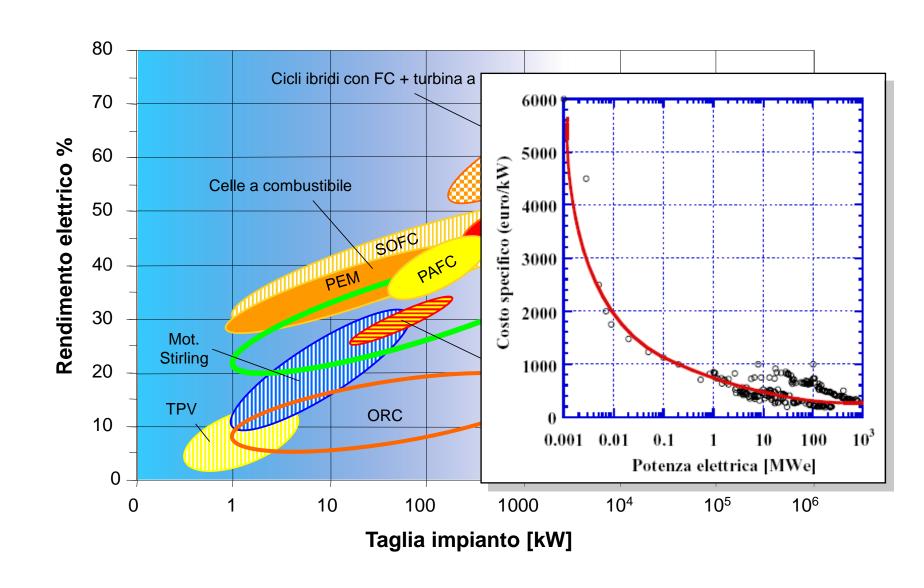
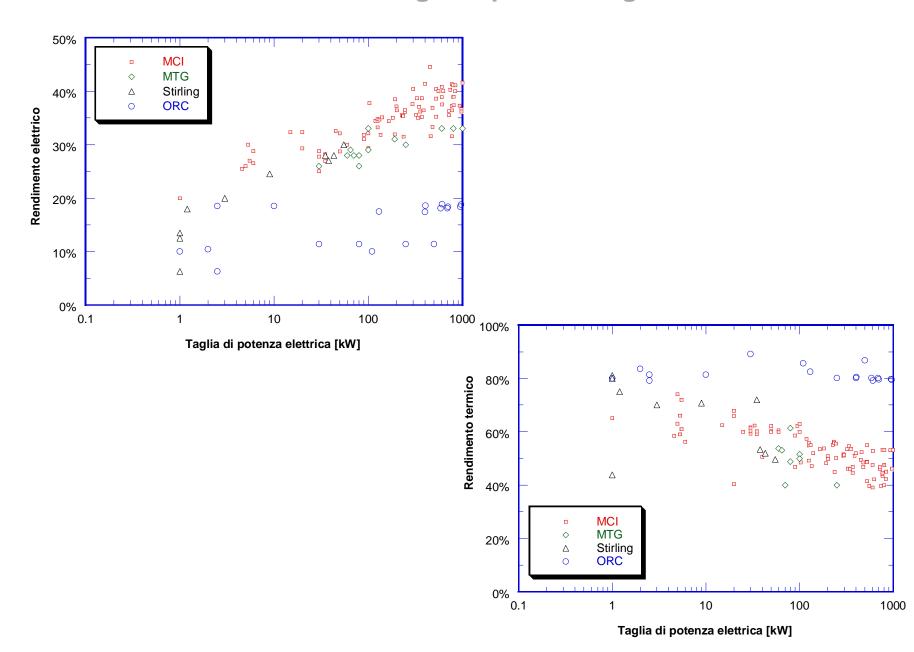
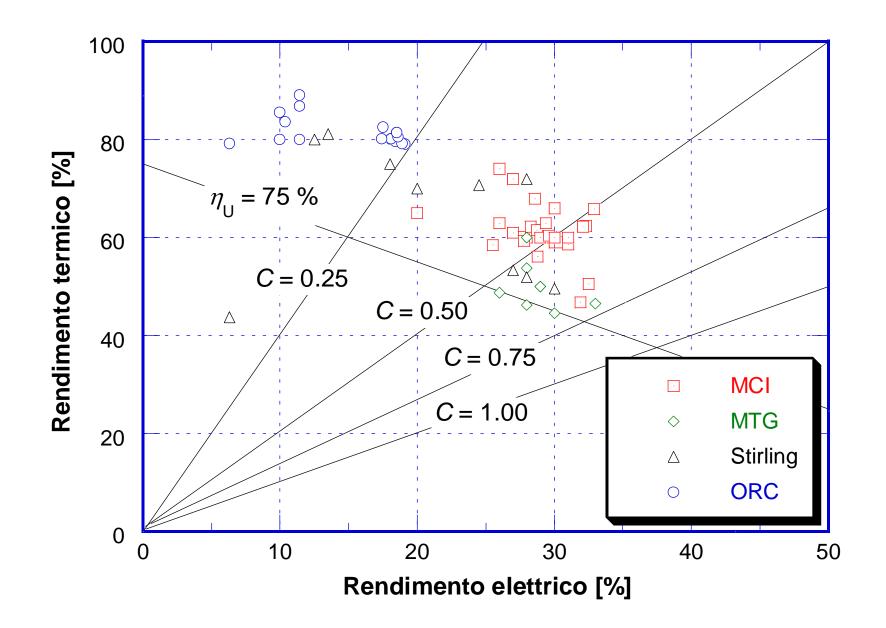
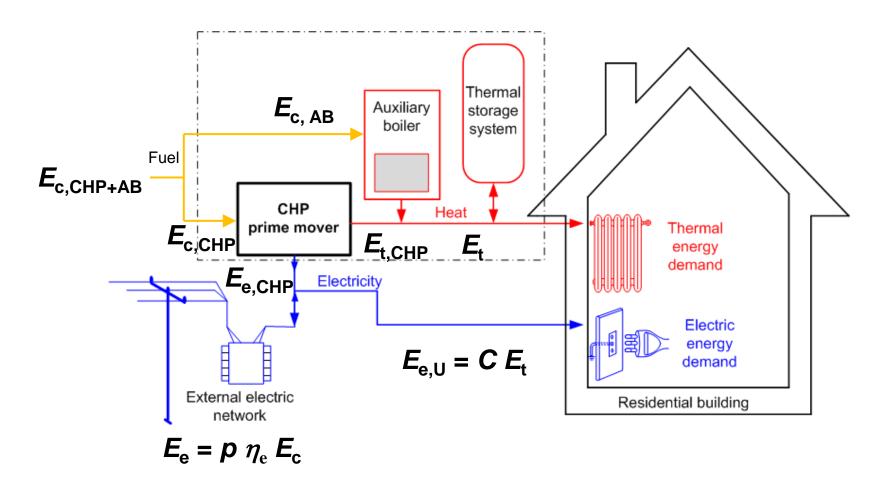

SISTEMI ENERGETICI COGENERATIVI

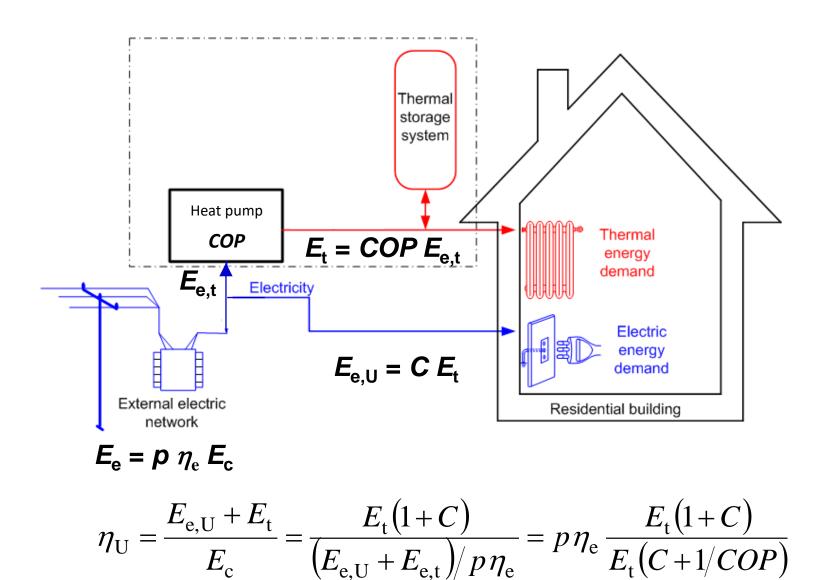

Tecnologie consolidate, in fase di consolidamento e prototipali

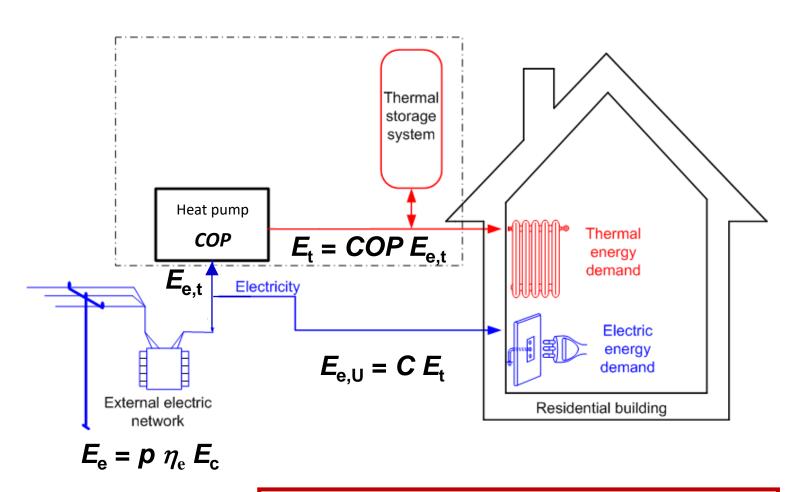
Prof. Pier Ruggero Spina Dipartimento di Ingegneria - Università di Ferrara

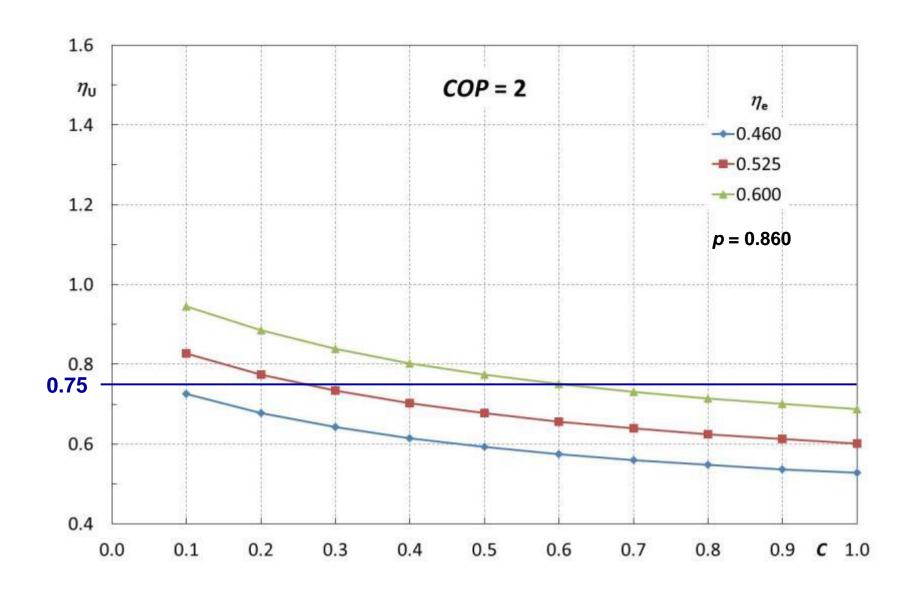

Le tecnologie di generazione elettrica

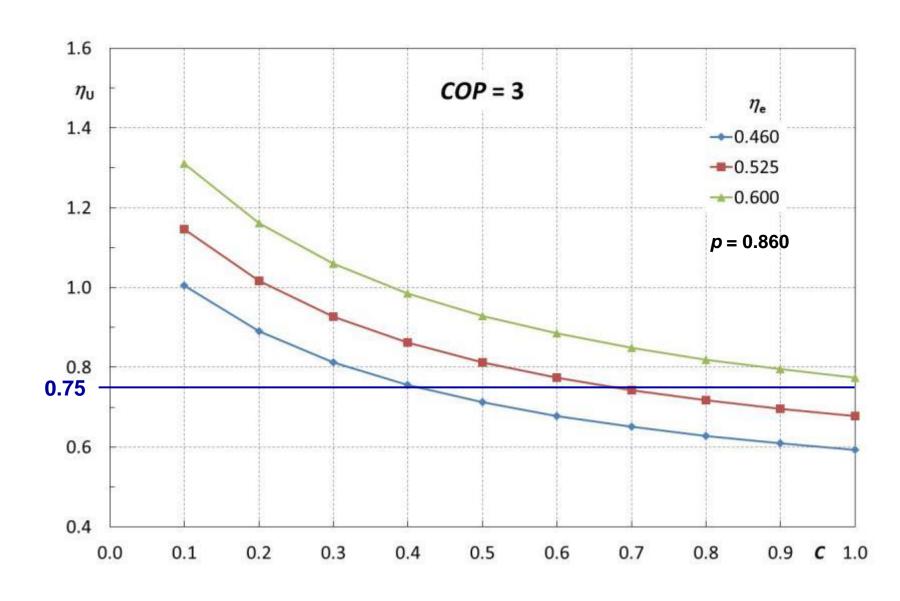

Le tecnologie di generazione elettrica

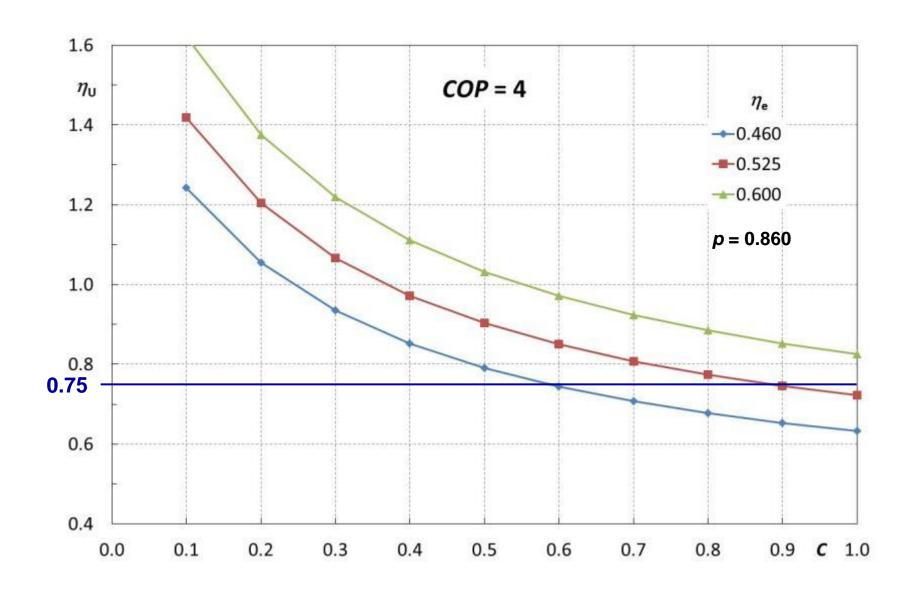

Confronto tra le tecnologie di piccola cogenerazione

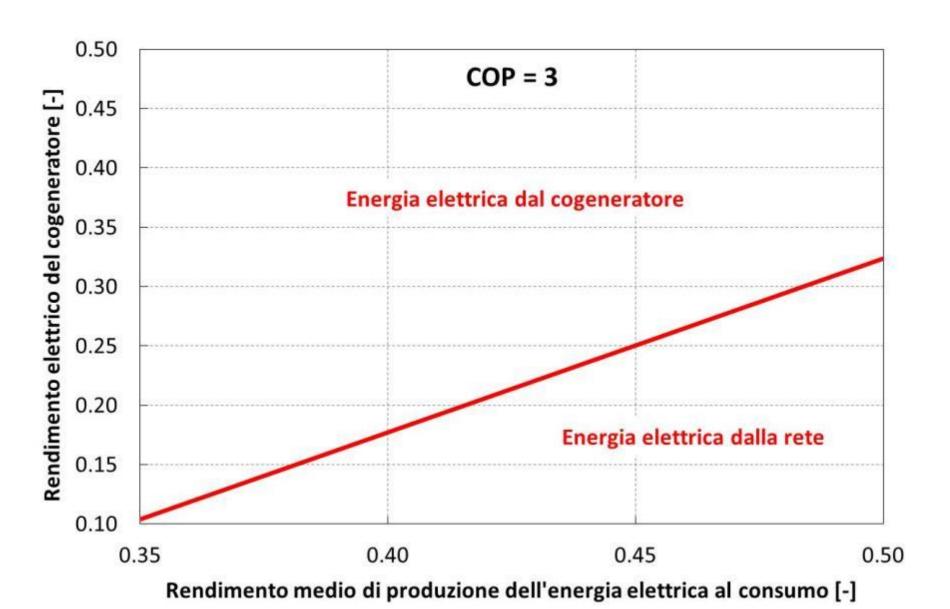


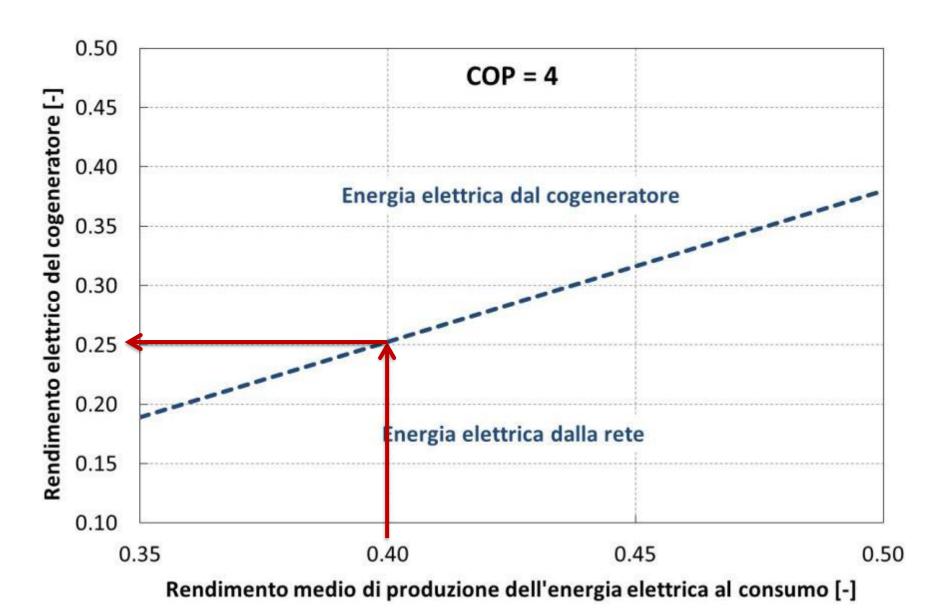

Potenzialità delle tecnologie di cogenerazione fino a 100 kW_e

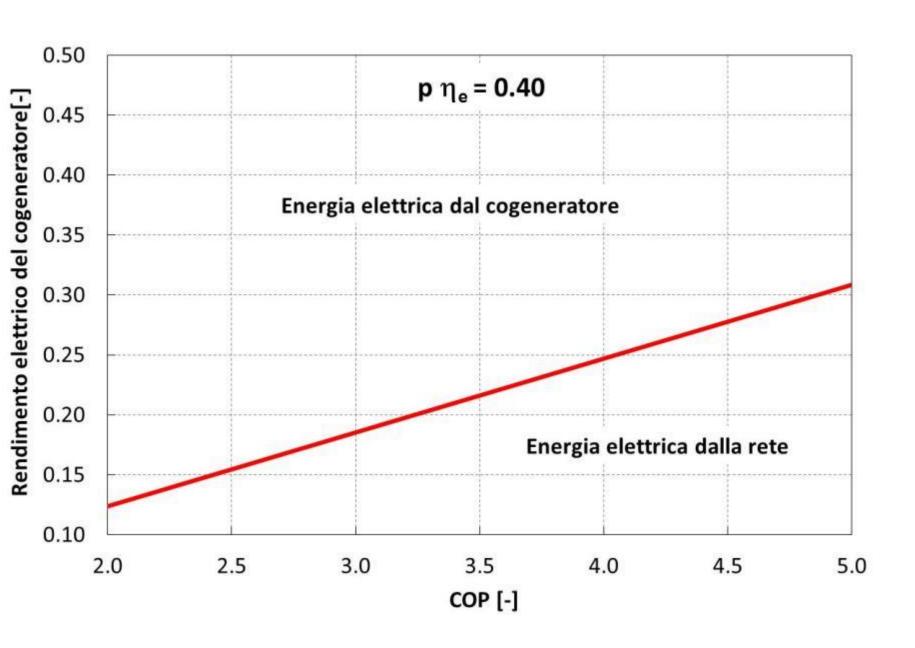

Cogenerazione per il soddisfacimento del fabbisogno energetico per la climatizzazione



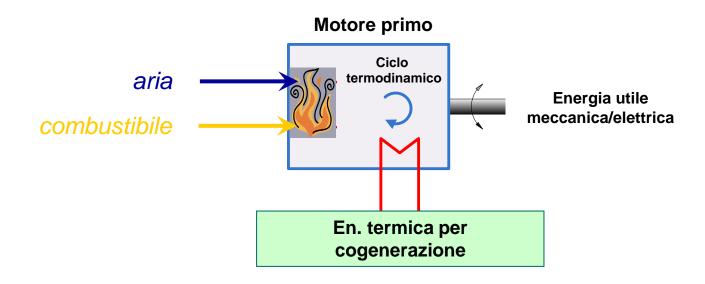



$$\eta_{\mathrm{U}} = \frac{E_{\mathrm{e,U}} + E_{\mathrm{t}}}{E_{\mathrm{c}}} = \frac{p \,\eta_{\mathrm{e}}}{1 + COP \cdot C} \,COP \cdot (1 + C)$$

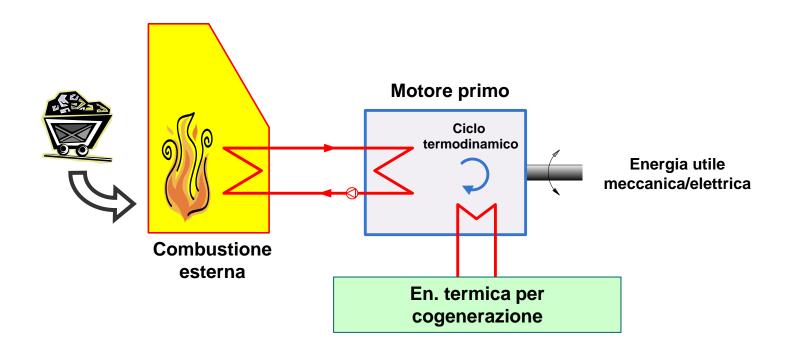



Cogeneratore Vs. pompa di calore

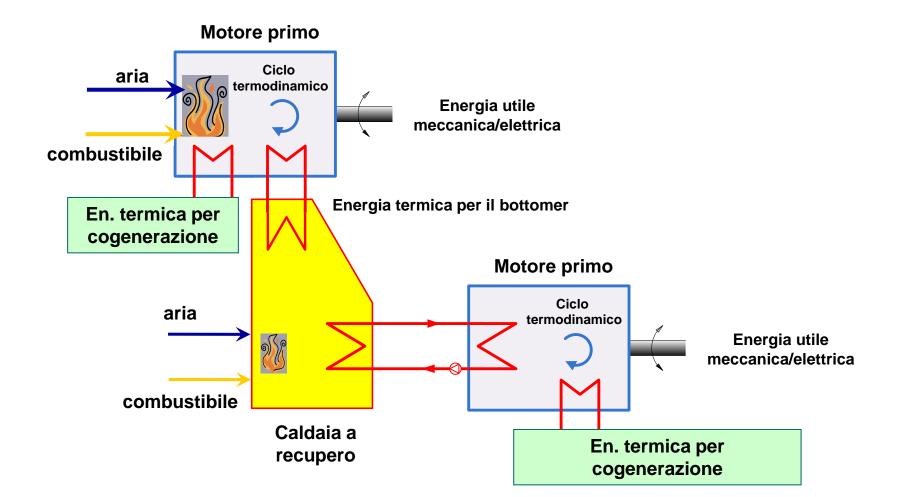
Cogeneratore Vs. pompa di calore



Cogeneratore Vs. pompa di calore


La combustione interna

- ✓ La combustione avviene direttamente all'interno del motore primo
- Necessità di avere combustibili "puliti" (raffinazione per i prodotti petroliferi, sistemi di purificazione e filtrazione per biogas, syngas, pyrogas)
- Maggiore rendimento


La combustione esterna

- Separa il sistema di combustione (caldaia) dal motore primo
- ✓ Consente la combustione di combustibili di varia origine (carbone, prodotti petroliferi "grezzi", biomasse solide, CDR, syngas, biogas, oli vegetali, ecc...)
- ✓ Richiede un fluido termovettore tra caldaia e motore primo

Il ciclo combinato

- ✓ Costituito da un motore primo (topper) e da un utilizzatore dell'energia termica (bottomer), anch'esso motore primo
- Energia termica per la cogenerazione possibile da entrambi

Le tecnologie

Tecnologie CHP a combustione interna

Motori alternativi a combustione interna (MCI)

Consolidate

- ✓ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

Tecnologie CHP a combustione esterna

✓ Turbine a Vapore (TV)

Consolidate

- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

In fase di consolidamento

Le tecnologie

Tecnologie CHP a combustione interna

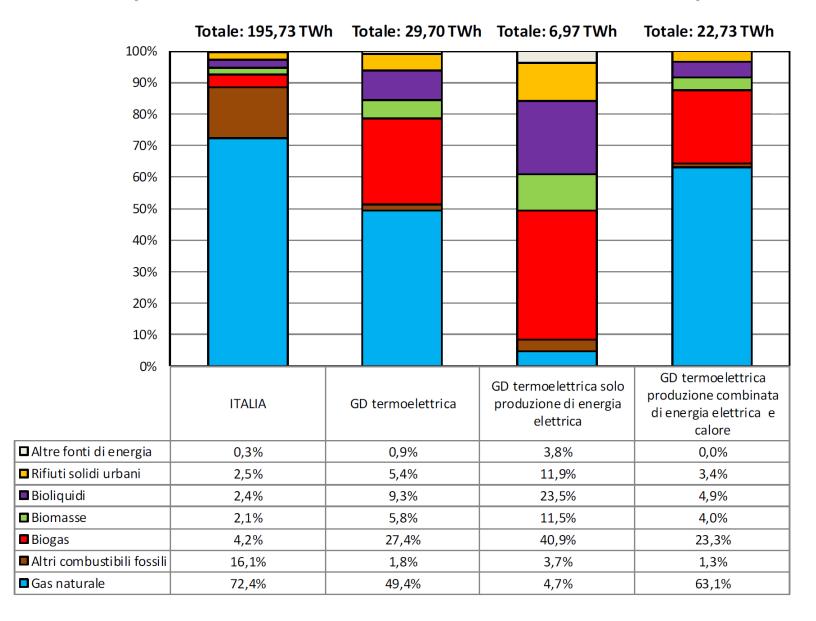
Prototipali

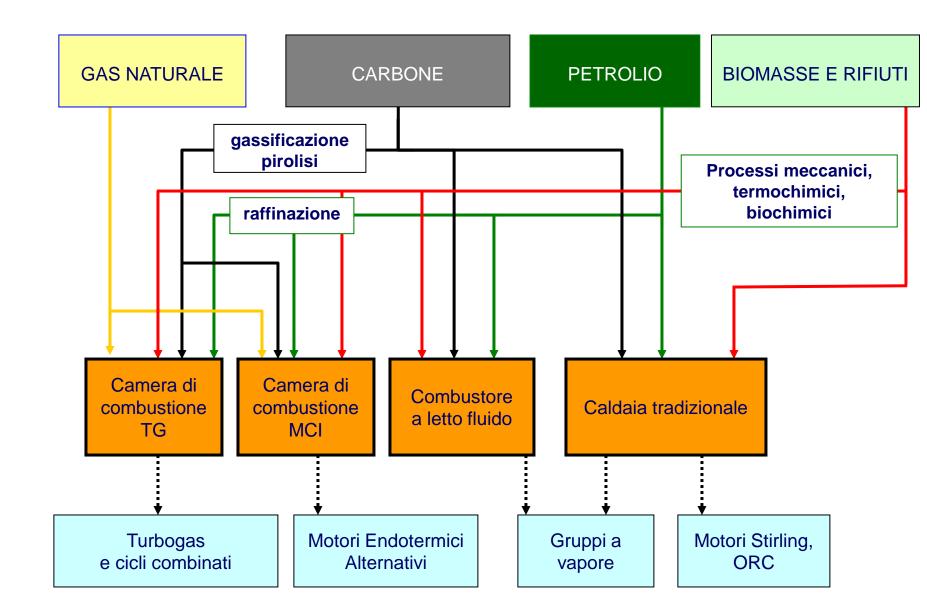
✓ Sistemi termofotovoltaici (TPV)

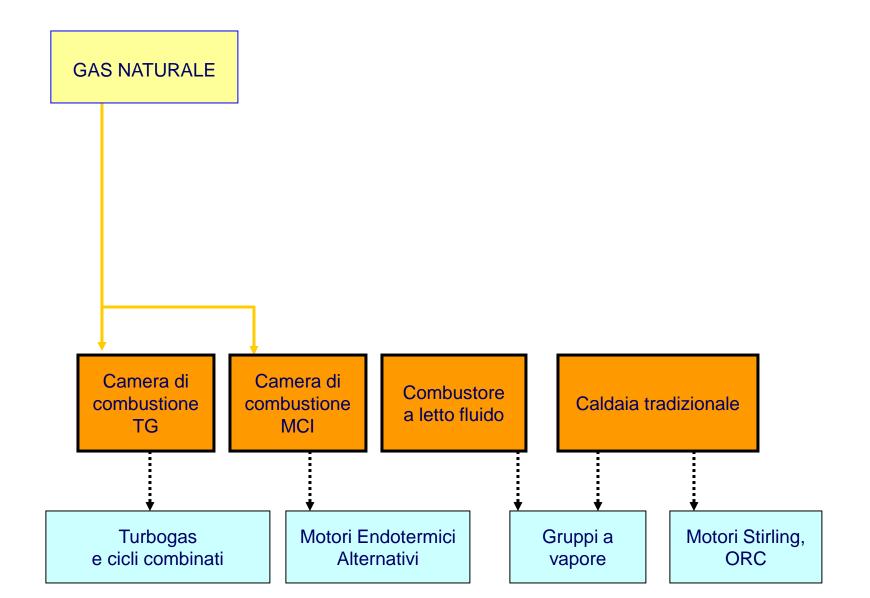
Tecnologie CHP a combustione esterna

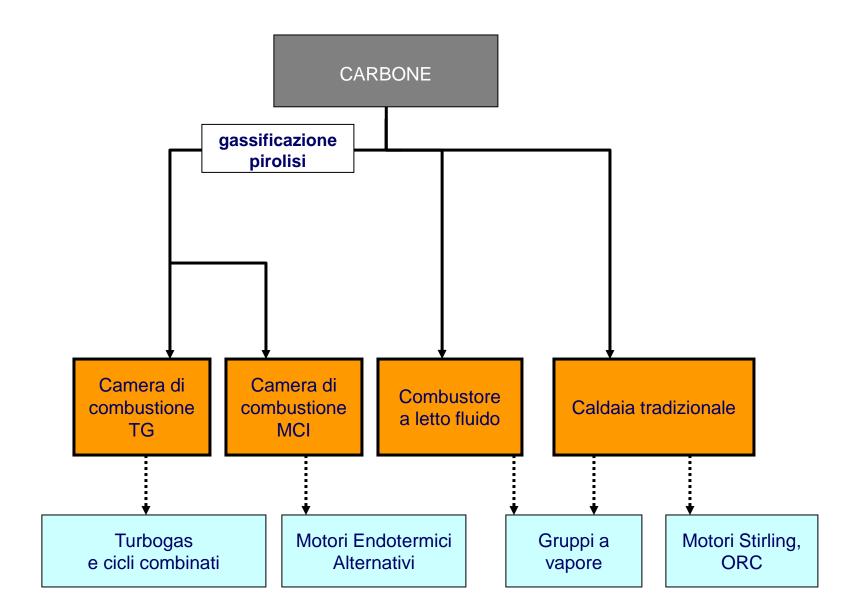
Prototipali

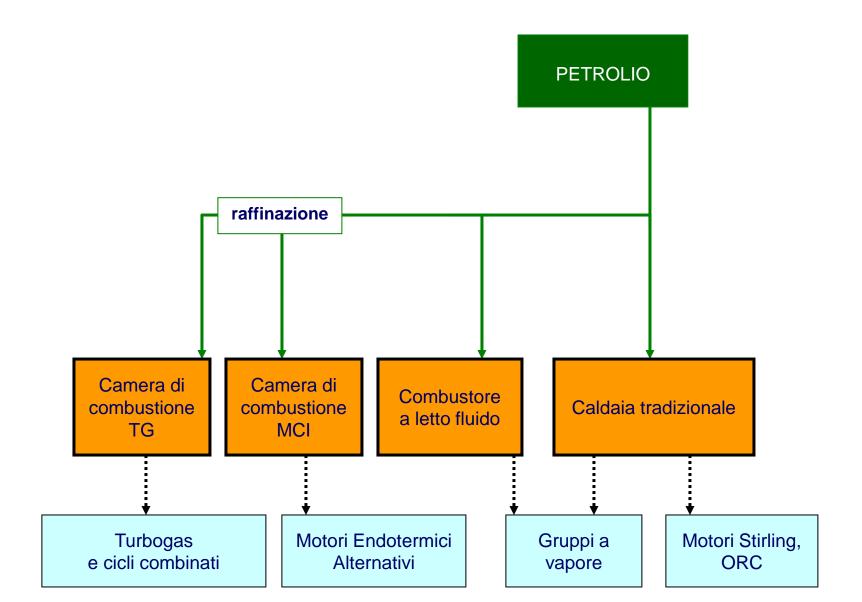
- ✓ Sistemi termofotovoltaici (TPV)
- ✓ Sistemi termoelettrici (TE)

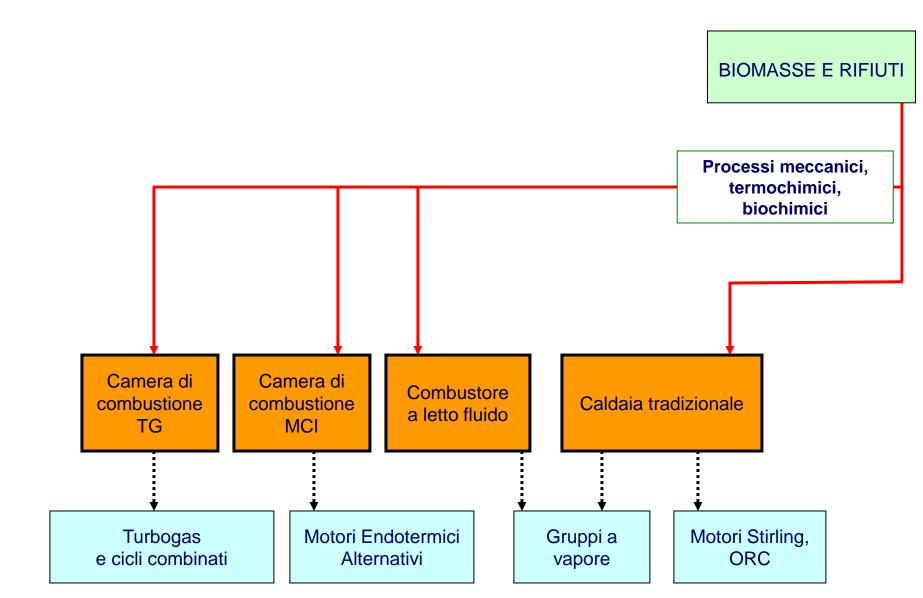

Tecnologie CHP a combustione interna/esterna

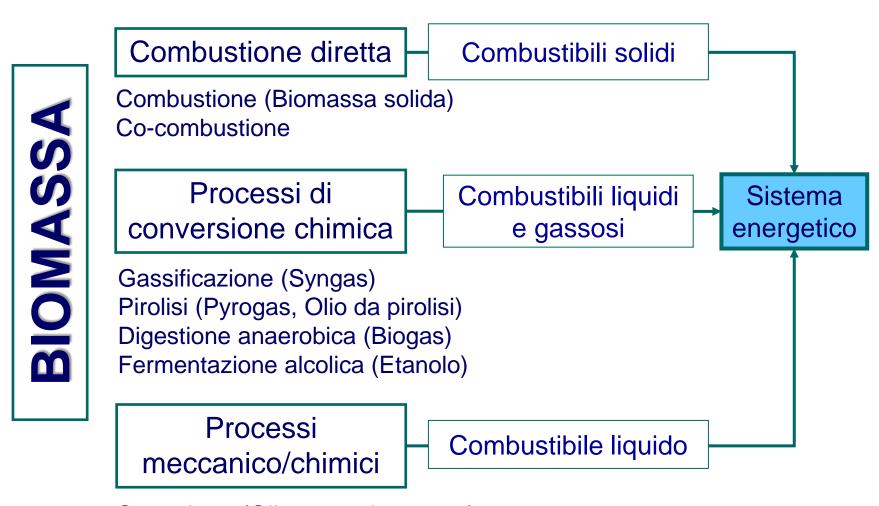

- ✓ Ciclo combinato gas-vapore
- ✓ Ciclo combinato MCI-ORC
- ✓ Ciclo combinato MTG-ORC

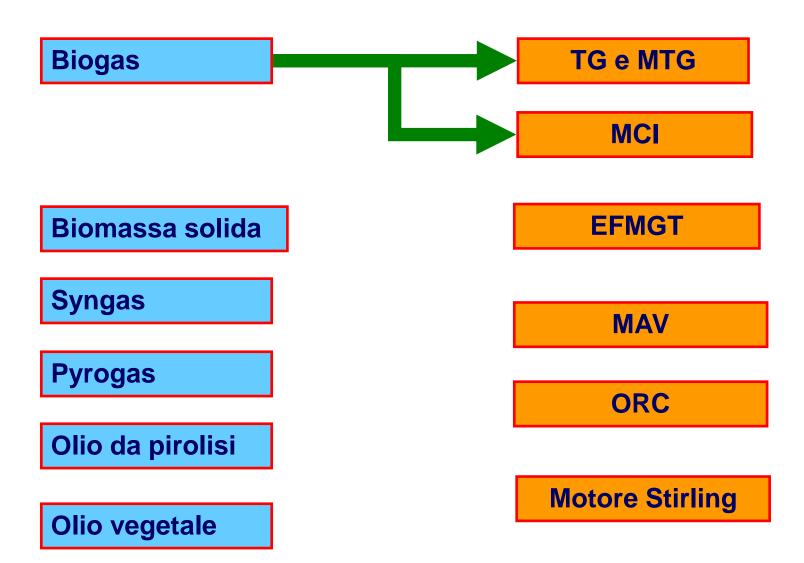

Consolidate

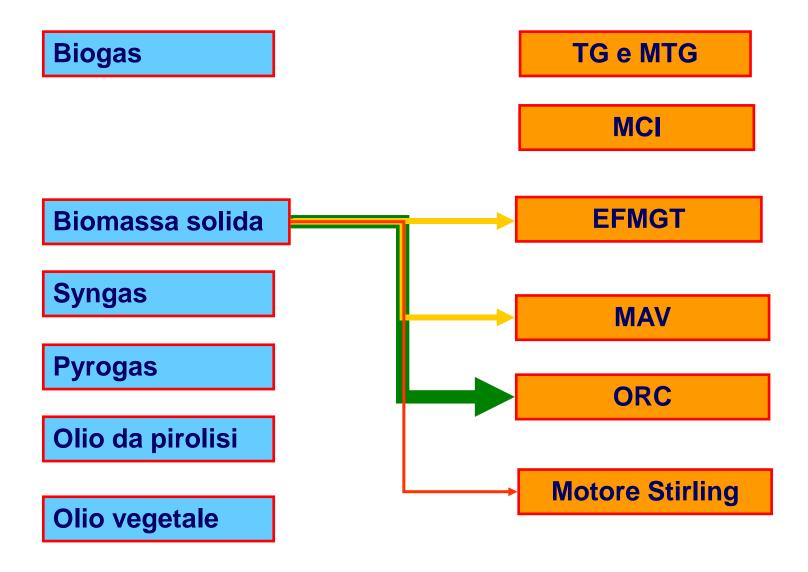

In fase di consolidamento

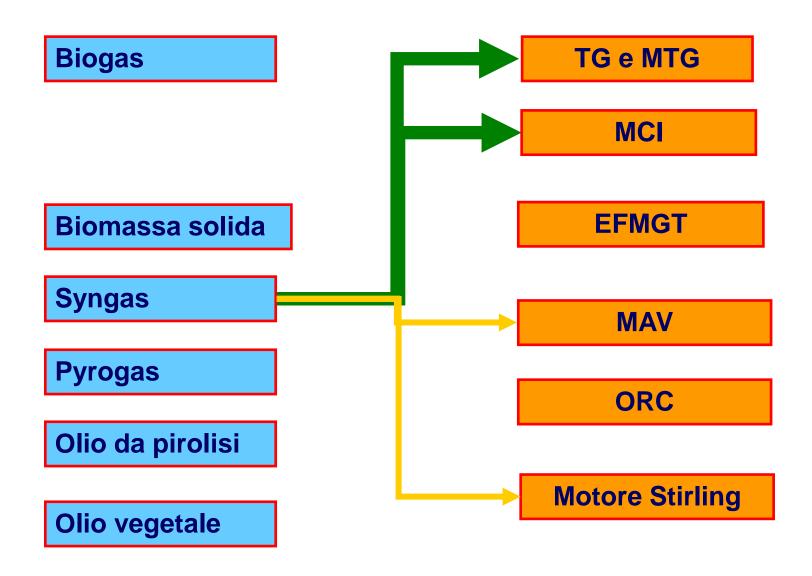

Produzione termoelettrica lorda dalle diverse fonti (Anno 2019 - Delibera ARERA 356/2021/I/EEL)

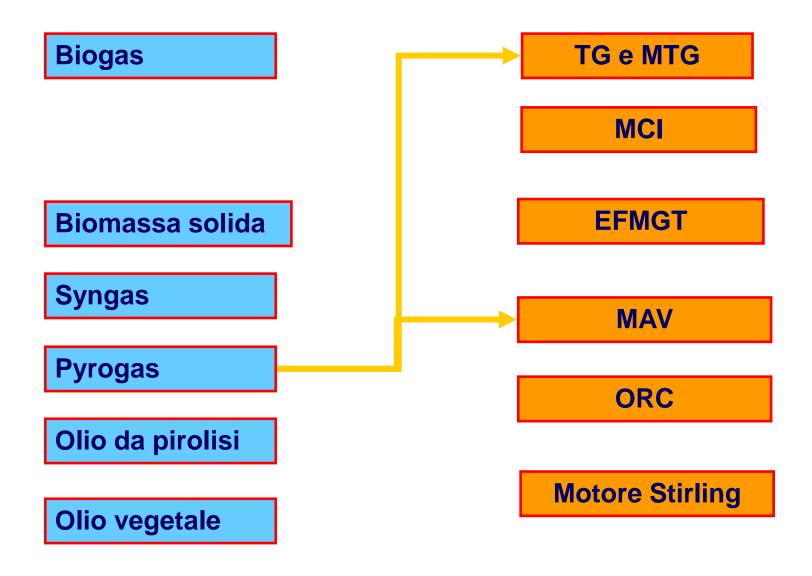


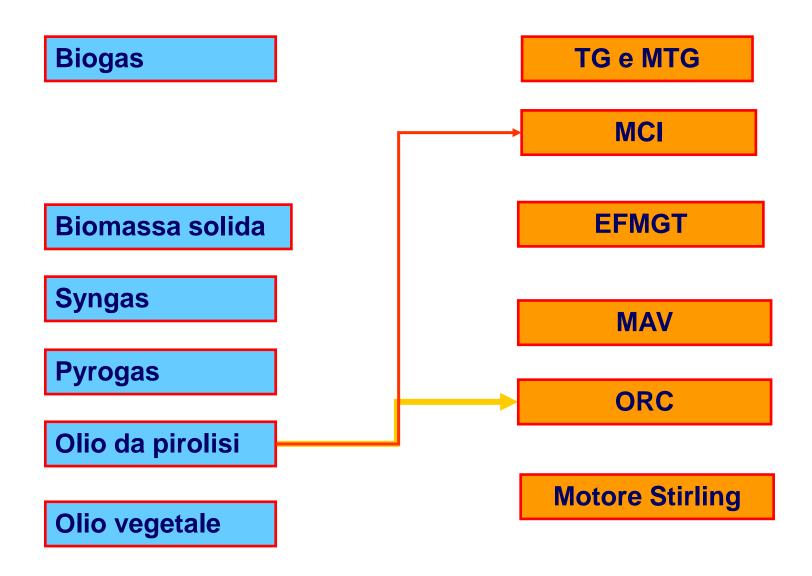


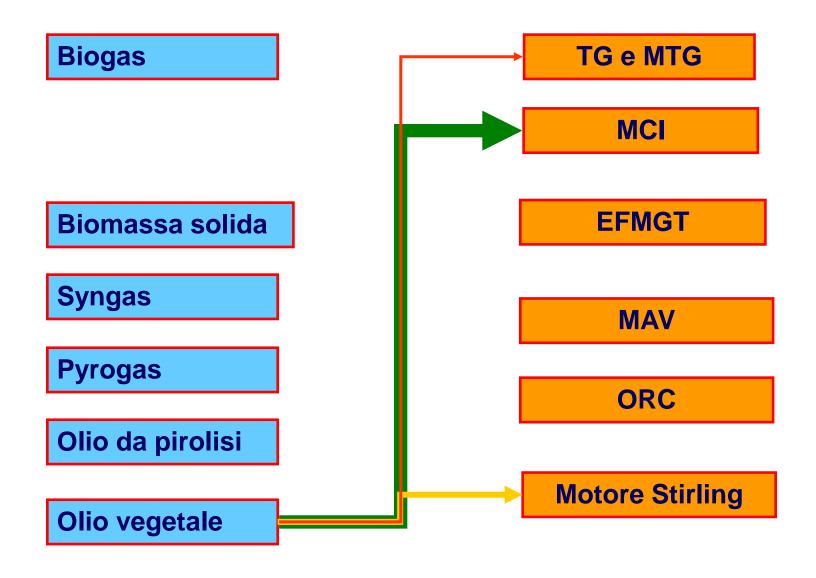





I biocombustibili




Spremitura (Olio vegetale grezzo) Transesterificazione (Biodiesel)



Le tecnologie

Tecnologie CHP a combustione interna

✓ Motori alternativi a combustione interna (MCI) Consolidate

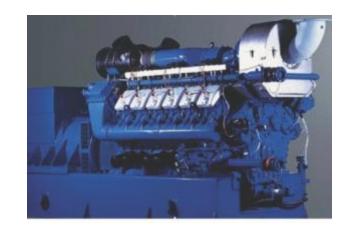
- √ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

Consolidate

Tecnologie CHP a combustione esterna

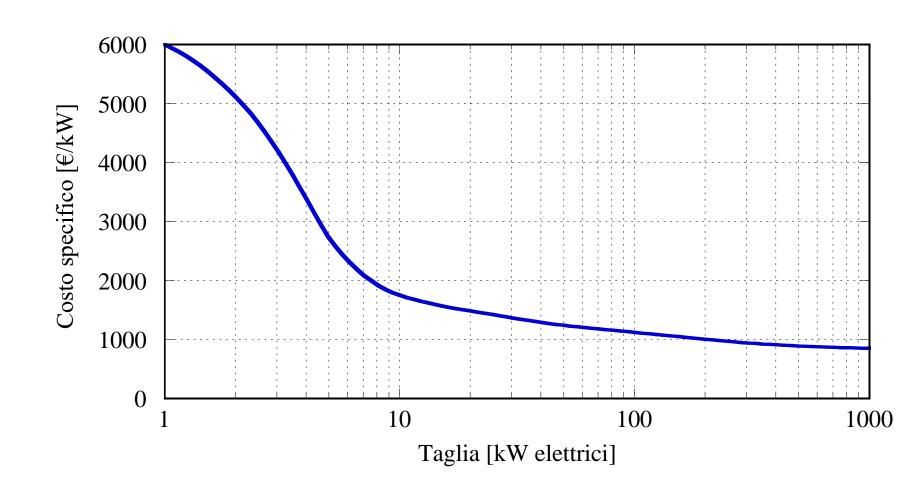
✓ Turbine a Vapore (TV)


- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

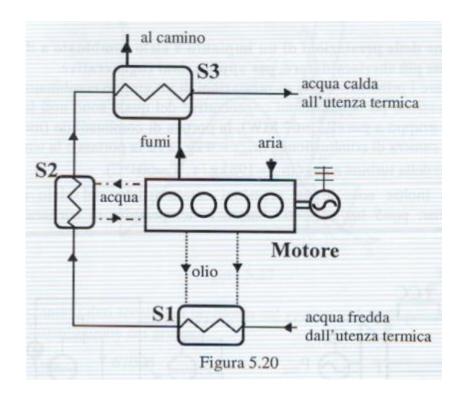
In fase di consolidamento

Motori alternativi a Combustione Interna (MCI)

VANTAGGI


- ✓ taglie da 1 kW_e a circa 5 MW_e
- tecnologia matura impiegata in diversi campi
- elevata affidabilità
- ✓ buoni rendimenti di conversione
- costi di investimento contenuti
- ✓ elevata flessibilità di esercizio

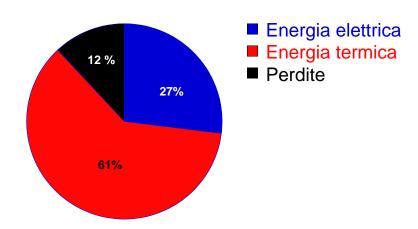
SVANTAGGI


- ✓ elevati costi di manutenzione (8÷25 €/MWh)
- ✓ rumorosità e vibrazioni
- ✓ elevati valori delle emissioni (NOx e CO)

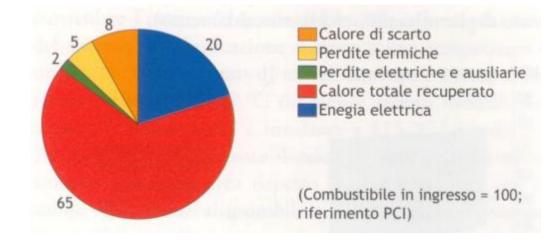
I costi specifici dei MCI

Cogenerazione con MCI

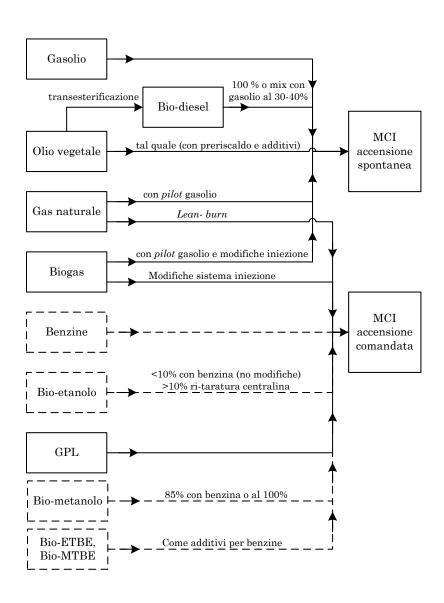

- ✓ Sistema ad un grado di libertà: il calore recuperabile è univocamente legato all'energia elettrica prodotta
- Il recupero termico non influenza le prestazioni del MCI
- Calore recuperabile da: olio, acqua di raffreddamento, fumi ed eventuale intercooler
- Presenza di scambiatore ausiliario per dissipare eventuale calore in eccesso
- Gestione di tipo "elettrico segue" o "termico segue"

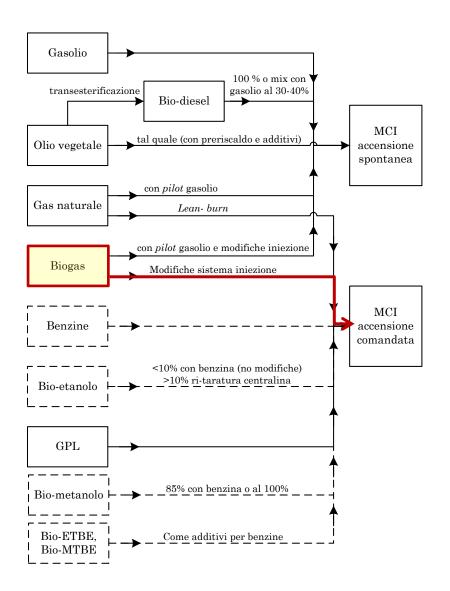

Bilancio energetico di un MCI da 1 MWe

- ✓ Oltre alla potenza termica disponibile è importante valutare:
 - le ore di funzionamento annuali in cogenerazione (energia!)
 - la temperatura alla quale è disponibile



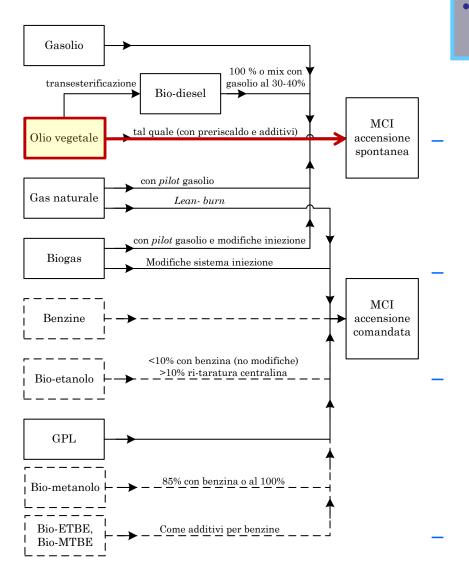
Bilancio energetico di un MCI da 5 e 1 kWe





Combustibili nei MCI

Combustibili nei MCI



 Motori ad accensione comandata (a ciclo "Otto")

Uso del biogas

- adeguamento dell'anticipo all'accessione
- riduzione della potenza erogata (a causa del PCI inferiore)
- possibilità di aumentare il rapporto di compressione
- necessità di trattare il biogas (ad esempio umidità, H₂S → necessitano di sistemi di pretrattamento del biogas)

Combustibili da biomasse nei MCI

Motori ad accensione spontanea (a ciclo "Diesel")

Uso degli oli vegetali

alta viscosità degli oli vegetali (difficoltà di avviamento a freddo; intasamento filtri, linea di alimentazione e iniettori; usura precoce del motore) → preriscaldamento dell'olio e/o suo trattamento chimico presenza di gomme, fosfati e ceneri (intasamento filtri, linea di alimentazione e iniettori; usura precoce del motore) → raffinazione e filtrazione olio basso numero di cetano degli oli vegetali (difficoltà di avviamento a freddo; cattiva combustione) → regolazione tempo e anticipo di iniezione, funzionamento a gasolio puro ai carichi parziali, trattamento chimico dell'olio riduzione potenza e rendimento

Le tecnologie

Tecnologie CHP a combustione interna

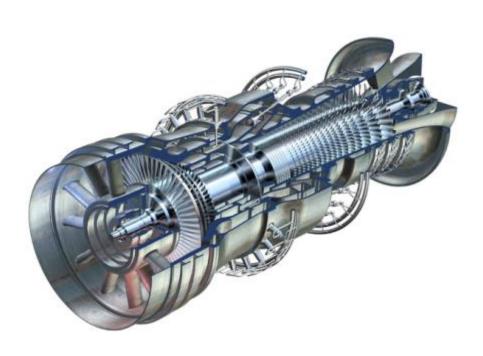
✓ Motori alternativi a combustione interna (MCI) Consolidate

- ✓ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

Tecnologie CHP a combustione esterna

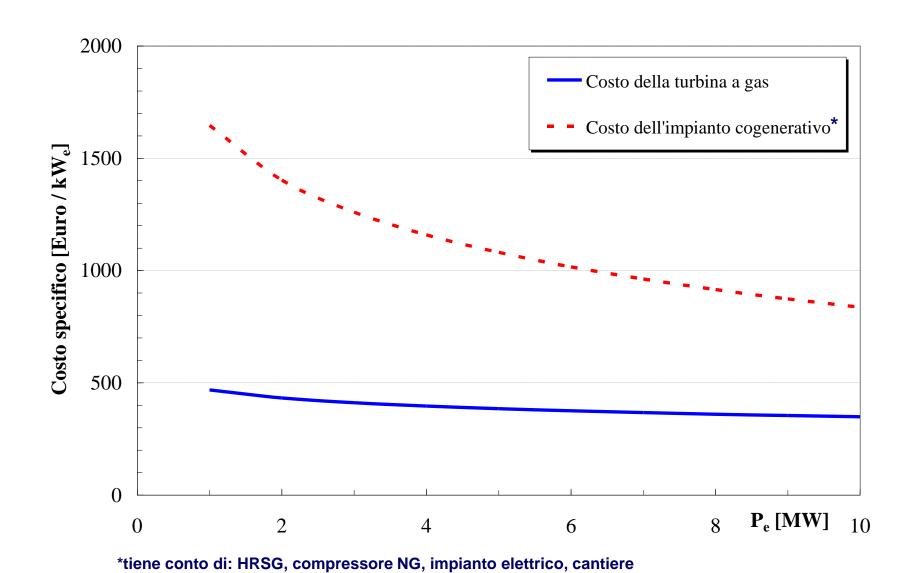
✓ Turbine a Vapore (TV)

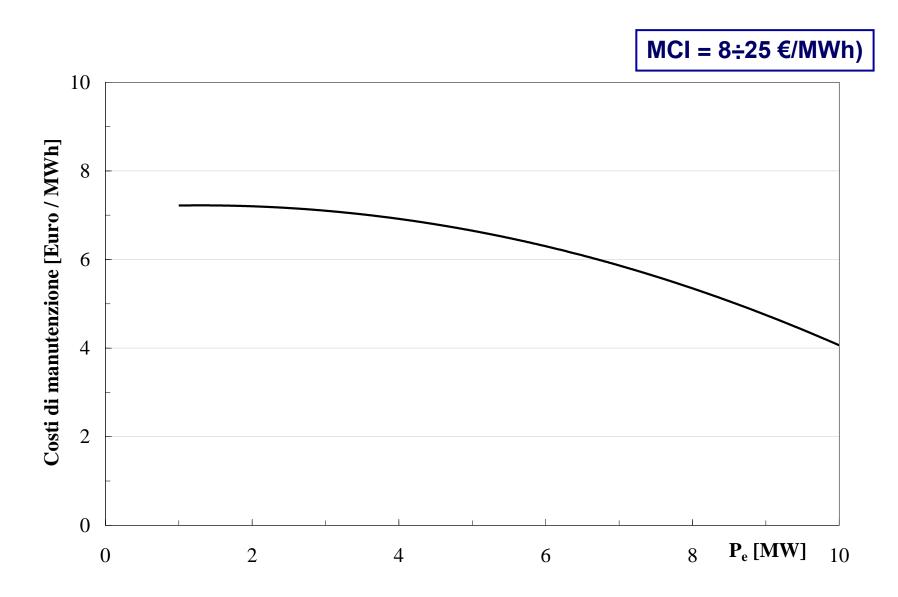

Consolidate

- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

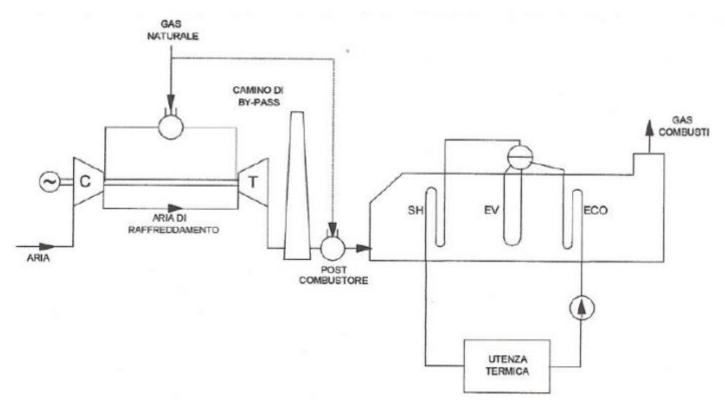
In fase di consolidamento

Turbine a Gas (TG)


- Tecnologia consolidata
- Disponibilità in taglie che vanno da 30 kW a 250 MW

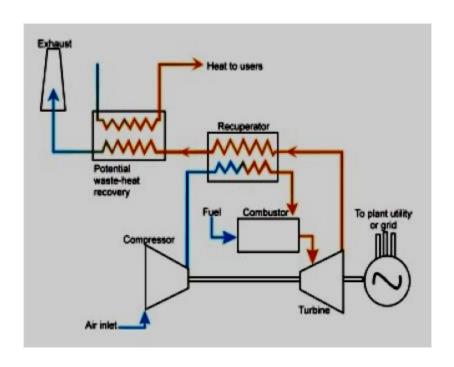

Caratterizzata da

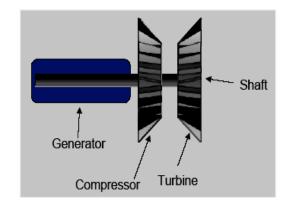
- Semplicità
- Bassi pesi e ingombri
- Libertà di installazione (assenza di sistema di raffreddamento)
- Bassi tempi di avviamento/fermata
- Solo combustibili "puliti"
- Alti rendimenti di conversione per le taglie elevate


Turbine a Gas (TG)

Turbine a Gas (TG)

Cogenerazione con TG

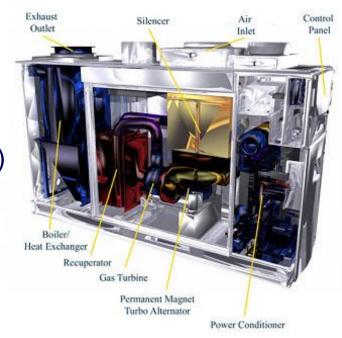



- ✓ La maggior parte del calore da recuperare può essere ad alta temperatura (≈ 500 °C) ed è concentrato nei fumi → particolarmente interessante per applicazioni industriali (vapore ad alta pressione, gas caldi)
- ✓ Recupero termico non influenza le prestazioni della turbina → grande flessibilità di funzionamento
- ✓ Fluido termovettore standard → vapore

Micro Turbine a Gas (MTG)

- Con MicroTurbina a Gas si identificano le turbina a gas di piccola/piccolissima taglia (P_{el} = 30 kW÷300 kW)
- Costituita essenzialmente da

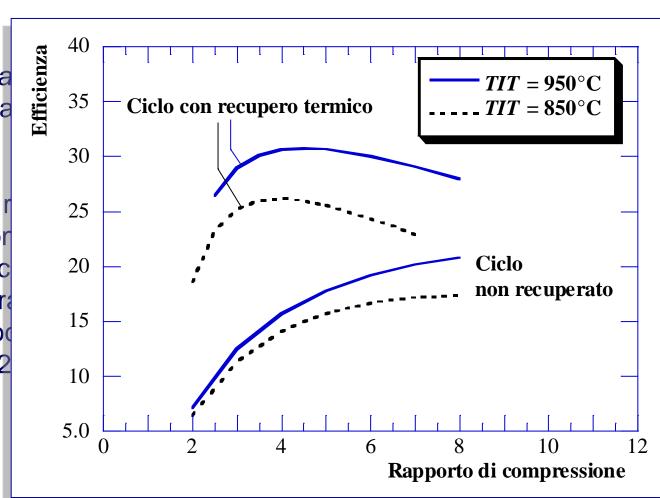
compressore centrifugo (monostadio) camera di combustione (continua) turbina centripeta (monostadio) recuperatore



Micro Turbine a Gas (P_e < 250 kW)

Non sono uno *scale-down* delle turbine a gas industriali, ma nascono da una nuova progettazione:

- ✓ turbine non raffreddate (TIT < 950 °C)
 </p>
- ✓ turbina e compressori radiali a basso rapporto di compressione (β = 3-5)
- √ ciclo rigenerativo
- ✓ elevata velocità di rotazione variabile (50.000 – 120.000 rpm)



Typical microturbine package

Micro Turbine a Gas (P_e < 250 kW)

Non sono uno sca gas industriali, ma progettazione:

- ✓ turbine non r
- ✓ turbina e cor rapporto di c
- ✓ ciclo rigenera
- ✓ elevata veloce (50.000 12

MTG sul mercato

Costruttore	Modello	Pe [kWe]	ηe [%]	ηt [%]	velocit à [rpm]	β	T fumi [°C] (no CHP)
Capstone	C30	30	26	-	96000	3.5	275
Capstone	<i>C60</i>	60	28	53.7	96000	3.7	360
Capstone	C65	65	29	50.0	96000	3.7	309
Ingersoll Rand	<i>MT70</i>	70	28	40.0	44000	-	210
Bowman	TG80CG	80	26	48.8	68000	-	278
Elliott	TA80	80	28	60.0	-	4.0	230
Elliott	TA100	100	29	50.0	-	4.0	293
Ansaldo Turbec	AE-T100	100	30	46.5	70000	4.5	270
Capstone	C200	190	33	40.0	65000	-	280
Ingersoll Rand	MT250	250	30	44.6	45000	-	249

MTG sul mercato

Capstone (30-200 kW)

Ansaldo Turbec (100 kW)

Capstone

Ingersoll Rand

Bowman

Elliott

Elliott

Ansaldo Tu

Capstone

Ingersoll Rc

80

80

100

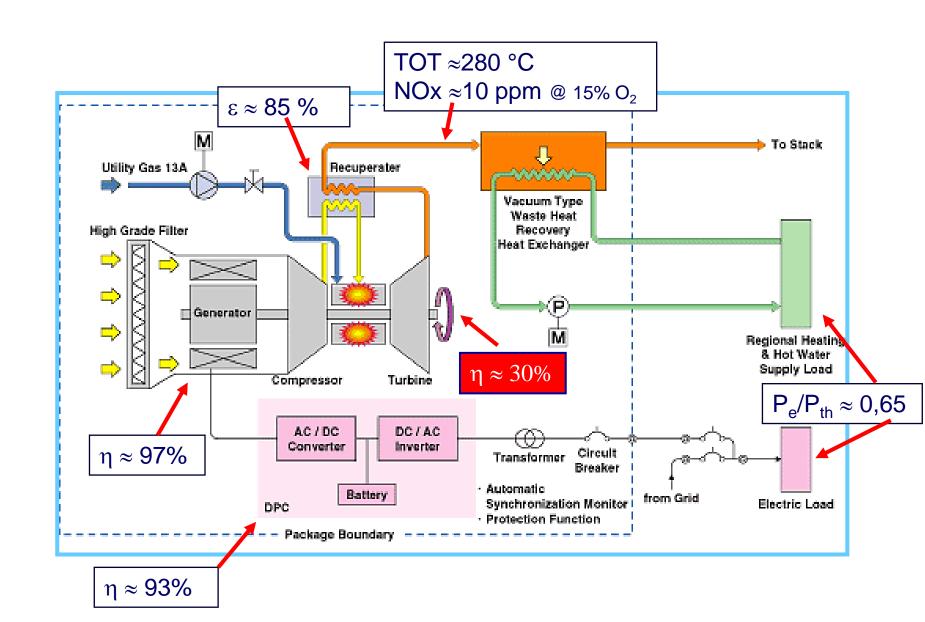
100

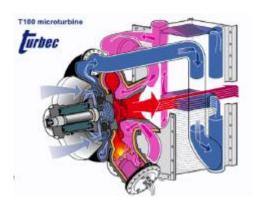
190

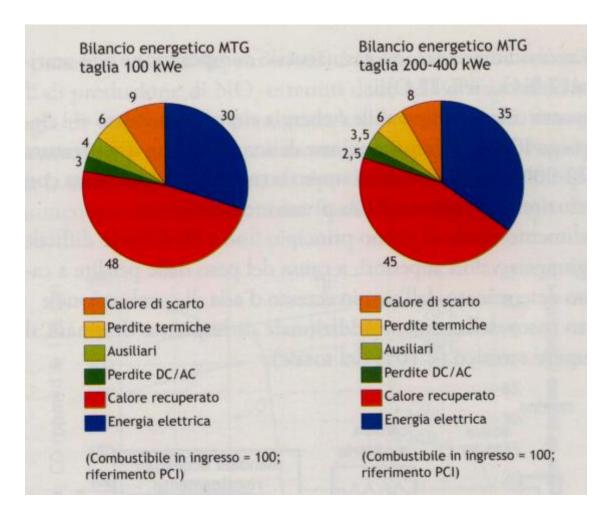
250

Pe ηt ηe [kWe] [%][%]30 26 Bowman (80 kW) 60 65 70

Ingersoll Rand (250°kW)


70000 **'0** 65000 45000

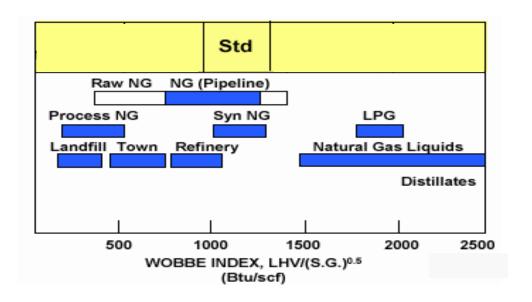

Elliot^T(100 kW)


TA80

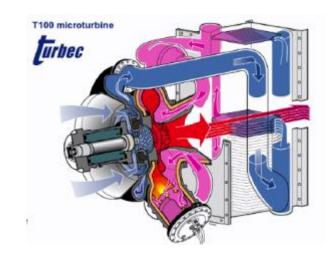
Cogenerazione con MTG

Bilancio energetico di una MGT

Applicazioni MTG



Cogenerazione in applicazioni residenziali


Biogas e syngas nelle TG

- ✓ Negli ultimi anni opportunità di alimentazione con combustibili alternativi
 Gas da gassificazione di biomassa
 → 3500÷7000 kJ/Nm³
 Biogas da digestione o da discarica
 → ≈ 20000 kJ/Nm³
- ✓ A causa del diverso PCI e della diversa composizione possono essere necessari adeguamenti

Biogas nelle TG

- ✓ Con biogas di composizione tipica (CH₄ - 60 %, CO₂ - 40 %) si utilizza una macchina con sistema di combustione convenzionale.
- ✓ L'avviamento della macchina e lo spegnimento devono essere fatti con un altro combustibile (gas naturale o Diesel). Risulta difficile utilizzare il biogas puro a carichi inferiori al 60%.

Inizialmente si deve mescolare il biogas con gas naturale (25 $\%_{\text{vol}}$ di gas naturale e 75 $\%_{\text{vol}}$ di biogas). La quantità di gas naturale viene poi progressivamente ridotta fino ad alimentare la turbina unicamente a biogas

Biogas nelle TG

- ✓ Vasto range di composizione del biogas (CH₄ > 30 %)
- ✓ Rendimento pressoché costante al variare della % di CH₄
- ✓ Buona tollerabilità al contenuto di H₂S nel combustibile

- ➤ Presenza di tracce di H₂S nei gas di combustione → altamente corrosivo
- Difficoltà di combustione ai bassi regimi
- Vapore acqueo nel combustibile

Biogas e MTG (Ingersoll Rand – Ansaldo Turbec)

CONDIZIONI BIOGAS					
	IR MT250	AT AE-T100			
Temperatura minima in ingresso	1°C	0°C			
Temperatura massima in ingresso	66°C	60°C			
Pressione per condotto 4"	5 bar	Pressione 8 bar			
Pressione per condotto 8"	14 bar				
Limite H ₂ S	300 ppm	3000 ppmv			
Limite siloxani	0,06 mg/m ³	100 mg/m ³			

MANUTENZIONE					
	IR MT250	AT AE-T100			
Ciclo di vita [h]	80.000	60.000			
Ciclo di manutenzione [h]	8000	6000			
Sostituzione filtri aria [h]	8000	/			
Sostituzione termocoppia [h]	16000	1			
Sostituzione iniezione [h]	16000	/			
Revisione rotore [h]	40.000	30.000			

Biogas e MTG (Capstone)

		C30	C65-ICHP	C200	C600
Potere calorifico gas	kJ/Nm ³	12000- 32000	20500- 32500	20500- 32500	20500- 32500
Potenza netta	kW	30	65	200	600
Potenza termica fumi	kW	-		394	1183
Potenza termica acqua*	kW	-	74	-	-
Rendimento elettrico	%	23	29	33	33
Rendimento termico	%	-	62	-	-
Portata fumi	kg/h	1116	1764	4680	14400
Temperatura fumi	°C	275	309	280	280
Limite H ₂ S	ppmv	7'000	5'000	5'000	5'000
NOx	mg/Nm³	18	18	18	18

 $^{^*}T_{in}$ = 38 $^\circ$ C, Q_{H2O} = 2.5 kg/s

MTG ad olio vegetale

Ferrara: progetto sulla produzione di biomasse per l'energia. Produzione di energia da oli vegetali con microturbina a gas. Realizzazione di un impianto pilota (coltivazione – spremitura olio – microturbina).

Colture dedicate Olio vegetale Microturbina CHP

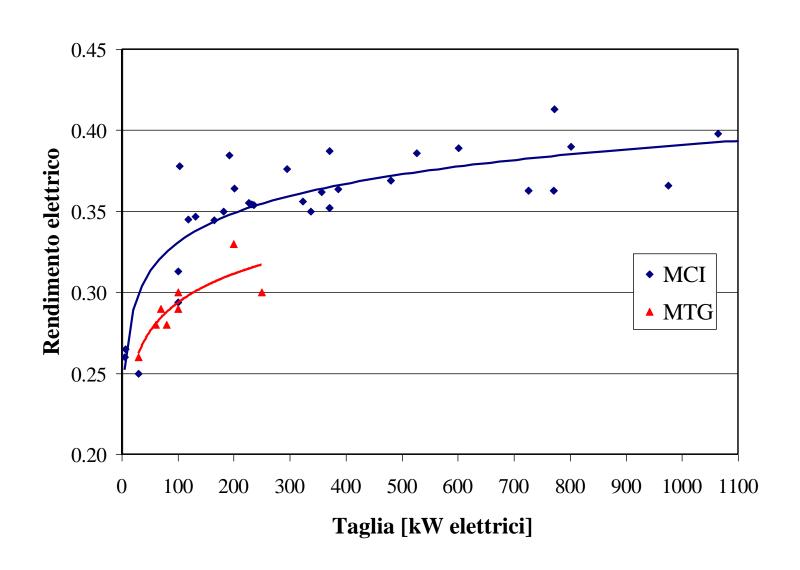
2500 I/h
@ 50 °C

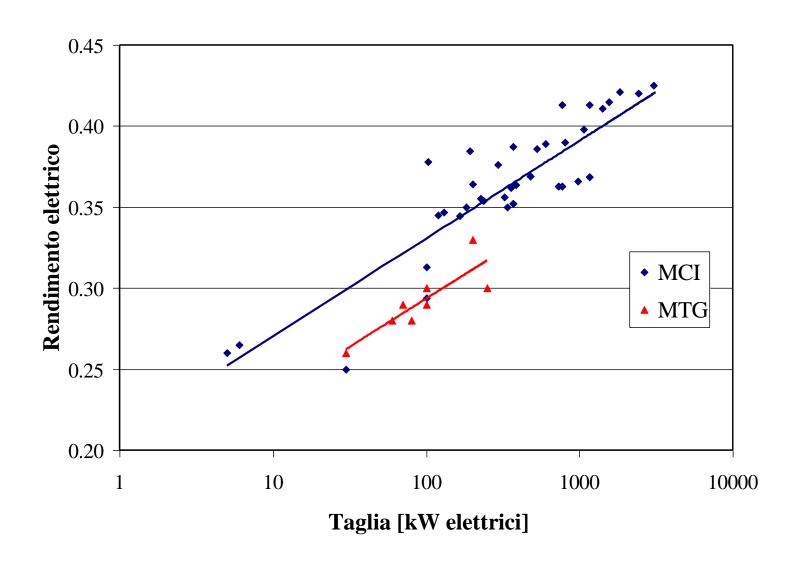
VANTAGGI MTG

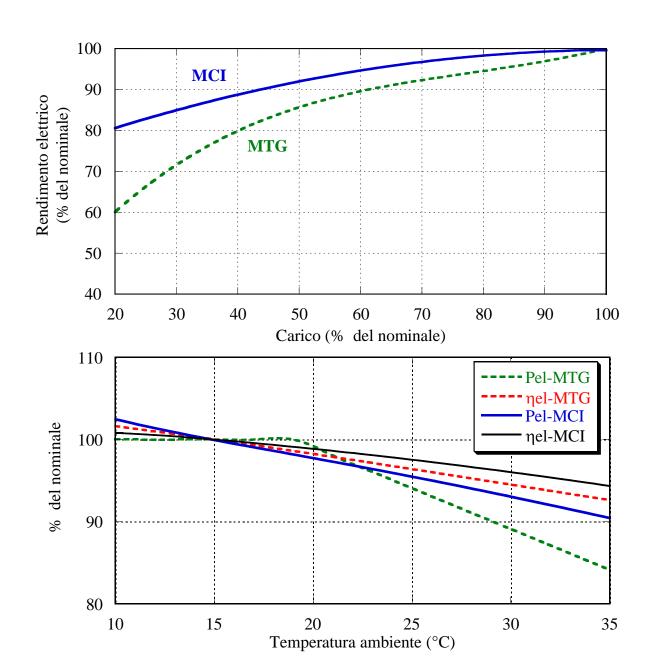
- ✓ ridotte emissioni di NOx e CO (<10 ppm @ 15% O2)
- ✓ ingombri e pesi contenuti
- √ bassa rumorosità e vibrazioni
- √ manutenzione ridotta (ogni 10.000 ore)
- ✓ elevata vita utile (80.000 ore)

SVANTAGGI MTG

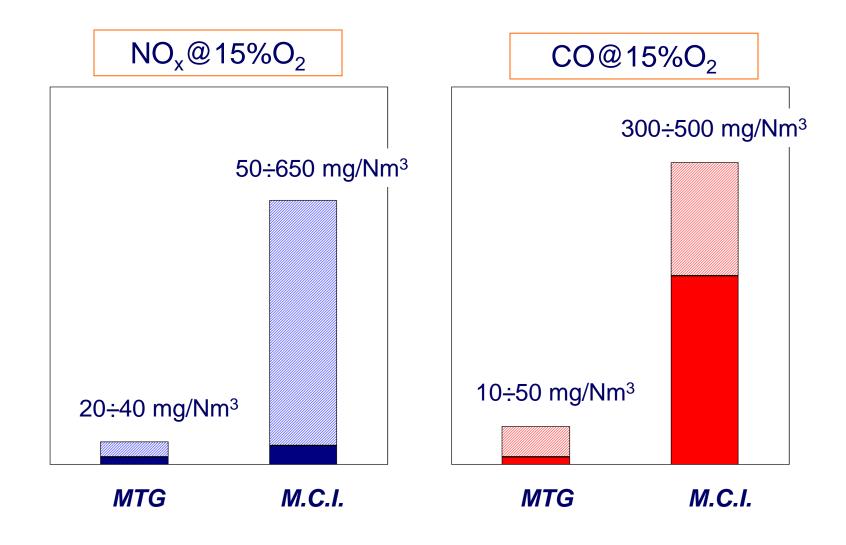
- tecnologia emergente
- costo specifico elevato
- rendimenti elettrici inferiori
- ★ bassa temperatura fumi (280 °C)

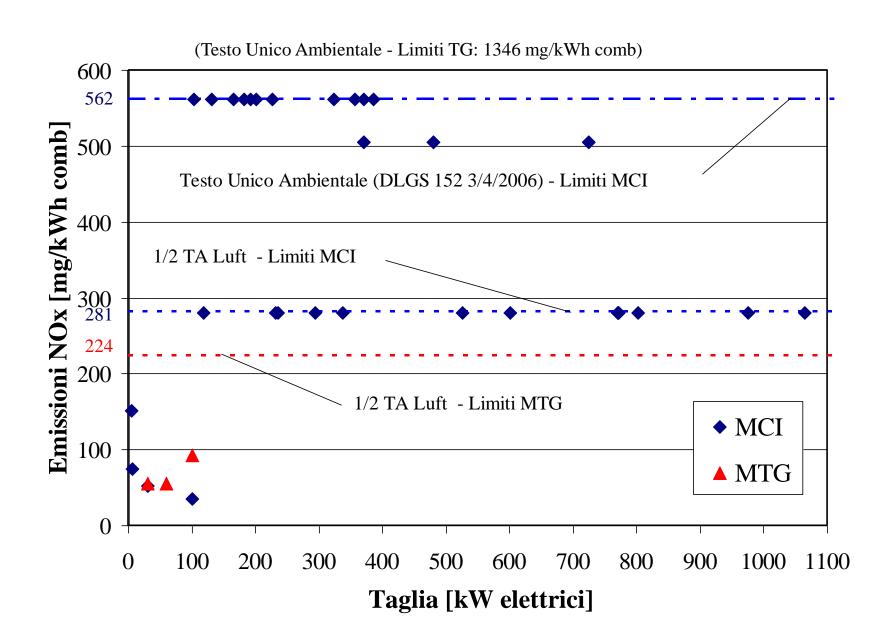

- Rumore
- ✓ Intervallo di manutenzione
- √ Costi di manutenzione

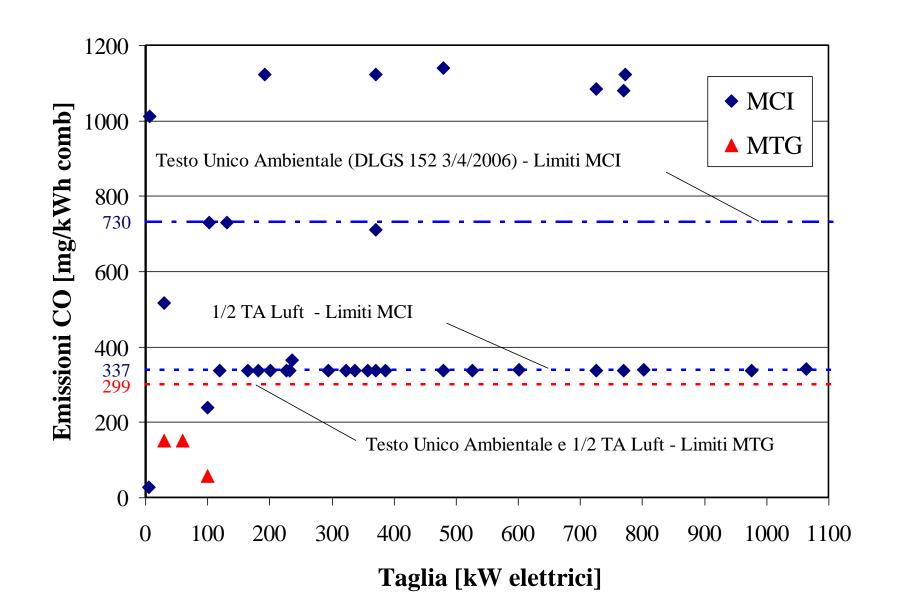

70-80 dB(A)@1m


Attuale → 8 000 h

Target \rightarrow 11 000 h


10 €/MWh





✓ Emissioni ridotte: fattore 10/100 rispetto ad un MCI

Le tecnologie

Tecnologie CHP a combustione interna

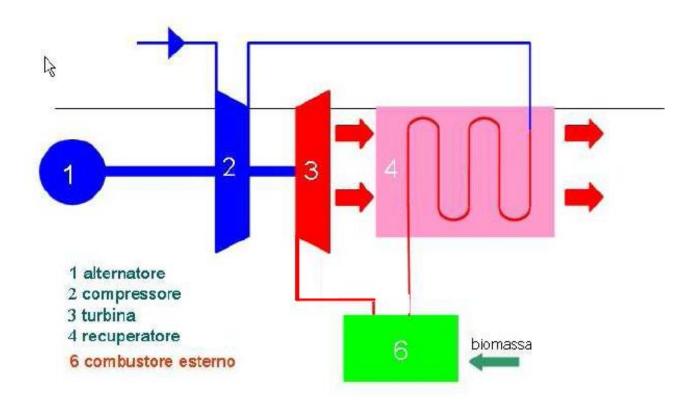
✓ Motori alternativi a combustione interna (MCI) Consolidate

- √ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

Tecnologie CHP a combustione esterna

✓ Turbine a Vapore (TV)


Consolidate

- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

In fase di consolidamento

MTG a combustione esterna

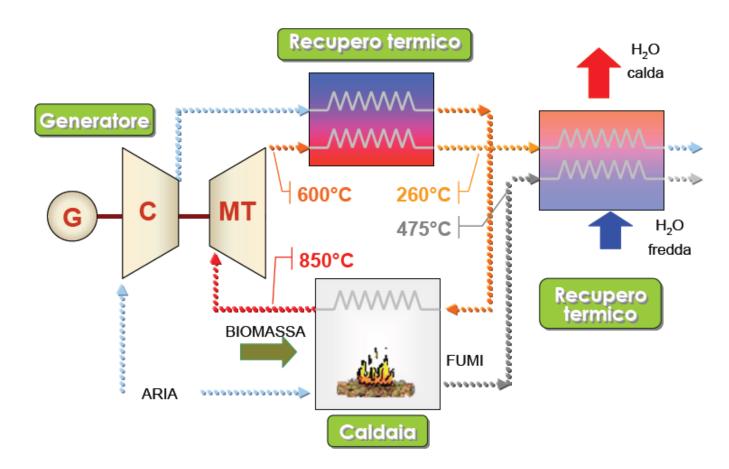
✓ Il sistema è basato su una microturbina convenzionale nella quale la camera di combustione viene sostituita da uno scambiatore di calore aria/gas, che innalza la temperatura del fluido fino alle temperature adeguate per il ciclo di Brayton

Sistema Power Tep - EPS

- ✓ La microturbina utilizzata è una ANSALDO TURBEC AE-T100
- ✓ La turbina è messa a punto per funzionare, a pieno carico, ad una potenza inferiore al valore tipico con alimentazione a gas naturale (80 kW contro 100 kW)

Sistema Power Tep - EPS

- ✓ Il **combustore** ha un rendimento termico superiore al 90%. E' prevista la presenza di un focolaio a griglia fissa per trattare sia cippato fine o pellet sia materiale legnoso molto eterogeneo.
- ✓ L'alimentazione dell'aria primaria è regolata su 3 livelli tramite serrande ad alette contrapposte azionate da un comando proporzionale.
- ✓ Il sistema di alimentazione della caldaia avviene tramite una coclea. Il materiale viene poi trasferito ad un caricatore a vite senza fine che ha il compito di introdurre il materiale in caldaia.



Sistema Power Tep - EPS

- ✓ Potenza elettrica: 80 kW_e
- ✓ Potenza termica caldaia: 500 kW_t
- ✓ Potenza termica scaricata: 300 kW_t
- ✓ Consumo orario biomassa secca: 120 150 kg/h
- ✓ Rendimento elettrico: 15 %

Sistema Turbomass – Sib Siber

- ✓ Il sistema del tutto analogo al precedente
 - ✓ Potenza elettrica: 80 kW_e
 - ✓ Potenza termica caldaia: 450 kWt
 - ✓ Potenza termica scaricata: 155 kW_t
 - ✓ Rendimento elettrico: 18 %

Sistema Turbomass – Sib Siber

La **caldaia a biomassa** ha lo scopo di generare il calore da trasferire all'aria di processo della microturbina mediante lo scambiatore ad alte prestazioni aria/fumi. Il combustore è del tipo a coclea sottoalimentato ed è appositamente progettato e realizzato allo scopo di utilizzare cippato, pellet, mais, o altri tipi di biomassa solida con contenuto di umidità fino al 35 % sul totale. La potenza termica al focolare è di circa 450 kW ed il rendimento termico è superiore al 90%.

Lo **scambiatore di calore** di caldaia avente la funzione di scambio termico tra i fumi di caldaia e l'aria di processo della turbina, è alloggiato all'interno della struttura del combustore.

SCAMBIATORE LATO ARIA MICROTURBINA					
Temperatura in ingresso:	°C	400÷560			
Temperatura in uscita:	°C	850÷950			
Portata aria:	kg/s	0,74 (Max 0,78)			
Pressione di esercizio:	bara	Max 4,5			

BIC Lazio

- ✓ Sistema trigenerativo per alimentare l'incubatore di impresa presso BICLAZIO (Business Innovation Centre) a Colleferro (Roma)
- ✓ Verde comunale, sfalci boschivi dalla raccolta di municipalizzate e conferite da ditte private

BIC Lazio

- ✓ Sistema trigenerativo per alimentare l'incubatore di impresa presso BICLAZIO (Business Innovation Centre) a Colleferro (Roma)
- ✓ Verde comunale, sfalci boschivi dalla raccolta di municipalizzate e conferite da ditte private
- ✓ Consumo orario biomassa: 100-150 kg/h (in funzione dell'umidità)
- ✓ Potenza elettrica: 75 kW_{el}
- ✓ Potenza termica caldaia: 450 kWt
- ✓ Potenza termica utile: 300 kW_t
- ✓ Potenza frigorifera utile: 100 kW_t
- ✓ Rendimento elettrico: 16 %

Le tecnologie

Tecnologie CHP a combustione interna

✓ Motori alternativi a combustione interna (MCI)

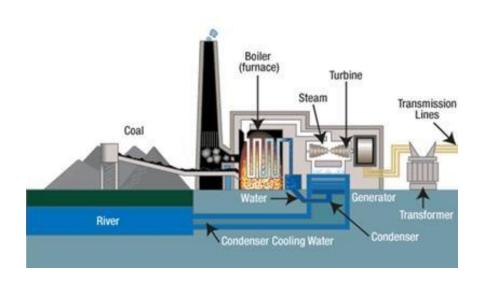
Consolidate

- √ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

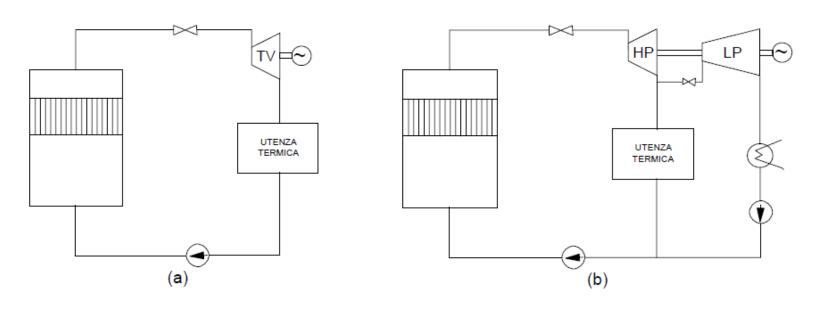
Tecnologie CHP a combustione esterna

✓ Turbine a Vapore (TV)

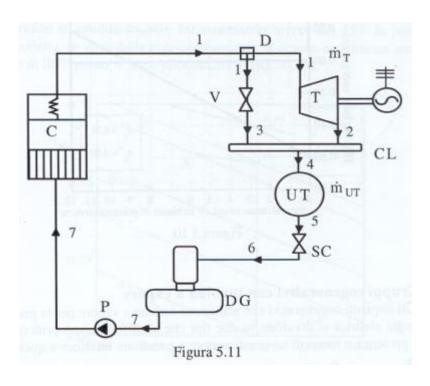

Consolidate

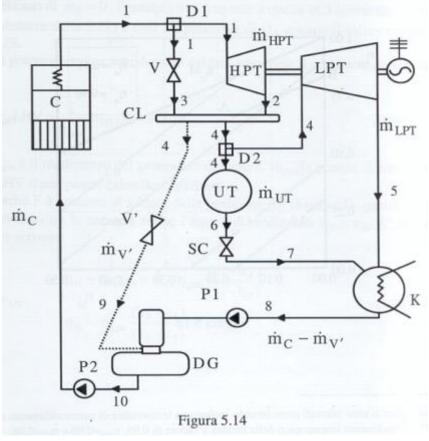
- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

In fase di consolidamento


L'impianto è costituito da una pompa, una caldaia, una turbina ed un condensatore e utilizza come fluido operatore acqua.

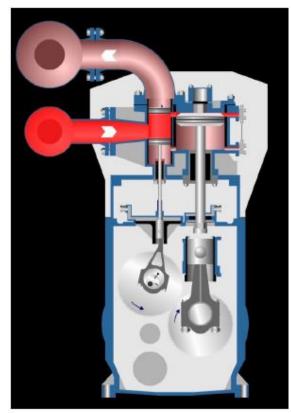
Il ciclo a vapore è molto flessibile riguardo alle fonti utilizzabili per produrre energia in quanto le diverse tipologie di caldaie (a griglia, letto fluido, a polverino, ecc.) permettono l'impiego di gas naturale, olii, carbone, biomasse, rifiuti solidi urbani (termovalorizzatori), etc.

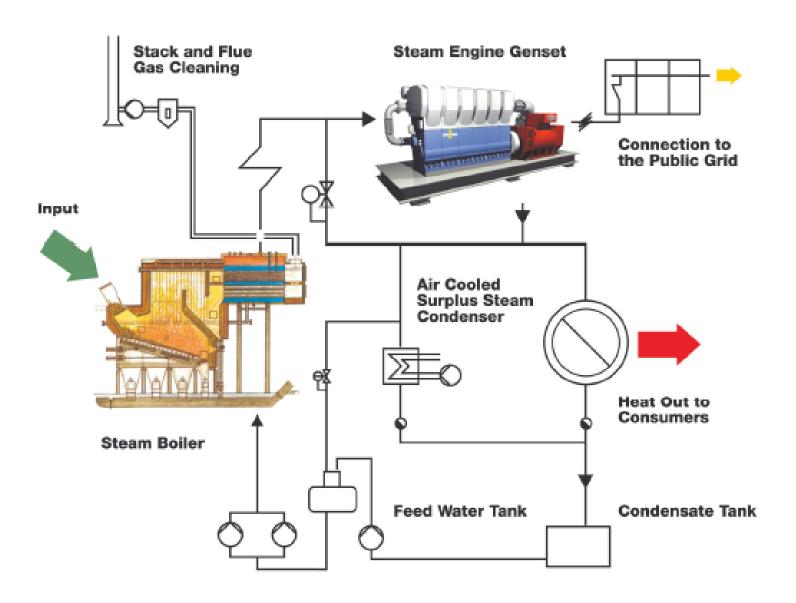

Le taglie degli impianti vanno da alcuni MW fino ad oltre il GW con più turbine in parallelo. Il rendimento elettrico aumenta con l'incrementare della taglia poiché si possono utilizzare variazioni impiantistiche più complesse. Per impianti di grossa taglia il rendimento si aggira attorno al 40%.


✓ Un ciclo a vapore cogenerativo può essere a contropressione o a spillamento

Schemi dell'impianto a contropressione (a sinistra) e dell'impianto a spillamento e condensazione (a destra)

✓ Un ciclo a vapore cogenerativo può essere a contropressione o a spillamento





- ✓ Gli impianti a vapore hanno un rendimento elettrico in assetto cogenerativo che si attesta nel range 15-30 % e un rendimento termico che può arrivare al 60 %.
- ✓ L'energia termica è messa a disposizione sotto forma di vapore a pressioni dell'ordine di decine di bar.
- ✓ E' possibile impiegare qualsiasi tipo di combustibile dotandosi dell'apposito generatore di vapore.
- ✓ L'elevato costo di questi impianti e il basso indice elettrico li rende adatti ad applicazioni in ciclo combinato, generando il vapore mediante recupero termico da un motore primo (turbine a gas o motori endotermici alternativi), o ad applicazioni con combustibili solidi (non utilizzabili in turbine a gas o motori a combustione interna).

Motori a vapore

- ✓ I cicli a vapore convenzionali necessitano di elevate potenze per poter essere applicabili, soprattutto a causa della presenza della turbina a vapore, che limita le potenze inferiormente.
- Per taglie sotto i 2 MW, si possono utilizzare motori alternativi a vapore (MAV).
- ✓ Funzionano con valori di ammissione di p, T piuttosto limitati in accordo con la possibilità di alimentazione da generatori a tubi di fumo capaci di surriscaldamento.
- ✓ Sono in commercio motori con pressione/temperatura di ammissione p₁ = 28 bar e T₁=350 °C (vapore surriscaldato) con pressione di scarico p₂ = 1.5 bar e T₂ = 110 °C.
- ✓ In piccoli impianti il rendimento di conversione elettrica raggiunge η = 6 10 % nella versione monostadio e 12 20 % nella versione polistadio

2003

Wood Waste Incineration Plant

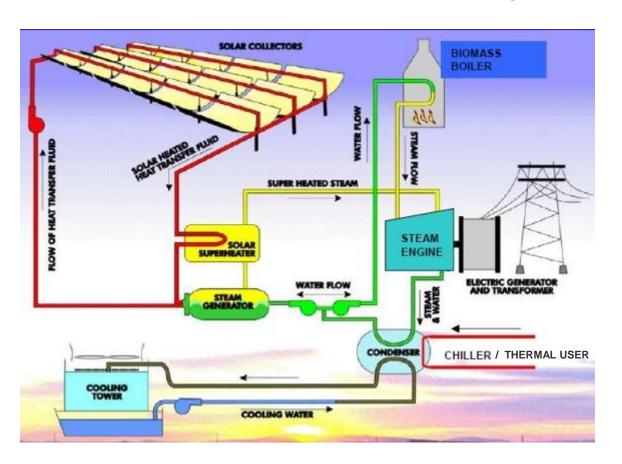
District Heating and Process Steam Supply for a Sawmill

El. Output: 230 kW

Heat Delivery: 2.000 kW

Live Steam Data: 3,5 t/h / 15 bar

2004


Bio Sludge Incineration Plant

Exhaust Steam Utilization for Boiler Feed Water Preheating

El. Output: 514 kWel

Live Steam Data: 11 t/h / 8 bar / Saturated

- ✓ Uso combinato solare a concentrazione e biomasse
- ✓ Espansori a vapore per microgenerazione
 - buon comportamento fuori-progetto, quindi adatto alla variabilità tipica dell'alimentazione solare;
 - condizioni allo scarico adatte ad utenza tri-generativa

- Uso combinato solare a concentrazione e biomasse
- Espansori a vapore per microgenerazione
 - buon comportamento fuori-progetto, quindi adatto alla variabilità tipica dell'alimentazione solare;
 - condizioni allo scarico adatte ad utenza tri-generativa

Campo solare: 500 - 2000 m²

Potenza caldaia: 1 MW

Potenza motore: 200 kW

Energia da solare: 1 GWh/anno

Producibilità dei collettori per m²: 470 kWh/m²

Energia da biomassa: 7,6 GWh/anno

Energia convertita: 1,4 GWh/anno

Temperatura acqua di raffreddamento: 100 °C

Emissioni evitate (solare): 750 t CO₂ /anno

Le tecnologie

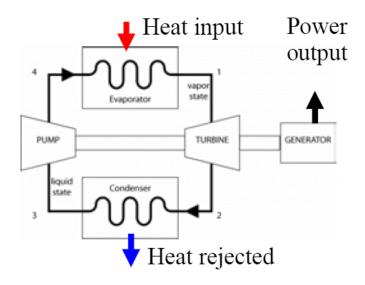
Tecnologie CHP a combustione interna

✓ Motori alternativi a combustione interna (MCI) Consolidate

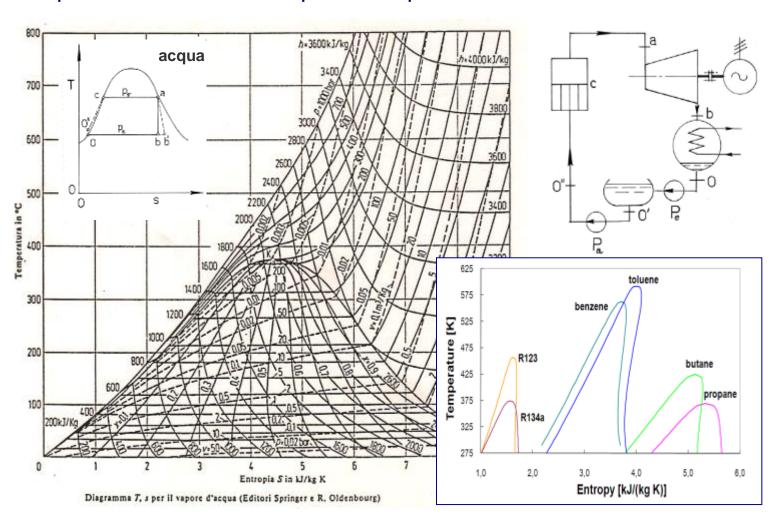
- ✓ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

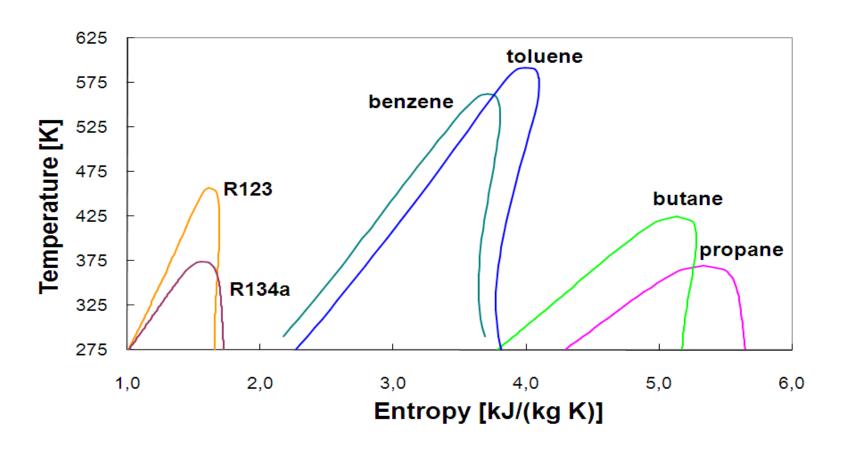
Tecnologie CHP a combustione esterna

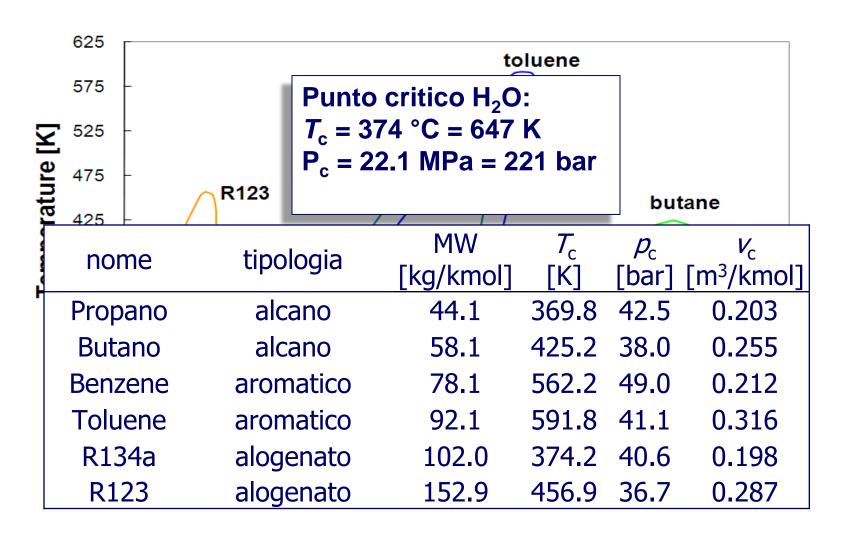

✓ Turbine a Vapore (TV)

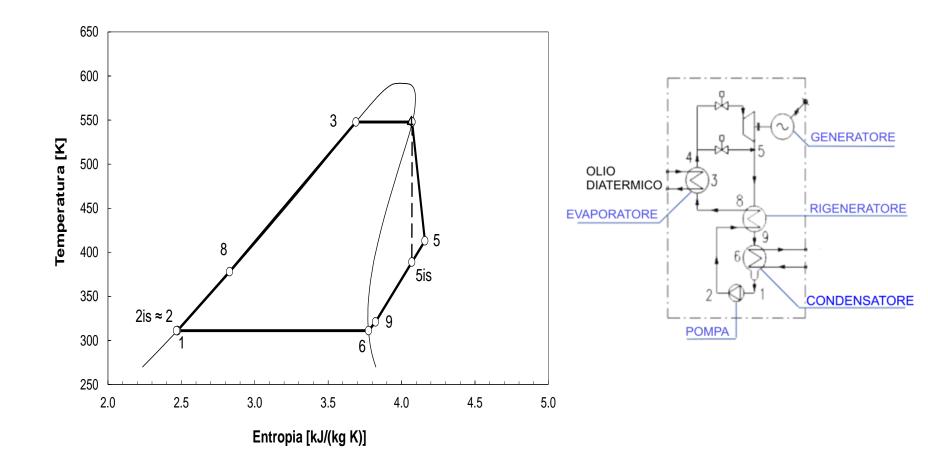
Consolidate

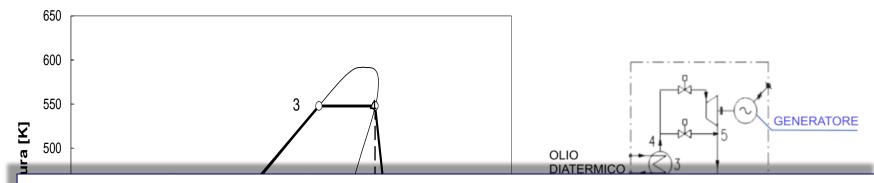

- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

In fase di consolidamento

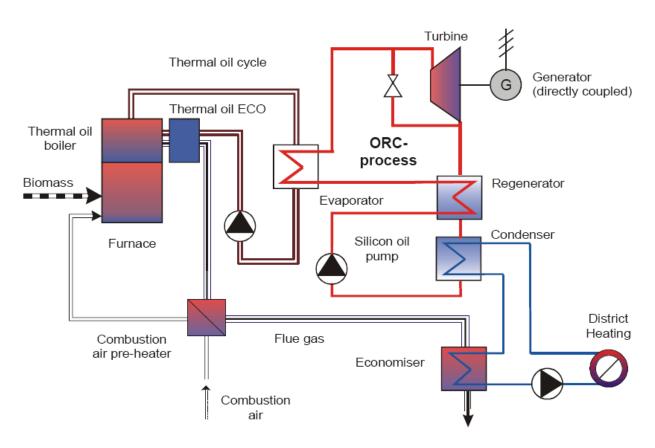

- ✓ Basati sul ciclo a vapore (ciclo Rankine)
- ✓ Tecnologia consolidata
- ✓ Il calore viene introdotto per combustione esterna in una caldaia e trasferito al fluido di lavoro tramite uno scambiatore (possibilità di utilizzare combustibili di natura diversa)
- ✓ Possibilità di utilizzare il calore scaricato da MTG o MCI (micro-cicli combinati gas-vapore)


✓ I cicli a **fluido organico (ORC)** consentono di superare alcuni limiti imposti dall'utilizzo del vapore d'acqua.

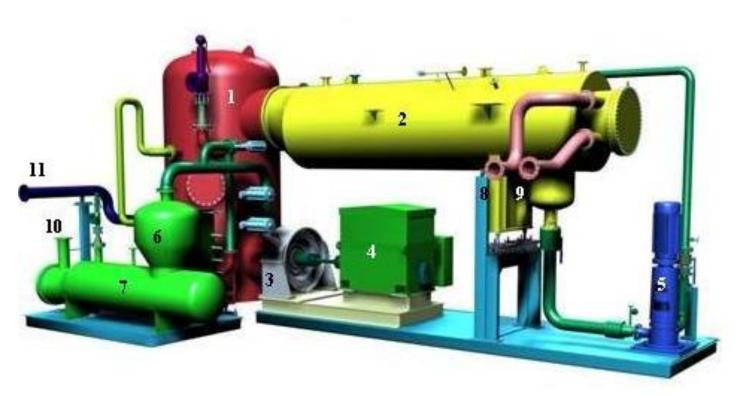



✓ I cicli a **fluido organico (ORC)** consentono di superare alcuni limiti imposti dall'utilizzo del vapore d'acqua.

✓ I cicli a **fluido organico (ORC)** consentono di superare alcuni limiti imposti dall'utilizzo del vapore d'acqua.



Vantaggi del fluido organico rispetto al vapor d'acqua


- ✓ Possibilità di sfruttare sorgenti di calore a bassa temperatura (100 ÷ 400 °C)
- ✓ Basse pressioni di vaporizzazione, anche per condizioni prossime a quelle critiche
- ✓ Modesti salti entalpici da sfruttare ed elevati pesi molecolari del fluido di lavoro, con conseguente possibilità di utilizzo di turbine con basso numero di stadi (anche uno solo) e dalle velocità di rotazione ridotte (accoppiamento diretto al generatore elettrico)
- ✓ Tempi di avviamento rapidi

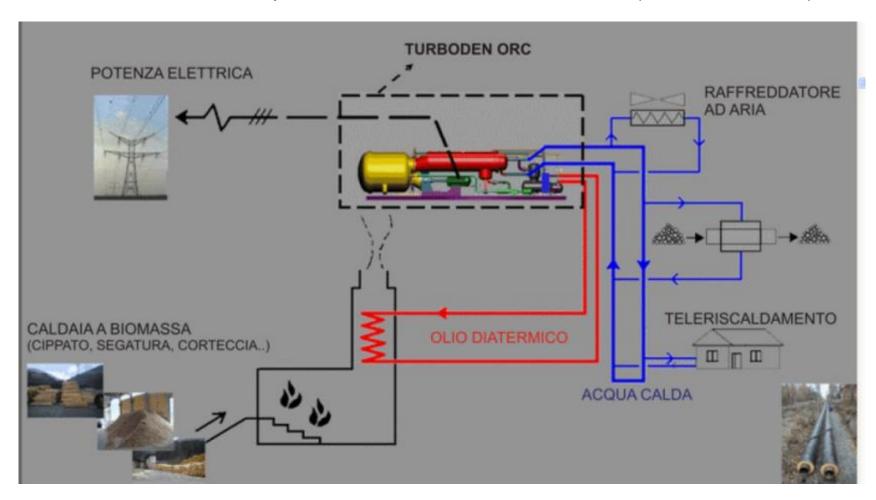
- ✓ Fluido vettore: olio diatermico a 250-300°C
- ✓ Rigeneratore per recuperare parte del contenuto entalpico non sfruttato in turbina

Esempio di ORC alimentato a biomasse e con impiego CHP civile

Modulo ORC

- 1 Economizzatore
- 2 Condensatore
- 3 Turbina
- 4 Generatore elettrico
- 5 Pompa
- 6 Pre-riscaldatore
- 7 Evaporatore
- 8 Ingresso acqua di condensazione
- 9 Uscita acqua di condensazione
- 10 Ingresso olio diatermico
- 11 Uscita olio diatermico

		TURBODEN 4 CHP - split	TURBODEN 6 CHP - split	TURBODEN 7 CHP - split	TURBODEN 10 CHP - split	TURBODEN 14 CHP - split	TURBODEN 18 CHP - split	TURBODEN 22 CHP - split
NPUT - olio diatermico				·	·		·	·
emperatura nominale ci rcuito alta temperatura (in/out)	°C	310/250	310/250	310/250	310/250	310/250	312/252	312/252
potenza termica circuito alta temperatura	kW	2100	2965	3485	4690	6130	8935	10975
temperatura nominale circuito bassa temperatura (in/out)	°C	250/130	250/130	250/130	250/130	250/130	252/132	252/132
potenza termica circuito bassa temperatura	kW	200	275	330	450	585	855	1045
potenza termica totale in ingresso	kW	2300	3240	3815	5140	6715	9790	12020
OUTPUT - acqua calda								
temperatura acqua calda (in/out)	°C	60/80	60/80	60/80	60/80	60/80	60/90	60/90
potenza termica all'acqua	kW	1844	2600	3060	4100	5350	7850	9630
PRESTAZIONI								
potenza elettrica attiva lo rda	kW	424	617	727	1001	1317	1862	2282
efficienza elettrica lorda		0.184	0.19	0.191	0.194	0.196	0.19	0.189
autoconsumi elettrici	kW	24	30	38	51	62	87	107
potenza elettrica attiva netta	kW	400	587	689	950	1255	1775	2175
efficienza elettrica netta		0.174	0.181	0.181	0.184	0.186	0.181	0.181
generatore elettrico		asincrono trifase B.T. 400V	asincrono trifase B.T. 660V	asincrono trifase B.T. 660V				
configurazione impianto		single skid	single skid	single skid	single skid	multiple skid	multiple skid	multiple skid
consumo biomassa **	kg/h	1005	1416	1667	2247	2935	4279	5254


^{*} Il sistema split Turboden permette di massimizzare la produzione elettrica a pari consumo biomassa.

Costo: 900 ÷ 2500 Euro/kW_e

^{**} Assumendo potere calorifico della biomassa=2,6 kWh/kg ed efficienza della caldaia=0,88. La caldaia ad olio diatermico non è compresa nello scopo di fornitura Turboden.

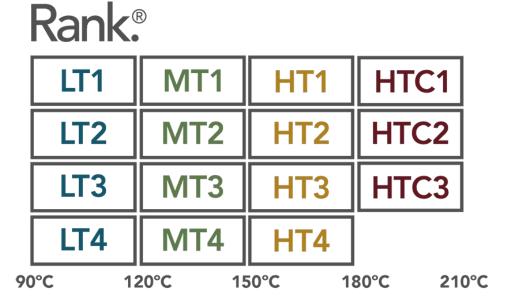
ORC - Applicazioni

- ✓ Può essere conveniente soprattutto con biomassa solida e syngas
- ✓ Possibilità di recupero di calore scaricato da motori (ciclo combinato)

ORC di piccola potenza

✓ Recentemente proposti ORC di taglie inferiori a 200 kW

FreePower FP120					
Potenza termica ingresso	kW	742			
Potenza elettrica netta	kW	120			
Rendimento elettrico netto	%	16			
Potenza termica scaricata	kW	612			
Temperatura acqua per cogen	°C	64			
Temperatura fumi	°C	457			



Potenza termica ingresso acqua 77-122 °C	kW	1600
Potenza elettrica netta	kW	110
Potenza termica ingresso acqua 77-116 °C	kW	860
Potenza elettrica netta	kW	65
Potenza termica ingresso acqua 77-116 °C	kW	650
Potenza elettrica netta	kW	35

ORC di piccola potenza

✓ Recentemente proposti ORC di taglie inferiori a 200 kW

ORC di piccola potenza

Technical Data		LT1	LT2	LT3	LT4
The Hea	t transfer fluid *	Water	Water	Water	Water
Inle	t temperature (°C)	90-120	90-120	90-120	90-120
Out	:let temperature (°C)	80-110	80-110	80-110	80-110
Heat source Volu	umetric flow rate (m³/h)	17	37	78	165
The	rmal power (kWt)	125-250	250-500	500-1 000	1 000-2 000
Con	nections diameter (PN16)	DN80	DN100	DN 150	DN200
ALD (S)	ssure drop (kPa)	125	125	125	125
Hea	at transfer fluid inner volume (L)	20	50	120	250
Hea	at transfer fluid	Water	Water	Water	Water
Inle	t temperature (°C)	20-40	20-40	20-40	20-40
Out	:let temperature (°C)	30-50	30-50	30-50	30-50
Useful heat Volu	umetric flow rate (m³/h)	14	30	63	125
	rmal power (kWt)	100-200	200-400	400-800	800-1 600
Con	nnections diameter	DN65	DN100	DN 150	DN200
Pres	ssure drop (kPa)	125	125	125	125
Hea	at transfer fluid inner volume (L)	15	50	120	250
Gro	ss power (kWe)	8-22	20-45	45-85	80-175
Net	power (kWe)	8-20	15-40	30-80	60-160
Electricity Volt	tage (V)	3 x 400	3 x 400	3 x 400	3 x 400
Free	quency (Hz)	50/60	50/60	50/60	50/60
Inte	ensity (A)	31.5	64	127	250
Date	a Connection	RJ45	RJ45	RJ45	RJ45
Dimensions A =	Lengh (mm)	3 350	4 850	5 800	7 000
В -	Wide (mm)	1 550	2 050	2 250	2 250
	High (mm)	2 200	2 500	2 500	2 500
Weight kg		5 500	6 500	8 000	10 500
Container transpor	rt (optional)	DC 20'	HC 20'	HC 20'	HC 40'
* The heat transfer fluid can be water, stream	m or thermal oil		DC (dry co	ntainer), HC	(high cube)

^{*} The heat transfer fluid can be water, stream or thermal oil

ORC di piccola potenza Technical Data HT

HT1 HT2 HT3 HT4

Do S	n [side	Heat transfer fluid *	Thermal Oil	Thermal Oil	Thermal Oil	Thermal Oil
-0- اسلام		Inlet temperature (°C)	150-180	150-180	150-180	150-180
		Outlet temperature (°C)	110-140	110-140	110-140	110-140
υ στ √ â '	Heat source	Volumetric flow rate (m³/h)	13	26	56	112
		Thermal power (kWt)	200-300	400-600	850-1 350	1 700-2 700
		Connections diameter (PN16)	DN 65	DN80	DN100	DN150
440 (5/2)		Pressure drop (kPa)	100	100	100	125
		Heat transfer fluid inner volur	me (L) 20	45	100	160
		Heat transfer fluid	Water	Water	Water	Water
		Inlet temperature (°C)	20-40	20-40	20-40	20-40
		Outlet temperature (°C)	30-50	30-50	30-50	30-50
14r	Useful heat	Volumetric flow rate (m³/h)	17	36	77	154
	Oserui neat	Thermal power (kWt)	150-200	300-450	600-950	1 200-1 900
		Connections diameter	DN65	DN100	DN 150	DN 150
		Pressure drop (kPa)	125	125	125	125
		Heat transfer fluid inner volur	ne (L) 15	45	100	160
		Gross power (kWe)	20-30	40-65	90-140	180-280
		Net power (kWe)	18-25	35-55	80-120	160-240
[-\II\-	Electricity	Voltage (V)	3 x 400	3 x 400	3 x 400	3 x 400
		Frequency (Hz)	50/60	50/60	50/60	50/60
		Intensity (A)	54	122	220	440
		Data Connection	RJ45	RJ45	RJ45	RJ45
	Dimensions	A - Lengh (mm)	3 350	4 850	5 500	6 000
		B - Wide (mm)	1 550	2 050	2 250	2 250
		C = High (mm)	2 200	2 500	2 500	2 500
	Weight	kg	5 500	6 500	8 000	10 000
	Container tra	nsport (optional)	DC 20'	HC 20'	HC 20'	HC 20'
* The heat transfer f	fluid can be water,	stream or thermal oil		DC (dry	container), HO	C (high cube)

Micro Cicli Rankine

Technical data

		Heat transfer fluid	Water	-
		Inlet temperature	90-120	°C
		Outlet temperature	80-110	°C
>	Heat source	Volumetric flow rate	3	m³/h
	rieac source	Thermal power	20-45	kWt
		Connections diameter	DN25 PN16	-
		Pressure drop	50	kPa
		Heat transfer fluid inner volume	3	L
		Heat transfer fluid	Water	-
		Inlet temperature	20-40	°C
		Outlet temperature	30-50	°C
	Useful heat	Volumetric flow rate	2	m³/h
		Thermal power	15-40	kWt
		Connections diameter	DN25 PN16	-
		Pressure drop	100	kPa
		Heat transfer fluid inner volume	4	L
		Gross power	1.5-3	kW e
		Net power	1-2.5	kW e
>	Electricity	Voltage	3 x 400	V
		Frequency	50/60	Hz
		Intensity	5	Α
		incensity		
		Data Connection	RJ45	-
	Dimensions	-		- mm
	Dimensions	Data Connection	RJ45	-
	Dimensions	Data Connection A = Lengh	RJ45 1 200	- mm
	> >		Inlet temperature Outlet temperature Volumetric flow rate Thermal power Connections diameter Pressure drop Heat transfer fluid inner volume Heat transfer fluid Inlet temperature Outlet temperature Volumetric flow rate Thermal power Connections diameter Pressure drop Heat transfer fluid inner volume Gross power Net power Voltage Frequency	Heat source

Micro Cicli Rankine

KAYMACOR (Italia) - KC-morgen2

- $P_{i @ 145 °C} = 20 \text{ kW}_{th}$
- $P_{th @ 40 °C} = 17 \text{ kW}_{th}$
- P_e = 1.5 kW_e

KAYMACOR (Italia) - KC-morgen4

- $P_{i @ 145 °C} = 40 \text{ kW}_{th}$
- $P_{th @ 40 ^{\circ}C} = 36 \text{ kW}_{th}$
- \cdot P_e = 3 kW_e

Newcomen (Italia) - Piglet PG3-46S

- $P_{i @ 90 °C} = 33 \text{ kW}_{th}$
- \cdot P_e = 3 kW_e

Micro Cicli Rankine

Genlec - Energetix (UK)

- ORC
- espansore tipo scroll
- $P_{e} = 1 \ kW_{e}$, $P_{th} = 10 \ kW_{th}$

Cogen Microsystem (Australia)

- H₂O
- espansore tipo scroll
- $P_e = 2.5 10 \, kW_e$
- $P_{th} = 11 44 \, kW_{th}$

Otag (Germania)

- H₂O
- espansore alternativo
- $P_e = 2.1 \text{ kW}_e$, $P_{th} = 16 \text{ kW}_{th}$

Le tecnologie

Tecnologie CHP a combustione interna

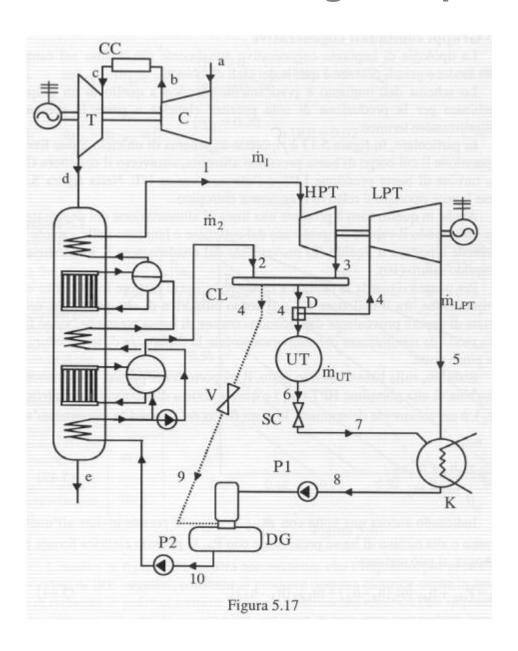
Prototipali

✓ Sistemi termofotovoltaici (TPV)

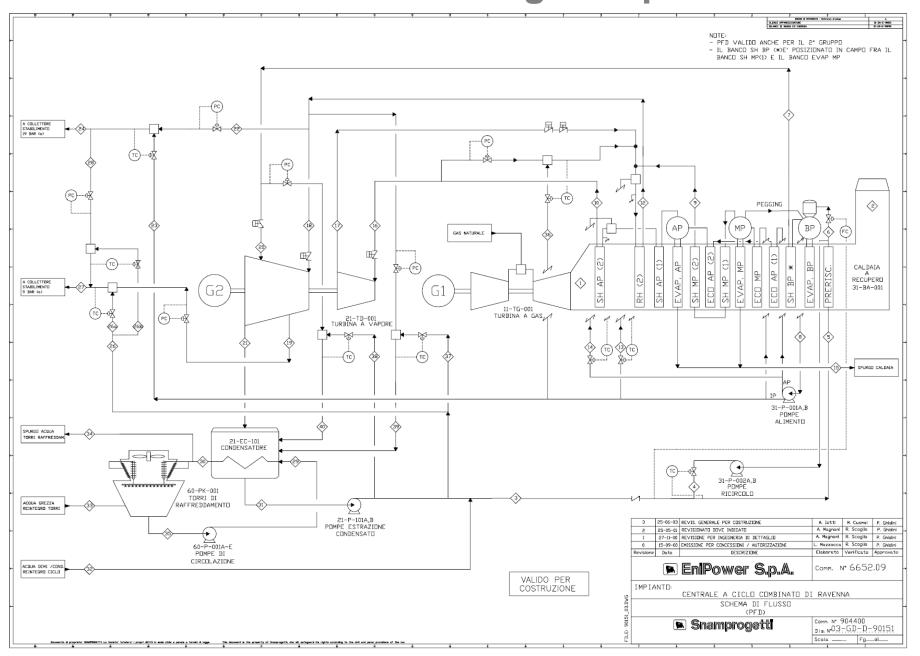
Tecnologie CHP a combustione esterna

Prototipali

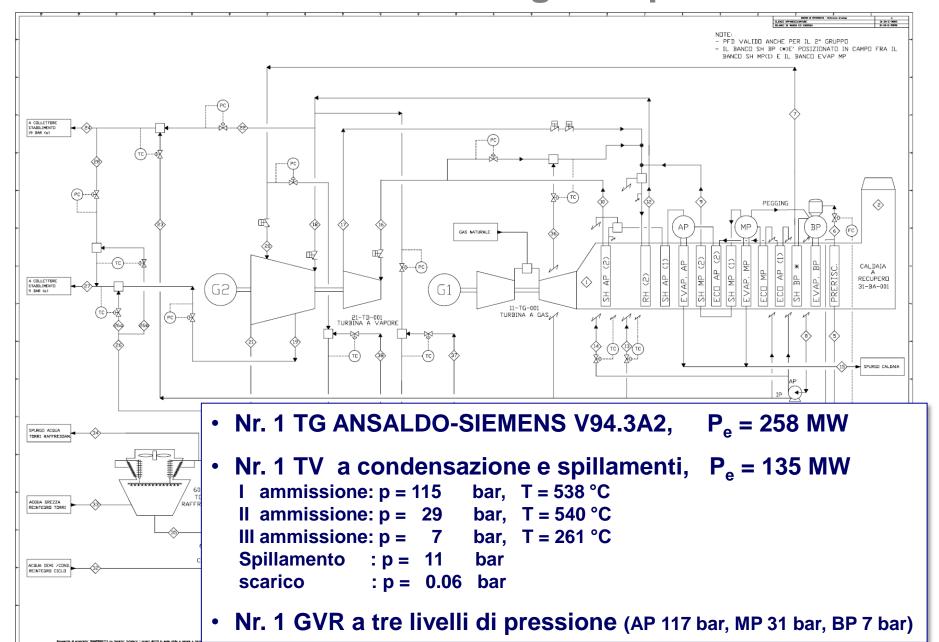
- ✓ Sistemi termofotovoltaici (TPV)
- √ Sistemi termoelettrici (TE)


Tecnologie CHP a combustione interna/esterna

- ✓ Ciclo combinato gas-vapore
- ✓ Ciclo combinato MCI-ORC
- ✓ Ciclo combinato MTG-ORC


Consolidate

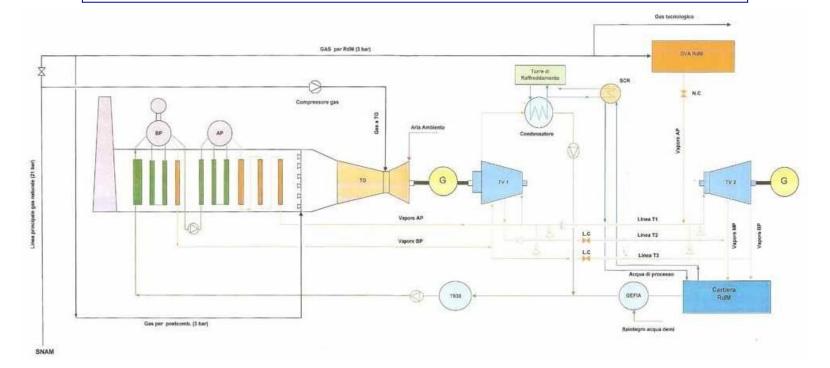
In fase di consolidamento


Il ciclo combinato gas-vapore

Il ciclo combinato gas-vapore

Il ciclo combinato gas-vapore

Il ciclo combinato gas-vapore


• Nr. 1 TG GE MS6001FA,

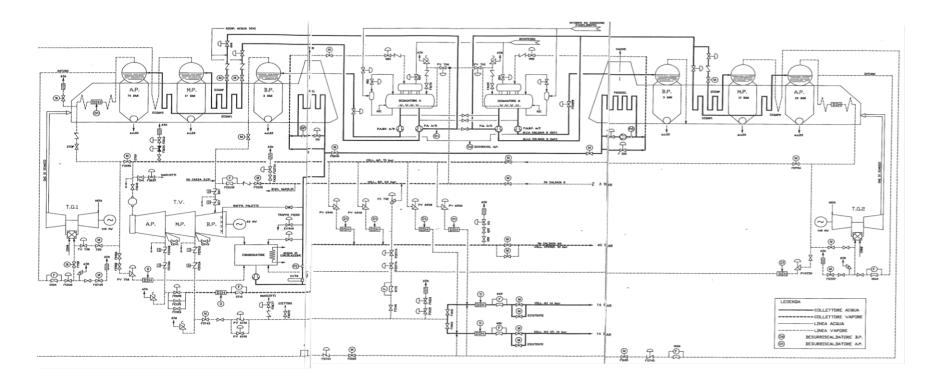
 $P_e = 68 MW$

• Nr. 1 TV a condensazione (TV1), P_e = 23 MW ammissione: p = 82 bar, T = 515 °C scarico : p = 0.06 bar

Nr. 1 TV a contropressione (TV2), P_e = 11 MW ammissione: p = 80 bar, T = 470 °C scarico : p = 3.5 bar

•Nr. 1 GVR a due livelli di pressione: (AP 84 bar, BP 4 bar)

Il ciclo combinato gas-vapore


• Nr. 2 TG SIEMENS V94.2, (ciascuno) $P_e = 150 \text{ MW}$

• Nr. 1 TV a condensazione e spillamenti, $P_e = 80 \text{ MW}$

I ammissione: p = 70 bar, T = 530 °C II ammissione: p = 2.2 bar, T = 126 °C

I spillamento : p = 42 bar Il spillamento : p = 16 bar scarico : p = 0.05 bar

• Nr. 2 GVR a tre livelli di pressione (AP 70 bar, MP 16 bar, BP 3 bar)

Le tecnologie

Tecnologie CHP a combustione interna

Prototipali

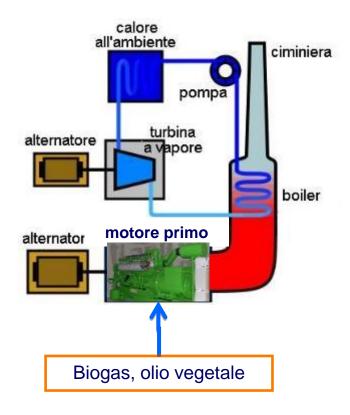
✓ Sistemi termofotovoltaici (TPV)

Tecnologie CHP a combustione esterna

Prototipali

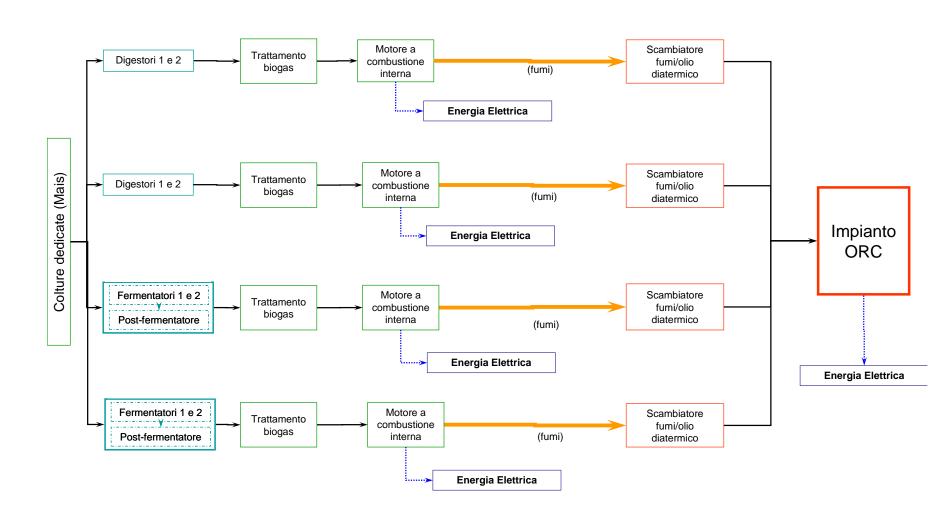
- ✓ Sistemi termofotovoltaici (TPV)
- √ Sistemi termoelettrici (TE)

Tecnologie CHP a combustione interna/esterna


- ✓ Ciclo combinato gas-vapore
- ✓ Ciclo combinato MCI-ORC
- ✓ Ciclo combinato MTG-ORC

Consolidate

In fase di consolidamento


Il ciclo combinato MCI/TG-ORC

- ✓ Il calore scaricato da MCI, TG e MTG ha ancora una temperatura sufficientemente elevata per poter essere sfruttata da un ciclo a vapore o da un ciclo ORC
- ✓ Per le taglie classiche della cogenerazione distribuita è più indicato l'ORC
- ✓ E' necessario avere taglie dell'ordine del MW
- ✓ Accoppiamento tramite scambiatori di calore

Il ciclo combinato con MCI

✓ Schema di ciclo combinato con più motori primi (MCI: 4 MW – ORC: 350 kW)

Le tecnologie

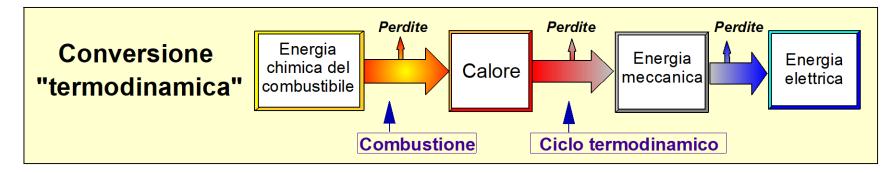
Tecnologie CHP a combustione interna

✓ Motori alternativi a combustione interna (MCI)

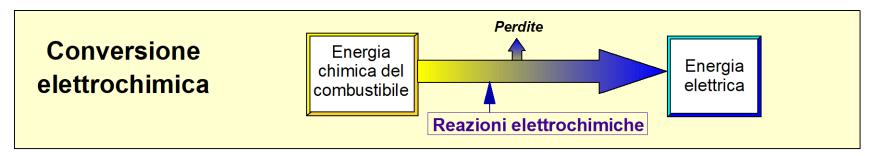
Consolidate

- √ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

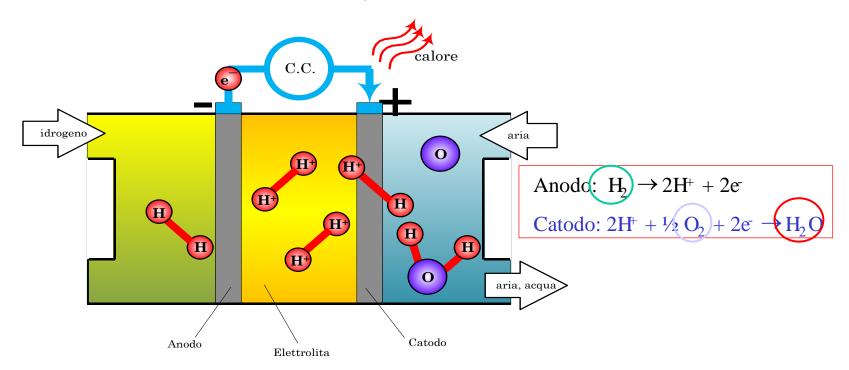

Tecnologie CHP a combustione esterna

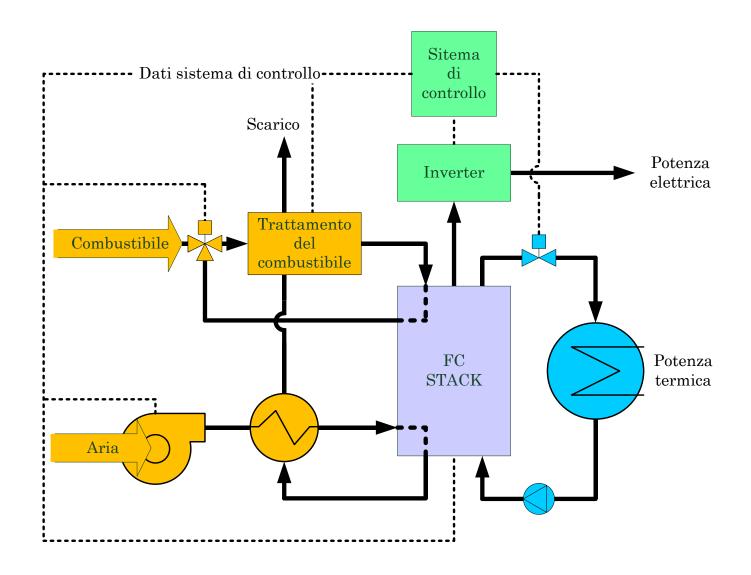
✓ Turbine a Vapore (TV)


Consolidate

- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

In fase di consolidamento



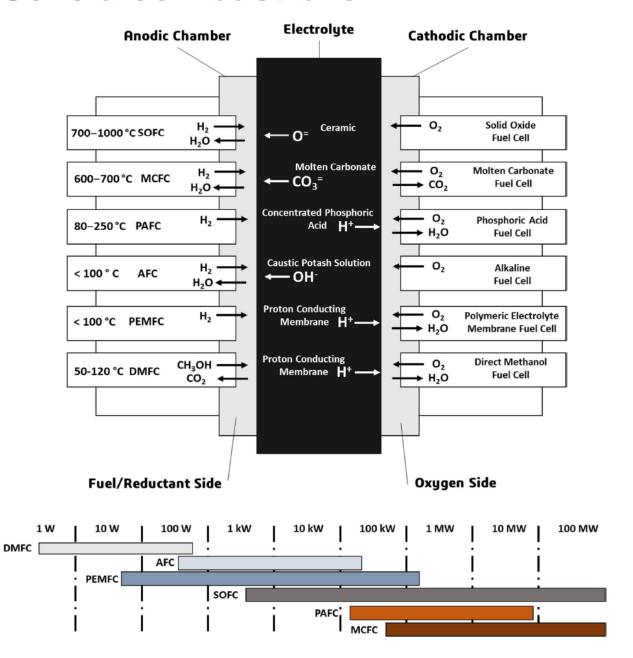

✓ In alternativa alla classica conversione "termodinamica", la trasformazione dell'energia chimica di un combustibile in energia elettrica può avvenire direttamente mediante reazioni elettrochimiche all'interno delle celle a combustibile (*Fuel Cell - FC*)

- ✓ La trasformazione elettrochimica può essere estremamente efficiente in quanto non deve sottostare alle limitazioni di rendimento imposte dal rendimento di Carnot
- La potenziale assenza di processi di combustione riduce le emissioni

✓ La struttura di una FC è analoga a quella di una pila elettrochimica; sono presenti due elettrodi (anodo e catodo) ed un elettrolita disposto tra i due elettrodi. Il combustibile, solitamente H₂, viene alimentato dall'esterno al comparto anodico, mentre un flusso di ossidante (aria o ossigeno puro) viene convogliato verso il catodo. La presenza di catalizzatore sugli elettrodi favorisce due semireazioni: di ossidazione elettrochimica dell'idrogeno e di riduzione elettrochimica dell'ossigeno con scambio di ioni attraverso l'elettrolita e formazione di acqua; in definitiva le reazioni liberano elettroni sull'anodo generando un flusso di corrente continua: tali elettroni possono essere convogliati su un carico elettrico esterno.

Le FC si classificano in base all'**elettrolita** che condiziona:

- le temperature di esercizio
- specie chimiche che reagiscono
- tolleranza alle impurezze


L'elettrolita può essere:

- solido (membrana polimerica)
- liquido alla temperatura ambiente (ad. es. acqua distillata)
- soluzione elettrolitica (ad. es. sali disciolti in acqua)
- sali fusi (ad. es. cloruri, carbonati)
- solidi ionici drogati e con vacanze (ad. es. alogenuri)

	PEMFC	AFC	PAFC	MCFC	SOFC
Elettrolita	Membrana polimerica (ioni H+)	Soluzione alcalina (ioni OH ⁻)	Acido fosforico (ioni H+)	Carbonati di litio fusi (ioni CO ₃ ²⁻)	Ossido di zirconio (ioni O ²⁻)
Reforming interno	No	No	No	Si	Si
Ossidante	Aria	O_2	Aria	Aria	Aria
Temperatura di funzionamento	60-110°C	90-250°C	150-210°C	600-700°C	700-1000°C
Rendimento del sistema ⁽¹⁾	32-50%	32-50%	30-40%	> 60%	50-70%
Sostanze nocive	CO, Zolfo	CO, CO2, Zolfo	CO, Zolfo	Zolfo	Zolfo

⁽¹⁾ con riferimento al potere calorifico superiore, HHV

	Tipo di FC	Reazione anodica	lone trasporta nell'elettrolita		Temperatura operativa (°C)
	PEMFC	H ₂ → 2e ⁻ + 2H ⁺	H+	$2H^+ + 1/2 O_2 + 2e^- \Rightarrow H_2O$	< 100
вт	AFC	2e ⁻ + 2H ₂ O ← H ₂ + 2(OH) ⁻	← — OH ⁻	2(OH)⁻ ← H ₂ O + 1/2 O ₂ + 2e⁻	< 100
	PAFC	H ₂ → 2e ⁻ + 2H ⁺	H ⁺	2H ⁺ + 1/2 O ₂ + 2e ⁻ → H ₂ O	80 - 250
AT	MCFC	2e ⁻ + H ₂ O + CO ₂ ← H ₂ + CO	O ₃ =	CO ₃ = ← 1/2 O ₂ + CO ₂ + 2e ⁻	600 - 700
	SOFC	2e⁻ + H ₂ O ← H ₂ + O⁼	← O=	O= ← 1/2 O ₂ + 2e ⁻	700 - 1000
		⊖ e -		⊕	_


- ✓ utilizzo di idrogeno come combustibile principale
- ✓ bassa densità di potenza (le PEMFC hanno la più alta densità di potenza)
- ✓ produzione di corrente continua (necessità di inverter)
- ✓ alta efficienza ai carichi parziali
- ✓ adattamento alle variazioni di carico
- generazione di calore sfruttabile per cogenerazione
- ✓ ridotte emissioni inquinanti grazie alla combustione evitata
- ✓ conversione statica: assenza di parti meccaniche in movimento e ridotto inquinamento acustico
- ✓ modularità (taglia "stack" teoricamente illimitata)
- ✓ assenza di effetto taglia
- ✓ possibile funzionamento reversibile come elettrolizzatore
 (principalmente SOFC/SOE, ancora allo stadio prototipale)

Il combustibile principale utilizzato dalle FC è l'idrogeno

- <u>le celle a bassa temperatura non sono tolleranti al CO</u> e necessitano di un impianto di trattamento per convertire il combustibile disponibile in un gas con un contenuto più o meno elevato di idrogeno ("reformer")
- <u>le celle ad alta temperatura</u> (MCFC e SOFC) <u>possono essere in grado di effettuare autonomamente un reforming interno</u>, ovvero di <u>essere alimentate con gas naturale o gas di sintesi</u> (es. miscela CH₄, H₂, CO, CO₂, H₂O)

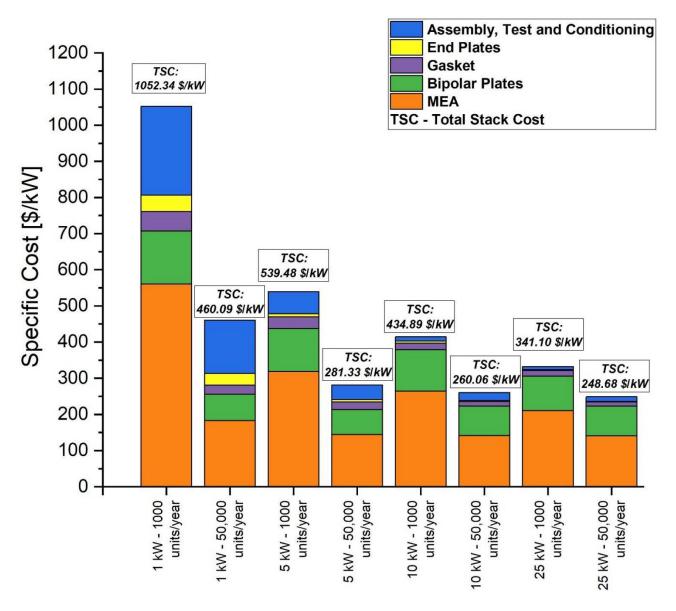
E' inoltre necessario ridurre la concentrazione di impurezze o di elementi dannosi (es. lo <u>zolfo</u> in tutti i suoi composti: H₂S, COS ...), capaci di degradare le prestazioni della cella anche in modo irreversibile

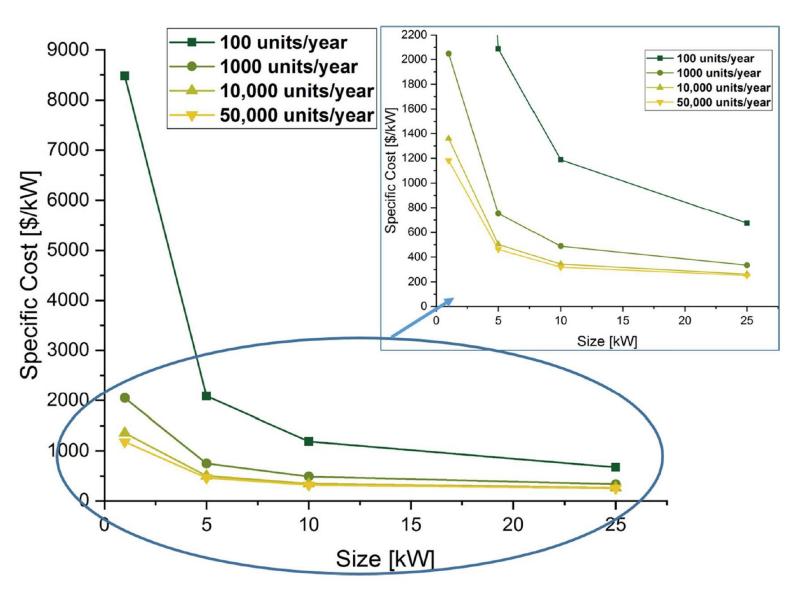
Celle singole formano una pila ("stack"), da cui moduli di potenza maggiore ed impianti di grande potenza ottenuti sommando più moduli.

Fuel Cell

Table 1. PEMFC and SOFC, micro-CHP installation.

Country/State	Technology	Cumulated Installed Capacity [MW] *	Installations [Thousands of Units]	Price per Sale
Europe	PEMFC/SOFC	7.5	~10	10 kEuro/kW
Japan	PEMFC/SOFC	270	~360	7–8.8 kUSD/Unit

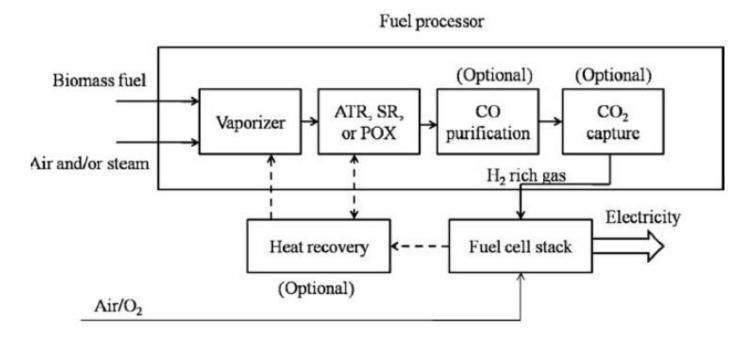

^{*} Calculated by considering an average installation size of 0.75 kW_{el}.


Table 2. PEMFC and SOFC, micro-CHP Performance.

Country/State Manufacturer Technology Electrical Output [kW]		Electric Efficiency [%]	Total Efficiency [%]		
	SenerTec [81]	PEMFC	0.75	38	92
	Remeha [82]	PEMFC	0.75	38	92
Енторо	Bosch [83]	SOFC	1.5	60	Up to 88
Europe	SOLIDpower [84]	SOFC	1.5	Up to 57	Up to 90
	Sunfire [85]	SOFC	0.75	38	88
	Viessmann [86]	PEMFC	0.75	37	92
	Panasonic [87]	PEMFC	0.7	40	97
Japan	AISIN [88]	SOFC	0.7	55	87
	Kyocera [89]	SOFC	0.4	47	80

Table 3. MCFC and PAFC, Large-scale Installations.

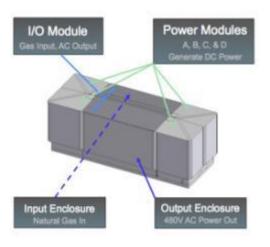
Country/State	Technology	Cumulated Installed Capacity [MW]	Subsides	Price per Sal
USA	MCFC	150	600–1200 EUR/kW (NG or Biogas)	8000-9000 USD/kW
Europe	MCFC	13	34 M Euro, Horizon 2020 for Stationary FC	NA
Korea	MCFC	150	NA	NA
Japan	MCFC	6	300-400 M USD for R&D on Stationary FC	NA
RoW	MCFC	NA	NA	NA
USA	PAFC	50	NA	NA
Europe	PAFC	1	34 M Euro, Horizon 2020 for Stationary FC	NA
Korea	PAFC	130	up to 80% of the costs for demonstration projects	NA
Japan	PAFC	8	300–400 M USD for R&D on Stationary FC	NA
RoW	PAFC	NA	NA	NA


Tipologia	ηе	ηtot	Impiego	Costi
				sistema
				cogenerativo
				a Gas Naturale
PEMFC	< 0.40	0.80-0.95	Riscaldamento acqua	4000 €/kW _{el}
			sanitaria (50-60 °C)	Target: <600
SOFC	< 0.60	0.80-0.95	Vapore ad uso	3500 €/kW _{el}
			industriale (~800 °C)	Target: < 600
MCFC	< 0.5	0.75-0.90	Vapore ad uso	3500 €/kW _{el}
			industriale (~500 °C)	Target: < 600

Biomasse e Celle a combustibile

- ✓ Recentemente si stanno affermando i sistemi integrati biomassa/celle a combustibile, comunemente chiamati Biomass-Integrated gasification fuel cell (B-IGFC)
- ✓ Basati sulla presenza di una gassificazione associata alla conversione energetica in una cella a combustibile
- ✓ Le celle più indicate per queste applicazioni sono le MCFC e le SOFC, ma studi recenti pongono attenzione anche alle PEM

Biomasse e Celle a combustibile


✓ Componente essenziale è il reformer dove il generico combustibile viene convertito in un gas ricco di idrogeno

- ✓ Le SOFC sono tra le più indicate grazie a:
 - alta tolleranza alle impurità
 - possibilità di effettuare il reforming internamente

Biomasse e SOFC

 Cella combustibile SOFC alimentata direttamente a biogas prodotta dalla Bloomenergy

ES-5000 Energy Saver					
Potenza combustibile kW 194					
Potenza elettrica netta	kW	100			
Rendimento elettrico netto % 52					

Dimensioni package: 5.7 x 2.1 x 2.1 m

Peso package: 10000 kg

Le tecnologie

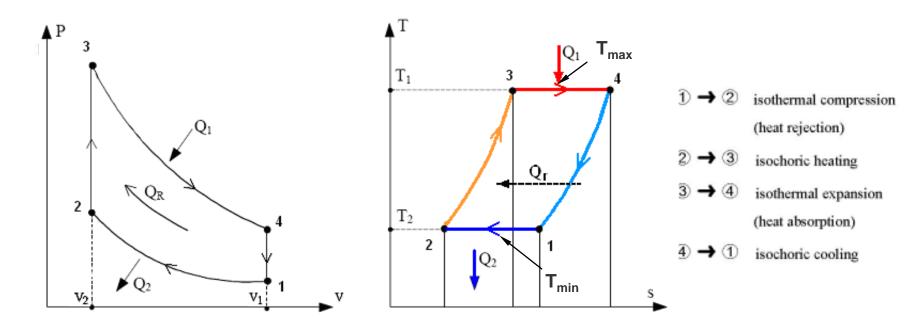
Tecnologie CHP a combustione interna

✓ Motori alternativi a combustione interna (MCI) Consolidate

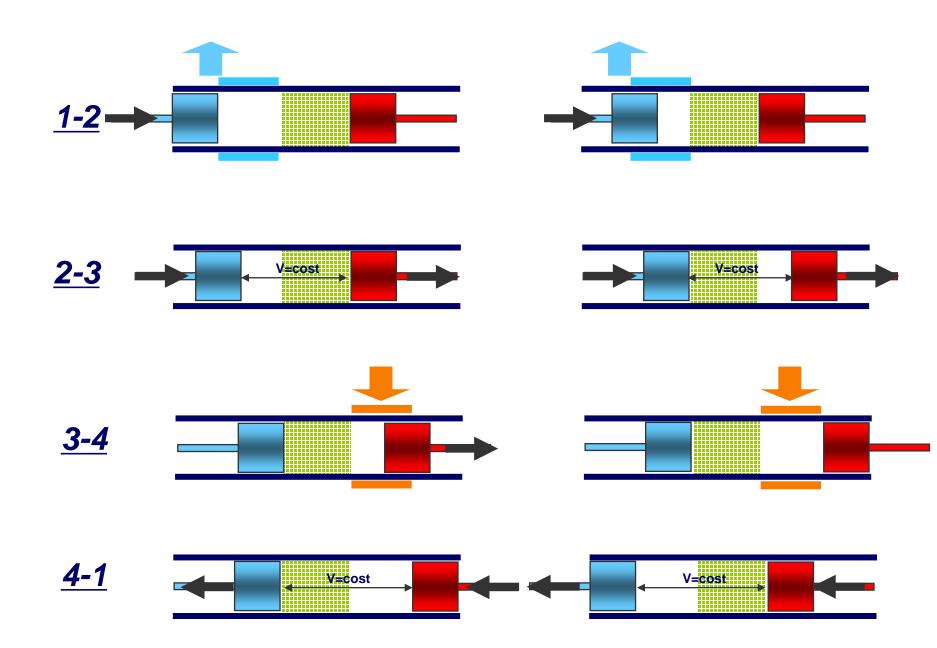
- √ Turbine a Gas (TG) e Micro Turbine a Gas (MTG)
- ✓ Celle a combustibile Fuel Cell (FC)

In fase di consolidamento

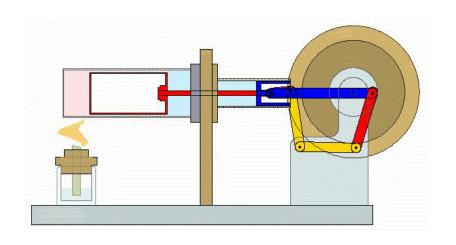
Tecnologie CHP a combustione esterna

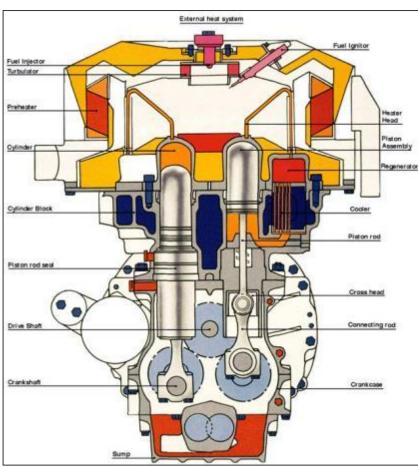

✓ Turbine a Vapore (TV)

Consolidate

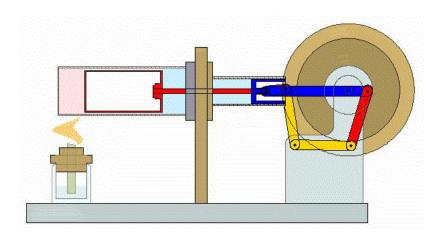

- ✓ Motori Alternativi a Vapore (MAV)
- ✓ Cicli Rankine a fluido Organico (ORC)
- ✓ MTG a combustione esterna (EFMGT)
- ✓ Motori Stirling

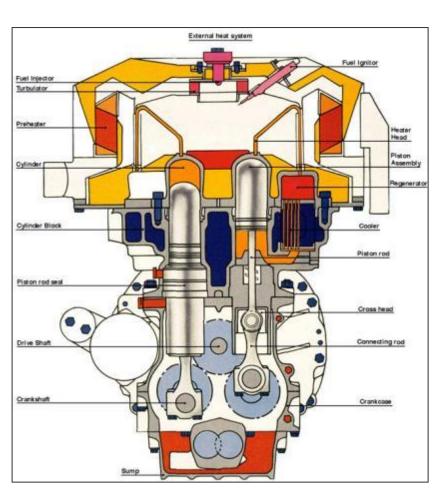
In fase di consolidamento

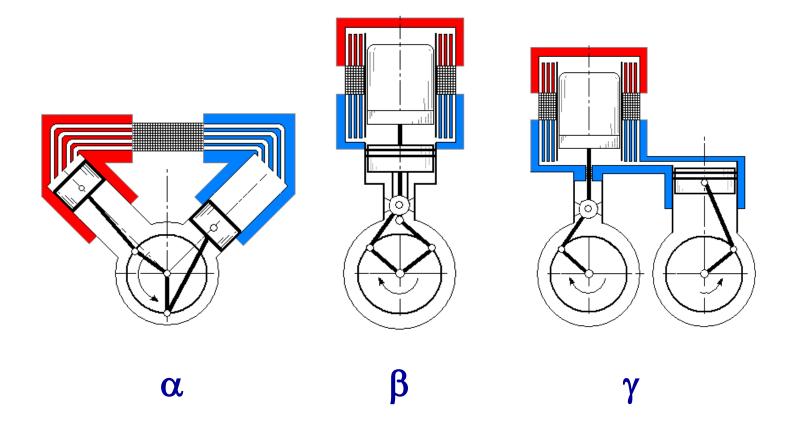

- ✓ opera secondo un ciclo chiuso a gas (elio, azoto, aria)
- combustione esterna e continua (libertà sulla scelta del combustibile, minori emissioni gassose e sonore)
- calore introdotto e scaricato attraverso scambiatori di calore
- ✓ rigenerazione completa del calore lungo le isocore



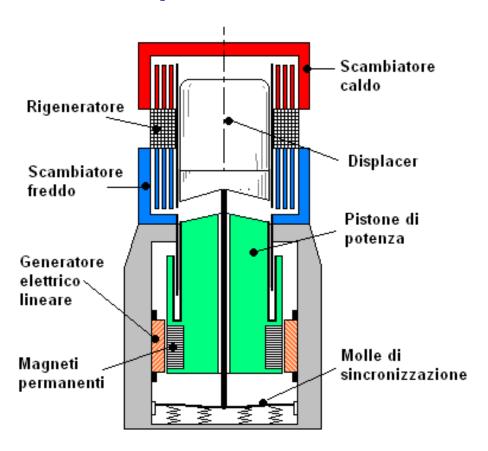
 $\eta_t = 1 - (T_{min}/T_{max})$ rendimento del ciclo termodinamico ideale



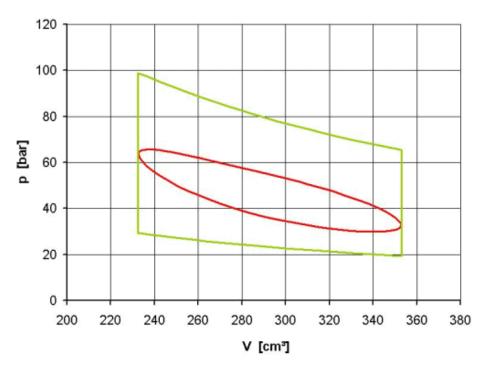

- possibile recupero di flussi termici a bassa temperatura (250 °C)
- ✓ taglie fino a qualche decina di kW_e
- √ η_e=10-35 %



- ✓ possibile recupero di flussi termici a bassa temperatura (250 °C)
- ✓ taglie fino a qualche decina di kW_e
- $\sqrt{\eta_e} = 10-35 \%$
- ✓ elevati tempi di avviamento
- complessità e varietà di architetture
- ✓ costi ≈ 3000 €/kW_e



a guida cinematica



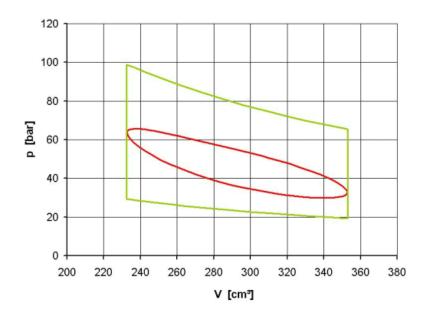
a pistoni liberi

Motore Stirling: ciclo ideale vs reale

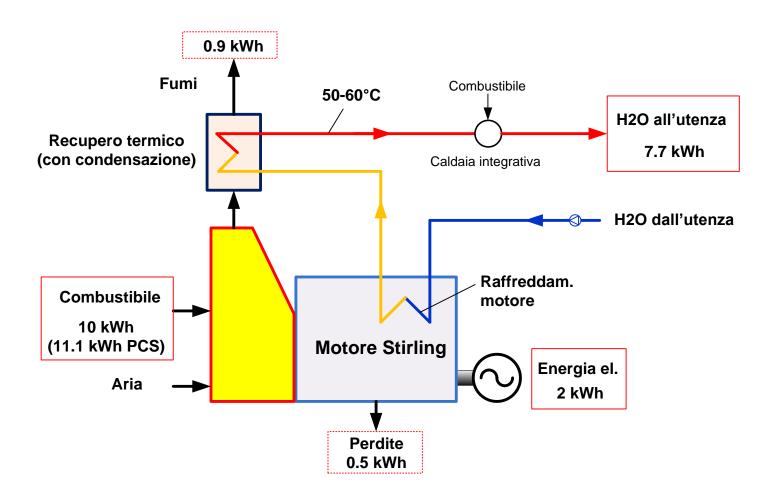
- variazione del volume continua (e non discontinua);
- introduzione e scarico calore attraverso scambiatori di calore esterni;
- spazio morto (rigeneratore, tubi, scambiatori) che riduce il rapporto di compressione;
- perdite di calore e inerzia termica del rigeneratore;
- perdite di pressione attraverso gli scambiatori ed il rigeneratore;
- trafilamenti tra cilindro e pistone;
- ✓ attriti meccanici;
- ecc.

Motore Stirling: ciclo ideale vs reale

$$\eta_{e} = \frac{P_{e}}{P_{fuel}} = \eta_{b} \, \eta_{t} \, \eta_{i} \eta_{m} \eta_{o} \eta_{gen.el.} = 0.08 - 0.35$$


 $\eta_b = 0.85-0.92$ rendimento del bruciatore

η_t = 0.65-0.72 rendimento del ciclo termodinamico ideale


η_i = 0.24-0.63 rendimento indicato (rapporto tra lavoro dei cicli di indicatore reale e ideale)

 $\eta_m = 0.75\text{-}0.95$ rendimento meccanico $\eta_o = 0.85\text{-}0.90$ rendimento organico $\eta_{gen.el.} = 0.96\text{-}0.98$ rendimento del

generatore elettrico

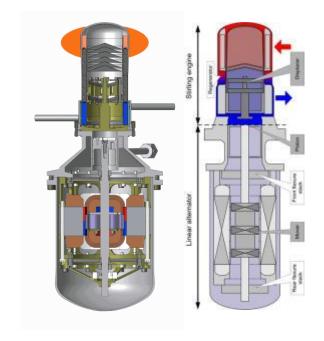
Cogenerazione con motori Stirling

Caso di motore Stirling con rendimento 20 % (rappresentativo)

Existing gas µCHP prototypes.

	Manufacturer	Apparatus	Power		LHV efficiency	
			Electric, kW _{el}	Thermal, kW _{th}	Electric, %	Thermal, %
Gas Stirling	g engine (gas SE)					
	Enatec	Infinia	1	6.4	12.5	80
•	SOLO	Stirling 161	2-9.5	8–26	22-24.5	65-75
	Disenco	Inspirit	3	15	16	76
	Baxi	Ecogen	0.3-1	3.7-25.3	16	83
	Viessmann	Witowin 300-W	1	3.6-20	15	82
	WhisperGen	EU1	1	7.5-14.5	11	84
	De Dietrich Remeha	Hybris Power	1	3–23.7	17	85
	Senertech	Stirling SE	1	3-23.8	14	77
	Sunmachine	Gas	1.5-3	8–15	25	65

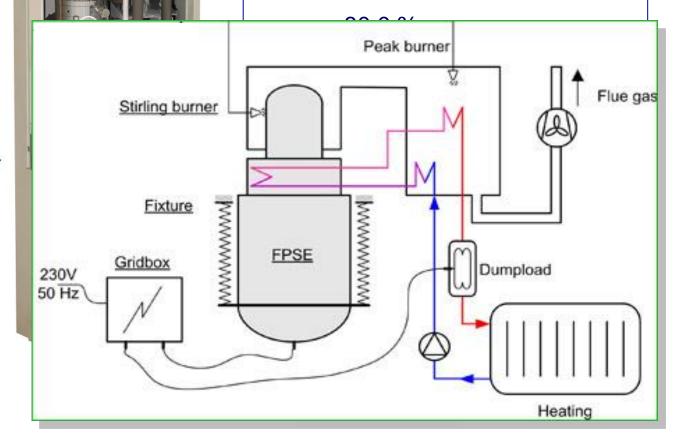
: available.


introducing phase.

- 1 Water cooled exhaust manifold Condotto fumi raffreddato ad acqua
- 2 Engine burner Bruciatore motore
- 3 Booster boiler Caldaia supplementare
- 4 Stirling Engine
 Motore Stirling
- 5 Suspensions Sospensioni
- 6 Dump load resistor Resistenza di avviamento/stop
- 7 Stratification hydroblock Gruppo idraulico
- Stratification tank
 Accumulo a
 stratificazione
- 9 DHW Pump Pompa sanitaria

Enatec Infinia

- $P_e = 1 \text{ kW}_e$
- $P_{th} = 6.4 \text{ kW}_{th}$
- $\eta_e = 12.5 \%$
- $\eta_{th} = 80.0 \%$
- $\eta_U = 92.5 \%$


1 Water cooled exhaust manifold

Condotto fumi raffreddato ad acqua

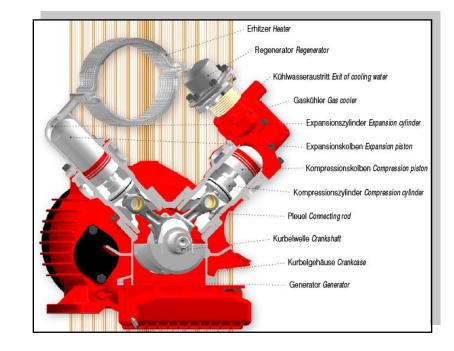
- 2 Engine burner Bruciatore motore
- 3 Booster boiler Caldaia supplementare
- 4 Stirling Engine
 Motore Stirling
- 5 Suspensions Sospensioni
- 6 Dump load resistor Resistenza di avviamento/stop
- 7 Stratification hydroblock Gruppo idraulico
- 8 Stratification tank Accumulo a stratificazione
- 9 DHW Pump Pompa sanitaria

Enatec Infinia

- $P_e = 1 \text{ kW}_e$
- $P_{th} = 6.4 \text{ kW}_{th}$
- $\eta_e = 12.5 \%$

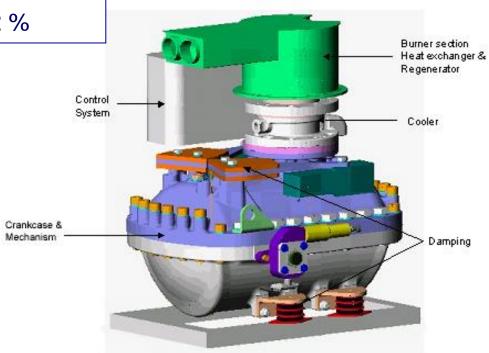
AZELIO (già SOLO Stirling)

(Svezia)


Technical Data

STIRLING Engine

Natural gas CHP module


Electrical power	2 - 9 kW (±5%)*
Thermal power	8 - 26 kW
Electrical efficiency	22 - 24,5 % (±1)*
Total efficiency	92 + 96 %*
Fuel consumption (net calorific value)	1,2 - 3,8 Nm³/h
Working gas	Helium
Service interval	4.000 - 6.000 h
Emissions CO (at 5% O _s)	50 mg/m ³
Emissions NOx (at 5% O)	80 mg/m ³
Oil consumption	keiner/none
Dimensions L x W x H	1280 x 700 x 980 mm
Weight	460 kg
*temperature at heating inlet 50°C	

Disenco

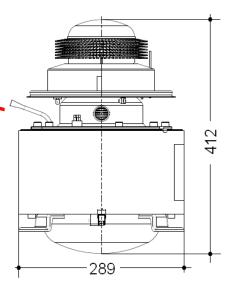
- $P_e = 3 \text{ kW}_e$
- $P_{th} = 12-18 \text{ kW}_{th}$
- $\eta_e = 16 \%$
- η_{th} = 76 %
- η_U = 92 %

Baxi Ecogen

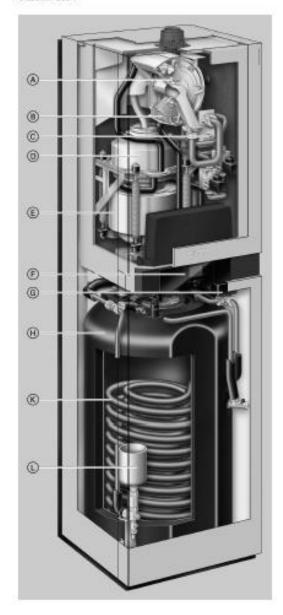
- $P_e = 1 \text{ kW}_e$
- $P_{th} = 6 \text{ kW}_{th} \text{ (in cond. 6.4 kW}_{th})$

(con bruciatore di picco: $P_{th} = 24 \text{ kWth}$, in cond. 25.9 kW_{th})

- $\eta_e = 13 \%$
- η_{th} = 78 % (in condensazione 83 %)
- η_U = 91 % (in condensazione 96 %)



Baxi Ecogen


- $P_e = 1 \text{ kW}_e$
- P_{th} = 6 kW_{th} (in cond. 6.4 kW_{th})

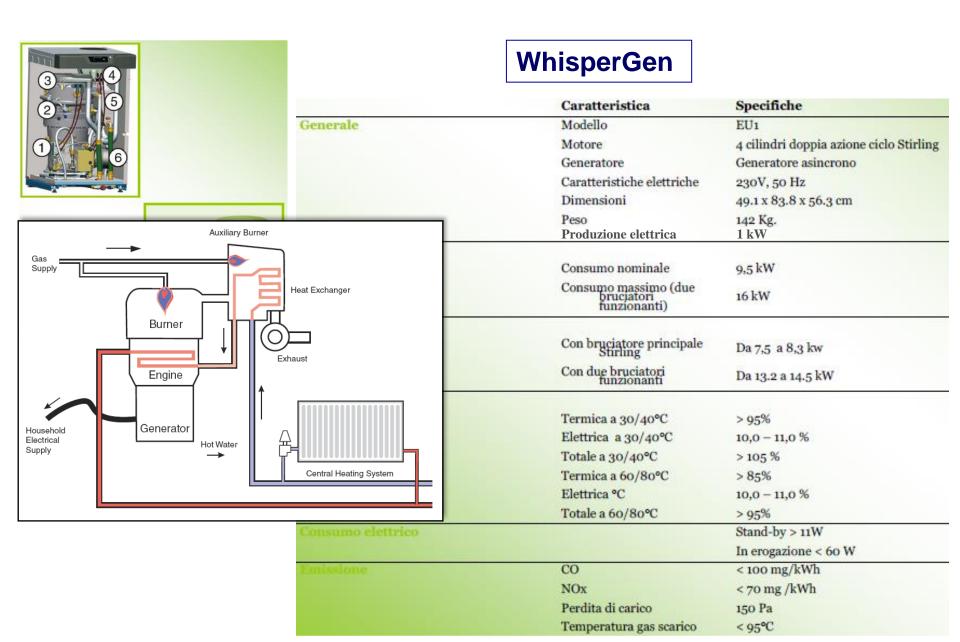
(con bruciatore di picco: $P_{th} = 24 \text{ kWth}$, in cond. 25.9 kW_{th})

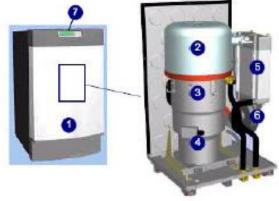
- $\eta_{e} = 13 \%$
- η_{th} = 78 % (in condensazione 83 %)
- η_U = 91 % (in condensazione 96 %)

Vitotwin 360-F

- (A) Caldala per il carico di punta
- Superfici di scambio termico inox-Radial in accialo inossidabile
- Valvola di distribuzione dell'aria
- Bruclatore circolare
- E) Motore Stirling
- Regolazione per esercizio in funzione delle condizioni cilmati
- Walvola deviatrice a 3 vi
- Serbatolo d'accumulo acqua di riscaldamento
- 3 Scambiatore di calore per separazione sistema
- Vaso di espansione a membrani

Viessmann Vitotwin 350-F (Microgen)


- $P_e = 1 \text{ kW}_e$
- P_{th} = 26 kW_{th} (in cond. con bruciatore di picco)



WhisperGen

	Caratteristica	Specifiche
Generale	Modello	EU1
	Motore	4 cilindri doppia azione ciclo Stirling
	Generatore	Generatore asincrono
	Caratteristiche elettriche	230V, 50 Hz
	Dimensioni	49.1 x 83.8 x 56.3 cm
	Peso	142 Kg.
	Produzione elettrica	1 kW
Consumo		
	Consumo nominale	9,5 kW
	Consumo massimo (due bruciatori funzionanti)	16 kW
Produzione termica		
	Con bruciatore principale Stirling	Da 7,5 a 8,3 kw
	Con due bruciatori funzionanti	Da 13.2 a 14.5 kW
Efficienza		
	Termica a 30/40°C	> 95%
	Elettrica a 30/40°C	10,0 - 11,0 %
	Totale a 30/40°C	> 105 %
	Termica a 60/80°C	> 85%
	Elettrica °C	10,0 - 11,0 %
	Totale a 60/80°C	> 95%
Consumo elettrico		Stand-by > 11W
		In erogazione < 60 W
Emissione	СО	< 100 mg/kWh
	NOx	< 70 mg /kWh
	Perdita di carico	150 Pa
	Temperatura gas scarico	< 95°C

- Steel enclosure with stainless steel front panel.
- 8 Burner assembly
- Stirling engine assembly
- Sealed Alternator
- Exhaust Heat Exchanger
- Burner Fan
- Control panel

Motore Whispertech da 1.2 kW_{el}, η_{el}=12% per cogenerazione domestica; sperimentato in UK, Nuova Zelanda.

Soluzioni simili sperimentate anche da altre società (British Gas; consorzi Olanda-USA).

- ➤ Il basso rapporto EE/calore si adatta bene alle applicazioni residenziali; rendimento totale 95-98%.
- ≽costi attuali elevati

PROSPETTIVE FUTURE:

✓ Costi attesi fino a 500 €/kW_{el} anche per piccole taglie

Sunmachine (Germania)

Motore Stirling cogenerativo alimentato a pellet

Electr. power fed to grid: 1.5 - 3 kW Thermal power: 4.5 - 10.5 kW Efficiency (electric): 20 - 25 % Overall efficiency: approx. 90 % Outgoing temperature: 50 - 75° C Return temperature, max. 60° C

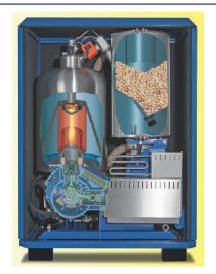
Optimal:

Sound emission:

Color:

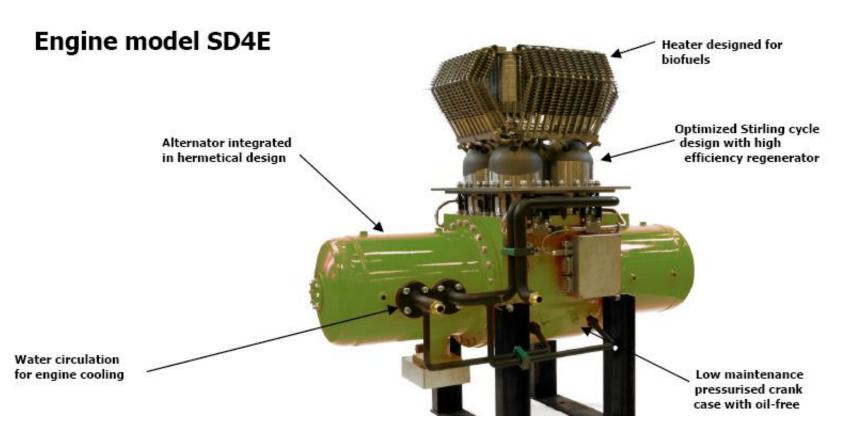
Weight: (without covering)

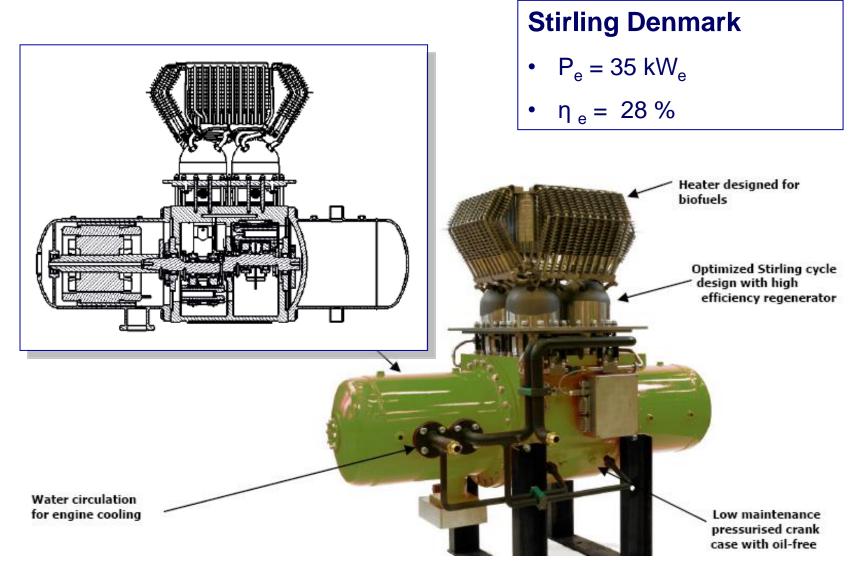
Dimensions LxWxH in mm:


30° C approx. 49 dB

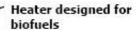
RAL 5001 (blue-green)

410 kg


760×1160×1590



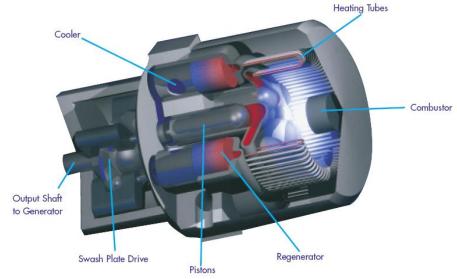
Stirling Denmark


- $P_e = 35 \text{ kW}_e$
- $\eta_e = 28 \%$

- $P_e = 35 \text{ kW}_e$
- $\eta_e = 28 \%$

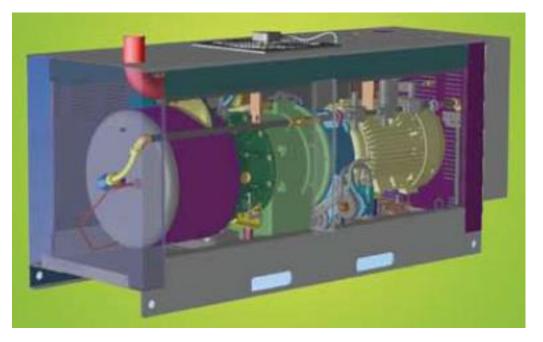
Optimized Stirling cycle design with high efficiency regenerator

Water circulation for engine cooling


Low maintenance pressurised crank case with oil-free

STM Corporation

- $P_e = 55 \, kW_e$
- $P_{th} = 91 \, kW_{th}$
- $\eta_e = 30 \%$
- $\eta_{th} = 50 \%$
- $\eta_U = 80 \%$

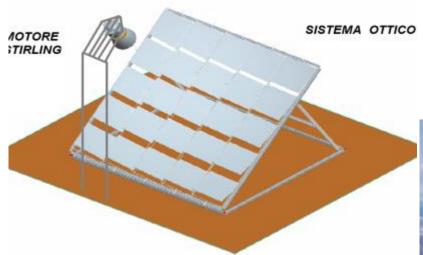


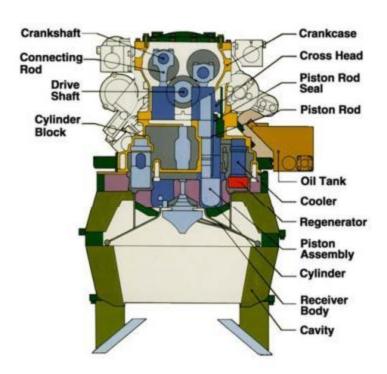
STM 4-Piston Stirling Engine

Stirling Biopower

- $P_e = 38 \, kW_e$
- $P_{th} = 68 71 \, kW_{th}$
- $\eta_e = 27 28 \%$
- $\eta_U = 75 80 \%$

Infinia – applicazione solare


 $P_e = 3 \text{ kW}_e \text{ (specchi puliti, } T_{amb} = 20 \text{ °C, insolazione } 850 \text{ W/m}^2\text{)}$



Microgen – applicazione solare

Stirling Energy Systems (SES) (USA)

Motore Stirling ad energia solare

Stirling Energy Systems (SES) (USA)

Motore Stirling ad energia solare

Le tecnologie

Tecnologie CHP a combustione interna

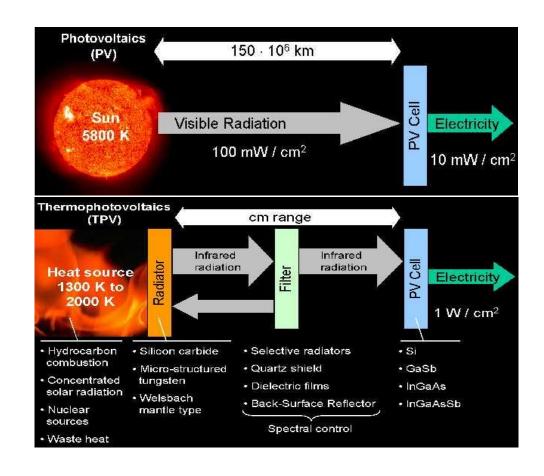
Prototipali

✓ Sistemi termofotovoltaici (TPV)

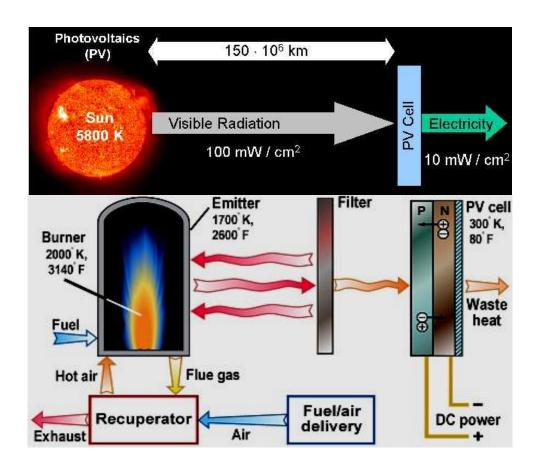
Tecnologie CHP a combustione esterna

Prototipali

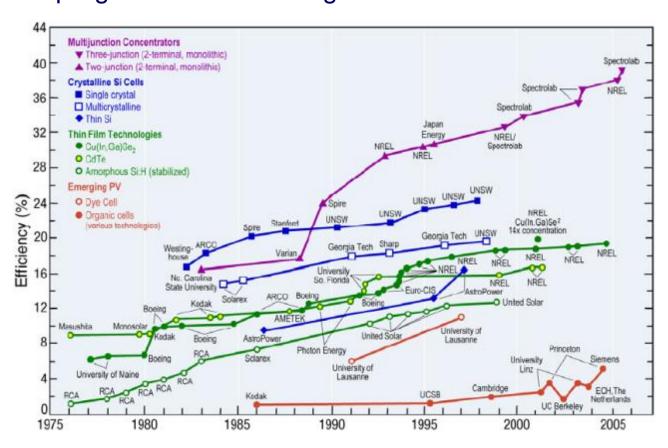
- ✓ Sistemi termofotovoltaici (TPV)
- √ Sistemi termoelettrici (TE)


Tecnologie CHP a combustione interna/esterna

- ✓ Ciclo combinato gas-vapore
- ✓ Ciclo combinato MCI-ORC
- ✓ Ciclo combinato MTG-ORC

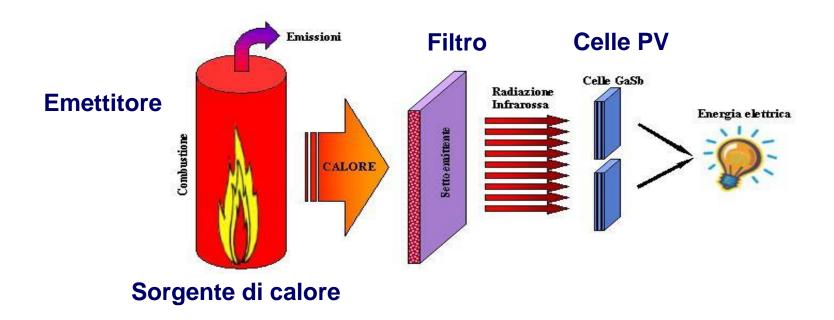

Consolidate

In fase di consolidamento

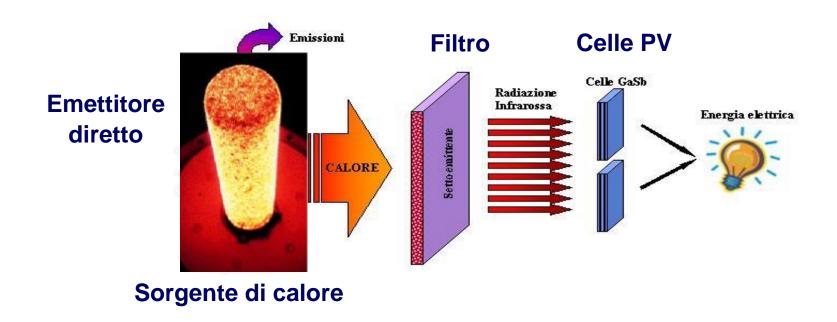

✓ La tecnologia termofotovoltaica (TPV) è basata sulla conversione dell'energia irraggiata da un emettitore in elettricità attraverso celle fotovoltaiche (PV)

✓ La tecnologia termofotovoltaica (TPV) è basata sulla conversione dell'energia irraggiata da un emettitore in elettricità attraverso celle fotovoltaiche (PV)

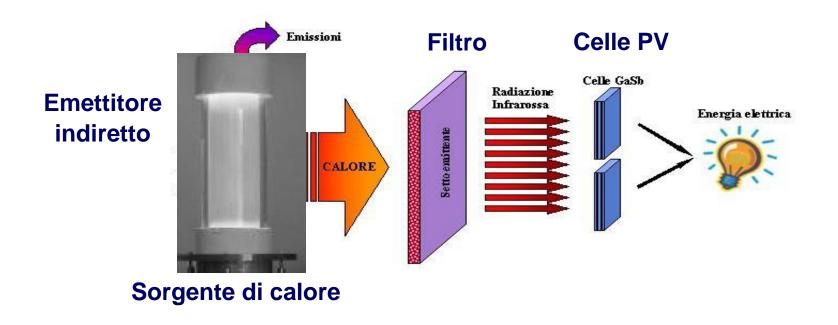
- ✓ Questa tecnologia nasce attorno agli anni '60 al MIT ma solo negli ultimi anni ha ricevuto nuovo impulso grazie
 - ✓ progressi nella tecnologia delle celle fotovoltaiche


- ✓ Questa tecnologia nasce attorno agli anni '60 al MIT ma solo negli ultimi anni ha ricevuto nuovo impulso grazie
 - ✓ progressi nella tecnologia delle celle fotovoltaiche
 - ✓ particolare adattabilità a numerosi settori di nicchia quali:

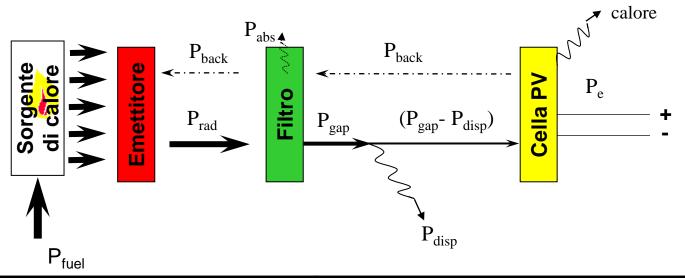
```
elettronica (1-2 W)
sistemi portatili e batterie (10-50 W)
produzione energia on-board di veicoli
(100-300 W)
```


microcogenerazione residenziale (1000-3000 W)

- ✓ La tecnologia TPV presenta una serie di fattori positivi
 - ✓ funzionamento silenzioso (no parti in movimento)
 - ✓ particolare adattabilità a combustibili di varia natura (può essere utilizzato anche con combustione esterna)
 - ✓ emissioni molto basse
 - ✓ densità di potenza molto elevate (100 volte quelle di un sistema a celle fotovoltaiche basate sulla radiazione solare)
- ✓ Limiti della tecnologia
 - ✓ ancora necessaria R&D per ingegnerizzare il sistema
 - ✓ rendimento elettrico molto basso (1-10 %), ma elevati rapporti P_{th}/P_e (10-20)
 - ✓ costi medio-alti ma in fase di rapido calo

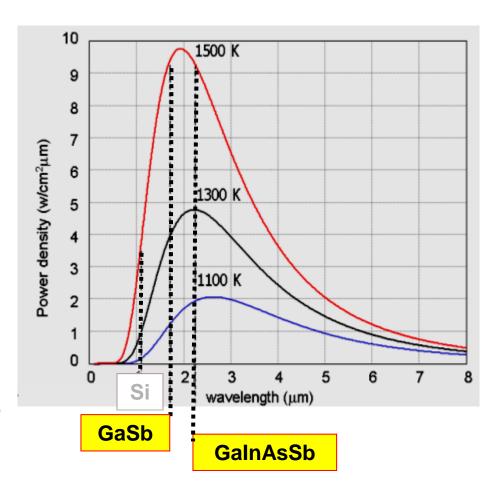

- ✓ Un sistema di generazione termofotovoltaico è composto essenzialmente da quattro elementi:
 - una sorgente di calore
 - un emettitore
 - un filtro
 - una serie di celle fotovoltaiche

- ✓ Un sistema di generazione termofotovoltaico è composto essenzialmente da quattro elementi:
 - una sorgente di calore
 - un emettitore
 - un filtro
 - una serie di celle fotovoltaiche

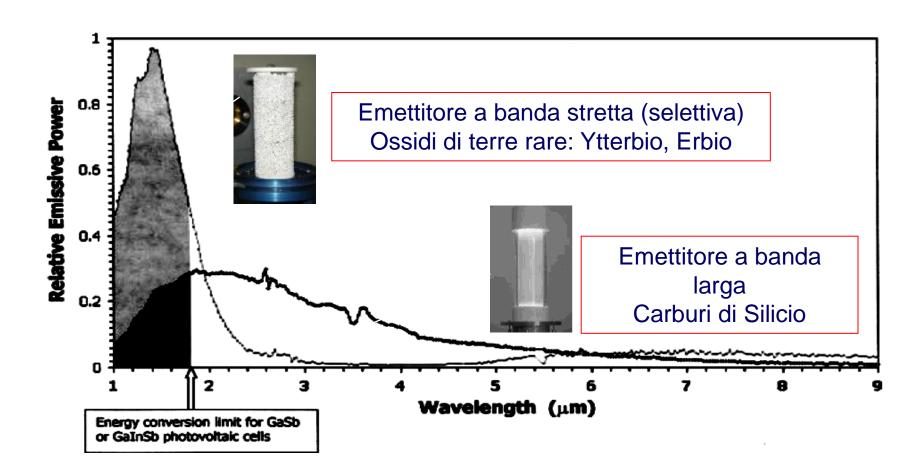


- ✓ Un sistema di generazione termofotovoltaico è composto essenzialmente da quattro elementi:
 - una sorgente di calore
 - un emettitore
 - un filtro
 - una serie di celle fotovoltaiche

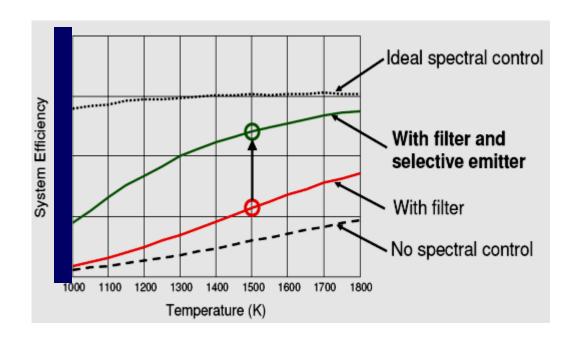
- ✓ In un sistema di combustione che interagisce indirettamente con l'emettitore il calore sviluppato dalla combustione viene trasmesso per scambio termico ad un radiatore, che diventa incandescente
 - ✓ poichè il sistema è a combustione esterna, è possibile utilizzare un combustibile qualsiasi (biogas, bio-oli, biomasse, oli vegentali, RSU, ecc.)


Rendimento radiante	$ \eta_{\text{RAD}} = \frac{P_{\text{rad}}}{P_{\text{fuel}}} $	Rendimento di vista	$\eta_{\rm VF} = \frac{P_{\rm gap} - P_{\rm disp}}{P_{\rm gap}}$
Rendimento spettrale	$ \eta_{\rm SP} = \frac{P_{\rm gap}}{P_{\rm rad}} $	Rendimento cella PV	$\eta_{\rm PV} = \frac{P_{\rm e}}{P_{\rm gap} - P_{\rm disp}}$

$$\eta_{\mathrm{TPV}} = \frac{P_{\mathrm{e}}}{P_{\mathrm{fuel}}} = \eta_{\mathrm{RAD}} \, \eta_{\mathrm{SP}} \, \eta_{\mathrm{VF}} \, \eta_{\mathrm{PV}}$$


✓ Le celle PV al Silicio (Si) o al Germanio (Ge), che sono relativamente meno costose e più diffuse, presentano bande di valenza elevate per le applicazioni TPV

✓ Recentemente vengono sperimentate ed utilizzate celle PV a base di Gallio (Ga), Antimonio (Sb), Indio (In) ed Arsenico (As) (più efficienti ma contengono elementi tossici (Sb, As) e la loro produzione è ancora piuttosto costosa)


GaSb (
$$E_g = 0.73 \text{ eV}$$
)
GaInAs ($E_g = 0.72 \text{ eV}$)
GaInAsSb ($E_g = 0.53 \text{ eV}$)

Requisito essenziale dell'emettitore è quello di irraggiare ad una frequenza ottimizzata per le celle fotovoltaiche

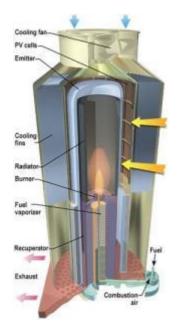
- Il filtro permette di far passare alle celle PV solo l'energia radiante che ha un livello energetico sufficiente per attivare le celle PV
- L'energia radiante che non viene fatta passare dal filtro viene in parte assorbita dal filtro (e trasformata in calore) e in parte riflessa verso l'emettitore e/o verso altre zone del sistema dove può essere utilizzata come energia utile

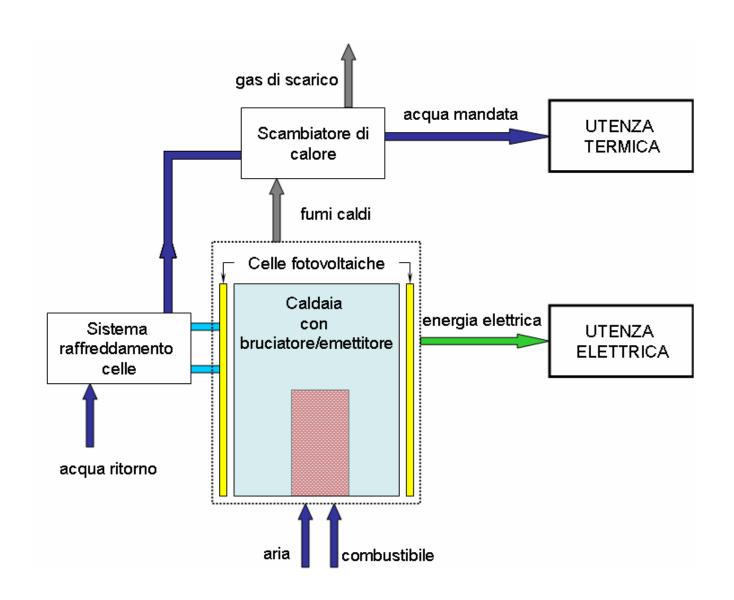
JX Crystal (USA) - Midnight Sun

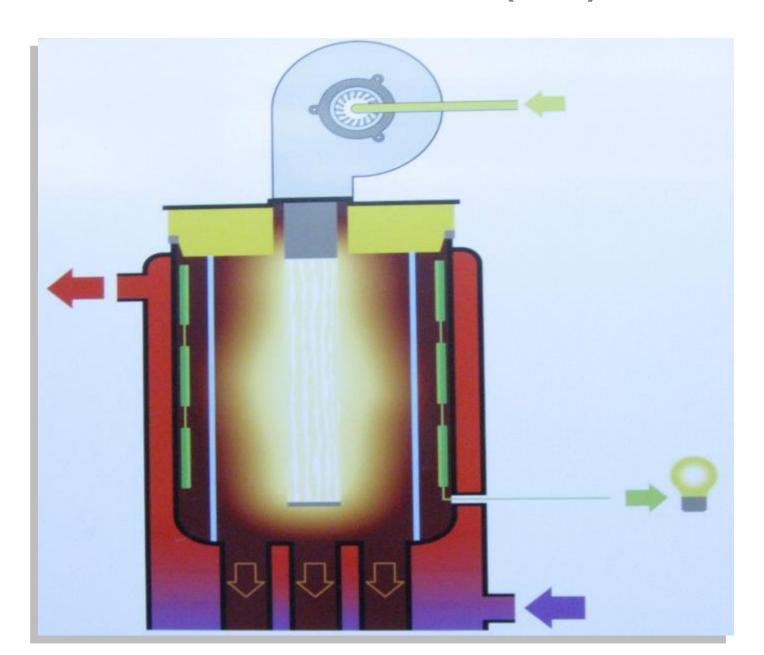
 $P_e = 100 W_e$ $\eta_e = 1.4 \%$

Paul Scherrer Institute (Svizzera)

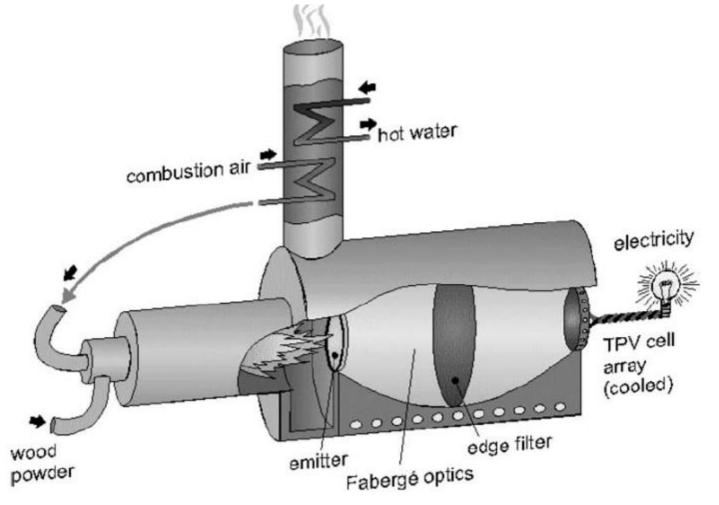
 $P_e = 48 W_e \\ \eta_e = 2.4 \%$


CANMET(Canada)


$$\eta_e = 2.5 \%$$

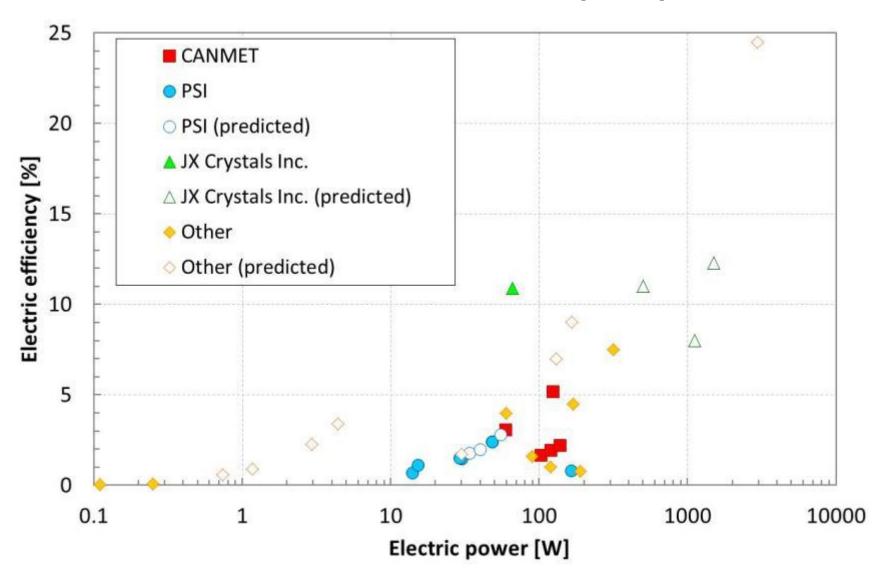


JX Crystal (USA)


$$P_{e} = 500 W_{e}$$

 $\eta_{e} = 11 \%$

- > Proposta del Solar Energy Research Center SERC (Sweden)
- > Stufa a biomassa per applicazioni remote


Modello	P _e	P _{in}	η _e	η_{cog}	Cos	sto	
JX Crystal (Midnight Sun)	100 W	7.3 kW	1.4 %	n.d	n.d	n.d.	
JX Crystal ¹	1.5 kW	12.2 kW	12.3 %	n.d	5250 €	3500 €/kW	
JX Crystal ²	550 W	5.7 kW	9.6 %	75 %	800€	1800 €/kW	
Paul Scherrer Inst. ²	200 W	20 kW	1.0 %	n.d	590 €	2950 €/kW	

¹ Costo riferito al sistema complessivo caldaia + sistema TPV (senza inverter)

² Costo riferito al solo sistema TPV (senza inverter)

Reference	Burner	EMITTER	Type of emitter	Surface emitter temp.	$\eta_{\sf rad}$	FILTER	CELLS	STC* efficiency	P _{fuel}	P _{el}	$\eta_{ ext{el}}$	Type of result
				[K]	[%]			[%]	[W]	[W]	[%]	
[2]		Yb ₂ O ₃ -coated on Al ₂ O ₃	foam ceramic				Si		2000	14	0.70	experi.
[2]		Yb ₂ O ₃	fibrous mantle				Si		2000	30	1.50	experi.
[2]		Yb ₂ O ₃	fibrous mantle			TCO	CuInSe2 thin-film		2000	40	2.00	pre.
[14]		Sic	coated fiber mat		20.4		GaSb	20.0	6120	102	1.67	experi.
[14]		Sic	honeycomb plaque		22.9		GaSb	20.0	6120	119	1.94	experi.
[14]		SiC	porous foam		26.7		GaSb	20.0	6120	137	2.24	experi.
[14]		(1) Yb ₂ O ₃ fiber felt; (2) ceramic fiber-coated on SiC	Two emitters arranged in tandem		31.0		Si GaSb	36.0 20.0	1920	60	3.09	experi.
[15]		SiC	porous foam	1558	21.3	coatings of SiO2 and TiO3 on glass	GaSb		8260	123	5.20	experi.
[16]	butane	Yb ₂ O ₃	spherical emitter				Si		1350	15	1.13	experi.
[17]	methane	Yb ₂ O ₃				quartz tube	Si	16.0	20000	164	0.82	experi.
[18]	butane	Yb ₂ O ₃				glass tube	Si	16.0	1905	29	1.52	experi.
[18]	butane	Yb ₂ O ₃				glass tube	Si	16.0	1905	34	1.80	pre.
[18]	butane	Yb ₂ O ₃				glass tube	Si	21.1	1985	48	2.41	experi.
[18]	butane	Yb ₂ O ₃				glass tube	Si	21.1	1985	55	2.80	pre.
[19]	butane	Yb ₂ O ₃	porous foam	1735		SnO ₂ film on quartz	Si		1980	48	2.42	experi.
[22]	diesel	W-coated on SiC		1600		7	GaSb		4500	500	11.00	pre.
[24]		SiC				double quartz tube	GaSb		14000	1120	8.00	pre.
[24]		W-coated on SiC		1525		,	GaSb		12200	1500	12.30	pre.
[25]	regenerative burner	Yb ₂ O ₃ -coated on Al ₂ O ₃				dielectric filters	GaSb		606	66	10.90	experi.
[26]		Yb_2O_3					Si		25000	190	0.76	experi.
[27]	propane	Yb ₂ O ₃				dielectric filters	Si		5625	90	1.60	experi.
[27]	propane	Yb ₂ O ₃		2100		dielectric filters	Si		1830	165	9.00	pre.
[28]				2000					3778	170	4.50	experi.
[28]	butono ana	Vh O	fibraria mantla	2100			C:	10.4	4200	315	7.50	experi.
[29]	butane gas	Yb ₂ O ₃	fibrous mantle			no	Si	10.4	305	0.11	0.04	experi.
[29]	butane gas	Er ₂ O ₃	fibrous mantle	1000	24.0	no	GaSb	16.0	305	0.25	0.08	experi.
[30]	methane	Yb₂O₃ SiC		1800 1265	24.0	quartz tube	Si GaSb	16.0	12000	120 0.74	1.00 0.57	experi.
[31]	hydrogen hydrogen	SiC		1265		no no	GaInAsSb		130 130	1.2	0.57	pre. pre.
[31]	hydrogen	Co/Ni-doped MgO				no	GaInAsSb		130	2.9	2.28	pre.
[31]	hydrogen	Co/Ni-doped MgO				no	GaSb		126	4.4	3.48	pre.
[32]	diesel	ErAG-coated on SiC		1523		quartz tube	AlGaAs/ GaAs		12157	2976	24.50	pre.
[33]	methane	W-coated on SiC				glass tube	GaSb		1800	30	1.70	experi.
[33]	methane	W micro structured				glass tube	GaSb		1800	130	7.00	pre.
[34]	methane	Kanthal					GaSb		1460	60	4.00	experi.

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, M. Venturini, "Overview and Status of Thermophotovoltaic Systems", Energy Procedia 45 (2014) 160 – 169, doi:10.1016/j.egypro.2014.01.018

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, M. Venturini, "Overview and Status of Thermophotovoltaic Systems", Energy Procedia 45 (2014) 160 – 169, doi:10.1016/j.egypro.2014.01.018

Le tecnologie

Tecnologie CHP a combustione interna

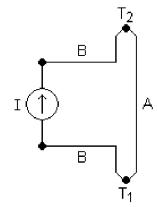
Prototipali

√ Sistemi termofotovoltaici (TPV)

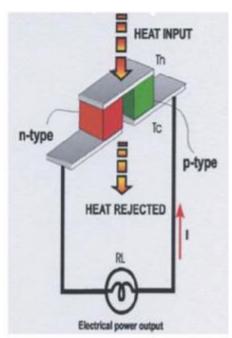
Tecnologie CHP a combustione esterna

Prototipali

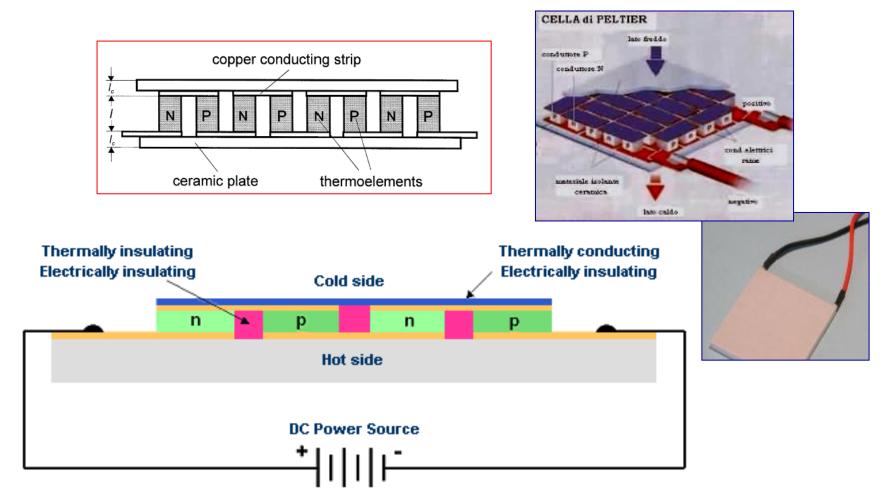
- ✓ Sistemi termofotovoltaici (TPV)
- ✓ Sistemi termoelettrici (TE)


Tecnologie CHP a combustione interna/esterna

- ✓ Ciclo combinato gas-vapore
- ✓ Ciclo combinato MCI-ORC
- ✓ Ciclo combinato MTG-ORC

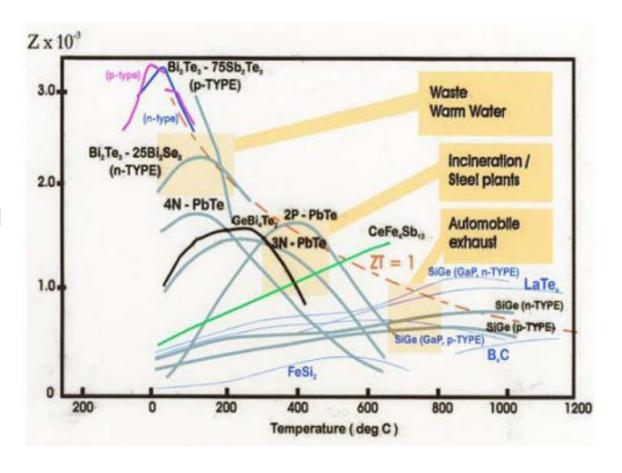

Consolidate

In fase di consolidamento


✓ Un circuito bimetallico percorso da corrente continua mostra una differenza di temperatura nella giunzione tra i due metalli (Effetto Peltier)

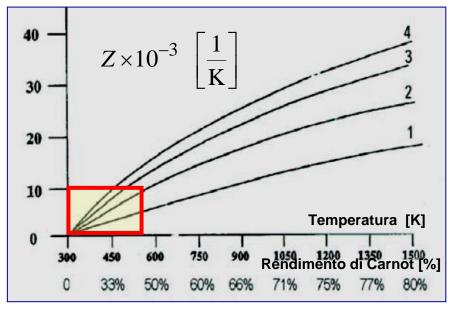
✓ Il fenomeno è reversibile: quando due conduttori o semiconduttori uniti tra di loro a formare un termoelemento (o termocoppia) hanno le giunzioni sottoposte ad una differenza di temperatura, all'interno del circuito circola corrente elettrica (Effetto Seebeck)

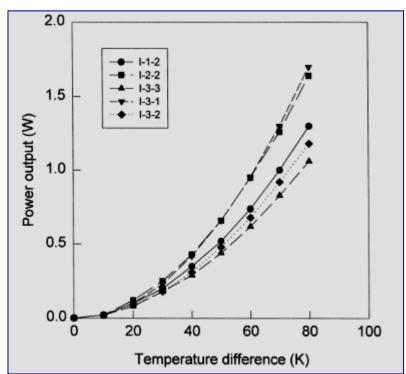
✓ La maggior parte dei dispositivi termoelettrici è basata su semiconduttori di tipo p e di tipo n connessi elettricamente in serie attraverso strisce di metallo (rame), impaccate attraverso piastre ceramiche che fungono da conduttori di calore e da isolanti elettrici



✓ La maggior parte dei dispositivi termoelettrici è basata su semiconduttori di Bismuto-Tellurio di tipo p e di tipo n

Cifra di merito:

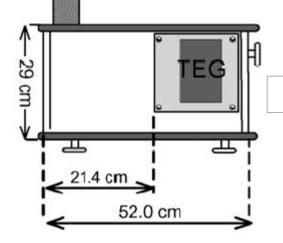

$$Z = \frac{\alpha^2}{\rho \lambda} \left[\frac{1}{K} \right]$$

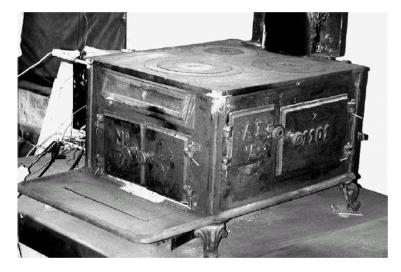

 α : coeff. di Seebeck [V/K] ρ : resistività [Ω m] λ : conducibilità termica [W/(m K)]

- ✓ Rendimenti di conversione (< 5%) e potenza generata per singolo modulo relativamente bassi
- ✓ Qualora l'alimentazione sia effettuata tramite calore di scarto, il costo per il combustibile è nullo

Rendimento di conversione [%]

(Temp. giunto freddo: 300 K)


- ✓ I principali vantaggi offerti dai dispositivi termoelettrici sono
 - assenza di vibrazioni e rumore (non ci sono parti in movimento)
 - vita utile molto elevate (100'000 ore)
 - possibilità di utilizzo come dispositivo reversibile (fornendo energia elettrica può essere utilizzato per refrigerare o riscaldare)
- ✓ Limiti della tecnologia
 - ancora necessaria R&D per ingegnerizzare il sistema
 - rendimenti elettrici molto bassi (1-10 %)
 - costi elevati


 $P_e = 4 W_e$

Royal Institute of Technology (Sweden)

[finanziato dalla Eriksson]

Base del camino
T = 300-500 °C
Piano in ghisa
T = 150-300 °C
Gas di scarico
T = 140-200 °C

