
which gives
1
3.3 3
1 . ma—tanh(ma) 1 . gﬂ a® + o(a”) 2
— lim =— lim *>—5—-— = —.
2 a—0t a? tanh(wa) 2 am0t mad + o(a?) 6
In conclusion, we obtained
oo 2
3 1_=
5 =
—n 6

Exercise 6.9.8. Show that the Hilbert transform of rect is the regular tempered distribution gen-
erated by the function

1

t+ -
t — log 7% .
t_f



Appendix A

Limit superior and
limit inferior

1. Suprema and infima

Let £ C R be a non-empty set. We say that m € R is a lower bound for E if
m < x, for every z € F.

We say that M € R is an upper bound for E if
r < M, for every z € E.

Definition A.1.1. Let £ C R be a non-empty set. We define its supremum as the smallest upper
bound for E. We indicate by
sup F,

this number, with the convention that sup F = +o0 if the class of upper bounds is empty.
Remark A.1.2. If M =sup E < 400, then it has the following properties:

e ¢ < M for every x € E;

e for every € > 0, there exists z. € F such that

M —e < x..

Definition A.1.3. Let £ C R be a non-empty set. We define its infimum as the greatest lower
bound for E. We indicate by
inf F,
this number, with the convention that inf £ = —oo if the class of lower bounds is empty.
Remark A.1.4. If m = inf E > —oo, then it has the following properties:
e x > m for every x € F;

e for every € > 0, there exists z. € E such that

m—+ € > Xe.

227



228 A. Limit superior and limit inferior

Given a sequence {x, }nen, we will use the notations

sup &, = sup{z, : n € N},
neN

and more generally

sup &, = sup{x, : n > k}.
n>k

We will use a similar notation for the infima of sequences.

2. Limit superior and limit inferior

Definition A.2.1. Let {b,},en be a sequence of real numbers. Its limit superior is defined by

inf sup by,.
kEN > "

We use the notation

lim sup b,,,
n—oo

to denote this quantity.

Remark A.2.2. Observe that the new sequence

By, = sup by, for every k € N,
n>k

is monotone decreasing by construction. Then we have

inf B, = lim B;.
keN k—o0

Definition A.2.3. Let {b,},en be a sequence of real numbers. Its limit inferior is defined by

sup inf b,.
kegn?k "

‘We use the notation

lim inf b,,,
n—oo

to denote this quantity.

Remark A.2.4. Observe that the new sequence
By, = inf b, for every k € N,
n>k

is monotone increasing by construction. Then we have

sup By = lim Bjy.
keN k—o0

Example A.2.5. By taking the sequence b, = (—1)", it is not difficult to see that
liminf(—1)" = —1 and limsup(—1)" = 1.

n—oo n—00

Example A.2.6. Let us consider the sequence

n .
——, if n even,
n+1
by =
1
1 i odd.

n
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We observe that for every k € N

FHL ik odd,
b — by, ifkodd, k
@2 " bk, ifkeven ) o
——, if k even.
kE+1
This implies that
FHL ik odd,
limsup b, = lim =1.
G Lk even.

Theorem A.2.7. Let {b,}nen be a sequence of real numbers. Then the sequence admits a limit if

and only if
lim sup b,, = liminf b,,.
n—00 n—00
In this case, we have
nh_)rgo b, = hgrl_> S;p b, = hnn_l> 1013f by






Appendixz B

First order linear
differential equations

1. Variable coefficients case

In this section, we briefly recall how to solve an ordinary differential equation of the form
y'(t) +a)yt) =bt), teR,
where the continuous functions a, b are given. Let A be a C'! function such that
A(t) = a(t), for t € R,
i.e. A is a primitive of a. Then we observe that
y (1) +al)y(t) =bt) <= O (Y1) +a)yt)) =0 b().

With this simple trick, we can now recognize a derivative on the left-hand side, i.e.

/

AO (y (1) + a(t) y()) = (e y(1)) .
From the previous identity, we thus get that y is a solution of the differential equation if and only
if

(A0 y(1) = A b0,

that is if

eAW y(t)  is a primitive of e p(t).
We write this with the formula

e y(t) = B(t) +«, with B'(t) = e*®b(t) and ceR.

Thus finally we get the solutions
(2.1.1) y(t) = e AW B(t) + ce A0,

i.e. we have found infinitely many solutions.

231



232 B. First order linear differential equations

Example B.1.1. Let us solve
y'(t) +ty(t) =0, teR.
With the notation above, we have a(t) =t and b = 0. We can choose the following primitives

At)=%  and  B(t) =0,

and obtain the family of solutions

where ¢ € R is an arbitrary constant.

2. Separation of variables

When b = 0, the equation
y'(t) +at)yt)=0, teR,
can be solved by the separation of variables technique. We rewrite the equation in the form
Y (t) = —a(t) y(t),
and then divide by y(¢) both sides (let us suppose that y(t) > 0 for every t € R). We thus get
/
t

Y ( ) = _a(t)a

y(t)
and the left-hand side is the derivative of t — logy(t). In other words, we have

(logy(t)) = —a(t).
We introduce as before a primitive A of a, then we obtain
logy(t) = —A(t) + ¢

and ¢ € R is an arbitrary constant. By composing with the exponential function on both sides, we
thus obtain

y(t) = e AW ¢
By arbitrariness of ¢ € R, we can rewrite the previous as
y(t) = Ce 40, C >0,

which is nothing but (2.1.1). Observe that the restriction C' > 0 is in accordance with the require-
ment y(t) > 0 that we made during the previous discussion.



Appendiz C

Fourier series

In this Appendix, we briefly present some definitions and results about Fourier series.

1. Definition and first properties

Let T > 0 and let f : R — C be a T—periodic measurable function. The theory of Fourier
series aims at solving the problem of writing f as a (possibly infinite) superposition of T'—periodic
functions of the form

2 2
cos (%nt) and sin (%nt) , n € N.

In other words, we want to understand under which conditions on f is it possible to write

(3.1.1) f(t):ao—i-ian cos <2%nt) +ibn sin (%nt),

n=1 n=1

for two suitable sequences of coefficients {a, }nen, {bn}neny C C. Moreover, in which sense does the
convergence of the series above should be understood?

It is useful to observe that (3.1.1) can be rewritten in a more compact form. Indeed, by recalling
that

e = cos +i sind,

we have

i 9 —i9 id —i9
eV +e . e
cost) = ———— and sinty = ——

233



234 C. Fourier series

This implies that

27 27
ap + Zan cos (77“) —i—Zb sin (77175)

n=1

271— . T .
nt zTnt_e—zTnt

:ao—l—Zan +Zb :
2 21
an_lbn iQ—ﬂ—nt an—i—zb 2Ty
:a0+z T T +Z T e T
n=1
=ag + Z (@) i3 Tty Z (M) 67:27’“mt7
n=1

where in the last series we made the change of index m = —n. If we then set
(3.1.2) co=ao,  Cp= @ forn > 1,

and

(3.1.3) Cn = % for n < —1,

then the problem can be reformulated in compact form as follows: under which conditions on f is
it possible to write

(3.1.4) f6) =3 coen T,
nel

for a suitable sequence of coefficients {c,}neny € C? In which sense does the convergence of the
series above should be understood?

In order to answer this question, we first observe that the form of the coefficients can be easily
guessed: we choose k € Z, multiply both sides of (3.1.4) by

27,2
6_szt,

and integrate over the periodicity interval [—T/2,7/2]. By discarding convergence issues and
proceeding formally, we get

T
2 k2my _ 2 i(n—k)<Et
/Te T f(t)dt = Tche T ' dt
-2 T2 neZ
%
=> ¢ / et (k) 5t gy
T
nez -2
We observe that for n # k we have
T
5 . i(n—k)m _ —i(n—k)m
/2 iR gy © ¢ -,
_T i(n—k)%

while for n = k
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In conclusion, we get the relation

!

/ (fik%wtf(t)dt:Tck,

r

2
that is, whenever f can be written as (3.1.4), the coefficients ¢, must have the form

/ F(t) dt.

Definition C.1.1. Let f : R — C be a T—periodic measurable function. Let us suppose that
f € LY([-T/2,T/2)), then its Fourier coefficients are given by

NH

T
—~ 1 2 . n
f(n)== /2 e_Z"Qth(t) dt, for every n € Z.

The formal expression

is called Fourier series of f.

Theorem C.1.2. Let f : R — C be a_T—periodic measurable function. Let us suppose that
f e LY [-T/2,T/2]), then the sequence {f(n)}nez C C is bounded and such that

(3.1.5) Jim |f(n)| = 0.

Proof. The boundedness of { f (n) }nez easily follows from the definition, indeed for every n € Z
we have
3

1 —in 2Tt 1 fzn—t
r e < g [ F o= / (1) d,

and the last quantity is finite and independent of n (compare this estimate with (5.2.1)). In order
to prove (3.1.5), we observe that

N

6—zn2”t _e—inzT’rte—zﬁr7
thus we get
:_l % —in =t 77,7Tf()
T -z
2
T
_ 1 2 Tn)
_ /T (1) dt
2
n+1l T

:_/n2 Tf<7'—%z)d7

We observe that the last integral is performed over an interval of length T' and the integrated
function is T'—periodic, thus this integral coincides with
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We thus obtained

2 1T
:—/ 71"77]" T———) dr
z n 2
On the other hand, by definition
T
iy 1 2 —in4r¢
fm=1 [ (0

By summing up the two identities, we get

Fin) = 5 / e F (- (125 ) dn
and thus 2
(3.1.6) Fn)) < % /_T ‘f(t) —f(e- % g)‘ dt.

By using the continuity in L' norm of translations, i.e. Proposition 3.4.5, we get the conclusion. [

Lemma C.1.3. Let f : R — C be a T—periodic measurable function. Then:

1. if fis even, then the Fourier coefficients are even, i.e.

fn) = f(=n), for every n € Z;
2. if fis odd, then the Fourier coefficients are odd, i.e.
f(n) = —f(—n), for every n € Z;

3. if f is real-valued and even, then the Fourier coefficients {f(n)}nez are real;

4. if f is real-valued and odd, then the Fourier coefficients {f(n)}nez are purely imaginary.

Proof. We prove the points 1. and 3., leaving the other proofs as an exercise. By using the change
of variable s = —t and using that f is even, we get

fem=g [LenFipwa= g [0 e s ds

/

Let us now further assume that f is real-valued, in order to prove that the Fourier coefficients
are real, we can prove that

oS wH

S f(s)ds = F(n),

M‘ﬂ

which proves the first point.

~ ~

fn) = f(n)*, for every n € Z.
By definition, we have



1. Definition and first properties 237

for =7 [

We thus obtain

N

dmFL () dt = f(—n).

r
2

By point 1., the last coefficient is equal to f(n). We thus achieved the desired conclusion. [l

Remark C.1.4. By recalling the relations (3.1.2) and (3.1.3), we get that if f is even, then its
Fourier series can be written as

Jf1(t) = ao + ian cos <277Tnt),

n=1
i.e. it only contains the cosine functions. Indeed, by the previous Lemma we have
an + iby,

n bn Iy I
% = f(n) = f(—n) = — for every n € N,

which implies that b, = 0, for every n € N.

Similarly, if f is odd, its Fourier series can be written as
> 27
D=3 s (2t).
710 = 3 b sin (3

Definition C.1.5. Let f : R — C be a measurable T'—periodic function, such that

rer([-55])

Let us suppose that g € LL _(R). We define their convolution to be the function

fro)= [ ft=r)gr)ar.

2

Lemma C.1.6. Under the previous assumption, the functions f % g is still T—periodic and

1 T T
rroert([-35)).
with
||f*9||L1([_%,%]) < ”f”Ll([—%%]) ”g”Ll([_%%])

Proof. By using the T'—periodicity of f, we easily get.

fro+m) = [ ferT-n)grar= [ ft=m)g()dr = f g0

In order to prove that f * g is in L', we proceed as in the proof of Proposition 3.5.4. We have

/ET |f * g(t)| dt = /ﬁT

2

? ft=7)g(r)dr| dt

r
2

T

</ /_§|f<t—f>|\g<7>|d7dt

2
T T

[ (/ \f(t—T)!dt> ar,
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thanks to Fubini’s and Tonelli’s Theorem. By using a change of variable and the T'—periodicity of
f, we get

[ose=ntae= [ irelas= [ 156)as
2 2 2
and thus the conclusion follows. O

2. Convergence

We now discuss under which conditions the Fourier series
-~ .27
T => fn)e" Tt
nez

converges to the original periodic signal f. Moreover, we want to clarify in which sense this
convergence must be understood. Observe that whenever we have

TE) = f(t),
this can be read as an inversion formula for the Fourier series, in analogy with the inversion formulas
for the Laplace and Fourier transforms.
In this spirit, the following result can be seen as the natural counterpart of Theorem 5.4.2.

Theorem C.2.1. Let f : R — C be a T—periodic measurable function. Let us assume that f is a
piecewise C* function on [-T/2,T/2], i.e. f and f' have only jump discontinuities at

T<t <ty < <t<T
5 =t 2 =5

Then for every t € [=T/2,T/2], we have

FE) +167)

Tinw =

Proof. Let us fix t € [-1/2,T/2], for every k € N we define the k—th partial Fourier sum

k
(3.2.7) Tl = Y Flm)e i,

n=—*k
Then we need to show that

lim 7)) = LED )

k—o0 2

By using the definition of Fourier coefficient, we have

Gl =Y 5 [ fEe e

z k
]. 2 2wn
=— (1) < E e T ’(Tt)> dr.
T )1

n=—*k



2. Convergence

239

We now perform the change of index m = n + k in the sum above, so to obtain

k 2 . 2k 27 (m—k) .
Z e~ Fri(T—t) _ Z e—Tz(T—t)
m=0

n=—k

2k 2k
— i) Z o Ti(r—t) _ A i(r—t) Z (6—27”1'(7—1:))7”_
m=0 m=0
We can recognize that the last sum is a partial sum of a geometric series. By recalling that

2k+1 _
2k L T

(3.2.8) 3 am = a—1
2k+1, ifa=1,

we get that:
o if (T—t)/T € R\ Z, then
N 2%1'(7’—15) ?é 1,
and thus by (3.2.8) with
o= e*%i(T*ﬁ)’
we get
2k —2m2RHD g
i) 3 (e—%”z'(f—t))m _ M T U1
0 e—%l(ﬂ'—t) -1
o~ 2 G (r—t) _ 2EE i (r—t)
- o i) _q
6_72W<Tk+1) i(r—t) _ e%i(T—t)

e—%i(T—t) (e—%i(T—t) o e%i(T—t))
(r—t) _ 62"(?%) i (r—t)

o Ei(r—1) _ Ei(r—1)

sin (% 2k+1) (1 — t))
sin (% (r— t))

27 (k+4) .
Bl DY

(&

o if (1 —t)/T € Z, then
and thus
By introducing the Dirichlet kernel
sin ((2k 4+ 1)t)

Dk(t): sint
2k +1, ifte{rm:melZ}.

, ifteR\{mm:melZ}
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\ / \ / 5
25 o 25 s 75 i Ef s o 3
x

ANAN
PV

Figure 1. The Dirichlet kernel Dy, for k = 1,2, 3.

we can summarize the previous discussion by saying that

25k i (r—1) 22%( i) = p (”( ))

e T i(T— e~ T T— = —(T—=1)].
m=0 ’ T

We thus obtained

(329) gl =7 [ 100 (F ) ar

Before going on, we manipulate a bit the last integral. Observe that by definition Dy, is even, thus

Dk(%(T—t)):Dk(%(t—r)).

In this way we can recognize the expression of a convolution, in the right-hand side of (3.2.9).
Moreover, Dy, is m—periodic, thus we have

a0 =1 [ 1o e (5 —0) ar
(3.2.10) = % _z f(7) Dy (% (t — T)) dr
o :
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In the last identity we used that the integrand is T'—periodic. In order to conclude, we need to
show that

For this, it is sufficient to prove that
(3.2.11) klirgo% - s-s) D (% s) ds = f(;_)
and
° (t1)
klggof . f(t—s) Dy <—s) ds = 5

The proof of these two facts is quite similar to that of Theorem 5.4.2. We focus on proving (3.2.11),
the proof of the other fact being equal. Observe that by using formula (3.2.10) with f(t) = 1, we

have!
1 3 ™
-2

As already observed, Dy, is an even function, thus from the previous computation we also get

T
1 2 T 1
z D(—t—)d:—.
T/O k\g(t=9))ds=3

Thus (3.2.11) can be rewritten as

lim — /g (f(t=s)=£(t7)) Dy (%s) ds = 0.

k—o00 T 0

By recalling the definition of Dirichlet kernel, this is turn is equivalent to
| / (=)= (7))
0 sin ( 5)

g [E=9) =107
sin (T s)

is in L([0,7/2]), then the desired conclusion (3.2.12) would follow from Lemma 5.4.1. For this, it
is sufficient to observe that thanks to the assumption on f we have

fE=s)—f(t7) f'(7)s _ f/(t7)
sin (% 5) T° T

We leave the final details to the reader. O

3.2.12 1i
(3.212) Jm o

sin(%(Zk—i—l)s) ds = 0.

NI=

If we can prove that the function

, for s — 0T,

IFor the costant function f(t) =1, we have

f(n) =0, for every n # 0

~

and f(0) = 1.
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Proposition C.2.2. Let f : R — C be a T—periodic measurable function. Let us suppose that
there exists C' > 0 and 8 > 1 such that

= C
P
F) < s

Then the Fourier series of f is totally converging on R.

for every n € Z.

Proof. We need to prove that

(Sup ‘f D < +00.
nEZ teR
By the properties of the complex exponential and the assumption on f, we have
(SUP’J?(TL)CMZTM> < _C for every n € Z.
teR 1+ |nlf’

By recalling that (here it is needed g > 1)

o0

1
S <o,
n=0 1 + |n|ﬁ
we get the desired conclusion. O

Theorem C.2.3 (Smooth periodic signals I). Let f : R — C be a T—periodic measurable function.
Let us suppose that f € CO(R) N CY([~T/2,T/2]) and that f' is a—Hélder continuous, i.e. there
exists C' >0 and 0 < a <1 such that

1f'(t) = f'(s)] < Ct — 5], fort,s € R.

Then the Fourier series of f is totally converging on R to f.

Proof. Under the standing assumptions on f, we already know by Theorem C.2.1 that the Fourier
series converges pointwise. In order to infer total convergence, the idea is to apply Proposition
C.2.2. By using an integration by parts, we get for n € Z \ {0}

=2y

—in2w

T
2

o= [ e i =g

T

—/ eI £t dt
T [‘“”f( )i (=3)]

T
1 . 1 —inZZ ¢t 1

M

M"]

—_

!

By the hypothesis of continuity of f, we get

and thus
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By hypothesis the derivative f’ is continuous on the interval [—7/2,7/2], thus in particular it is

bounded. We then obtain
T
1 2 —inZTt g
T / %6 T fi(t) dt| =

By recalling the estimate (3.1.6) and using the Holder regularity of f’, we obtain

|f’(n)|=21T/_§f’(t) f(t_1T>‘dt 9 g(T)C“dt: cTe

n 2 = 2T 2n| 2041 o
In conclusion, we obtain for n € Z \ {0}

|F(n)].

2 !n!

~ cTe
|f(n)] = % |f’( )| < W
By Proposition C.2.2 with 8 = a + 1, we obtain the desired conclusion. ([
Proposition C.2.4 (Bessel inequality). Let f : R — C be a T—periodic measurable function, such
that
T T
2([-3-3)):
J€ 272
Then

For <4 [ 1P

Proof. We first introduce some notations. For every pair of functions f,g € L?([-T/2,T/2]), we

define the scalar product
T

(fg)= |, FO gt at

Observe that this has the following properties:
° (9, f) = ([ 9))"
o (afi+Bf2g) =alfi,g) +B(f2g), for every a, B € C;
o (f, /) =IfIF2

Also observe that by combining the first two properties, we also have for every o, 5 € C

(fag1+Bg2) = (<a91+ﬁgz,f) (alg1, 1)+ B g0, f))

o ({91, )" + 8" (92, /)"
=a* (f,q) + B* ([, 92).

For every n € Z, we also set

and observe that

3.2.13 €L, €ey) = ! ekt gmim Bt gy
T 0
-7
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We also notice that, with these notations, we have

~ 1
f(n)::;Zf<jyen%

We now fix k € Z and observe that the k—th partial Fourier sum of f (3.2.7) ca be rewritten as

for every n € Z.

k

Tulfl(t) = D (f.en) en(t).

n=—k

Then we decompose f as follows:

F(8) = [£() = TIFI0)] + Tl A(E).
We observe that by construction, we have

(f = Telf), Telf)) = {F, Tl 1) = (Tl £, Tl 1)
k k k
= <f7 Z <faen>en> - < Z (fven>ena Z <fuen>en>
n=—=k

n=—*k

(3.2.14)

k
= Z <f’en> <f7en>*7 Z <f7en> <faen>* :07

n:—k n—=

where we used the properties of the scalar product and the orthogonality relations (3.2.13). From
this identity and the properties of the scalar product, we get

AN ENAT R (VAT AT )

as well. By using these facts, we obtain

T

/_ TR = (f. f)

Sl

Il
PSS

(£ = Zlf1] + HlF) [£ = Tl f] + Rl 1])

= (f(t) = Tklf], f = Tklf])

+ (f() = Tklf], Tulf]) + (Tklf], f = Tl )
+ (Tl f1, Te[f1)

= (f = Tlf], £ = Tl f]) + (Telf], Tl f])

(1) = Tul A1) dt + (Tulf), Tulf)) = (Tulf), Tlf)-

I
i
NS

By recalling the definition of Ji[f] and using the orthogonality relations (3.2.13), we obtain
k

k
(3.2.15) (Tlf], Telf)) = D (fren) (f,en)” Z [(fren)2=T 3 |f(n)?

n:—k; n_—k n=—k

The previous discussion leads to

r

2 k ~
[ rwra= 3 (fop

n=—"k
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This estimate holds true for every k € N, thus by taking the limit as k& goes to oo, we get the
desired conclusion. O

With the aid of the previous result, we can considerably improve Theorem C.2.3 as follows.

Theorem C.2.5 (Smooth periodic signals IT). Let f : R — C be a T'—periodic measurable function.

Let us suppose that f € C°(R) and that f' is piecewise continuous on [—T/2,T/2], i.e. f' have
only jump discontinuities at

N

T
—— < <t <<t <
g Shi<t =y

Then the Fourier series J|f] is totally converging on R to f.

Proof. Under the standing assumption, we already know by Theorem C.2.1 that J[f] converges

pointwise to f. Thus, we only have to show that the convergence of the Fourier series is actually
total, i.e. we need to show that

> (su| o)
v \teR

We prove the result by assuming for simplicity that f’ only has one discontinuity point —7/2 <
to < T/2, it is then easy to reproduce the proof in the more general case.

) S 1f(n)] < +oo.

neN

By using an integration by parts, we get for n € Z \ {0}

T T
2

F =g [ e [ e i g [T

27
1 efznTt
- = S t)dt
T [—znZ ] T /g —in2m ()

2

1 2 efzn—t

.mf<t>] LT pyar

T J,, —in2m

T
11 { —inw (T) inm ( T)}
BT AT Y R A
1.1
T
1

i2n7r{_ i (to)—l_&tﬁ{toﬂ

T
1 2 s 2T

et f(t) dt.

We now observe that e *"™ = ¢!™™ and by the hypothesis of continuity of f, we get

1(5)=1(-3)

Thus from the above computations we get

(3.2.16) F(n)| =
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By hypothesis the derivative f’ is bounded on the interval [—T'/2,T/2], thus in particular we have

T

/T F(O2 dt < +oo.

2

By applying Bessel inequality to the function f’, we thus obtain that
S ()P < +oo.

neL
By using (3.2.16), we thus have
~ 1
Sl = O+ S 70l = O+ 5. 34 7o
nez n#0
<|f

ZW 17 PP < oo

n#0
as desired. Observe that in the last inequality we used Young’s inequality (i.e. Lemma 3.3.2 with

p=2). 0O

Remark C.2.6. The statement of the previous result looks quite similar to that of Theorem C.2.1.
However, the crucial difference is that in Theorem C.2.5 the signal has to be globally continuous,
i.e. f does not have jumps.

Theorem C.2.7 (Parseval’s formula). Let f,g: R — C be two T—periodic measurable functions,

such that
T T
2([-5.3)-
g€ 5

Then we have Parseval’s formula

Proof. We perform the proof under the additional assumption that the Fourier series [J[f] and
Jlg] both converge uniformly to f and g, respectively. In this case, we have
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Observe that by Young’s inequality (see Lemma 3.3.2 with p = 2) we have
li <
fi| 32 o o, Z o
n=—k =
1 k
< = 1 i 2
<3hm Z o)l + 3 Jim, 3 19(0)
and the last two series are converging, thanks to Bessel inequality. This concludes the proof. [J

Remark C.2.8. By choosing f = g in the formula above, we obtain Plancherel’s formula

/_ Pt =3 1)

neL

Corollary C.2.9 (Convergence in L?). Let f : R — C be a T—periodic measurable function, such

that
rer(L).

f=Jlf mL2q—z zD

-1

Then we have

This means that we have

(-3
where Ji|f] is the k—th partial Fourier sum, see (3.2.7).

R BECTIOR

introduced in the proof of Proposition C.2.4. Then we have
2

2(-5.5)

Proof. We still use the scalar product

Hf—Jk[f]

= (f = Tklf], f = Tklf])

= (f, ) + (£, Telf) = (Tl S, £) + (TalF], Tel FD)-
By (3.2.14), we have

(f, Telf1) = (Tulf], TelFD),
while by the properties of the scalar product, we get

(Telf], 1) = ({f, Telf)* = (Tklf], Telf1)* = (Tklf], Telf1)-
Thus we obtain )

£ )~ Tl il f
gy = ) = LD,

Hf—Jk[f]

By using that (f, f) coincides with the square of the L? norm and formula (3.2.15), from the

previous identity we get

2

Hf_jk[f]

= Hinz([_% % -T Z ’f

([-3:3)) n=—-k
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By taking the limit as k& goes to oo and using Plancherel’s formula (see Remark C.2.8), we get the
conclusion. 0

3. Exercises

Exercise C.3.1. Let f : R — R be the periodic signal
= Z rect(t — 2k).
keZ
Draw the graph of f and compute its Fourier series, by discussing its convergence.
Solution. It is not difficult to see that f is obtained by periodically repeating the rectangular
function, extended by 0 to the whole interval [—1,1]. Thus f is 2—periodic. The signal f is

piecewise C'!, thus from Theorem C.2.1 we can infer the pointwise convergence of its Fourier series
JI1f]. More precisely, we have

1, if —1/2<t<1/2,

1 . 1
Jif =4 3 Ht==3

. 1 1

We now compute its Fourier coefficients. We have for n # 0

=L [ - 1 [z .
f(n) = 2 / rect(t) e ™"t dt = 3 /2 TNt gy

1
-1 1

N
|
ml
A 3
S 3
S -~
o~
_ 1
|

In other words, we obtained

0, if n is even,

wa:wn{(—Uh ifn=2k+1.

The coefficient fA’ (0) is given by

Finally, the Fourier series is given by

7 (2k+1)it

o0
We also observe that f is even, thus by Remark C.1.4 we can also rewrite this as a series containing
only cosine functions, with coefficients aj, given by (recall (3.1.2))

ag = f(0), ar =2 f(k), fork>1,

l\.’J\»—\
=HH

Tl =5+ 3 F@k 4 1)er @i
k=0
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Figure 2. The graph of the signal f of Exercise C.3.1. In red the sum of the first 8 terms of the
Fourier expansion.

Figure 3. The periodic signal f of Exercise C.3.2.

i.e.

Il =5+

SR

3 (_1)k cos(m(2k+ 1)t
];)2k+1 (m ( 1)

N

This concludes the exercise. O

Exercise C.3.2. Let f: R — R be the periodic signal

ft) = Ztri(% —2k:>.

kEZ

Draw the graph of f and compute its Fourier series, by discussing its convergence.

Solution. It is easy to see that f is periodic, with period T" = 27. Moreover, the function f
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verifies the assumptions of Theorem C.2.5, thus we have

T = f(B),  for every ¢ € {—gg ,

and the convergence of the Fourier series is total.
We first observe that
t—1—(|t|/n)

is a real-valued even function, thus by Lemma C.1.3 we already know that its Fourier coefficients
are real and such that f(—n) = f(n). Let us compute them: we have

f(O)Z;W/_Z( ’;’)dt i/;(l-;)dt
[aaasl

For n # 0, by using an integration by parts we have

f(n) = ;ﬁ/ﬂ (1— |7tr|) ettt

1 (7 t 1 [0
=5 (1——) *“”dtdt+2 <1+ ) ettt

7T —T
M 0
2 T/ —in |,
t —znt
T/ —in 2772/
7lnt fznt
= dt
S 2q2 / in +27r /_7r in
1

e—int T 1 e—int 0
= - ; + ; - .
272in { in L 272in | —in |__

Fin) = —~ F_.m—.l% L {ei.m—.l}

In conclusion, we get

272in | in in 272in | in in
1 ‘
= e e
where we used that e "™ = ¢'™™. Moreover, we have
einﬂ' — (_1)n
thus for n € Z \ {0} we finally get
-~ 1 0, if n even,
fn) = n? w2 { 2, if n odd,
and thus
1 ) i(2 k+1)t
JU(E) == T
LF1() 2 2 e (2k+1)2
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Figure 4. The graph of the signal f of Exercise C.3.3. In red the sum of the first 5 terms of its
Fourier series expansion.

As the function f is even, by Remark C.1.4 we can also rewrite this as a series containing only
cosine functions, with coefficients ay given by (recall (3.1.2))

ap = 2f(k)7
ie.
1 4 cos ((2k+1)t)

IO =35+ 3 & Qk+1)

This concludes the exercise. O

Exercise C.3.3. Let us define
t
g(t) = t?rect (—) ,

™

f@)=73 gt —km).
keZ
Draw the graph of f and compute its Fourier series, by discussing its convergence.

and

Solution. It is not difficult to see that the function f is periodic with period T' = 7. Moreover,
the function f verifies the assumptions of Theorem C.2.5, thus we have
T T
TUNW =10, foreveryte |5, ],

and the convergence of the Fourier series is total.

Its Fourier coefficients are given by

~ 1 3 X 1
fn)=— /2 e 2t = = / t% cos(2nt) dt
_ T J_

/ t? sin(2nt) dt.
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We observe that the function ¢ — ¢? is even, thus we get

us

1 (2 2
— /2 t? cos(2nt)dt = = /2 t? cos(2nt) dt,

s
% 0
and

1 s
— /2 t? sin(2nt)dt = 0.
T J =

2

We now observe that with some integration by parts, we obtain for n € Z \ {0}

N 2 (3% 2 sin(2nt) 17
f(n):/2 t2 cos(2nt)dtziﬁ’817n(2ﬂ{
m™ Jo 2n 0

2 [3
— t(—sin(2nt))dt

= ReEe))

_ 2 {{t cos(2nt)} B B 2 cos(2 dt}
nm n 0 0 2n

o~

As for the coefficient f(0), we have

In conclusion, we get

which can also be rewritten as

This concludes the exercise. O

Exercise C.3.4 (Square wave). Let us define

g(t) = rect (t — 1) — rect <t + 1) .
2 2
We consider the square wave signal, defined by
O(t) = > g(t+2n).
nez
Draw the graph of O and compute its Fourier series, by discussing its convergence.

Solution. We first observe that [J is 2—periodic, since
Ot+2) =Y gt+242n)=> gt+2(n+1))= > g(t+2m)=0(t).
ne” neZ meZ

The square wave signal is piecewise C!, thus from Theorem C.2.1 we can infer the pointwise
convergence of its Fourier series [J[J]. More precisely, we have

JO@ =0¢),  forte (~1,00U(0,1),
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)
I

057, |
i
[

Figure 5. The square wave signal. In red the sum of the first 6 terms of its Fourier expansion.

and
JH](0) = J[0O)(-1) = J[0](1) = 0.

Let us compute its Fourier coefficients: for every n € Z \ {0}, we have

~ 1 ! . 1 ! . 1 [0 .
O(n) == / g(t)e ™M dt = / e Tt gr — / e Tt gt
2 /4 2 Jo 2 /4
1 e*ﬂnit 1 1 e*ﬂnit 0
2 {—WniL_2 {—anll
11 1e—”m+1 1 1™
C 27ni 2 wni 27wni 2 7mni
1 .
— 1 nmt
which gives
~ i 0, ifn even
] - ) )
) =-_ { 2, if n odd.
On the other hand, we easily see that
0(0) = 0.

Observe that [ is real-valued and odd and what we obtained is perfectly in accordance with Lemma

C.1.3. The Fourier series is then given by

IO =Y

e(2n+1)7r7lt'
nez (2n+ 1)

Since f is real-valued and even, we know by Remark C.1.4 this can be written as a series of sine

functions, with coefficients b, given by (recall (3.1.2))

-~ —ibn

Fmy ==,
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1,281

- T~ | T~

05T

0,251

Figure 6. In red, the partial sum of the Fourier series of Exercise C.3.5, corresponding to the first 5 terms.

that is

st 4 G0

n=1

This concludes the exercise. [l
Exercise C.3.5. Let us set
g(t) = cos(t) rect(t),

and consider the periodic signal f : R — C defined by

F&y="73 gt —k).

keZ

Draw the graph of f and compute its Fourier series, by discussing its convergence.

Soluzione. The signal f is 1—periodic, since we have

fE+1) = glt+1—k) =Y glt—m) = f(t).

keZ mEZL

Moreover, this is piecewise C'! signal, globally continuous on R, because g is continuous on [—1/2,1/2]

2 2 '

By Theorem C.2.5 we thus have that the Fourier series J[f] is totally converging. Let us now
compute the Fourier coefficients of f: at this aim, it is useful to observe that

ezt +€—zt

cost =
2
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We thus have for every n € Z

R 1 ' L _@rn—1)it —(27n+1)it
n) = ’ coste 2Tt g = ’ eile— eidt
f(n)

N

1 1 2 1 2
2 2 2
e—(2mn—1)it % e—(2mn+l)it %
= |l—-—— dt - dt
{ 2i(2nn—1) L*{ 2i2rn+1) | L
2 2
1 e(27rn—l)% o e—(27rn—1)%
C2rn—1 21
1 e(zwn+1)§' _ e—(zwn+1)§'
+27rn—|—1 21
If we now recall that )
zt_e—zt
& ¢
sin 57 ,
we get
0= g (en =) gt )
n)=-——sin{mn— - —— sin|lmn+ = ).
2mn—1 2 2mn+1 2

Observe that by using trigonometric formulas, we have

sin (wn - %) = —cos(mn) sin (%) = —(—1)" sin (%) ,
sin (ﬂn + %) = cos(mn) sin (%) = (—1)" sin (%) ,

Fo =[5 ] (-1 sin(3)

27Tn+1_27rn—1

RN

4m2n?2—1 2

and

which yield

In conclusion, we get
J[f](t) = 2 sin (1) Z (- p2mnit
2 4m2n2 -1 '

nez
Finally, let us observe that f is even, we can thus rewrite J[f] as a series of cosines. By recalling
the relations

~ ~

JO)=a0,  fy=Ffornz=1, fn) =" forn< -1,
we get

JIf](t) = 2 sin (%) + 4 sin <%) ;i 4(7r—21k)2k"’_11 cos(2mkt).

This concludes the exercise. O






Appendiz D

Harmonic functions in
the plane

1. Examples

We have seen in Chapter 1 that a function u :  — R of class C? on the open set Q C R? is said
to be harmonic if it verifies

Uz (X, Y) + Uyy(z,y) = 0, for every (x,y) € Q.
We set

this differential operator is called Laplacian. Then u is harmonic if Au = 0.

By Remark 1.4.14, we know that by taking the real or imaginary part of a holomorphic function,
we get a harmonic function in the plane. Let us have a look at some explicit examples.

Example D.1.1. Let us take f(z) = e* = e” (cosy + i siny), where as usual we write z = = + i y.
Then the functions

u(z,y) = Re(e®) = €* cosy and v(z,y) = Im(e®) = e” siny,
are harmonic in R2.

Example D.1.2. Similarly, by considering f(z) = Log z = log |z| +¢ Arg(z) and recalling that this
is holomorphic in C**, we get that

u(z,y) = Re(Log z) = log\/x?% + y2,

is harmonic in R? \ {(z,0) : z < 0}. More precisely, by direct computation, we can see that u is
harmonic in R?\ {(0,0)}.

257
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2. Construction of conjugate pairs

We have seen in Remark 1.4.14 that two harmonic functions u,v : © — R on the open set  C R?
are said to be conjugate if they satisfy

Uy = Uy,

Uy = —Ug,

i.e. the system of Cauchy-Riemann equations. It is a remarkable fact that given a harmonic function
won €2, we can always construct another harmonic function v on €2 such that (u,v) are conjugate,
provided the open set €2 is “nice”.

We first need to recall some facts from the 2nd year course in Mathematical Analysis.

Definition D.2.1. Let Q C R? be a non-empty open set. We say that 2 is starshaped with respect
to a point (xg,y0) € Q if for every (x,y) €  the segment joining (z,y) and (xo,yo) is entirely
contained in €.

Definition D.2.2. Let Q C R? be an open set. Let F : Q — R? be a vector field of class C'(£).
We say that:

e F is irrotational if

OFy | OF)

o (ZII,y) - Ty(xay) = 07 for every (x7y) € Qa
e F is conservative if there exists a function U : Q — R of class C?(€2) such that
F(z,y) = VU(z,y), for every (z,y) € Q.

We can now state the main result of this section.

Theorem D.2.3. Let Q C R? be a starshaped set. If u: Q — R is a harmonic function €, then
there exists v : 8 — R such that v is harmonic in ) and

Up = Uy,
Uy = Uy,

Proof. We start by defining the vector field in the plane
F(z,y) = (—uy(z,y), ue(2,y))-

Observe that F coincides with the anti-cloackwise rotation of Vu by 7/2. Since u is harmonic in
), we get that F is irrotational in €2, i.e.

OF; _OF,

o ay = —Uyy — Ugz = 0.

in €.

By recalling that “on a starshaped open set a vector field of class C' is conservative if and only if
is irrotational”, we get that there exists a C? function v : Q — R such that

F(z,y) = Vou(z,y), for every (x,y) € Q.
By recalling the definition of F, this is the same as
—Uy = Uy and Uy = Vy.

In other words, v and v solve the system of Cauchy-Riemann equations. The fact that v is harmonic
now follows as in Remark 1.4.14. O
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3. The mean value property

Harmonic functions have the following remarkable property, which is a consequence of Cauchy’s
integral formula (i.e. Theorem 1.6.14).

Theorem D.3.1. Let Q C R? be a starshaped open set. Let u : Q — R be a harmonic function in
Q. For every point (xo,y0) € Q and every r > 0 such that B, ((xg,y0)) C 2, we have
1
/ u(x,y) de.
271 JoB, ((z0.40)

In other words, the value of u in a point (xg,yo) coincides with the integral mean of u on the
boundary of any ball centered at the same point.

(4.3.1) U(JI(), yo) =

Proof. By using Theorem D.2.3, we know that there exists v : 2 — R harmonic such that u and
v are conjugate. Thus by Corollary 1.4.9 the function

f(2) = fle+iy) =u(z,y) +iv(z,y),

is holomorphic in €2. By Theorem 1.6.14, if we set zg = x¢ + % Yo, we have

1 f(z

fo=g [ L

™ %«(Zo) Z— 20

where
Yr(20) = 7€'t + 20, t €0,2m7].

Observe that 7,(zp) is a smooth parametrization of 0B, ((zo,y0)) with positive orientation. We
now write explicitly the integral above, in terms of its real and imaginary parts:

u(z0,y0) + i v(zo0,Y0)

1 2™ w(zo 41 cost,yo + r sint) + i v(zg + r cost r sint
= (o + il ) , (_O+ Yo+ )(rcost—i—z'r sint) dt
27 Jo rcost+1irsint
1 27
= — u(xo + 7 cost,yo + r sint) dt
2T 0
; 27
1 .
+ = v(xog+ 1 cost,yo + 7 sint)dt
2T 0

: /
= u(z,y) dl
277 JoB, ((w0,y0))

1

+ / v(x,y)deL.
277 JoB.((z0.0))

Thus we get
u(zo, Yo) ! / u(z,y)dl and v(xo,Yo) ! / v(x,y)dl
0,Y0) = ) 0,Y0) = ) .
277 JaB,((wo,w0) 271 JoB,((x0.50))
This concludes the proof. O

Corollary D.3.2. Let Q C R? be a starshaped open set. Let u:Q — R be a harmonic function in
Q. For every point (zg,y0) € Q and every R > 0 such that Br((xo,y0)) C 2, we have

1

— u(z,y) dx dy.
™ R? Br((z0,y0))

u(o, yo) =
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Proof. We fix R > 0 as in the statement and use (4.3.1) for 0 <r < R, i.e.

2w uao ) = [ u(e,y) d.
9B ((w0,y0))

By integrating this formula in r, we get

R
7 R%u(xo, o) :/ (/ u(x,y) d€> dr
0 0Br((z0.,y0))

R 27
:/ (/ u(xog + 7 cost,yo + 7 sint)rdt) dr
0 0

R 27
= / / u(zg + r cost,yo + r sint) r drdt.
o Jo

Observe that by using the polar coordinates, we have

27 rR
/ u(z,y)dx dy = / / u(zo + r cost,yo + r sint) r drdt.
Br((z0,0)) 0 0

This gives the desired conclusion. ([

4. Harmonic functions in the disk

We now suppose to work in a disk D of radius R > 0, centered for simplicity at the origin (0, 0).
In this case, we can introduce the polar coordinates

T = p cosV y = o sind, 0<p<RO0L<Y<L<27.
Thus, given a function u : D — R of class C?(D), we want to write its Laplacian in terms of the
new coordinates ¢ and 9.

We first use the chain rule for functions of several variables for the function u(z,y) = u(g cosd, g sin ),
so to get

(4.4.1) gz :cosﬁ?;+sinﬁ?;,
and
(4.4.2) % =—0 sinﬂ%—i—gcosﬂ gz
We now wish to invert these relations and write

ou ou

9z and a—y,
in terms of

ou ou

a—g and 99

At this aim, we multiply equation (4.4.1) by g sin¥, multiply equation (4.4.2) by cos? and sum
the two relevant equations. We get

QsinﬁgZ—i—cosﬁgz —ng+gsin2ﬁgz sin 9
M+QC08219§Z sin ¢.
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By recalling that cos? ¥ + sin?+ = 1, we obtain

ou . Ou cos? Ou
(4.4.3) i sin ¢ 90 + 0 o0

In order to find Ou/0x, we argue in a similar fashion: we multiply equation (4.4.1) by o cosd,
multiply equation (4.4.2) by —sind and the take the sum. We get

gcosﬁ?;—sinﬁ?g—QCOSQﬂgZ—i—QSinﬁ gysinﬂ
+Qsin2198—u+gcosz9 i a—sinﬁ.
ox y

We use again that cos? ¥ + sin? ¢ = 1, this yields

o _ du_ sind du
or V80" "o o)

(4.4.4)

Equations (4.4.3) and (4.4.3) give the expression of Vu in terms of the polar coordinates. Let us
now proceed to get the expression of the Laplacian: by observing that
0%u 0 Ou
u = —_—=
022 Ox Ox’

and

u 0 Ou
Uu = —_— = — —
W oy oy oy’
we need to iterate (4.4.3) and (4.4.4). Thus we get

0%u 0 Ou 0 sind 0 Oou sintd du
M:&Cam:(cosﬁag— . 8719) <cosz98Q— . %>
:cos1$12 (cosﬁ@— sinﬁ@)

0o 0o o OV
sind 0 Oou sintd du
— . (979<COSQ98Q_Q(‘319>
2
20032192@7;—60579 sinﬁaag (; %)
sind 0 ou sind 0 . Ou
_ . w(cosﬁag)—l— 7 %(smﬁ%)
and
Pu_ 0 0u_ (4,0 cosd Oy (00 cosd duy
oy2 Oy Oy 0o o OV 0o o OV
:sm192 <Sin19@+@@>
do do o 00U
cos? O . . Ou cost Ou
29 (Slnﬁﬁg)+gaz9>
2
—sinzﬂg;;+cosv" sinﬁaag (; %)
costt 0 (. _Ou cost O ou
0 %(smﬁag)—k 2 a—ﬁ(cosﬂa—ﬁ)



262 D. Harmonic functions in the plane

When we sum up the last two quantities, we get

9%u 0 U
Au = 29— — i - —
U = COS 2 cos ¥ sin o \o

_sinﬁg <003198—u)+sm192 (S, 19@)
o 90 Do 2 oo "M gy

2
—|—sin279§;;+cos19 sin é?g 9811;>

cosﬁﬁ(inﬁ@)+cosﬂﬁ(oﬁ@)
59 S 9 cos ,

0? O

oY

that is, by using the fundamental trigonometric identity,

0%u
Au = 0792
sind 0 ou sind 9 . Ou
— 0 00 (cosﬁag)—&- ) (smq?a—ﬁ)
costt 0O . Ou costt 0O ou
Ex] <s1n19 89) 7 29 (COS’l9 %),

We are now left to compute the last derivatives: this yields

9%u
A= 5
sinZ ¥ @ _ sin ¢ 00819/824(
o 0o 0 0o 0V

. sin v cos ¥ @ufi n sin? ¢ @
0 09 0?  0v?

cos? ¥ % N cos¥ sind 92
o Oo 0 D009

B cos ¥ sind 78%+ cos? @
0 09 0?2  09?

Zu cos?9+sin?Y Ou  cos? Y+ sin? 9 93u
2 92"

= 4= - = -
d0? 0 do 0

In conclusion, we get

*u 1 0u 1 0%u
4.4. Ay=—+-—+ - —
(4.4.5) U 502 + 0 do + 0% 992

Example D.4.1 (Spherical harmonics). Let n € N\ {0}, we consider the functions in polar
coordinates

un(0,9) = 0" cos(n) and vn(0,9) = " sin(nd).
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By using formula (4.4.5), it is easy to see that these are harmonic functions. Indeed, we have
2
9¢?
10

+ - — (0" cos(n?
- 550" cos(n)
wa
02 092
=n(n—1)0""? cos(nv) +no""

= (n? —n+n—n?) 0" cos(nd) = 0.

Au, = (0® cos(n 1))

(0" cos(n¥))

2 cos(nd) — n? 0" 2 cos(nd)

Similar computations work for the function v,. We recall that by using polar coordinates in the
complex plane, i.e. z = p(cos¥ + i sin}), then we know that

2" = " (cos(n¥) + i sin(n1)).
Thus we can write the functions above as
un, = Re(z") and vp, = Im(2").

This shows that (uy, v,,) is a conjugate pair, for every n € N\ {0}. We also observe that the relation
above between u,, (or v,) and 2", permits to find w, and v,, as functions of the standard cartesian
variables (z,y). Indeed, we have

un(z,y) = Re(z") = Re((x +iy)") = Re ” RELC n_k>,
(2.9) = Re(=") = Re((z + 1)) (é@ (i)

and

n Cn " (n e
Up(z,y) =Im(z") =Im((z +iy)") = Im (Z <k>xk (iy) k) )
k=0
For example, for n = 4 we have

ug(z,y) = Re((iy)* +4z(iy)® +62% (iy)* +42° (iy) +2) = y* — 622y + 2%,
and

va(w,y) = Im((iy)* + 4z (iy)* +62° (iy)* +42° (iy) + 2*) = —dzy® +42°y.
The functions (uy, v,) are called spherical harmonics of order n.

5. Exercises

Exercise D.5.1. Find an explicit solution u € C*(Ry x R) of the following two-dimensional
boundary value problem

Au(z,y) = 0, in (z,y) € Ry x R,

u(0,y) = sinc <2i) , y € R.

Solution. We have seen that

sinc (%) = Flrect|(y) = Blrect|(iy),
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Figure 1. The solution of Exercise D.5.1.

with
Blrect)(z) = ——, for z € C,
see Example 4.8.10. The function Blrect] is holomorphic, thus by recalling Remark 1.4.14
u(z,y) = Re (B[rect](z +iy)) and v(z,y) = Im (B[rect](z +iy)),

are two harmonic functions. Moreover, we have

u(0,y) = Re (B[rect](iy)) = sinc (%) ,
thus u is a solution of the boundary value problem. We are only left with computing explicitly the
real part of B[rect](z +iy): we have

z _z

z ;Y i Y
e2e'2 —e 2 2

Blrect)(z) = Tt iy
e3 cos (Q) +ie? sin (g> — e % cos (Q) +ie”3 sin (g>
_ 2 2 2 2 (& —iy)
x2 + y?
2 sinh (£> Cos <g> + 27 sin (Q) cosh <£>
_ 2 2 2 2 (€ —iy)
IB2 +y2

= 2 sinh (5) cos (5) m + 2 sin (§> cosh (5) iUZ—‘HP
. [y T T . T Y Y
+1 {sm <§) cosh <§) PR " — 2 ginh (5) cos (§> O y2} .
Thus in conclusion we obtain that

u(z,y) = 2 sinh (g) cos (%) .'IEQLW + 2 sin (g) cosh (g) N :J_ 2

is a solution. O
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Figure 2. The solution of Exercise D.5.2 for R = 3/2.

Exercise D.5.2. Let R > 1, find an eaplicit solution v € C?*(R?\ Bgr((0,0))) of the following
two-dimensional boundary value problem

Au(z,y) = 0, in (z,y) € R?\ Bg((0,0)),

R?2 -z

Fa— (z,y) € 0BR((0,0)).

u(z,y)

Solution. We observe that
R—z  P—z+y?  z(@-1)+¢?
RZ4+1-22 224+1-2z+y? (z—1)2+942’

The last function is the real part of the function,

for (z,y) € 0Br((0,0)).

z
z—1
which is holomorphic for z # 1. Thus we can take
Cx(z—1)+ y?
U(CC,y) - (SC _ 1)2 +y2 )
as a solution. O

Exercise D.5.3 (Poisson’s kernel for the half-space). Let us consider the function

1 x
P(z,y) =

;$2+y2’ for (z,y) € (0,4+00) x R,
Prove that:
(1) P is harmonic in (0,400) X R;

(2) for every f € S, the function

Uy (a,y) = / Pa,t) fly—t)dt,  (2.y) € (0,4+00) x R,
R
is harmonic;
(3) for every f € S, we have
lim Uy(x,y) = f(y), for every t € R.

z—0t
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Solution. It is easily seen that

) .
L:Re( , ):Re(f” W),
x2 + 12 T+iy 2 + 12

thus point (1) follows directly from Remark 1.4.14.
As for point (3), we already know from Exercise 6.8.10 that

, x
xg%l+ /R PR o(t) dt = (7 do, ) = m(0), for every p € S.

By recalling the definition of P, this automatically gives

lim [ P(z,t) f(y —t)dt = (do, f(y —)) = f(y), for every f € S.

z—01 JRr

We are left with proving point (2). We first observe that for every fixed x > 0, we have

Uf(ZC,y) = P(.CI}, ) * f(y)

Thus we can directly claim that Uy can be differentiated infinitely many times in y, thanks to
Corollary 3.5.12. Moreover, by the same result we have

82 U 82 82
(45.1) %jzﬁwpmjpfzéﬁgwwﬂy4my

In order to prove differentiability in the x variable, we need to use the Lebesgue Dominated Con-
vergence Theorem (see Theorem 3.2.5). We first observe that for every x > 0 and y € R

0 y? — a2 y? + 2 1 1
45.2 9 Pla, ) = _ oL
422 R e e e R
and
0? |22 — 342 22 + o2 1 6
45.3 L ople, ) =22 T2 L gy 2TV g = 2
( ) 912 (z )‘ x(x2+y2)3 = x($2+y2)3 R

These will help us to show the differentiability of Uy in x. Indeed, for every x > 0 and y € R, we
have

lim
h—0 h h—0

Ur(x+h,y) — Us(x,y) _ lim/ P(z + h,t) — P(x,t)
h
R

In order to pass the limit under the integral sign, we observe that

. P(x+ht)—Pl,t) 0
) h = gal @b

fly—t)dt.

and that for every |h| < /2, we have for a point &, p, such that |, , — x| < |h]

P(x + h,t) — P(z,t)

- fly—1) !

(‘Sx,h)Q

[f =yl

= |5e Pt 7=yl <

By observing that by construction

Con Za—|h > 5 >0,
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the last estimate gives the summable upper bound independent of h, needed to apply the Dominated
Convergence Theorem. Thus we get

0 Ui(x+h,y) — Pm+ht P(z,t)

5, Uf (@ y) = lim Y fHO/ fly—1t)dt
/ —P(x,t) f(y —t) dt.

In a similar way, we prove that

32

2
(4.5.4) @Uf(a:,y) = /R 8ax2P(x,t) fly—t)dt.

By putting together (4.5.4) and (4.5.1) and using that P is harmonic by point (1), we finally get
that Uy is harmonic, as well. O







Tables of transforms

1. Z—transforms

Appendiz E

Sequence Transform Radius of convergence
0o 1 0
1 z 1
z—1
z
@ (aeC) — a
z
1
b (= =12
2 z2(1+z) )
(z—1)3
(n7) (r > 0) z(z —cosT) )
cos(nT) (T
22 —2zcosT+1
sin(n) (7> 0) ZSIT 1

22 —2zcosT+1

269



270

E. Tables of transforms

Sequence | Transform | Radius of convergence
1 1
— —Log (1 — 7) 1
n z
1
*' ei 0
n!
2. Laplace transforms
Causal signal | Transform | Abscissa of convergence
1
H(t 0
0 -
R(t) o) 0
k _at k!
the H(t) m Re(a)
cos(tT) (1 >0) _c 0
) (7
22 4 72
sin(t7) (7> 0) T 0
in(tr) (7 —_
22 4 72
e —1—=z
SW (t —_— 0
®) 22 (e —1)

3. Bilateral Laplace transforms

Signal | Transform | Abscissa of convergence | Upper abscissa of convergence
e% — e_g
rect(t) —00 +oo
z
2
— It -1 1
e
1—22




5. Hilbert transforms

271
4. Mellin transforms
Causal Signal | Transform | Abscissa of convergence | Upper abscissa of convergence
1
Ljo,(t) . 0 +00
et H(t) I'(z) 0 +o0
5. Hilbert transforms
Signal | Transform
1
w+ -
rect(t) | log %
©=3




E. Tables of transforms
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6. Fourier transforms
Signal Transform Notes
w
6t ine ()
rect(t) sine { 5—
2
w
uifs (sine (57))
ri(t) sine { 5—
2
—[tl
‘ 1+ w?
1 itQ me
1 2 ; Vdac—b2
s (witha >0, —4dac<0) | ————¢iza¥ e 3o
at* +bt+c dac— b2
1 2
A re 2 sin (2\w|—|—z>
a+0 b -
Lia,5)(t) (b—a)e” 7419 gine ( 5 ﬂa w>
sinc(t) 1 _pa(w) in L2 or &'
sinc?(t) tri <i)
2m




6. Fourier transforms

273

Signal Transform Notes
—¢2 _‘Aﬁ
e ﬁe 1
w2
e~a(t=t)* (¢ > () \/gefﬂ (cos(to w) — 7 sin(tp w))
Sto e~ttow in &'
1 2 dg in&’
ettt 27 Oy, in &
1.1 .
H{(t) mdy+ - P.V.— inS
i w
1
P.V.E —misign(w) in &'
cost T (51 + 54) in &’
sint T (5_1 — 51> in &'
2
PT l 27 iIl Sl







Index

LP norm, 80
Z —transform, 51
Z—transform (causal signal), 63

abscissa of convergence, 108
aliasing, 173
approximation by convolution, 95

band limit, 170

band-limited signal, 170

band-pass filter, 171

Bessel inequality (Fourier series), 243
Bessel’s equation, 72

bilateral Laplace transform, 129

cardinal sine function, 86, 102
Cauchy’s integral formula, 18
Cauchy’s Theorem, 16
Cauchy-Riemann equations, 7
causal signal, 63

characteristic function, 78
characteristic polynomial, 127
compactly supported functions, 84
complex exponential function, 10
conjugate harmonic functions, 8
convolution (causal signals), 89
convolution (functions), 88
convolution (sequences), 53, 89
convolver of the class S, 199
critical axis, 108

deformation of contour, 17
Delta sequence, 52

Density Theorem, 87

Dirac comb, 212

Dirichlet kernel, 239
distributional derivative, 203

Dominated Convergence Theorem, 79
duality formula (Fourier transform), 158

essential singularity, 31

Fatou’s Lemma, 79

final value theorem (Z—transform), 59
Fourier coefficients, 235

Fourier series, 121, 235

Fourier transform (L' function), 145
Fourier transform (L? functions), 166
Fourier transform (distribution), 207
Fresnel’s integrals, 43

Fubini’s Theorem, 79

fundamental solution, 211
Fundamental Theorem of Algebra, 30

Gamma function, 133

Holder’s inequality, 82
harmonic function, 8, 257
heat equation, 183

heat kernel, 184

Hilbert transform, 214
holomorphic function, 8

impulse response (Z—transform), 71

impulse response (Laplace transform), 128

initial value theorem (Z—transform), 58

integro-differential equations, 129

interpolation (L? spaces), 100

inversion formula (Z—transform), 56

inversion formula (Fourier transform, L' signals), 158

inversion formula (Fourier transform, piecewise C*
signals), 154

inversion formula (Laplace transform), 124, 160

inversion formula for a rational function, 125

275



276

Index

isolated singularity, 31
Kallman-Rota inequality, 104

Laplace transform, 107

Laplacian (in polar coordinates), 262
Laplacian operator, 257

Laurent’s Theorem, 35

Liouville’s Theorem, 29

locally summable, 86

low-pass filter, 171

Mellin transform, 132

Minkowski’s inequality, 84
Monotone Convergence Theorem, 79
multiplier of the class S, 196

normal versor, 15
Nyquist frequency, 174

Parseval’s formula, 164

Parseval’s formula (Fourier series), 246
partial Fourier sum, 238

partial fraction decomposition, 37
Plancherel’s formula, 164

Plancherel’s formula (Fourier series), 246
Poisson’s kernel, 265

Poisson’s summation formula, 212
pole, 31

positively oriented, 16

principal n—th rooth, 9

principal argument, 1

principal logarithm, 11

radius of convergence, 21

rectangular function, 92

regular tempered distribution, 192

removable singularity, 31

reparametrization, 13

Residue Theorem, 33

Riemann-Lebesgue Lemma (Fourier transform), 147
Riemann-Lebesgue Lemma (general version), 154
Riemann-Lebesgue Lemma (Laplace transform), 114
Riesz-Fischer Theorem, 87

sawtooth wave, 134, 205
separation of variables, 232
Shannon-Whittaker formula, 171
slowly growing function, 192
Sochocki-Plemelj formula, 202
spherical harmonics, 262
summable function, 77

tangent versor, 15

Tonelli’s Theorem, 80
transfer function, 128
triangular function, 92

uncertainty principle, 160

unique continuation principle, 27
upper abscissa of convergence, 130

Volterra integral equation, 128, 142

Young’s inequality, 80

Young’s inequality for convolutions, 89, 91
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