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10.1 INTRODUCTION 871

damping. This chapter presents the various aspects of vibration measurement and applica-

tions. The basic scheme of vibration measurement is outlined first. Descriptions are given of

transducers devices which transform physical variables into equivalent electrical signals

and of vibration pickups and frequency measuring instruments used for vibration measure-

ment. The working principles of mechanical and electrodynamic shakers or exciters, used

to excite a machine or system to study its dynamic characteristics, are introduced. Signal

analysis, which determines the response of a system under known excitation and presents

it in a convenient form, is outlined along with descriptions of spectrum analyzer, bandpass

filter, and bandwidth analyzers. The experimental modal analysis deals with the determi-

nation of natural frequencies, damping ratio, and mode shapes through vibration testing.

The necessary equipment, digital signal processing, analysis of random signals, determi-

nation of modal data from observed peaks and Nyquist plot, and determination of mode

shapes are described. Vibration severity criteria, machine maintenance techniques,

machine-condition monitoring techniques, and instrumentation systems are presented for

machine-condition monitoring and diagnosis. MATLAB programs are presented for plot-

ting Nyquist circle and the acceleration equation.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Understand the various types of transducers, vibration pickups, and frequency mea-

suring instruments.

* Know the working principles of mechanical and electrodynamic shakers or exciters.

* Learn the process of signal analysis.

* Understand experimental modal analysis techniques to determine the natural frequen-

cies, damping ratio, and mode shapes.

* Know the various aspects of machine-condition monitoring.

* Use MATLAB for plotting Nyquist circles and implementing methods of analysis 

discussed.

10.1 Introduction

In practice the measurement of vibration becomes necessary for the following reasons:

1. The increasing demands of higher productivity and economical design lead to higher

operating speeds of machinery1 and efficient use of materials through lightweight

structures. These trends make the occurrence of resonant conditions more frequent

during the operation of machinery and reduce the reliability of the system. Hence the

periodic measurement of vibration characteristics of machinery and structures

becomes essential to ensure adequate safety margins. Any observed shift in the natural

1According to Eshleman, in reference [10.12], the average speed of rotating machines doubled from 1800 rpm

to 3600 rpm during the period between 1940 and 1980.
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872 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

frequencies or other vibration characteristics will indicate either a failure or a need for

maintenance of the machine.

2. The measurement of the natural frequencies of a structure or machine is useful in

selecting the operational speeds of nearby machinery to avoid resonant conditions.

3. The theoretically computed vibration characteristics of a machine or structure may be

different from the actual values due to the assumptions made in the analysis.

4. The measurement of frequencies of vibration and the forces developed is necessary in

the design and operation of active vibration-isolation systems.

5. In many applications, the survivability of a structure or machine in a specified vibra-

tion environment is to be determined. If the structure or machine can perform the

expected task even after completion of testing under the specified vibration environ-

ment, it is expected to survive the specified conditions.

6. Continuous systems are often approximated as multidegree-of-freedom systems for sim-

plicity. If the measured natural frequencies and mode shapes of a continuous system are

comparable to the computed natural frequencies and mode shapes of the multidegree-

of-freedom model, then the approximation will be proved to be a valid one.

7. The measurement of input and the resulting output vibration characteristics of a sys-

tem helps in identifying the system in terms of its mass, stiffness, and damping.

8. The information about ground vibrations due to earthquakes, fluctuating wind velocities

on structures, random variation of ocean waves, and road surface roughness are impor-

tant in the design of structures, machines, oil platforms, and vehicle suspension systems.

Vibration Measurement Scheme. Figure 10.1 illustrates the basic features of a vibration

measurement scheme. In this figure, the motion (or dynamic force) of the vibrating body is

converted into an electrical signal by the vibration transducer or pickup. In general, a

transducer is a device that transforms changes in mechanical quantities (such as displacement,

velocity, acceleration, or force) into changes in electrical quantities (such as voltage or

current). Since the output signal (voltage or current) of a transducer is too small to be recorded

directly, a signal conversion instrument is used to amplify the signal to the required value. The

output from the signal conversion instrument can be presented on a display unit for visual

inspection, or recorded by a recording unit, or stored in a computer for later use. The data can

then be analyzed to determine the desired vibration characteristics of the machine or structure.

Depending on the quantity measured, a vibration measuring instrument is called a

vibrometer, a velocity meter, an accelerometer, a phase meter, or a frequency meter. If the

instrument is designed to record the measured quantity, then the suffix meter  is to be

replaced by graph  [10.1]. In some application, we need to vibrate a machine or structure

to find its resonance characteristics. For this, electrodynamic vibrators, electrohydraulic

vibrators, and signal generators (oscillators) are used.

Vibrating
machine or
structure

Vibration
transducer or
pickup

Signal
conversion
instrument

Display unit,
recorder,
or computer

Data
analysis

FIGURE 10.1 Basic vibration measurement scheme.
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10.2 TRANSDUCERS 873

The following considerations often dictate the type of vibration-measuring instru-

ments to be used in a vibration test: (1) expected ranges of the frequencies and ampli-

tudes, (2) sizes of the machine/structure involved, (3) conditions of operation of the

machine/equipment/structure, and (4) type of data processing used (such as graphical dis-

play or graphical recording or storing the record in digital form for computer processing).

10.2 Transducers

A transducer is a device that transforms values of physical variables into equivalent elec-

trical signals. Several types of transducers are available; some of them are less useful than

others due to their nonlinearity or slow response. Some of the transducers commonly used

for vibration measurement are discussed below.

10.2.1

Variable-

Resistance

Transducers

In these transducers, a mechanical motion produces a change in electrical resistance (of a

rheostat, a strain gage, or a semiconductor), which in turn causes a change in the output

voltage or current. The schematic diagram of an electrical resistance strain gage is shown

in Fig. 10.2. An electrical resistance strain gage consists of a fine wire whose resistance

changes when it is subjected to mechanical deformation. When the strain gage is bonded to

a structure, it experiences the same motion (strain) as the structure and hence its resistance

change gives the strain applied to the structure. The wire is sandwiched between two sheets

of thin paper. The strain gage is bonded to the surface where the strain is to be measured.

The most common gage material is a copper-nickel alloy known as Advance. When the

surface undergoes a normal strain the strain gage also undergoes the same strain and

the resulting change in its resistance is given by [10.6]

(10.1)

where

 R = Initial resistance

 K = Gage factor for the wire

K =
¢R/R

¢L/L
= 1 + 2v +

¢r

r
 

L

¢L
L 1 + 2v

(P),

X

X
Electrical
leads

Backing
material
(thin paper)

Fine wire
(usually made of
Advance)

(a)

Fine wire

Cement

(b)

Section X X

Thin paper

FIGURE 10.2 Electric resistance strain gage.
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874 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

The value of the gage factor K is given by the manufacturer of the strain gage, hence the

value of can be determined, once and R are measured, as

(10.2)

In a vibration pickup2 the strain gage is mounted on an elastic element of a spring-

mass system, as shown in Fig. 10.3. The strain at any point on the cantilever (elastic mem-

ber) is proportional to the deflection of the mass, x(t), to be measured. Hence the strain

indicated by the strain gage can be used to find x(t). The change in resistance of the wire

can be measured using a Wheatstone bridge, potentiometer circuit, or voltage divider.

A typical Wheatstone bridge, representing a circuit which is sensitive to small changes in

the resistance, is shown in Fig. 10.4. A d.c. voltage V is applied across the points a and c.

The resulting voltage across the points b and d is given by [10.6]:

(10.3)

Initially the resistances are balanced (adjusted) so that the output voltage E is zero. Thus,

for initial balance, Eq. (10.3) gives

(10.4)

When the resistances change by small amounts the change in the output volt-

age can be expressed as

(10.5)

where

(10.6)r0 =
R1R2

1R1 + R22
2
=

R3R4

1R3 + R42
2

¢E L Vr0 a
¢R1

R1

-
¢R2

R2

+
¢R3

R3

-
¢R4

R4

b

¢E

1¢Ri2,1Ri2

R1R3 = R2R4

E = c
R1R3 - R2R4

1R1 + R221R3 + R42
d  V

¢R

P =
¢L

L
=

¢R

RK

¢RP

 ¢r = Change in resistivity of the wire L 0 for Advance

 r = Resistivity of the wire

 v = Poisson s ratio of the wire

 ¢L = Change in length of the wire

 L = Initial length of the wire

 ¢R = Change in resistance

2When a transducer is used in conjunction with other components that permit the processing and transmission of

the signal, the device is called a pickup.
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a

b

c

d

V

E

R1 R2

R4 R3

FIGURE 10.4 Wheatstone bridge.

If the strain gage leads are connected between the points a and b,

and and Eq. (10.5) gives

(10.7)

where is the initial resistance of the gage. Equations (10.2) and (10.7) yield

¢Rg

Rg

= PK =
¢E

Vr0

Rg

¢Rg

Rg

=
¢E

Vr0

¢R2 = ¢R3 = ¢R4 = 0,

R1 = Rg, ¢R1 = ¢Rg,

x(t)

m

Cantilever
beam

Strain
gage

Base

Leads

FIGURE 10.3 Strain gage as vibration pickup.
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876 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

or

(10.8)

Since the output voltage is proportional to the strain, it can be calibrated to read the strain

directly.

¢E = KVr0P

10.2.2

Piezoelectric

Transducers

Certain natural and manufactured materials like quartz, tourmaline, lithium sulfate, and

Rochelle salt generate electrical charge when subjected to a deformation or mechanical

stress (see Fig. 10.5(a)). The electrical charge disappears when the mechanical loading is

removed. Such materials are called piezoelectric materials and the transducers, which take

advantage of the piezoelectric effect, are known as piezoelectric transducers. The charge

generated in the crystal due to a force is given by

(10.9)

where k is called the piezoelectric constant, A is the area on which the force acts, and 

is the pressure due to The output voltage of the crystal is given by

(10.10)E = vtpx

Fx.

pxFx

Qx = kFx = kApx

Fx

Fx  Apx

E

Fx

t

(a)

(b)

Leads

Spring

Piezoelectric
discs

Base

Mass

FIGURE 10.5 Piezoelectric accelerometer.
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10.2 TRANSDUCERS 877

v

S S

E

N N

FIGURE 10.6 Basic idea behind

electrodynamic transducer.

where v is called the voltage sensitivity and t is the thickness of the crystal. The values of

the piezoelectric constant and voltage sensitivity for quartz are and

0.055 volt-meter/N, respectively [10.6]. These values are valid only when the perpendicu-

lar to the largest face is along the x-axis of the crystal. The electric charge developed and

the voltage output will be different if the crystal slab is cut in a different direction.

A typical piezoelectric transducer (accelerometer) is shown in Fig. 10.5(b). In this fig-

ure, a small mass is spring loaded against a piezoelectric crystal. When the base vibrates,

the load exerted by the mass on the crystal changes with acceleration, hence the output

voltage generated by the crystal will be proportional to the acceleration. The main advan-

tages of the piezoelectric accelerometer include compactness, ruggedness, high sensitivity,

and high frequency range [10.5, 10.8].

2.25 * 10-12 C/N

E X A M P L E  1 0 . 1
Output Voltage of a Piezoelectric Transducer

A quartz crystal having a thickness of 0.1 in. is subjected to a pressure of 50 psi. Find the output volt-

age if the voltage sensitivity is 0.055 V-m/N.

Solution: With and 

Eq. (10.10) gives

*

E = 10.055210.0025421344.7382 = 48.1599 volts

v = 0.055 V-m/N,px = 50 psi = 344.738 N/m2,t = 0.1 in. = 0.00254 m,

10.2.3
Electrodynamic
Transducers

When an electrical conductor, in the form of a coil, moves in a magnetic field as shown in

Fig. 10.6, a voltage E is generated in the conductor. The value of E in volts is given by

(10.11)E = Dlv
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878 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

where D is the magnetic flux density (teslas), l is the length of the conductor (meters), and

v is the velocity of the conductor relative to the magnetic field (meters/second). The mag-

netic field may be produced by either a permanent magnet or an electromagnet. Some-

times, the coil is kept stationary and the magnet is made to move. Since the voltage output

of an electromagnetic transducer is proportional to the relative velocity of the coil, they are

frequently used in velocity pickups.  Equation (10.11) can be rewritten as

(10.12)

where F denotes the force (newtons) acting on the coil while carrying a current I

(amperes). Equation (10.12) shows that the performance of an electrodynamic transducer

can be reversed. In fact, Eq. (10.12) forms the basis for using an electrodynamic transducer

as a vibration exciter  (see Section 10.5.2).

Dl =
E

v
=

F

I

10.2.4

Linear Variable

Differential

Transformer

Transducer

The schematic diagram of a linear variable differential transformer (LVDT) transducer is

shown in Fig. 10.7. It consists of a primary coil at the center, two secondary coils at the

ends, and a magnetic core that can move freely inside the coils in the axial direction. When

an a.c. input voltage is applied to the primary coil, the output voltage will be equal to the

difference of the voltages induced in the secondary coils. This output voltage depends on

the magnetic coupling between the coils and the core, which in turn depends on the axial

displacement of the core. The secondary coils are connected in phase opposition so that,

when the magnetic core is in the exact middle position, the voltages in the two coils will be

equal and 180° out of phase. This makes the output voltage of the LVDT as zero. When the

core is moved to either side of the middle (zero) position, the magnetic coupling will be

increased in one secondary coil and decreased in the other coil. The output polarity

depends on the direction of the movement of the magnetic core.

The range of displacement for many LVDTs on the market is from 0.0002 cm to 40 cm.

The advantages of an LVDT over other displacement transducers include insensitivity to

Ei

Displacement

Input
voltage

Primary
coil

Secondary coils

Core

Eo * Output
          voltage

FIGURE 10.7 Schematic diagram of an LVDT transducer.
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O

Displacement
of core

Output voltage

FIGURE 10.8 Linearity of voltage with 

displacement of core.

temperature and high output. The mass of the magnetic core restricts the use of the LVDT

for high-frequency applications [10.4].

As long as the core is not moved very far from the center of the coil, the output volt-

age varies linearly with the displacement of the core, as shown in Fig. 10.8; hence the

name linear variable differential transformer.

10.3 Vibration Pickups
When a transducer is used in conjunction with another device to measure vibrations, it is

called a vibration pickup. The commonly used vibration pickups are known as seismic

instruments. A seismic instrument consists of a mass-spring-damper system mounted on

the vibrating body, as shown in Fig. 10.9. Then the vibratory motion is measured by find-

ing the displacement of the mass relative to the base on which it is mounted.

The instrument consists of a mass m, a spring k, and a damper c inside a cage, which

is fastened to the vibrating body. With this arrangement, the bottom ends of the spring and

the dashpot will have the same motion as the cage (which is to be measured, y) and their

vibration excites the suspended mass into motion. Then the displacement of the mass rela-

tive to the cage, where x denotes the vertical displacement of the suspended

mass, can be measured if we attach a pointer to the mass and a scale to the cage, as shown

in Fig. 10.9.3

The vibrating body is assumed to have a harmonic motion:

(10.13)

The equation of motion of the mass m can be written as

(10.14)mx
$

+ c1x 
#
- y 

#
2 + k1x - y2 = 0

y1t2 = Y sin vt

z = x - y,

3The output of the instrument shown in Fig. 10.9 is the relative mechanical motion of the mass, as shown by the

pointer and the graduated scale on the cage. For high-speed operation and convenience, the motion is often con-

verted into an electrical signal by a transducer.
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x(t)

m

T
ck

y(t)

FIGURE 10.9 Seismic instrument.

By defining the relative displacement z as

(10.15)

Eq. (10.14) can be written as

(10.16)

Equations (10.13) and (10.16) lead to

(10.17)

This equation is identical to Eq. (3.75); hence the steady-state solution is given by

(10.18)

where Z and are given by (see Eqs. (3.76) and (3.77)):

(10.19)

(10.20)

(10.21)

and

(10.22)z =
c

2mvn

 r =
v

vn

 f = tan-1
a

cv

k - mv2
b = tan-1

a
2zr

1 - r2
b

 Z =
Yv2

[1k - mv2
2

2
+ c2v2]1/2

=
r2Y

[11 - r2
2

2
+ 12zr22]1/2

f

z1t2 = Z sin 1vt - f2

mz
$
+ cz 

#
+ kz = mv2Y sin vt

mz
$
+ cz 

#
+ kz = -my

$

z = x - y
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FIGURE 10.11 Variation of with r.f
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FIGURE 10.10 Response of a vibration-

measuring instrument.

The variations of Z and with respect to r are shown in Figs. 10.10 and 10.11. As will be

seen later, the type of instrument is determined by the useful range of the frequencies, indi-

cated in Fig. 10.10.

f

10.3.1

Vibrometer

A vibrometer or a seismometer is an instrument that measures the displacement of a vibrat-

ing body. It can be observed from Fig. 10.10 that when (range II).

Thus the relative displacement between the mass and the base (sensed by the transducer) is

essentially the same as the displacement of the base. For an exact analysis, we consider Eq.

(10.19). We note that

(10.23)z1t2 M Y sin1vt - f2

v/vn Ú 3Z/Y L 1

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 881



882 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

E X A M P L E  1 0 . 2
Amplitude by Vibrometer

A vibrometer having a natural frequency of 4 rad/s and is attached to a structure that per-

forms a harmonic motion. If the difference between the maximum and the minimum recorded values

is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 40 rad/s.

Solution: The amplitude of the recorded motion Z is 4 mm. For and

and Eq. (10.19) gives

Thus the amplitude of vibration of the structure is 

*

Y = Z/1.0093 = 3.9631 mm.

Z =

Y(10)2

[(1 - 102)2
+ 52(0.2)(10))2]1/2

= 1.0093Y

vn = 4 rad/s, r = 10.0,

z = 0.2, v = 40.0 rad/s,

z = 0.2

if

(10.24)

A comparison of Eq. (10.23) with shows that z(t) gives directly the motion

y(t) except for the phase lag This phase lag can be seen to be equal to 180° for 

Thus the recorded displacement z(t) lags behind the displacement being measured y(t) by

time This time lag is not important if the base displacement y(t) consists of a

single harmonic component.

Since has to be large and the value of is fixed, the natural frequency

of the mass-spring-damper must be low. This means that the mass must be

large and the spring must have a low stiffness. This results in a bulky instrument, which is

not desirable in many applications. In practice, the vibrometer may not have a large value

of r and hence the value of Z may not be equal to Y exactly. In such a case, the true value

of Y can be computed by using Eq. (10.19), as indicated in the following example.

vn = 1k/m

vr = v/vn

t¿ = f/v.

z = 0.f.

y(t) = Y sin vt

r2

[(1 - r2)2
+ (2zr)2]1/2

L 1

10.3.2
Accelerometer

An accelerometer is an instrument that measures the acceleration of a vibrating body (see

Fig. 10.12). Accelerometers are widely used for vibration measurements [10.7] and also to

record earthquakes. From the accelerometer record, the velocity and displacements are

obtained by integration. Equations (10.18) and (10.19) yield

(10.25)-z(t)vn
2
=

1

[(1 - r2)2
+ (2zr)2]1/2

 5-Yv2 sin(vt - f)6
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FIGURE 10.12 Accelerometers.

(Courtesy of Bruel and Kjaer Instruments, Inc.,

Marlborough, MA.)

This shows that if

(10.26)

Eq. (10.25) becomes

(10.27)

By comparing Eq. (10.27) with we find that the term gives

the acceleration of the base except for the phase lag Thus the instrument can be made

to record (give) directly the value of The time by which the record lags the

acceleration is given by If consists of a single harmonic component, the time

lag will not be of importance.

The value of the expression on the left-hand side of Eq. (10.26) is shown plotted in

Fig. 10.13. It can be seen that the left-hand side of Eq. (10.26) lies between 0.96 and 1.04 for

if the value of lies between 0.65 and 0.7. Since r is small, the natural fre-

quency of the instrument has to be large compared to the frequency of vibration to be mea-

sured. From the relation we find that the mass needs to be small and the spring

needs to have a large value of k (i.e., short spring), so the instrument will be small in size. Due

vn = 1k/m,

z0 r 0.6

y
$

t¿ = f/v.

y
$
= -z(t)vn

2.

f.y
$
,

z(t)vn
2y

$
(t) = -  Yv2 sin vt,

-  z(t)vn
2
M -  Yv2 sin(vt - f)

1

[(1 - r2)2
+ (2zr)2]1/2

M 1
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FIGURE 10.13 Variation of lefthand side of 

Eq. (10.26) with r.

to their small size and high sensitivity, accelerometers are preferred in vibration measure-

ments. In practice, Eq. (10.26) may not be satisfied exactly; in such cases the quantity

can be used to find the correct value of the acceleration measured, as illustrated in the

following example.

1

[(1 - r
2
)

2
+ (2zr)

2
]

1/2

E X A M P L E  1 0 . 3
Design of an Accelerometer

An accelerometer has a suspended mass of 0.01 kg with a damped natural frequency of vibration of

150 Hz. When mounted on an engine undergoing an acceleration of 1g at an operating speed of

6000 rpm, the acceleration is recorded as by the instrument. Find the damping constant and

the spring stiffness of the accelerometer.

Solution: The ratio of measured to true accelerations is given by

(E.1)

which can be written as

(E.2)[(1 - r
2
)

2
+ (2zr)

2
] = (1/0.9684)

2
= 1.0663

1

[(1 - r
2
)

2
+ (2zr)

2
]

1/2
=

Measured value

True value
=

9.5

9.81
= 0.9684

9.5 m/s2
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The operating speed of the engine gives

The damped natural frequency of vibration of the accelerometer is

Thus

(E.3)

Equation (E.3) gives

(E.4)

Substitution of Eq. (E.4) into (E.2) leads to a quadratic equation in as

(E.5)

The solution of Eq. (E.5) gives

or

By choosing arbitrarily, the undamped natural frequency of the accelerometer can be

found as

Since we have

The damping constant can be determined from

*

c = 2mvnz = 210.01211368.8889210.72532 = 19.8571 N-s/m

k = mvn
2
= 10.01211368.888922

= 18738.5628 N/m

vn = 1k/m,

vn =
vd

41 - z2
=

942.48

41 - 0.72532
= 1368.8889 rad/s

z = 0.7253

z = 0.7253, 0.9547

z2
= 0.5260, 0.9115

1.5801z4
- 2.2714z2

+ 0.7576 = 0

z2

r = 0.666741 - z2 or r2
= 0.444411 - z2

2

v

vd

=
v

41 - z2vn

=
r

41 - z2
=

628.32

942.48
= 0.6667

vd = 41 - z2vn = 15012p2 = 942.48 rad/s

v =

6000(2p)

60
= 628.32 rad/s

10.3 VIBRATION PICKUPS 885
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A velometer measures the velocity of a vibrating body. Equation (10.13) gives the velocity

of the vibrating body

(10.28)

and Eq. (10.18) gives

(10.29)

If

(10.30)

then

(10.31)

A comparison of Eqs. (10.28) and (10.31) shows that, except for the phase difference

gives directly provided that Eq. (10.30) holds true. In order to satisfy 

Eq. (10.30), r must be very large. In case Eq. (10.30) is not satisfied, then the velocity of

the vibrating body can be computed using Eq. (10.29).

y( 
#
t),f, z 

#
(t)

z 
#
(t) M vY cos(vt - f)

r
2

[(1 - r2)2
+ (2zr)2]1/2

M 1

z 
#
(t) =

r
2vY

[(1 - r2)2
+ (2zr)2]1/2

 cos(vt - f)

y
#
1t2 = vY cos vt

E X A M P L E  1 0 . 4
Design of a Velometer

Design a velometer if the maximum error is to be limited to 1 percent of the true velocity. The nat-

ural frequency of the velometer is to be 80 Hz and the suspended mass is to be 0.05 kg.

Solution: The ratio (R) of the recorded and the true velocities is given by Eq. (10.29):

(E.1)

The maximum of (E.1) occurs when (see Eq. (3.82))

(E.2)r = r* =
1

41 - 2z2

R =
r

2

[(1 - r2)2
+ (2zr)2]1/2

=

Recorded velocity

True velocity

10.3.3
Velometer
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Substitution of Eq. (E.2) into (E.1) gives

which can be simplified as

(E.3)

For an error of 1 percent, or 0.99, and Eq. (E.3) leads to

(E.4)

and

(E.5)

Equation (E.5) gives imaginary roots and Eq. (E.4) gives

or

We choose the value arbitrarily. The spring stiffness can be found as

since

The damping constant can be determined from

*

c = 2zvnm = 210.75510121502.656210.052 = 37.9556 N-s/m

vn = 8012p2 = 502.656 rad/s

k = mvn
2
= 0.051502.65622

= 12633.1527 N/m

z = 0.755101

z = 0.755101, 0.655607

z2
= 0.570178, 0.429821

z4
- z2

+ 0.255075 = 0

z4
- z2

+ 0.245075 = 0

R = 1.01

1

44z2
- 4z4

= R

a
1

1 - 2z2
b

A c1 - a
1

1 - 2z2
b d

2

+ 4z2
a

1

1 - 2z2
b

= R
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y(t)

O

sin vt

sin vt  sin 3vt

sin(vt  f1)  sin(3vt  f2)

sin(vt  f1)  sin(vt  90 )

sin(3vt  f2)  sin(3vt  180 )

sin 3vt

z(t)

O
vt

vt

(a) Input signal

(b) Output signal

FIGURE 10.14 Phase-shift error.

10.3.4

Phase Distortion

As shown by Eq. (10.18), all vibration-measuring instruments exhibit phase lag. Thus the

response or output of the instrument lags behind the motion or input it measures. The time

lag is given by the phase angle divided by the frequency The time lag is not important if

we measure a single harmonic component. But, occasionally, the vibration to be recorded

is not harmonic but consists of the sum of two or more harmonic components. In such a

case, the recorded graph may not give an accurate picture of the vibration, because differ-

ent harmonics may be amplified by different amounts and their phase shifts may also be

different. The distortion in the waveform of the recorded signal is called the phase distor-

tion or phase-shift error. To illustrate the nature of the phase-shift error, we consider a

vibration signal of the form shown in Fig. 10.14(a) [10.10]:

(10.32)

Let the phase shift be 90° for the first harmonic and 180° for the third harmonic of Eq. (10.32).

The corresponding time lags are given by and 

The output signal is shown in Fig. 10.14(b). It can be seen that the output sig-

nal is quite different from the input signal due to phase distortion.

As a general case, let the complex wave being measured be given by the sum of several

harmonics as

(10.33)y(t) = a1 sin vt + a2 sin 2vt + Á

180°/(3v).

t2 = u2/(3v) =t1 = u1/v = 90°/v

y1t2 = a1 sin vt + a3 sin 3vt

v.
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If the displacement is measured using a vibrometer, its response to each component of the

series is given by an equation similar to Eq. (10.18), so that the output of the vibrometer

becomes

(10.34)

where

(10.35)

Since is large for this instrument, we can find from Fig. 10.11 that 

and Eq. (10.34) becomes

(10.36)

Thus the output record will be simply opposite to the motion being measured. This is

unimportant and can easily be corrected.

By using a similar reasoning, we can show, in the case of a velometer, that

(10.37)

for an input signal consisting of several harmonics. Next we consider the phase distortion

for an accelerometer. Let the acceleration curve to be measured be expressed, using

Eq. (10.33), as

(10.38)

The response or output of the instrument to each component can be found as in Eq. (10.34),

and so

(10.39)

where the phase lags are different for different components of the series in Eq. (10.39).

Since the phase lag varies almost linearly from 0° at to 90° at for 

(see Fig. 10.11), we can express as

(10.40)f M ar = a 
v

vn

= bv

f

z = 0.7r = 1r = 0f

fj

z
$
1t2 = -  a1v

2
 sin1vt - f12 - a212v22

 sin12vt - f22 - Á

y
$
(t) = -  a1v

2
 sin vt - a2(2v)

2
 sin 2vt - Á

z
 #
(t) M -y

 #
(t)

z(t) M -  [a1 sin vt + a2 sin 2vt + Á
 ] M -y(t)

j = 1, 2, Á ,

fj M p,v/vn

tan fj =

2zaj 
v

vn

b

1 - aj 
v

vn

b

2
,          j = 1, 2, Á

z(t) = a1 sin(vt - f1) + a2 sin(2vt - f2) + Á
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where and are constants. The time lag is given by

(10.41)

This shows that the time lag of the accelerometer is independent of the frequency for any

component, provided that the frequency lies in the range Since each compo-

nent of the signal has the same time delay or phase lag, we have, from Eq. (10.39),

(10.42)

where Note that Eq. (10.42) assumes that that is, even the

highest frequency involved, is less than This may not be true in practice. Fortu-

nately, no significant phase distortion occurs in the output signal, even when some of the

higher-order frequencies are larger than The reason is that, generally, only the first

few components are important to approximate even a complex waveform; the amplitudes

of the higher harmonics are small and contribute very little to the total waveform. Thus

the output record of the accelerometer represents a reasonably true acceleration being

measured [10.7, 10.11].

10.4 Frequency-Measuring Instruments

Most frequency-measuring instruments are of the mechanical type and are based on the

principle of resonance. Two kinds are discussed in the following paragraphs: the Fullarton

tachometer and the Frahm tachometer.

Single-Reed Instrument or Fullarton Tachometer. This instrument consists of a variable-

length cantilever strip with a mass attached at one of its ends. The other end of the strip is

clamped, and its free length can be changed by means of a screw mechanism (see Fig.

10.15(a)). Since each length of the strip corresponds to a different natural frequency, the

reed is marked along its length in terms of its natural frequency. In practice, the clamped

end of the strip is pressed against the vibrating body, and the screw mechanism is

manipulated to alter its free length until the free end shows the largest amplitude of

vibration. At that instant, the excitation frequency is equal to the natural frequency of the

cantilever; it can be read directly from the strip.

Multireed-Instrument or Frahm Tachometer. This instrument consists of a number of

cantilevered reeds carrying small masses at their free ends (see Fig. 10.15(b)). Each reed

has a different natural frequency and is marked accordingly. Using a number of reeds

makes it possible to cover a wide frequency range. When the instrument is mounted on a

vibrating body, the reed whose natural frequency is nearest the unknown frequency of the

vn.

vn.nv,

0 r 1t = t - b.

 = -  a1v
2 sin vt - a212v22

 sin 2vt - Á

 -  v2
z
$
1t2 = -  a1v

2
 sin1vt - vb2 - a212v22

 sin12vt - 2vb2 - Á

0 r 1.

t¿ =
f

v
=
bv

v
= b

b = a/vna
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l

(a) (b)

FIGURE 10.15 Frequency-measuring instruments.

FIGURE 10.16 A stroboscope. (Courtesy of Bruel and

Kjaer Instruments, Inc., Marlborough, MA.)

body vibrates with the largest amplitude. The frequency of the vibrating body can be found

from the known frequency of the vibrating reed.

Stroboscope. A stroboscope is an instrument that produces light pulses intermittently.

The frequency at which the light pulses are produced can be altered and read from the

instrument. When a specific point on a rotating (vibrating) object is viewed with the

stroboscope, it will appear to be stationary only when the frequency of the pulsating light

is equal to the speed of the rotating (vibrating) object. The main advantage of the

stroboscope is that it does not make contact with the rotating (vibrating) body. Due to the

persistence of vision, the lowest frequency that can be measured with a stroboscope is

approximately 15 Hz. A typical stroboscope is shown in Fig. 10.16.
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r

r

m x(t)  r sin vt

(a)

(b)

F  mv
2
r sin vt

F  kr sin vt

x xxxx

k

v

FIGURE 10.17 Vibration of a structure through (a) an inertia

force and (b) an elastic spring force.

10.5 Vibration Exciters

The vibration exciters or shakers can be used in several applications such as determination

of the dynamic characteristics of machines and structures and fatigue testing of materials.

The vibration exciters can be mechanical, electromagnetic, electrodynamic, or hydraulic

type. The working principles of mechanical and electromagnetic exciters are described in

this section.

10.5.1

Mechanical

Exciters

As indicated in Section 1.10 (Fig. 1.46), a Scotch yoke mechanism can be used to produce

harmonic vibrations. The crank of the mechanism can be driven either by a constant- or a

variable-speed motor. When a structure is to be vibrated, the harmonic force can be applied

either as an inertia force, as shown in Fig. 10.17(a), or as an elastic spring force, as shown
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Columns

Building frame

GirderR
m

v v

F(t) * 2mRv2 cos vt

R
m

FIGURE 10.18 Vibration excitation due to unbalanced force.

10.5.2
Electrodynamic
Shaker

The schematic diagram of an electrodynamic shaker, also known as the electromagnetic

exciter, is shown in Fig. 10.19(a). As stated in Section 10.2.3, the electrodynamic shaker

can be considered as the reverse of an electrodynamic transducer. When current passes

through a coil placed in a magnetic field, a force F (in Newtons) proportional to the current

I (in amperes) and the magnetic flux intensity D (in teslas) is produced which accelerates

the component placed on the shaker table:

(10.44)

where l is the length of the coil (in meters). The magnetic field is produced by a permanent

magnet in small shakers while an electromagnet is used in large shakers. The magnitude of

acceleration of the table or component depends on the maximum current and the masses of

F = DIl

in Fig. 10.17(b). These vibrators are generally used for frequencies less than 30 Hz and

loads less than 700 N [10.1].

The unbalance created by two masses rotating at the same speed in opposite directions

(see Fig. 10.18) can be used as a mechanical exciter. This type of shaker can be used to

generate relatively large loads between 250 and 25,000 N. If the two masses, of magnitude

m each, rotate at an angular velocity at a radius R, the vertical force F(t) generated is

given by

(10.43)

The horizontal components of the two masses cancel, hence the resultant horizontal

force will be zero. The force F(t) will be applied to the structure to which the exciter is

attached.

F(t) = 2mRv2 cos vt

v
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Exciter table

(a)

(b)

Coil

Magnet

Moving element

Flexible support

F

m

Acceleration Natural frequency
of the flexible support

Natural frequency
of the moving element

Constant acceleration

Operating range

Frequency

FIGURE 10.19 (a) Electrodynamic shaker. (b) Typical resonance character-

istics of an electrodynamic exciter.

the component and the moving element of the shaker. If the current flowing through the

coil varies harmonically with time (a.c. current), the force produced also varies harmoni-

cally. On the other hand, if direct current is used to energize the coil, a constant force is

generated at the exciter table. The electrodynamic exciters can be used in conjunction with

an inertia or a spring as in the case of Figs. 10.17(a) and (b) to vibrate a structure.

Since the coil and the moving element should have a linear motion, they are suspended

from a flexible support (having a very small stiffness) as shown in Fig. 10.19(a). Thus the
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electromagnetic exciter has two natural frequencies one corresponding to the natural

frequency of the flexible support and the other corresponding to the natural frequency of

the moving element, which can be made very large. These two resonant frequencies are

shown in Fig. 10.19(b). The operating-frequency range of the exciter lies between these

two resonant frequencies, as indicated in Fig. 10.19(b) [10.7].

The electrodynamic exciters are used to generate forces up to 30,000 N, displacements

up to 25 mm, and frequencies in the range of 5 to 20 kHz [10.1]. A practical electrody-

namic exciter is shown in Fig. 10.20.

10.6 Signal Analysis
In signal analysis, we determine the response of a system under a known excitation and

present it in a convenient form. Often, the time response of a system will not give much

useful information. However, the frequency response will show one or more discrete

frequencies around which the energy is concentrated. Since the dynamic characteristics

of individual components of the system are usually known, we can relate the distinct

frequency components (of the frequency response) to specific components [10.3].

For example, the acceleration-time history of a machine frame that is subjected to

excessive vibration might appear as shown in Fig. 10.21(a). This figure cannot be used

to identify the cause of vibration. If the acceleration-time history is transformed to the

FIGURE 10.20 An exciter with a general-

purpose head. (Courtesy of Bruel and Kjaer

Instruments, Inc., Marlborough, MA.)
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Acceleration

Time

(a)

Acceleration

Frequency
25 Hz

(b)

FIGURE 10.21 Acceleration history.

Spectrum or frequency analyzers can be used for signal analysis. These devices analyze a

signal in the frequency domain by separating the energy of the signal into various fre-

quency bands. The separation of signal energy into frequency bands is accomplished

through a set of filters. The analyzers are usually classified according to the type of filter

employed. For example, if an octave band filter is used, the spectrum analyzer is called an

octave band analyzer.

In recent years, digital analyzers have become quite popular for real-time signal analy-

sis. In a real-time frequency analysis, the signal is continuously analyzed over all the fre-

quency bands. Thus the calculation process must not take more time than the time taken to

collect the signal data. Real-time analyzers are especially useful for machinery health

monitoring, since a change in the noise or vibration spectrum can be observed at the same

time that change in the machine occurs. There are two types of real-time analysis proce-

dures: the digital filtering method and the fast Fourier transform (FFT) method [10.13].

10.6.1
Spectrum
Analyzers

frequency domain, the resulting frequency spectrum might appear as shown in Fig. 10.21(b),

where, for specificness, the energy is shown concentrated around 25 Hz. This frequency

can easily be related, for example, to the rotational speed of a particular motor. Thus the

acceleration spectrum shows a strong evidence that the motor might be the cause of vibra-

tion. If the motor is causing the excessive vibrations, changing either the motor or its speed

of operation might avoid resonance and hence the problem of excessive vibrations.
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10.6.2
Bandpass Filter

A bandpass filter is a circuit that permits the passage of frequency components of a signal

over a frequency band and rejects all other frequency components of the signal. A filter can

be built by using, for example, resistors, inductors, and capacitors. Figure 10.22 illustrates

the response characteristics of a filter whose lower and upper cutoff frequencies are and

respectively. A practical filter will have a response characteristic deviating from the

ideal rectangle, as shown by the full line in Fig. 10.22. For a good bandpass filter, the rip-

ples within the band will be minimum and the slopes of the filter skirts will be steep to

maintain the actual bandwidth close to the ideal value, For a practical filter,

the frequencies and at which the response is 3 dB4 below its mean bandpass response

are called the cutoff frequencies.

There are two types of bandpass filters used in signal analysis: the constant-percent band-

width filters and constant-bandwidth filters. For a constant-percent bandwidth filter, the ratio

of the bandwidth to the center (tuned) frequency, is a constant. The octave,51fu - fl2/fc,

fufl

B = fu - fl.

fu,
fl

0
+3

+10

+20

+30

+40
fl  fc *     fl fu  fu

Response (dB)

Frequency (Hz)

Ideal

Practical

Filter skirt

FIGURE 10.22 Response of a filter.

4A decibel (dB) of a quantity (such as power, P) is defined as

where P is the power and is a reference value of the power.

5An octave is the interval between any two frequencies whose frequency ratio is 2. Two fre-

quencies and are said to be separated by a number of octaves N when

where N can be an integer or a fraction. If we have an octave; if we get a one-third octave,

and so on.

N = 1/3,N = 1,

f2

f1
= 2N or N 1in octaves2 = log2 a

f2

f1
b

f2f1

1f2/f12,1f2 - f12,

Pref

Quantity in dB = 10 log10a
P

Pref

b

The digital filtering method is best suited for constant-percent bandwidth analysis, the FFT

method for constant-bandwidth analysis. Before we consider the difference between those

two approachers, we first discuss the basic component of a spectrum analyzer namely,

the bandpass filter.
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TABLE 10.1

Lower cutoff limit (Hz) 5.63 11.2 22.4 44.7 89.2 178 355 709 1410

Center frequency (Hz) 8.0 16.0 31.5 63.0 125 250 500 1000 2000

Upper cutoff limit (Hz) 11.2 22.4 44.7 89.2 178 355 709 1410 2820

0
*3
*10

*20

*30

*40
10 20 50 100 200 500 1000 2000 5000

Response (dB)

Frequency (Hz)

FIGURE 10.23 Response characteristic of a typical octave band filter set.

10.6.3
Constant-
Percent
Bandwidth
and Constant-
Bandwidth
Analyzers

The primary difference between the constant-percent bandwidth and constant-bandwidth

analyzers lies in the detail provided by the various bandwidths. The octave band filters,

whose upper cutoff frequency is twice the lower cutoff frequency, give a less detailed (too

coarse) analysis for practical vibration and noise encountered in machines. The one-half-

octave band filter gives twice the information but requires twice the amount of time to

obtain the data. A spectrum analyzer with a set of octave and one-third-octave filters can be

used for noise (signal) analysis. Each filter is tuned to a different center frequency to cover

the entire frequency range of interest. Since the lower cutoff frequency of a filter is equal

to the upper cutoff frequency of the previous filter, the composite filter characteristic will

appear as shown in Fig. 10.23. Figure 10.24 shows a real-time octave and fractional-octave

digital frequency analyzer. A constant-bandwidth analyzer is used to obtain a more

detailed analysis than in the case of a constant-percent bandwidth analyzer, especially in

the high-frequency range of the signal. The constant-bandwidth filter, when used with a

continuously varying center frequency, is called a wave or heterodyne analyzer. Hetero-

dyne analyzers are available with constant filter bandwidths ranging from one to several

hundred hertz. A practical heterodyne analyzer is shown in Fig. 10.25.

one-half-octave, and one-third-octave band filters are examples of constant-percent bandwidth

filters. Some of the cutoff limits and center frequencies of octave bands used in signal analysis

are shown in Table 10.1. For a constant-bandwidth filter, the bandwidth, is indepen-

dent of the center (tuned) frequency, fc.

fu - fl,
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FIGURE 10.24 Octave and fractional-octave digital frequency

analyzer. (Courtesy of Bruel and Kjaer Instruments, Inc., Marlborough, MA.)

FIGURE 10.25 Heterodyne

analyzer. (Courtesy of Bruel and Kjaer Instruments,

Inc., Marlborough, MA.)
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10.7 Dynamic Testing of Machines and Structures
The dynamic testing of machines (structures) involves finding their deformation at a criti-

cal frequency. This can be done using the following two approaches [10.3].

10.7.1
Using
Operational
Deflection-Shape
Measurements

In this method, the forced dynamic deflection shape is measured under the steady-state

(operating) frequency of the system. For the measurement, an accelerometer is mounted at

some point on the machine (structure) as a reference, and another moving accelerometer is

placed at several other points, and in different directions, if necessary. Then the magni-

tudes and the phase differences between the moving and reference accelerometers at all the

points under steady-state operation of the system are measured. By plotting these mea-

surements, we can find how the various parts of the machine (structure) move relative to

one another and also absolutely.

The deflection shape measured is valid only for the forces/frequency associated with

the operating conditions; as such, we cannot get information about deflections under other

forces and/or frequencies. However, the measured deflection shape can be quite useful. For

example, if a particular part or location is found to have excessive deflection, we can

stiffen that part or location. This, in effect, increases the natural frequency beyond the

operational frequency range of the system.

10.7.2
Using Modal
Testing

Since any dynamic response of a machine (structure) can be obtained as a combination of

its modes, a knowledge of the mode shapes, modal frequencies, and modal damping ratios

constitutes a complete dynamic description of the machine (structure). The experimental

modal analysis procedure is described in the following section.

10.8 Experimental Modal Analysis

10.8.1
The Basic Idea

Experimental modal analysis, also known as modal analysis or modal testing, deals with

the determination of natural frequencies, damping ratios, and mode shapes through vibra-

tion testing. Two basic ideas are involved:

1. When a structure, machine, or any system is excited, its response exhibits a sharp peak

at resonance when the forcing frequency is equal to its natural frequency when damp-

ing is not large.

2. The phase of the response changes by 180° as the forcing frequency crosses the nat-

ural frequency of the structure or machine, and the phase will be 90° at resonance.

10.8.2
The Necessary
Equipment

The measurement of vibration requires the following hardware:

1. An exciter or source of vibration to apply a known input force to the structure or

machine.

2. A transducer to convert the physical motion of the structure or machine into an elec-

trical signal.
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10.8 EXPERIMENTAL MODAL ANALYSIS 901

3. A signal conditioning amplifier to make the transducer characteristics compatible with

the input electronics of the digital data acquisition system.

4. An analyzer to perform the tasks of signal processing and modal analysis using suit-

able software.

Exciter. The exciter may be an electromagnetic shaker or an impact hammer. As

explained in Section 10.5.2, the electromagnetic shaker can provide large input forces

so that the response can be measured easily. Also the output of the shaker can be

controlled easily if it is of electromagnetic type. The excitation signal is usually of a

swept sinusoidal or a random type signal. In the swept sinusoidal input, a harmonic

force of magnitude F is applied at a number of discrete frequencies over a specific

frequency range of interest. At each discrete frequency, the structure or machine is

made to reach a steady state before the magnitude and phase of the response are

measured. If the shaker is attached to the structure or machine being tested, the mass of

the shaker will influence the measured response (known as the mass loading effect). As

such, care is to be taken to minimize the effect of the mass of the shaker. Usually the

shaker is attached to the structure or machine through a short thin rod, called a stringer,

to isolate the shaker, reduce the added mass, and apply the force to the structure or

machine along the axial direction of the stringer. This permits the control of the

direction of the force applied to the structure or machine.

The impact hammer is a hammer with a built-in force transducer in its head, as indi-

cated in Examples 4.7 and 4.8. The impact hammer can be used to hit or impact the struc-

ture or machine being tested to excite a wide range of frequencies without causing the

problem of mass loading. The impact force caused by the impact hammer, which is nearly

proportional to the mass of the hammer head and the impact velocity, can be found from

the force transducer embedded in the head of the hammer. As shown in Section 6.15, the

response of the structure or machine to an impulse is composed of excitations at each of

the natural frequencies of the structure or machine.

Although the impact hammer is simple, portable, inexpensive, and much faster to

use than a shaker, it is often not capable of imparting sufficient energy to obtain adequate

response signals in the frequency range of interest. It is also difficult to control the direc-

tion of the applied force with an impact hammer. A typical frequency response of a

structure or machine obtained using an impact hammer is shown in Fig. 10.26. The

shape of the frequency response is dependent on the mass and stiffness of both the ham-

mer and the structure or machine. Usually, the useful range of frequency excitation is

limited by a cutoff frequency, which implies that the structure or machine did not

receive sufficient energy to excite modes beyond The value of is often taken as the

frequency where the amplitude of the frequency response reduces by 10 to 20 dB from

its maximum value.

vcvc.

vc,

Transducer. Among the transducers, the piezoelectric transducers are most popular (see

Section 10.2.2). A piezoelectric transducer can be designed to produce signals pro-

portional to either force or acceleration. In an accelerometer, the piezoelectric material acts

as a stiff spring that causes the transducer to have a resonant or natural frequency. Usually,

the maximum measurable frequency of an accelerometer is a fraction of its natural
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FIGURE 10.26 Frequency response of an impulse created by an impact hammer.

frequency. Strain gages can also be used to measure the vibration response of a structure or

machine, as discussed in Section 10.2.1.

Signal Conditioner. Since the output impedance of transducers is not suitable for direct

input into the signal analysis equipment, signal conditioners, in the form of charge or

voltage amplifiers, are used to match and amplify the signals before signal analysis.

Analyzer. The response signal, after conditioning, is sent to an analyzer for signal pro-

cessing. A type that is commonly used is the fast Fourier transform (FFT) analyzer. Such an

analyzer receives analog voltage signals (representing displacement, velocity, acceleration,

strain, or force) from a signal-conditioning amplifier, filter, and digitizer for computations. It

computes the discrete frequency spectra of individual signals as well as cross-spectra between

the input and the different output signals. The analyzed signals can be used to find the natural

frequencies, damping ratios, and mode shapes in either numerical or graphical form.

The general arrangement for the experimental modal analysis of a structural or

mechanical system is shown in Fig. 10.27. Note that all the equipment is to be calibrated

before it is used. For example, an impact hammer is use more frequently in experimental

stress analysis. The reason is that it is more convenient and faster to use than a shaker. An

impact hammer consists of a force transducer or load cell built into the head (or tip) of the

hammer. The built in force transducer is to be calibrated dynamically whenever the head or

tip is changed. Similarly, the transducers, along with the signal conditioners, are to be cal-

ibrated with respect to magnitude and phase over the frequency range of interest.
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10.8.3
Digital Signal
Processing

The analyzer converts the analog time-domain signals, x(t), into digital frequency-domain

data using Fourier series relations, given by Eqs. (1.97) to (1.99), to facilitate digital com-

putation. Thus the analyzer accepts the analog output signals of accelerometers or force

transducers, x(t), and computes the spectral coefficients of these signals and using

Eqs. (1.97) to (1.99) in the frequency domain. The process of converting analog signals

into digital data is indicated in Fig. 10.28 for two representative signals. In Fig. 10.28,

x(t) denotes the analog signal and represents the corresponding digital record,

with indicating the ith discrete value of time. This process is performed by an analog-to-

digital (A/D) converter, which is part of a digital analyzer. If N samples of x(t) are collected

at discrete values of time, the data can be used to obtain the

discrete form of Fourier transform as

(10.45)xj = x1tj2 =
a0

2
+ a

N/2

i=1
aai cos  

2pitj

T
+ bi sin 

2pitj

T
b ;  j = 1, 2, Á , N

[x1(ti), x2(ti), Á , xN(ti)]ti,

ti

xi = x(ti)

bna0, an,

Elastic cord
(to simulate free-free
condition)

Force
transducer Accelerometer

Exciter (shaker)

Signal conditioner
(power amplifier)

Computer (acquires data and stores
frequency-response functions)

Spectrum (FFT) analyzer

Structure

FIGURE 10.27 Experimental modal analysis.
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FIGURE 10.28 Representation of signals in different forms: (a) Signals in time domain.

(b) Signals in frequency domain. (c) Digital records of x(t).

where the digital spectral coefficients and are given by (see Eqs. (1.97) to (1.99))

(10.46)

(10.47)

(10.48)

with the number of samples N equal to some power of 2 (such as 256, 512, or 1024) which

is fixed for a given analyzer. Equations (10.46) to (10.48) denote N algebraic equations for

each of the N samples. The equations can be expressed in matrix form as

(10.49)

where is the vector of samples, 

is the vector of spectral coefficients, and [A] is the matrix composed of the coefficients

and of Eqs. (10.46) (10.48). The frequency content of the signal or

response of the system can be determined from the solution

(10.50)

where is computed efficiently using fast Fourier transform (FFT) by the analyzer.[A]-1

d
!

= [A] 
-1X

!

sin 

2pitj

T
cos 

2pitj

T

d
:

= 5a0 a1 a2
Á aN/2 b1 b2

Á bN/26
TX

!

= 5x1 x2 Á  xN6
T

X
!

= [A]d
!

 bi =
1

N
 a

N

j=1
xj sin  

2pitj

N

 ai =
1

N
 a

N

j=1
xj cos  

2pitj

N

 a0 =
1

N
 a

N

j=1
xj

bia0, ai,
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10.8.4
Analysis of
Random Signals

The input and output data measured by the transducers usually contain some random com-

ponent or noise that makes it difficult to analyze the data in a deterministic manner. Also,

in some cases random excitation is used in vibration testing. Thus random signal analysis

becomes necessary in vibration testing. If x(t) is a random signal, as shown in Fig. 10.29,

its average or mean, denoted as is defined as6

(10.51)

which, for a digital signal, can be expressed as

(10.52)

Corresponding to any random signal y(t), we can always define a new variable x(t) as

so that the mean value of x(t) is zero. Hence, without loss of general-

ity, we can assume the signal x(t) to have a zero mean and define the mean square value or

variance of x(t), denoted as as

(10.53)

which, for a digital signal with N samples of x(t) at can be expressed as

(10.54)

The root mean square (RMS) value of x(t) is given by

(10.55)xRMS = 4x2

x2
= lim

n:q
 
1

Na
N

j=1
x2

1tj2

t = t1, t2, Á , tN,

x2
1t2 = lim

N:q
 
1

TL

T

0
x2

1t2 dt

x2(t),

x(t) = y(t) - y(t),

x = lim
N:q

 
1

N
 a

N

j=1
x1tj2

x1t2 = lim
T:q

 
1

NL

T

0
x1t2 dt

x,

6A detailed discussion of random signals (processes) and random vibration is given in Chapter 14.

x(t)

t

FIGURE 10.29 A random signal, x(t).
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The autocorrelation function of a random signal x(t), denoted as R(t), gives a measure of

the speed with which the signal changes in the time domain and is defined as

(10.56)

which, for a digital signal, can be written as

(10.57)

where N is the number of samples, is the sampling interval, and n is an adjustable

parameter that can be used to control the number of points used in the computation. It can

be seen that R(0) denotes the mean square value, of x(t). The autocorrelation function

can be used to identify the presence of periodic components present (buried) in a random

signal. If x(t) is purely random, then as However, if x(t) is periodic or

has a periodic component, then R(t) will also be periodic.

The power spectral density (PSD) of a random signal x(t), denoted as gives a

measure of the speed with which the signal changes in the frequency domain and is defined

as the Fourier transform of R(t):

(10.58)

which, in digital form, can be expressed as

(10.59)

where represents the magnitude of the Fourier transform of the sampled data of

x(t). The definitions of autocorrelation and PSD functions can be extended for two differ-

ent signals, such as a displacement signal x(t) and an applied force signal f(t). This leads to

the cross-correlation function, and the cross-PSD 

(10.60)

(10.61)

Equations (10.60) and (10.61) permit the determination of the transfer functions of the

structure or machine being tested. In Eq. (10.60), if is replaced by wex(t + t),f(t + t)

Sxf1v2 =
1

2pL

q

-q
Rxf1t2e- 

ivt dt

Rxf1t2 = lim
T:q 

1

TL

T

0
x1t2f1t + t2 dt

Sxf(v):Rxf(t)

x(v) 2

S1¢v2 =
x1v2 2

N ¢t

S1v2 =
1

2pL

q

-q
R1t2e- 

ivt dt

S(v),

T: q .R(t): 0

x2,

¢t

R1n, ¢t2 =
1

N - n
 a
N-n

j=0
xjxj+n

R1t2 = x2 = lim
T:q

 
1

TL

T

0
x1t2x1t + t2 dt
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obtain which when used in Eq. (10.61), leads to The frequency-response

function, is related to the PSD functions as

(10.62)

(10.63)

(10.64)

with f(t) and x(t) denoting the random force input and the resulting output response,

respectively. given by Eq. (10.62), contains information about the magnitude of

the transfer function of the system (structure or machine), while and given

by Eqs. (10.63) and (10.64), contain information about both magnitude and phase. In vib-

ration testing, the spectrum analyzer first computes different spectral density functions

from the transducer output, and then computes the frequency-response functuion of

the system using Eqs. (10.63) and (10.64).

Coherence Function. A function, known as coherence function is defined as a

measure of the noise present in the signals as

(10.65)

Note that if the measurements of x and f are pure noises, then and if the measure-

ments of x and f are not contaminated at all with noise, then The plot of a typical

coherence function is shown in Fig. 10.30. Usually, near the natural frequency of

the system because the signals are large and are less influenced by the noise.

b L 1
b = 1.
b = 0,

b  1v2 = a

Sfx1v2

Sff1v2
b a

Sxf1v2

Sxx1v2
b =

Sxf1v2
2

Sxx1v2Sff1v2

(b),

H(iv)

Sxx(v),Sxf(v)
Sxx(v),

 Sxx1v2 = H1iv2Sxf1v2

 Sfx1v2 = H1iv2Sff1v2

 Sxx1v2 = H1iv2 2Sff1v2

H(iv),
Sxx(v).Rxx(t),
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0
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n
, 
b

(v
)
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FIGURE 10.30 A typical coherence function.

10.8.5

Determination
of Modal Data

from Observed

Peaks

The frequency-response function, computed from Eq. (10.63) or (10.64), can be

used to find the natural frequencies, damping ratios, and mode shapes corresponding to all

resonant peaks observed in the plot of Let the graph of the frequency-response

function be as shown in Fig. 10.31, with its four peaks or resonances suggesting that the

system being tested can be modeled as a four-degree-of-freedom system. Sometimes it

H(iv).

H(iv),
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v1
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(1)
v1
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*H(iv1)*

*H(iv1)*

2

*H(iv)*

FIGURE 10.31 A typical graph of the frequency-response function of a structure or machine,

obtained using Eq. (10.63) or (10.64).

becomes difficult to assign the number of degrees of freedom to the system, especially

when the resonant peaks are closely spaced in the graph of which can be plotted by

applying a harmonic force of adjustable frequency at a specific point of the structure or

machine, measuring the response (for example, displacement) at another point, and finding

the value of the frequency-response function using Eq. (10.63) or (10.64). The graph of

similar to Fig. 10.31, can be plotted by finding the values of at a number of

frequencies of the applied harmonic force.

A simple method of finding the modal data involves the use of a single-degree-of-

freedom approach. In this method, the graph of is partitioned into several frequency

ranges with each range bracketing one peak, as shown in Fig. 10.31. Each partitioned fre-

quency range is then considered as the frequency-response function of a single-degree-of-

freedom system. This implies that the frequency-response function in each frequency

range is dominated by that specific single mode. As observed in Section 3.4, a peak

denotes a resonance point corresponding to a phase angle of 90°. Thus the resonant fre-

quencies can be identified as the peaks in the graph of which can be confirmed

from an observation of the values of the phase angle to be 90° at each of the peaks. The

damping ratio corresponding to peak j, with resonant frequency in Fig. 10.31 denotes

the modal damping ratio, This ratio can be found, using Eq. (3.45), as

(10.66)zj =
vj

(2)
- vj

(1)

2 vj

zj.
vj,

H(iv),

H(iv)

H(iv)H(iv),

H(iv),
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where and known as half-power points, lie on either side of the resonant fre-

quency and satisfy the relation

(10.67)

Note that actually represents the damped natural frequency of the system being tested.

However, when damping is small, can be considered approximately equal to the

undamped natural frequency of the system. When the system being tested is approximated

as a k-degree-of-freedom system ( for the system corresponding to Fig. 10.31), each

peak observed in the graph of is assumed to be a single-degree-of-freedom system,

and the k resonant frequencies (peaks) and the corresponding damping ratios are deter-

mined by repeating the above procedure (and using an application of Eq. (10.66)) k times.

H(iv)
k = 4

vj

vj

H1ivj
(1)

2 = H1ivj
(2)

2 =
H1ivj2

22

vj

vj
(2),vj

(1)

E X A M P L E  1 0 . 5
Determination of Damping Ratio from Bode Diagram

The graphs showing the variations of the magnitude of the response and its phase angle with the fre-

quency of a single-degree-of-freedom system, as indicated in Fig. 3.11, provides the frequency

response of the system. Instead of dealing with the magnitude curves directly, if the logarithms of the

magnitude ratios (in decibels) are used, the resulting plots are called Bode diagrams. Find the natural

frequency and the damping ratio of a system whose Bode diagram is shown in Fig. 10.32.

Solution: The natural frequency, which corresponds approximately to the peak response of the

system, can be seen to be 10 Hz and the peak response to be The half-power points-35 dB.
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FIGURE 10.32 Bode diagram.
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correspond to frequencies and , where the response amplitude is equal to 0.707 times the peak

response. From Fig. 10.32, the half-power points can be identified as and 

thus the damping ratio can be determined by using Eq. (10.66) as

*

The procedure described in this section for finding the modal parameters is basically a

visual approach. A more systematic, computer-based approach that can be implemented by

the analyzer in conjunction with suitable programming is presented in the next section.

z =
v2 - v1

2vn

=
10.5 - 9.6

2110.02
= 0.045

v2 = 10.5 Hz;v1 = 9.6 Hz

v2v1

10.8.6
Determination
of Modal Data
from Nyquist
Plot

According to in this method, a single mode is also assumed to dominate in the neighbor-

hood of its natural frequency in the frequency-response function. When the real and

imaginary parts of the frequency-response function of a single-degree-of-freedom system

(given by Eq. (3.54)) are plotted along the horizontal and vertical axes of a graph for a

range of frequencies, the resulting graph will be in the form of a circle, known as the

Nyquist circle or Nyquist plot. The frequency-response function, given by Eq. (3.54), can be

written as

(10.68)

where

(10.69)

(10.70)

(10.71)

During vibration testing, the analyzer has the driving frequency values and the corre-

sponding computed values of and from the measured data. The

graph between u and v resembles a circle for large values of damping while it increas-

ingly assumes the shape of a circle as the damping becomes smaller and smaller, as shown

in Fig. 10.33.

1z2,

v = Im (a)u = Re (a)

v

 v = Imaginary part of a1iv2 =
-2zr

11 - r
2
2

2
+ 4z2

r
2

 u = Real part of a1iv2 =
1 - r

2

11 - r
2
2

2
+ 4z2

r
2

 r =
v

vn

a1iv2 =
1

1 - r
2
+ i2zr

= u + iv
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Properties of Nyquist Circle. To identify the properties of the Nyquist circle, we first

observe that large values of u and v are attained in the vicinity of resonance, In that

region, we can replace in Eqs. (10.70) and (10.71) as

so that

(10.72)

(10.73)

It can be easily verified that u and v, given by Eqs. (10.72) and (10.73), satisfy the relation

(10.74)

which denotes the equation of a circle with its center at and radius 

The half-power points occur at which correspond to and 

These points are located at the two ends of the horizontal diameter of the circle, at which

point u has its maximum magnitude.

v =
1

4 z
.u = ;  

1

4 z
r = 1 ; z,

1

4 z
.Au = 0, v = -  

1

4z B
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2
+ av +

1

4z
b

2

= a
1

4z
b

2

 v = Im 1a2 L
- z

2[11 - r2
2
+ z

2
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 u = Re 1a2 L
1 - r

2[11 - r2
2
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2
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1 - r
2
= 11 + r2 11 - r2 L 2 11 - r2         and         2z r L 2 z
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FIGURE 10.33 Nyquist circle.
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10.8.7
Measurement 
of Mode Shapes

To determine the mode shapes from vibration testing, we need to express the equations of

motion of the multidegree-of-freedom system in modal coordinates [10.18]. For this, we

first consider an undamped system.

Undamped Multidegree-of-Freedom System. The equations of motion of an undamped

multidegree-of-freedom system in physical coordinates are given by

(10.75)

For free harmonic vibration, Eq. (10.75) becomes

(10.76)

where is the i th natural frequency and is the corresponding mode shape. The orthog-

onality relations for the mode shapes can be expressed as

(10.77)

(10.78)

where [Y] is the modal matrix containing the modes as columns (N denotes

the number of degrees of freedom of the system, also equal to the number of measured nat-

ural frequencies or peaks), and are the elements of diag [M ] and diag [K], also called

the modal mass and modal stiffness, respectively, corresponding to mode i, and

(10.79)

When the forcing functions are harmonic, with Eq. (10.75)

yields

(10.80)x
!
1t2 = X

!
ei
'
v t= C[k] - v2 [m] D  

-1
F
!
ei
'

 v t K [a1v2]F
!
ei
'

  v t

i
'
= 1-1,f

!
(t) = F

!
ei
'
v t,

vi
2 =

Ki

Mi

KiMi

y
!
1, y
!
2, Á , y

!
N

 [Y]T[k][Y] = diag[K] K C
aKiRD

 [Y]T[m][Y] = diag[M] K C
aMiRD

y
!
ivi

C[k] - vi
2[m] Dy

!
i = 0

!

[m]x
!$
+ [k]x

!
= f

!

These observations can be used to find and Once the measured values of

the frequency-response function are available (with the applied force magnitude

fixed) for a range of driving frequencies instead of searching for the peak in the plot

of versus we can construct the Nyquist plot of Re against Im 

by using a least squares approach to fit a circle. This process also averages out the exper-

imental errors. The intersection of the fitted circle with the negative imaginary axis will

then correspond to The bandwidth, is given by the difference of 

the frequencies at the two horizontal diametral points, from which can be found as

z = a
v122 - v112

2vn
b .

z

1v(2) - v(1)
2,H1ivn2.

(H(iv))(H(iv))v,H(iv)
v,

H(iv)
z.vn (r = 1)
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where is called the frequency-response function or receptance matrix of the system.

Using the orthogonality relations of Eqs. (10.77) and (10.78), can be expressed as

(10.81)

An individual element of the matrix lying in row p and column q denotes the har-

monic response of one coordinate, caused by a harmonic force applied at another coor-

dinate, (with no other forces), and can be written as

(10.82)

where denotes the jth component of mode If the modal matrix [Y] is further nor-

malized (rescaled or mass-normalized) as

(10.83)

the shape of the modes will not change, but Eq. (10.82) becomes

(10.84)

Damped Multidegree-of-Freedom System. The equations of motion of a damped multi-

degree-of-freedom system in physical coordinates are given by

(10.85)

For simplicity, we assume proportional damping, so that the damping matrix [c] can be

expressed as

(10.86)

where a and b are constants. Then the undamped mode shapes of the system, and ,

diagonalize not only the mass and stiffness matrices, as indicated in Eqs. (10.77) and

(10.78), but also the damping matrix:
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914 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

Thus the mode shapes of the damped system will remain the same as those of the undamped

system, but the natural frequencies will change and in general become complex. When the

forcing vector is assumed to be harmonic in Eq. (10.85), the frequency-response function

or receptance can be derived as

(10.88)

When mass-normalized mode shapes are used (see Eq. 10.83), becomes

(10.89)

where is the damping ratio in mode i.

As indicated earlier, the element of the matrix in row p and column q,

denotes the transfer function between the displacement or response

at point and the input force at point of the system being tested (with all other

forces equal to zero). Since this transfer function denotes the ratio it is given by

Thus

(10.90)

If the peaks or resonant (natural) frequencies of the system are well separated, then the

term corresponding to the particular peak (ith peak) dominates all other terms in the sum-

mation of Eq. (10.88) or (10.89). By substituting in Eq. (10.89), we obtain

or

or

(10.91)
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phase plot of can be used. Since there are only N independent unknown compo-

nents of in the elements of the matrix N measurements of

are required to determine the mode shape corresponding to the modal fre-

quency This can be achieved by measuring the displacement or response of the system

at point q with input at point 1 first, at point 2 next, and at point N last.

10.9 Machine-Condition Monitoring and Diagnosis
Most machines produce low levels of vibration when designed properly. During operation,

all machines are subjected to fatigue, wear, deformation, and foundation settlement. These

effects cause an increase in the clearances between mating parts, misalignments in shafts,

initiation of cracks in parts, and unbalances in rotors all leading to an increase in the level

of vibration, which causes additional dynamic loads on bearings. As time progresses, the

vibration levels continue to increase, leading ultimately to the failure or breakdown of the

machine. The common types of faults or operating conditions that lead to increased levels

of vibration in machines include bent shafts, eccentric shafts, misaligned components,

unbalanced components, faulty bearings, faulty gears, impellers with faulty blades, and

loose mechanical parts.

Á ,

vi.

f
!
iHpq1vi2

C Af
!
i Bp Af

!
i Bq D = Cf

!
i f
!
i
T
Dpq,N2f

!
i

Hpq1vi2

10.9.1
Vibration
Severity Criteria

The vibration severity charts, given by standards such as ISO 2372, can be used as a guide

to determine the condition of a machine. In most cases, the root mean square (RMS) value

of the vibratory velocity of the machine is compared against the criteria set by the stan-

dards. Although it is very simple to implement this procedure, the overall velocity signal

used for comparison may not give sufficient warning of the imminent damage of the

machine.

10.9.2
Machine
Maintenance
Techniques

The life of a machine follows the classic bathtub curve shown in Fig. 10.34. Since the fail-

ure of a machine is usually characterized by an increase in vibration and/or noise level, the

vibration level also follows the shape of the same bathtub curve. The vibration level

decreases during the initial running-in period, then increases very slowly during the nor-

mal operating period due to the normal wear, and finally increases rapidly due to excessive

wear until failure or breakdown in the wearout period.

Three types of maintenance schemes can be used in practice:

1. Breakdown maintenance. The machine is allowed to fail, at which time the failed

machine is replaced by a new one. This strategy can be used if the machine is inex-

pensive to replace and the breakdown does not cause any other damage. Otherwise,

the cost of lost production, safety risks, and additional damage to other machines

make this scheme unacceptable.

2. Preventive maintenance. Maintenance is performed at fixed intervals such as every

3000 operating hours or once a year. The maintenance intervals are usually determined
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916 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

statistically from past experience. Although this method reduces the chance of unex-

pected breakdowns, it has been found to be uneconomical. The stoppage for mainte-

nance involves not only lost production time but also a high risk of introducing

imperfections due to human error. In addition, the probability of failure of a machine

component cannot be reduced by replacing it with a new one during the normal

wearout period.

3. Condition-based maintenance. The fixed-interval overhauls are replaced by fixed-

interval measurements that permit the observation of changes in the running condition

of the machine regularly. Thus the onset of fault conditions can be detected and their

developments closely followed. The measured vibration levels can be extrapolated in

order to predict when the vibration levels reach unacceptable values and when the

machine must be serviced. Hence this scheme is also known as predictive maintenance.

In this method, the maintenance costs are greatly reduced due to fewer catastrophic

failures, better utilization of spare parts, and elimination of the unnecessary preventive

maintenance. The vibration level (and hence the failure probability) of the machine due

to condition-based maintenance follows the shape indicated in Fig. 10.35.

10.9.3
Machine-
Condition
Monitoring
Techniques

Several methods can be used to monitor the condition of a machine, as indicated in

Fig. 10.36. Aural and visual methods are the basic forms of monitoring techniques in which

a skilled technician, having an intimate knowledge of machines, can identify a failure

simply by listening to the sounds and/or visually observing the large amplitudes of

vibration produced by a damaged machine. Sometimes a microphone or a stroboscope is

used to hear the machine noise. Similarly, devices ranging from magnifying glasses to

Time

Infant
mortality
(initial
running-in)
period

Useful (normal
operating) period

Wearout
(aging)
period

Deterioration
(failure
probability)

FIGURE 10.34 The bathtub curve for the life of a machine.
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(probability of failure)
of the machine

Condition-based
maintenance

Condition-based
maintenance

Periodic condition
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increased

Breakdown
(if no
maintenance
used)

FIGURE 10.35 Condition-based maintenance.

Aural Visual Operational
variables

Temperature Wear
debris

Vibration

Machine-condition monitoring techniques

FIGURE 10.36 Machine-condition monitoring techniques.

stroboscopes are used to visually monitor the condition of a machine. Current and volt-

age monitoring can be used for the condition monitoring of electrical drives such as

large generators and motors.

In the operational-variables method of monitoring, also known as performance or duty-

cycle monitoring, the performance of a machine is observed with regard to its intended

duty. Any deviation from the intended performance denotes a malfunction of the machine.

Temperature monitoring involves measuring the operational or surface temperature of a

machine. This method can be considered as a kind of operational-variables method.

A rapid increase in the temperature of a component, occurring mostly due to wear, is an

indication of a malfunction such as inadequate lubricant in journal bearings. Temperature

monitoring uses such devices as optical pyrometers, thermocouples, thermography, and

resistance thermometers. In some cases, dye penetrants are used to identify cracks occurring
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Time- 
domain

techniques

Frequency- 
domain

techniques

Quefrency-
domain

(cepstrum)
techniques

Waveform
Shaft orbits
Statistical analysis

Machine vibration monitoring techniques

FIGURE 10.37 Machine vibration monitoring

techniques.

Time-Domain Analysis

Time Waveforms. Time-domain analysis uses the time history of the signal (waveform).

The signal is stored in an oscilloscope or a real-time analyzer and any nonsteady or

transient impulses are noted. Discrete damages such as broken teeth in gears and cracks in

inner or outer races of bearings can be identified easily from the waveform of the casing

of a gearbox. As an example, Fig. 10.38 shows the acceleration signal of a single-stage

gearbox. The pinion of the gear pair is coupled to a 5.6-kW, 2865-rpm, AC electric motor.

Since the pinion (shaft) speed is 2865 rpm or 47.75 Hz, the period can be noted as

20.9 ms. The acceleration waveform indicates that pulses occur periodically with a period

of 20 ms approximately. Noting that this period is the same as the period of the pinion, the

origin of the pulses in the acceleration signal can be attributed to a broken gear tooth on

the pinion.

on the surface of a machine. This procedure requires the use of heat-sensitive paints,

known as thermographic paints, to detect surface cracks on hot surfaces. In such cases, the

most suitable paint matching the expected surface temperature is selected.

Wear debris is generated at relative moving surfaces of load-bearing machine elements.

The wear particles that can be found in the lubricating oils or grease can be used to assess

the extent of damage. As wear increases, the particles of the material used to construct

machine components such as bearings and gears can be found in increasing concentration.

Thus the severity of the wear can be assessed by observing the concentration (quantity),

size, shape, and color of the particles. Note that the color of the particles indicates how hot

they have been.

Vibration analysis is most commonly used for machine-condition monitoring. Vib-

ration in machines is caused by cyclic excitation forces arising from imbalances, wear,

or failure of parts. What type of changes occur in the vibration level, how these changes

can be detected, and how the condition of the machine is interpreted has been the topic

of several research studies in the past. The available vibration monitoring techniques can

be classified as shown in Fig. 10.37. These techniques are described in the following

section.

10.9.4
Vibration
Monitoring
Techniques
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FIGURE 10.38 Time-domain waveform of a faulty gearbox

[10.23].

Indices. In some cases, indices such as the peak level, the root mean square (RMS)

level, and the crest factor are used to identify damage in machine-condition monitoring.

Since the peak level occurs only once, it is not a statistical quantity and hence is not a

reliable index to detect damage in continuously operating systems. Although the RMS

value is a better index to detect damage in steady-state applications, it may not be

useful if the signal contains information from more than one component, as in the case

of vibration of a complete gearbox that consists of several gears, shafts, and bearings.

The crest factor, defined as the ratio of the peak to RMS level, includes information

from both the peak and the RMS levels. However, it may also not be able to identify

failure in certain cases. For example, if the failure occurs progressively, the RMS level

of the signal might be increasing gradually, although the crest factor might be showing

a decreasing trend.

Orbits. Sometimes, certain patterns known as Lissajous figures can be obtained by

displaying time waveforms obtained from two transducers whose outputs are shifted

by 90° in phase. Any change in the pattern of these figures or orbits can be used to

identify faults such as misalignment in shafts, unbalance in shafts, shaft rub, wear in

journal bearings, and hydrodynamic instability in lubricated bearings. Figure 10.39

illustrates a change in orbit caused by a worn bearing. The enlarged orbit diameter in

the vertical direction indicates that the bearing has become stiffer in the horizontal

direction that is, it has more bearing clearance in the vertical direction.

Statistical Methods

Probability Density Curve. Every vibration signal will have a characteristic shape for its

probability density curve. The probability density of a signal can be defined as the prob-

ability of finding its instantaneous amplitude within a certain range, divided by the range.

Usually, the waveform corresponding to good components will have a bell-shaped

probability density curve similar to normal distribution. Thus any significant deviation

from the bell shape can be associated with the failure of a component. Since the use of the
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probability density curve involves the comparison of variations in shape rather than

variations in amplitudes, it is very useful in the diagnosis of faults in machines.

Moments. In some cases, the moments of the probability density curve can be used for

the machine-condition monitoring. The moments of the curve are similar to mechanical

moments about the centroidal axis of the area. The first four moments of a probability

density curve (with proper normalization) are known as the mean, standard deviation,

skewness, and kurtosis, respectively. For practical signals, the odd moments are usually

close to zero and the even moments denote the impulsiveness of the signal. The fourth-

order moment, kurtosis, is commonly used in machine-condition monitoring. The kurtosis

is defined as

(10.92)

where f(x) is the probability density function of the instantaneous amplitude, x(t), at time

is the mean value, and is the standard deviation of x(t). Faults such as cracked races

and spalling of rollers and balls in bearings cause relatively large pulses in the time-

domain waveform of the signal, which in turn lead to large values of kurtosis. Thus an

increase in the value of kurtosis can be attributed to the failure of a machine component.

Frequency-Domain Analysis

Frequency Spectrum. The frequency-domain signal or frequency spectrum is a plot of

the amplitude of vibration response versus the frequency and can be derived by using

the digital fast Fourier analysis of the time waveform. The frequency spectrum provides

valuable information about the condition of a machine. The vibration response of a

machine is governed not only by its components but also by its assembly, mounting,
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FIGURE 10.39 Change in orbit due to a bearing failure

[10.23].
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and installation. Thus the vibration characteristics of any machine are somewhat unique

to that particular machine; hence the vibration spectrum can be considered as the

vibration signature of that machine. As long as the excitation forces are constant or vary

by small amounts, the measured vibration level of the machine also remains constant or

varies by small amounts. However, as the machine starts developing faults, its vibration

level and hence the shape of the frequency spectrum change. By comparing the fre-

quency spectrum of the machine in damaged condition with the reference frequency

spectrum corresponding to the machine in good condition, the nature and location of the

fault can be detected. Another important characteristic of a spectrum is that each rotating

element in a machine generates identifiable frequency, as illustrated in Fig. 10.40; thus

the changes in the spectrum at a given frequency can be attributed directly to the

corresponding machine component. Since such changes can be detected more easily

compared to changes in the overall vibration levels, this characteristic will be very

valuable in practice.

Since the peaks in the spectrum relate to various machine components, it is necessary

to be able to compute the fault frequencies. A number of formulas can be derived to find

the fault frequencies of standard components like bearings, gearboxes, pumps, fans, and

pulleys. Similarly, certain standard fault conditions can be described for standard faults

such as unbalance, misalignment, looseness, oil whirl, and resonance.

Feedwater
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Amplitude
of vibration
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(b)
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FIGURE 10.40 Relationship between machine components and the

vibration spectrum.
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Quefrency-Domain Analysis. Quefrency serves as the abscissa (x-axis) for a parameter

known as cepstrum, similar to frequency, that serves as the abscissa for the parameter

spectrum. Several definitions are available for the term cepstrum in the literature.

Originally, cepstrum was defined as the power spectrum of the logarithm of the power

spectrum. If x(t) denotes a time signal, its power spectrum, is given by

(10.93)

where denotes the Fourier transform of 

(10.94)

Thus the cepstrum, is given by

(10.95)

Later, the cepstrum was defined as the inverse Fourier transform of the logarithm of the

power spectrum, so that becomes

(10.96)

The word cepstrum is derived by rearranging the letters in the word spectrum. The reason

for this link is that the cepstrum is basically the spectrum of a spectrum. In fact, many of

the terms used in spectrum analysis have been modified for use in cepstrum analysis.

A few examples are given below:

Quefrency Frequency

Rahmonics Harmonics

Gamnitude Magnitude

Saphe Phase

From this, it is logical to see why quefrency serves as the abscissa of the cepstrum.

In practice, the choice of the definition of cepstrum is not critical, since both defini-

tions Eqs. (10.95) and (10.96) show distinct peaks in the same location if there is strong

periodicity in the (logarithmic) spectrum. The cepstrum is useful in machine-condition mon-

itoring and diagnosis, since it can detect any periodicity in the spectrum caused by the failure

of components, such as a blade in a turbine and a gear tooth in a gearbox. As an example, the

spectra and cepstra of two truck gearboxes, one in good condition and the other in bad con-

dition, running on a test stand with first gear in engagement, are shown in Figs. 10.41(a) to

(d). Note that in Fig. 10.41(a), the good gearbox shows no marked periodicity in its spectrum

while the bad gearbox indicates a large number of sidebands with an approximate spacing of

10 Hz in its spectrum (Fig. 10.41(b)). This spacing cannot be determined more accurately from

Fig. 10.41(b). Similarly, the cepstrum of the good gearbox does not indicate any quefrencies

prominently (Fig. 10.41(d)). However, the cepstrum of the bad gearbox (Fig. 10.41(c)) indi-

cates three prominant quefrencies at 28.1 ms (35.6 Hz), 95.9 ms (10.4 Hz), and 191.0 ms (5.2

Hz). The first series of rahmonics corresponding to 35.6 Hz has been identified to correspond

c1t2 = F -1 
5log SX1v26

c(t)

c1t2 = F5log SX1v26
2

c(t),

F5x1t26=
1

TL

T
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  x1t2eivt dt

56:F56
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M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 922



10.9 MACHINE-CONDITION MONITORING AND DIAGNOSIS 923

100

90

80

VdB
Frequency (Hz)

(a) Spectrum of bad gearbox

100

90

80

70

Frequency (Hz)

(b) Spectrum of good gearbox

Quefrency (s)

(c) Cepstrum of bad gearbox

Quefrency (s)

(d) Cepstrum of good gearbox

0

0 0.1 0.2 0.3

100 200 300 400 500

28.1 ms
(35.6 Hz)

191.0 ms
(5.2 Hz)

95.9 ms
(10.4 Hz)

FIGURE 10.41 Spectrum and cepstrum of a gearbox

[10.24].

to the input speed of the gearbox. The theoretical output speed is 5.4 Hz. Thus the rahmonics

corresponding to 10.4 Hz are not expected to be same as the second harmonic of the output

speed, which would be 10.8 Hz. A careful examination revealed that the rahmonics corre-

sponding to the frequency 10.4 Hz are same as the speed of the second gear. This indicates

that the second gear was at fault although the first gear was in engagement.
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10.9.6
Choice of
Monitoring
Parameter

Piezoelectric accelerometers are commonly used for measuring the vibration of machines.

They are preferred because of their smaller size, superior frequency and dynamic range,

reliability over long periods, and robustness. When an accelerometer is used as the vibra-

tion pickup, the velocity and displacements can be obtained from the integrators built into

the analyzer. Thus the user can choose between acceleration, velocity, and displacement

as the monitoring parameter. Although any of these three spectra can be used for the con-

dition monitoring of a machine, usually the velocity spectrum will be the flattest one

(indicating that the range of velocity amplitudes is the smallest). Since a change in the

amplitude of velocity can be observed easily in a flatter spectrum, velocity is commonly

used as the parameter for monitoring the condition of machines.

10.9.5
Instrumentation
Systems

Based on their degree of sophistication, three types of instrumentation systems can be used

for condition monitoring of machines the basic system, the portable system, and the

computer-based system. The first type, which can be labeled as the basic system, consists

of a simple pocket-sized vibration meter, a stroboscope, and a headset. The vibration meter

measures the overall vibration levels (RMS or peak values of acceleration or velocity) over

suitable frequency ranges, the stroboscope indicates the speed of the machine, and the

headset aids in hearing the machine vibration. The overall RMS velocity readings can be

compared with published severity charts and any need for condition-based maintenance

can be established. The overall vibration levels can also be plotted against time to find how

rapidly the condition of the machine is changing. The vibration meter can also be used in

conjunction with a pocket computer to collect and store the measurements. Sometimes, an

experienced operator can hear the vibration (sound) of a machine over a period of time and

find its condition. In some cases, faults such as misalignment, unbalance, or looseness of

parts can be observed visually.

The portable condition-monitoring system consists of a portable fast Fourier trans-

form (FFT) vibration analyzer based on battery power. This vibration analyzer can be

used for fault detection by recording and storing vibration spectra from each of the mea-

surement points. Each newly recorded spectrum can be compared with a reference spec-

trum that was recorded at that particular measurement point when the machine was

known to be in good condition. Any significant increase in the amplitudes in the new

spectrum indicates a fault that needs further investigation. The vibration analyzer also has

certain diagnostic capability to identify problems such as faulty belt drives and gearboxes

and loose bearings. When the fault diagnosed requires a replacement of parts, it can be

done by the operator. If a rotor requires balancing, the vibration analyzer can be used to

compute the locations and magnitudes of the correction masses necessary to rebalance the

rotor.

The computer-based condition-monitoring system is useful and economical when the

number of machines, the number of monitoring points, and the complexity of fault detection

increases. It consists of an FFT vibration analyzer coupled with a computer for maintaining

a centralized database that can also provide diagnostic capabilities. The data are stored on a

disk, allowing them to be used for spectrum comparison or for three-dimensional plots (see

Fig. 10.42). Certain computer-based systems use tape recorders to record vibration signals

from each machine at all the measurement points. These measurements can be played back

into the computer for storage and postprocessing.
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FIGURE 10.42 Three-dimensional plot of data.

E X A M P L E  1 0 . 6
Plotting of Nyquist Circle

Using MATLAB, plot the Nyquist circle for the following data:

a.

b.

Solution: Equations (10.70) and (10.71) are plotted along the horizontal and vertical axes. The

MATLAB program to plot the Nyquist circle is given below.

%Ex10_6.m

zeta = 0.05;

for i = 1: 10001

r(i) = 50 * (i 1) / 10000;

Re1(i) = ( 1 r(i)^2 )/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

Im1(i) = 2*zeta*r(i)/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

end

zeta = 0.75;

for i = 1: 10001

r(i) = 50 *(i 1) / 10000;

Re2(i) = ( 1 r(i)^2 )/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

Im2(i) = 2*zeta*r(i)/( (1 r(i)^2)^2 + 4*zeta^2*r(i)^2 );

end

plot(Re1, Im1);

title('Nyquist plot: zeta = 0.05');

ylabel('Imaginary axis');

xlabel('Real axis');

pause;

plot(Re2, Im2);

title('Nyquist plot: zeta = 0.75');

ylabel('Imaginary axis');

xlabel('Real axis');

z = 0.05

z = 0.75

10.10 Examples Using MATLAB
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E X A M P L E  1 0 . 7
Plotting of Accelerometer Equation

Using MATLAB, plot the ratio of measured to true accelerations, given by

(E.1)

for 0.25, 0.5, 0.75, and 1.0.

Solution: The MATLAB program to plot Eq. (E.1) in the range is given below.

%Ex10_7.m

zeta = 0.0;

for i = 1: 101

r(i) = (i 1)/100;

f1(i) = 1/sqrt((1 r(i)^2)^2 + (2*zeta*r(i))^2);

end

zeta = 0.25;

for i = 1: 101

r(i) = (i 1)/100;

f2(i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

zeta = 0.5;

for i = 1: 101

r(i) = (i 1)/100;

f3(i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

zeta = 0.75;

for i = 1: 101

r(i) = (i 1)/100;

f4(i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

zeta = 1.0;

for i = 1: 101

r(i) = (i 1)/100;

f (i) = 1/sqrt( (1 r(i)^2)^2 + (2*zeta*r(i))^2 );

end

plot(r,f1);

axis([0 1 0 5]);

gtext('zeta = 0.00');

hold on;

plot(r,f2);

gtext('zeta = 0.25');

hold on;

plot(r,f3);

gtext('zeta = 0.50');

hold on;

plot(r,f4);

gtext('zeta = 0.75');

hold on;

plot(r,f5);

gtext('zeta = 1.00');

xlabel('r');

ylabel('f(r)');

0 r 1

z = 0.0,

f1r2 =
1

511 - r
2
2
2
+ 12zr2

2
6
1/2
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f
(
r
)

r

zeta * 0.25

zeta * 0.50

zeta * 0.75

zeta * 1.00

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

*

CHAPTER SUMMARY

In some practical applications, it might be difficult to develop a mathematical model, derive the gov-

erning equations, and conduct analysis to predict the vibration characteristics of the system. In such

cases, we can measure the vibration characteristics of the system under known input conditions and

develop a mathematical model of the system. We presented the various aspects of vibration measure-

ment and applications. We discussed the various types of transducers, vibration pickups, frequency

measuring instruments, and shakers (exciters) available for vibration measurement. We described

signal analysis and experimental modal analysis and determination of natural frequencies, damping

ratio, and mode shapes. We presented machine-condition monitoring and diagnosis techniques.

Finally, we presented MATLAB solutions for vibration-measurement-related analysis problems.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.

REFERENCES

10.1 G. Buzdugan, E. Mihailescu, and M. Rades, Vibration Measurement, Martinus Nijhoff,

Dordrecht, The Netherlands, 1986.

10.2 Vibration Testing, Bruel & Kjaer, Naerum, Denmark, 1983.

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 928



REFERENCES 929

10.3 O. Dossing, Structural Testing. Part I. Mechanical Mobility Measurements, Bruel & Kjaer,

Naerum, Denmark, 1987.

10.4 D. N. Keast, Measurements in Mechanical Dynamics, McGraw-Hill, New York, 1967.

10.5 B. W. Mitchell (ed.), Instrumentation and Measurement for Environmental Sciences (2nd ed.),

American Society of Agricultural Engineers, Saint Joseph, MI, 1983.

10.6 J. P. Holman, Experimental Methods for Engineers (4th ed.), McGraw-Hill, New York, 1984.

10.7 J. T. Broch, Mechanical Vibration and Shock Measurements, Bruel & Kjaer, Naerum, Denmark,

1976.

10.8 R. R. Bouche, Calibration of Shock and Vibration Measuring Transducers, Shock and Vibra-

tion Information Center, Washington, DC, SVM-11, 1979.

10.9 M. Rades, Methods for the analysis of structural frequency-response measurement data,

Shock and Vibration Digest, Vol. 8, No. 2, February 1976, pp. 73 88.

10.10 J. D. Irwin and E. R. Graf, Industrial Noise and Vibration Control, Prentice Hall, Englewood

Cliffs, NJ, 1979.

10.11 R. K. Vierck, Vibration Analysis, Harper & Row, New York, 1979.

10.12 J. A. Macinante, Seismic Mountings for Vibration Isolation, Wiley, New York, 1984.

10.13 R. B. Randall and R. Upton, Digital filters and FFT technique in real-time analysis,  pp. 45 67,

in Digital Signal Analysis Using Digital Filters and FFT Techniques, Bruel & Kjaer, Naerum,

Denmark, 1985.

10.14 G. Dovel, A modal analysis a dynamic tool for design and troubleshooting,  Mechanical

Engineering, Vol. 111, No. 3, March 1989, pp. 82 86.

10.15 C. W. deSilva and S. S. Palusamy, Experimental modal analysis a modeling and design

tool,  Mechanical Engineering, Vol. 106, No. 6, June 1984, pp. 56 65.

10.16 K. Zaveri, Modal Analysis of Large Structures Multiple Exciter Systems, Bruel & Kjaer,

Denmark, 1984.

10.17 O. Dossing, Structural Testing Part 2: Modal Analysis and Simulation, Bruel & Kjaer,

Naerum, Denmark, 1988.

10.18 D. J. Ewins, Modal analysis as a tool for studying structural vibration,  in Mechanical Signature

Analysis: Theory and Applications, S. Braun (ed.), Academic Press, London, pp. 217 261, 1986.

10.19 B. A. Brinkman and D. J. Macioce, Understanding modal parameters and mode shape scal-

ing,  Sound and Vibration, Vol. 19, No. 6, pp. 28 30, June 1985.

10.20 N. Tandon and B. C. Nakra, Vibration and acoustic monitoring techniques for the detection

of defects in rolling element bearings a review,  Shock and Vibration Digest, Vol. 24, No. 3,

March 1992, pp. 3 11.

10.21 S. Braun, Vibration monitoring,  in Mechanical Signature Analysis: Theory and Applica-

tions, S. Braun (ed.), Academic Press, London, 1986, pp. 173 216.

10.22 A. El-Shafei, Measuring vibration for machinery monitoring and diagnostics,  Shock and

Vibration Digest, Vol. 25, No. 1, January 1993, pp. 3 14.

10.23 J. Mathew, Monitoring the vibrations of rotating machine elements an overview,  in

Diagnostics, Vehicle Dynamics and Special Topics, T. S. Sankar (ed.), American Society of

Mechanical Engineers, New York, 1989, pp. 15 22.

10.24 R. B. Randall, Advances in the application of cepstrum analysis to gearbox diagnosis,  in

Second International Conference Vibrations in Rotating Machinery (1980), Institution of

Mechanical Engineers, London, 1980, pp. 169 174.

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 929



930 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

REVIEW QUESTIONS

10.1 Give brief answers to the following:

1. What is the importance of vibration measurement?

2. What is the difference between a vibrometer and a vibrograph?

3. What is a transducer?

4. Discuss the basic principle on which a strain gage works.

5. Define the gage factor of a strain gage.

6. What is the difference between a transducer and a pickup?

7. What is a piezoelectric material? Give two examples of such material.

8. What is the working principle of an electrodynamic transducer?

9. What is an LVDT? How does it work?

10. What is a seismic instrument?

11. What is the frequency range of a seismometer?

12. What is an accelerometer?

13. What is phase-shift error? When does it become important?

14. Give two examples of a mechanical vibration exciter.

15. What is an electromagnetic shaker?

16. Discuss the advantage of using operational deflection shape measurement.

17. What is the purpose of experimental modal analysis?

18. Describe the use of the frequency-response function in modal analysis.

19. Name two frequency-measuring instruments.

20. State three methods of representing the frequency-response data.

21. How are Bode plots used?

22. How is a Nyquist diagram constructed?

23. What is the principle of mode superposition? What is its use in modal analysis?

24. State the three types of maintenance schemes used for machinery.

25. How are orbits used in machine diagnosis?

26. Define the terms kurtosis and cepstrum.

10.2 Indicate whether each of the following statements is true or false:

1. A strain gage is a variable-resistance transducer.

2. The value of the gage factor of a strain gage is given by the manufacturer.

3. The voltage output of an electromagnetic transducer is proportional to the relative veloc-

ity of the coil.

4. The principle of the electrodynamic transducer can be used in vibration exciters.

5. A seismometer is also known as a vibrometer.

6. All vibration-measuring instruments exhibit phase lag.

7. The time lag is important when measuring harmonic motion of frequency 

8. The Scotch yoke mechanism can be used as a mechanical shaker.

9. The time response of a system gives better information on energy distribution than does

the frequency response.

10. A spectrum analyzer is a device that analyzes a signal in the frequency domain.

11. The complete dynamic response of a machine can be determined through modal testing.

12. The damping ratio of a vibrating system can be found from the Bode diagram.

13. The spectrum analyzers are also known as fast Fourier transform (FFT) analyzers.

v.

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 930



REVIEW QUESTIONS 931

14. In breakdown maintenance, the machine is run until failure.

15. Time-domain waveforms can be used to detect discrete damages of machinery.

10.3 Fill in each of the following blanks with the appropriate word:

1. A device that transforms values of physical variables into equivalent electrical signals is

called a _____.

2. Piezoelectric transducers generate electrical _____ when subjected to mechanical stress.

3. A seismic instrument consists of a _____ system mounted on the vibrating body.

4. The instrument that measures the acceleration of a vibrating body is called _____.

5. _____ can be used to record earthquakes.

6. The instrument that measures the velocity of a vibrating body is called a _____.

7. Most mechanical frequency-measuring instruments are based on the principle of _____.

8. The Frahm tachometer is a device consisting of several _____ carrying masses at free ends.

9. The main advantage of a stroboscope is that it can measure the speed without making

_____ with the rotating body.

10. In real-time frequency analysis, the signal is continuously analyzed over all the _____

bands.

11. Real-time analyzers are useful for machinery _____ monitoring, since a change in the

noise or vibration spectrum can be observed immediately.

12. An _____ is the interval between any two frequencies whose frequency ratio

is 2.

13. The dynamic testing of a machine involves finding the _____ of the machine at a critical

frequency.

14. For vibration testing, the machine is supported to simulate a _____ condition of the sys-

tem so that rigid body modes can also be observed.

15. The excitation force is measured by a _____ cell.

16. The response of a system is usually measured by _____.

17. The frequency response of a system can be measured using _____ analyzers.

18. The condition of a machine can be determined using _____ severity charts.

19. The life of a machine follows the classic _____ curve.

20. The _____ observed in Lissajous figures can be used to identify machinery faults.

21. Cepstrum can be defined as the power spectrum of the logarithm of the _____.

10.4 Select the most appropriate answer out of the choices given:

1. When a transducer is used in conjunction with another device to measure vibration, it is

called a

a. vibration sensor b. vibration pickup c. vibration actuator

2. The instrument that measures the displacement of a vibrating body is called a

a. seismometer b. transducer c. accelerometer

3. The circuit that permits the passage of frequency components of a signal over a frequency

band and rejects all other frequency components is called a

a. bandpass filter b. frequency filter c. spectral filter

4. A decibel (dB) is a quantity, such as power (P), defined in terms of a reference value

as

a. b. c.
1

Pref

 log101P2log10a
P

Pref

b10 log10a
P

Pref

b

1Pref2,

a
f2

f1

b

1f2 - f12
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5. The following function plays an important role in the experimental modal analysis:

a. time-response function

b. modal-response function

c. frequency-response function

6. The method of subjecting a system to a known force as an initial condition and then

releasing is known as

a. step relaxation

b. excitation by electromagnetic shaker

c. impactor

7. The process of using an electrical signal, generalized by a spectrum analyzer, for apply-

ing a mechanical force on a system is known as

a. step relaxation

b. excitation by electromagnetic shaker

c. impactor

8. The procedure of using a hammer with a built-in load cell to apply load at different points

of a system is known as

a. step relaxation

b. excitation by electromagnetic shaker

c. impactor

9. During the initial running-in period, usually the deterioration of a machine

a. decreases b. increases c. remains constant

10. During the normal operating period, the deterioration of a machine usually

a. decreases b. increases c. remains constant

11. During the aging or wearout period, the deterioration of a machine usually

a. decreases b. increases c. remains constant

10.5 Match the items in the two columns below:

1. Piezoelectric accelerometer

2. Electrodynamic transducer

3. LVDT transducer

4. Fullarton tachometer

5. Stroboscope

PROBLEMS

Section 10.2 Transducers

10.1 A Rochelle salt crystal, having a voltage sensitivity of 0.098 V-m/N and thickness 2 mm,

produced an output voltage of 200 volts under pressure. Find the pressure applied to the

crystal.

Section 10.3 Vibration Pickups

10.2 A spring-mass system with and with negligible damping, is

used as a vibration pickup. When mounted on a structure vibrating with an amplitude of

4 mm, the total displacement of the mass of the pickup is observed to be 12 mm. Find the

frequency of the vibrating structure.

k = 10,000 N/m,m = 0.5 kg

a. produces light pulses intermittently

b. has high output and is insensitive to temperature

c. frequently used in velocity pickups

d. has high sensitivity and frequency range

e. variable-length cantilever with a mass at its free end
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10.3 The vertical motion of a machine is measured by using the arrangement shown in Fig. 10.43.

The motion of the mass m relative to the machine body is recorded on a drum. If the damp-

ing constant c is equal to and the vertical vibration of the machine body is given by

find the amplitude of motion recorded on the drum.y1t2 = Y sin vt,

ccri >22,

Machine body

m

c

x

y

k

FIGURE 10.43

10.4 It is proposed that the vibration of the foundation of an internal combustion engine be mea-

sured over the speed range 500 rpm to 1500 rpm using a vibrometer. The vibration is com-

posed of two harmonics, the first one caused by the primary inertia forces and the second

one by the secondary inertia forces in the engine. Determine the maximum natural frequency

of the vibrometer in order to have an amplitude distortion less than 2 percent.

10.5 Determine the maximum percent error of a vibrometer in the frequency-ratio range

with a damping ratio of 

10.6 Solve Problem 10.5 with a damping ratio of 

10.7 A vibrometer is used to measure the vibration of an engine whose operating-speed range is

from 500 to 2000 rpm. The vibration consists of two harmonics. The amplitude distortion

must be less than 3 percent. Find the natural frequency of the vibrometer if (a) the damping

is negligible and (b) the damping ratio is 0.6.

10.8 A spring-mass system, having a static deflection of 10 mm and negligible damping, is used

as a vibrometer. When mounted on a machine operating at 4000 rpm, the relative amplitude

is recorded as 1 mm. Find the maximum values of displacement, velocity, and acceleration

of the machine.

10.9 A vibration pickup has a natural frequency of 5 Hz and a damping ratio of Find the

lowest frequency that can be measured with a 1 percent error.

10.10 A vibration pickup has been designed for operation above a frequency level of 100 Hz with-

out exceeding an error of 2 percent. When mounted on a structure vibrating at a frequency of

100 Hz, the relative amplitude of the mass is found to be 1 mm. Find the suspended mass of

the pickup if the stiffness of the spring is 4000 N/m and damping is negligible.

10.11 A vibrometer has an undamped natural frequency of 10 Hz and a damped natural frequency

of 8 Hz. Find the lowest frequency in the range to infinity at which the amplitude can be

directly read from the vibrometer with less than 2 percent error.

10.12 Determine the maximum percent error of an accelerometer in the frequency-ratio range

with a damping ratio of 

10.13 Solve Problem 10.12 with a damping ratio of 0.75.

z = 0.0 6 r 0.65

z = 0.5.

z = 0.67.

z = 0.4 r 6 q
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10.14 Determine the necessary stiffness and the damping constant of an accelerometer if the max-

imum error is to be limited to 3 percent for measurements in the frequency range of 0 to 100

Hz. Assume that the suspended mass is 0.05 kg.

10.15 An accelerometer is constructed by suspending a mass of 0.1 kg from a spring of stiffness

10,000 N/m with negligible damping. When mounted on the foundation of an engine, the

peak-to-peak travel of the mass of the accelerometer has been found to be 10 mm at an

engine speed of 1000 rpm. Determine the maximum displacement, maximum velocity, and

maximum acceleration of the foundation.

10.16 A spring-mass-damper system, having an undamped natural frequency of 100 Hz and a

damping constant of 20 N-s/m, is used as an accelerometer to measure the vibration of a

machine operating at a speed of 3000 rpm. If the actual acceleration is and the

recorded acceleration is find the mass and the spring constant of the accelerometer.

10.17 A machine shop floor is subjected to the following vibration due to electric motors running

at different speeds:

If a vibrometer having an undamped natural frequency of 0.5 Hz, and a damped natural fre-

quency of 0.48 Hz is used to record the vibration of the machine shop floor, what will be the

accuracy of the recorded vibration?

10.18 A machine is subjected to the vibration

An accelerometer having a damped natural frequency of 80 rad/s and an undamped natural

frequency of 100 rad/s is mounted on the machine to read the acceleration directly in 

Discuss the accuracy of the recorded acceleration.

Section 10.4 Frequency-Measuring Instruments

10.19 A variable-length cantilever beam of rectangular cross section made of spring

steel, is used to measure the frequency of vibration. The length of the cantilever can be varied

between 2 in. and 10 in. Find the range of frequencies that can be measured with this device.

Section 10.8 Experimental Modal Analysis

10.20 Show that the real component of the harmonic response of a viscously damped single-degree-

of-freedom system (from X in Eq. 3.54) attains a maximum at

and a minimum at

10.21 Find the value of the frequency at which the imaginary component of the harmonic response of

a viscously damped single-degree-of-freedom system (from X in Eq. 3.54) attains a minimum.

R2 =
v2

vn

= 21 + 2z

R1 =
v1

vn

= 21 - 2z

1

16
 in. * 1 in.,

mm/s2.

x1t2 = 20 sin 50t + 5 sin 150t mm 1t in sec2

x1t2 = 20 sin 4pt + 10 sin 8pt + 5 sin 12pt mm

9 m/s2,

10 m/s2
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FIGURE 10.45 Response in time domain.

10.22 Construct the Nyquist diagram for a single-degree-of-freedom system with hysteretic damping.

10.23 The Bode plot of shaft vibration of a turbine obtained during coast-down is shown in

Fig. 10.44. Determine the damping ratio of the system when the static deflection of the shaft

is equal to 0.05 mil.
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FIGURE 10.44

10.24 The vibratory response at the bearing of an internal combustion engine is shown in Fig. 10.45.

Determine the equivalent viscous damping ratio of the system.

M10_RAO08193_5_SE_C10.qxd  8/22/10  1:11 PM  Page 935



936 CHAPTER 10 VIBRATION MEASUREMENT AND APPLICATIONS

x (mm) 1 2 3 4 5 6 7

f(x)
1

32

3

32

3

16

6

16

3

16

3

32

1

32

10.25 Suggest a method of using the Bode plot of phase angle versus frequency (Fig. 3.11(b)) to

identify the natural frequency and the damping ratio of the system.

Section 10.9 Machine-Condition Monitoring and Diagnosis

10.26 Two ball bearings, each with 16 balls, are used to support the shaft of a fan that rotates at 750

rpm. Determine the frequencies, in hertz, corresponding to the following defects:* cage,

inner race, outer race, and ball. Assume that , and 

10.27 Determine the defect frequencies in hertz* corresponding to roller, inner race, outer race,

and cage defects for a roller bearing with 18 rollers when installed in a machine that runs at

a speed of 1000 rpm. Assume and 

10.28 An angular contact thrust bearing consists of 18 balls, each of diameter 10 mm, and is

mounted on a shaft that rotates at 1500 rpm. If the contact angle of the bearing is 40° with a

pitch diameter 80 mm, find the frequencies corresponding to cage, ball, inner race, and outer

race faults.*

10.29 Find the value of kurtosis for a vibration signal that is uniformly distributed in the range

1 5 mm;

10.30 Find the value of kurtosis for a vibration amplitude that can be approximated as a discrete

random variable with the following probability mass function:

f1x2 =
1

4
;  1 x 5 mm

a = 20°.d = 2 cm, D = 15 cm,

a = 30°.d = 15 mm, D = 100 mm

Section 10.10 MATLAB Problems

10.31 Figure 10.46 shows the experimental transfer function of a structure. Determine the approx-

imate values of and zi.vi

*Each type of failure in ball and roller bearings generates frequency of vibration f (impact rate per minute) as fol-

lows. Inner race defect: outer race defect: ball or roller defect:

cage defect: , where or roller diameter, diameter,

angle, of balls or rollers, (rpm), and c =
d
D cos a.N = speedn = numbera = contact

D = pitchd = ballf =
1
2 

N11 - c2f =
DN

d  

c12 - c2;

f =
1
2 

nN11 - c2;f =
1
2 

nN11 + c2;
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10.32 The experimental Nyquist circle of a structure is shown in Fig. 10.47. Estimate the modal

damping ratio corresponding to this circle.
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m

y(t) * Y sin vt

FIGURE 10.48

DESIGN PROJECTS

10.33 Design a vibration exciter to satisfy the following requirements:

a. Maximum weight of the test 

b. Range of operating to 50 Hz

c. Maximum acceleration 

d. Maximum vibration peak to peak.

10.34 Frahm tachometers are particularly useful to measure the speeds of engines whose rotating

shafts are not easily accessible. When the tachometer is placed on the frame of a running

engine, the vibration generated by the engine will cause one of the reeds to vibrate notice-

ably when the engine speed corresponds to the resonant frequency of a reed. Design a com-

pact and lightweight Frahm tachometer with 12 reeds to measure engine speeds in the range

300 600 rpm.

10.35 A cantilever beam with an end mass m is fixed at the top of a multistory building to measure

the acceleration induced at the top of the building during wind and earthquake loads (see

Fig. 10.48). Design the beam (that is, determine the material, cross-sectional dimensions,

and the length of the beam) such that the stress induced in the beam should not exceed the

yield stress of the material under an acceleration of 0.2 g at the top of the building. Assume

that the end mass m is equal to one-half of the mass of the beam.

amplitude = 0.5 cm

level = 20 g

frequency = 10

specimen = 10 N
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