**DISPENSA** FEM in MSC. Nastran

#### components

*preprocessing:* mesh generation material definitions definition of loads and boundary conditions

### solving:

solving the (linear) set of equations

### postprocessing:

visualisation and analysis of results (primary and secondary field variables) displacement temperature acoustic pressure displacement temperature displacement temperature acoustic pressure



- co-ordinate systems
- nodes
- elements
- geometrical properties
- material properties
- units
- Ioads and constraints

illustration for MSC/NASTRAN

#### nodes are called GRID points in NASTRAN

- grids are defined as points in space that have :
  - a unique number (integer)
  - a certain location X,Y,Z
    - coordinate systems aid in locating point
  - 6 Degrees Of Freedom (DOFs) to move in space
    - coordinate systems aid in interpreting displacement results
- GRID definition statement :
  - GRID ID CP X Y Z CD
  - where
    - ID : identification number
    - CP : reference to coordinate system that was used to position the grid
    - X,Y,Z : co-ordinates
    - CD : reference to coordinate system in which the input (loads, BC) and output (displacements) are defined

preprocessing

nodes

## preprocessing

## elements

| Category                        | Spring<br>Elements | Line<br>Elements        | Surface<br>Elements     | Solid<br>Elements         | Rigid<br>Elements |
|---------------------------------|--------------------|-------------------------|-------------------------|---------------------------|-------------------|
| Physical<br>Behavior            | Simple<br>Spring   | Rod, Bar,<br>Beam       | Membrane,<br>Thin Plate | Thick Plate,<br>Brick     | Rigid<br>Bar      |
| MSC/NASTRAN<br>Element<br>Name  | CELAS2*            | CONROD*<br>CROD<br>CBAR | CQUAD4<br>CTRIA3        | CHEXA<br>CPENTA<br>CTETRA | RBE2 <sup>*</sup> |
| Associated<br>Property<br>Entry | None<br>Required   | PROD<br>PBAR            | PSHELL                  | PSOLID                    | None<br>Required  |
|                                 | •~~~•              | -                       |                         |                           |                   |

|                   |                       |                                                               | preproces | sing |
|-------------------|-----------------------|---------------------------------------------------------------|-----------|------|
| 3D Solid Elements | 2D Surface Elements   | 1D Line Elements                                              | aeometry  |      |
| <none></none>     | Plate/Shell Thickness | Beam orientation (3th point)<br>Beam cross section properties |           |      |



Figure 6-19. CTETRA Element Connection.







The plane formed by the element x-axis and orientation vector v is called plane 1. The element y-axis lies in plane 1 and is perpendicular to the element x-axis, as shown below:





### preprocessing

### material properties

GE

- linear : deformation are directly proportional to the applied load
- elastic : an elastic structure returns to its original, undeformed shape when the load is removed
- *homogeneous* : properties are independent of location within the material

RHO

*isotropic* : material properties do not change with the direction of the material

NU

- MATERIAL definition statement :
  - MAT1 ID
    - where
      - ID : identification number

F

**Basic Material Property Definitions :** 

- E : Young's modulus
- G: Shear modulus G = 0.5 \* E / (1 + NU)

G

- NU : Poisson's ratio
- RHO : Mass density
- GE : structural damping coefficient

### preprocessing

### units

- most FE solvers do not have an explicit notion of physical units.
- it is the user's responsibility to use a consistent set of units.
- popular unit sets : SI, English Units
- If the units are not known, try to estimate them from :
  - the grid coordinates (if you know the dimensions of the structure, you should be able to deduce the length unit)
  - the material definition (for known materials such as steel, aluminum, ....)
- Common mistakes in FE models originate from wrong material values (due to wrong unit conversions) !!

preprocessing

loads

- Static Loads :
  - concentrated loads applied to grid points (FORCE, MOMENT)
  - distributed loads on line elements (PLOAD1)
  - normal uniform pressure loads on surface (PLOAD, PLOAD2)
  - normal pressure load on face of 2D or 3D element (PLOAD4)
  - gravity or acceleration loads (GRAV)
- Enforced displacement (SPCD)

### preprocessing

loads

Dynamic Loads :

concentrated loads applied to grid points :

$$P(f) = A[C(f) + iD(f)]e^{i(\theta - 2\pi f\tau)}$$

- RLOAD1 or RLOAD2 statement that refer to DAREA statements (spatial definition of load : A)
   2 TABLED1 statements (spectral definition C(f),D(f) real/imag for RLOAD1, amplitude/phase for RLOAD2)
   Selection of dynamic loading with DLOAD case control statement
- Selection of dynamic loading with DLOAD case control statement (reference to RLOAD1 / 2)

preprocessing

constraints

- a constraint is the enforcement of a prescribed displacement on a single grid point or a set of points
- two basic types of constraints :
  - single point constraints (SPCs) :
    - enforces a displacement (for example zero displacement) to a single point
  - multiple point constraints (MPCs)
    - enforces a mathematical constraint relationship between one grid point and a set of grid points

solution sequence for mode calculation  

$$\left(\left[K\right] + j\omega\left[C\right] - \omega^{2}\left[M\right]\right) \cdot \left\{X\right\} = \left\{F\right\}$$
• undamped  
• no external forces
$$\left[K\right] \cdot \left\{\Phi_{m}\right\} = \omega_{m}^{2}\left[M\right] \cdot \left\{\Phi_{m}\right\}$$

$$\omega_{m} : \text{ eigenfrequencies} \quad (\# \text{ modes = total # dofs n})$$

 $\Phi_{\rm m}$ : eigenmodes (each eigenvector has size (nx1))

• mode calculation = standard eigenvalue problem  $[M]^{-1}[K] \{ \Phi_m \} = \lambda_m . \{ \Phi_m \}$ 

Lanczos algorithm :

iterative procedure to determine a subset of modes

## solution sequence for dynamic response analysis



$$[K] + j\omega[C] - \omega^2[M]).\{X\} = \{F\}$$

- 1. direct solution method:
  - solving the FE matrix equation directly for the unknown nodal dofs
  - dedicated large model solvers that fully benefit from matrix properties
  - back-substitution of result vector {p} into field variable approximation
- 2. modal solution method:
  - projecting the original dofs onto a modal base
  - that possibly leads to some substantial model size reduction

## solution sequence for dynamic response analysis

- 2. modal solution method:  $([K] + j\omega[C] \omega^2[M]).\{X\} = \{F\}$ 
  - 2.1. calculating the undamped modes

$$[K]{\{\Phi_m\}} = \omega_m^2[M]{\{\Phi_m\}}$$

 $\omega_{m}
 : eigenfrequencies (# modes = total # dofs n)
 <math>
 \Phi_{m}
 : eigenmodes (each eigenvector has size (nx1))$ 

2.2. projection of original dofs onto modal base

solver

## solution sequence for dynamic response analysis

- 2. modal solution method:
  - 2.3. construction of modal model

$$\left( \left[ \widetilde{K} \right] + j\omega \left[ \widetilde{C} \right] - \omega^2 \left[ \widetilde{M} \right] \right) \left\{ \phi_m \right\} = \left\{ Q_m \right\}$$

 $\{\phi_m\}$ :  $(m_a \times 1)$  vector of unknown modal participation factors  $\left[\widetilde{K}\right] \left[\widetilde{C}\right] \left[\widetilde{M}\right]$  diagonal matrices due to mode orthogonality !

2.4. solving modal model for unknown modal participation factors  $\phi_m$ 2.5. back-substitution of result vector into field variable approximation

solver

## solution sequence for dynamic response analysis

- 2. modal solution method:
  - model size reduction: from (nxn) to  $(m_a x m_a)$
  - accuracy depends on size of modal base  $m_a$ 
    - if m<sub>a</sub>=n : same accuracy is obtained with direct solution sequence
    - if  $m_a < n$  : possible gain in computational effort but loss in accuracy

'rule of thumb':

reasonable accuracy at some frequency  $\omega$  requires a modal base that contains at least all modes with eigenfrequencies up to  $2\omega$ 

mainly at low frequencies (low modal density)
 the required number of modes can be substantially smaller than the original number of degrees of freedom

## solution sequence for transient analysis



| $\{F(t)\} = [K]\{d(t)\} + [C]\{\dot{d}(t)\}$ | + [M] d(t) |
|----------------------------------------------|------------|
|----------------------------------------------|------------|

### modelling process



FE technology

- overview of some NASTRAN solution sequences:
  - SOL 101 : linear static analysis
  - SOL 103 : normal modes
  - SOL 107 / 110 : complex modes (direct/ modal)
  - SOL 108 / 111 : frequency response (direct/ modal)
  - SOL 109 / 112 : transient response (direct/ modal)
  - SOL 106 : non-linear statics followed by normal modes
  - SOL 200 : Design sensitivity and optimization



! secondary variable approximations are less accurate
then primary variable approximations !

## How to read a nastran file

```
$ NASTRAN input file created by the MSC MSC.Nastran input file
$ translator ( MSC.Patran 12.0.041 ) on September 21, 2005 at 10:52:43.
$ Normal Modes Analysis, Database
SOL 103
CEND
SEALL = ALL
SUPER = ALL
ECHO = NONE
SUBCASE 1
$ Subcase name : Default
  SUBTITLE=Default
  METHOD = 1
stress=all
spc=2
BEGIN BULK
PARAM
        POST
                0
PARAM AUTOSPC YES
PARAM PRIMAXIM YES
EIGRL
        1
                                16
                                         0
PSOLID 1
               1
$ Pset: Property 1
CTETRA 1
                       5774
                               2133
                                       6428
                                               6367
                                                       24353 24376
        24380 35839 13174 17539
CTETRA 2
               1
                       2196
                               2185
                                      1526
                                               2172
                                                       40246
                                                             18845
$ Material : Material 1
                        6.8+10
MAT1*
        1
                                                         .3
÷.
        2900.
$ Nodes of the Entire Model
                                       -0.02603926542250.06873768028045*A1
GRID<sup>+</sup> 1
*A1 0.15908825799237
GRID<sup>+</sup> 2
                                       -0.02605234924510.07670429191051*A2
*A2
     0.14779071433393
GRID* 3
                                       -0.02791697484020
$ Loads for Load Case : Default
SPCADD 2
                1
$ Displacement Constraints of Load Set : vincoli
SPC1
        1
                123456 183
                                199
                                        200
                                                201
                                                        202
                                                                203
        204
               225
                        226
                                227
                                        228
SPC1
        1
                123456 264
                                THRU
                                        277
$ Referenced Coordinate Frames
ENDDATA
```

### FE modeller has a determining impact on prediction accuracy

### idealization error

choice of underlying mathematical model (avoid singularities) representative boundary condition modelling representative load modelling appropriate material modelling

### discretization error

mesh quality: balance between accuracy and computational load (CPU and memory)

## solution error

choice of solver

### avoid singularities

|               | Type 1                                                         | Type 2                                      |
|---------------|----------------------------------------------------------------|---------------------------------------------|
| Stress        | Infinite                                                       | Infinite                                    |
| Strain energy | Finite                                                         | Infinite                                    |
| Displacement  | Finite                                                         | Infinite                                    |
| Examples      | Sharp re-entrant corner in 2-D<br>Sharp re-entrant edge in 3-D | Point support in 2-D<br>Edge support in 3-D |
|               | Point load in 2-D<br>Line load in 3-D                          |                                             |

#### TYPES OF SINGULARITIES ENCOUNTERED IN FE MODELS

#### stress singularities

e.g. stress at sharp re-entrant corners

displacement singularities

point (in 2D) or edge (in 3D) connections cannot withstand reaction forces (e.g. spotwelds !)

## some practical issues

## CAD geometry *≠* FE geometry

prior to meshing defeaturing idealization (e.g. shell versus solid) clean-up









### some practical issues

# appropriate meshing

avoid distorted elements

low order p ... low distortion allowed

watch out with automatic meshers watch out with morphing



## some practical issues

## appropriate meshing

## avoid distorted elements







## some practical issues

## appropriate meshing

• avoid mesh incompatibilities





### induce master/slave relations ... no reliable stress evaluation

## some practical issues



thin hollow plate horizontal tensile load – constrained at left side



horizontal displacement (p=1)



first-order triangular elements



von Mises stress (p=1)





TO BE MODELED

ORDER ELEMENTS USED

## some practical issues

## appropriate meshing

| • solids for bending                                          |                          |    |
|---------------------------------------------------------------|--------------------------|----|
|                                                               | not OK                   | OK |
|                                                               |                          |    |
| THIS STRESS THIS IS WHAT I<br>DISTRIBUTION NEEDS WITH ONE LAY | S MODELED<br>ER OF FIRST |    |

## **Challenges**

## numerical modelling techniques

- enhanced computational efficiency
- account for variability
- advanced material models
- •

## mesh generation process

- automation
- (multi-physics) compatibility
- re-use of models
- morphing
- computer resources
  - parallel computing

. . .

- data management exchange, sharing

  - interpreting, mining



increasing "value-added engineering time"

## Some reference books

Paul M. Kurowski:

'Finite Element Analysis for Design Engineers'(ISBN 0-7600-1140-X - SAE International - 2004)

 O.C. Zienkiewicz and R.L. Taylor: 'Finite Element Method Set' (ISBN 0470395036 - Butterworth-Heinemann - 2000)

- volume 1 : 'The Basis'
- volume 2 : 'Solid Mechanics'
- volume 3 : 'Fluid Dynamics'