Part 2 - Optimization

1. Problem statement

2. Optimization of a Multi-Generation Energy System by integrating life cycle assessment

3. Optimization of a Micro-Grid by means of mixed-integer linear programming
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Problem statement

Environmental impacts

Europe Europe
2020 strategy 2030 strategy

* A20 % reduction in « Atleasta40 % cutin

GHG emissions GHG emissions (from

compared with 1990 1990 levels)

levels;

2014 « At least 32 % share for

* A 20 % share of renewable energy

renewable energy
 Atleasta32.5%
*  A20 % improvement in improvement in energy
energy efficiency efficiency
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Primary energy consumption
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Primary energy consumption
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Energy consumption by sector in the EU-28, 2016
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Transition toward sustainable energy

Moving from Fossil Fuel
Dependence to a Clean-Energy
Future

Environmental impacts Intermittency
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Hybridization
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How to achieve as much as possible PE saving?
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Optimization of a Multi-Generation Energy System
based on Life Cycle Assessment




Methodology framework

Input data

~

Energy demands
Heating, hot water; cooling, electricity, etc.

Environmental data
Ambient temperature, solar radiation,
wind speed, etc.

|
1
1
I
I
1
1
I
: Technical data
1
I
I
1
1

Life cycle assessment

I Goal and scope definition: Cradle-to gate LCA of energy systems in a range of sizes.
|

1 Life cycle inventory: Market analysis of energy systems, inventory compilation, inventory

I scaling.
|

; Life cycle impact assessment: Impact categories definition, classification and characterization.

\ Results: Impacts curves vs. size, dominance analysis, sensitivity analysis.

’
Systems’ efficiencies, de-rating curves, start-up, etc. N N e oo -7
Economic & Emissions data P i e g' ———————————————————— ~
Electricity and gas price, systems’ costs, : A Design optimization AN

\ operational costs, operational emissions, etc. /%,’ \‘
A / . . L. . .

S _7 : Decision variables Objective function Constraints :

| Energy systems’ life cycle costs, Energy balances, |

R e e e S ~. I sizes Life cycle energy demand, net metering, operational !

/ Energy plant model \ : Life cycle emissions, etc. constraints, etc. :
I 1

| |

: Energy systems models I | | .

1 Photovoltaic, cogenerator, heat pump, gas boiler, etc. : 1 l |

| 1 O] . . 1

| Storage technologies models N Optlmlzathn algorltbm !

: 'I:>| Genetic algorithm, particle |

I Thermal energy storage, batteries, etc. 17, . '

| I swarm optimization, etc. |

I Operation strategy - l I

: Thermal demand following, electrical demand : 1 |

\ following, etc. PN Optimal design y
h / N s,

- ~ -

o e e e M m M e M M M R MEm M M REm MEm M e REm MEm M e MEm M M e Mmm M M M m M e
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Layout of the multi-generation energy system

Natural
Gas

A / e \ 4
X X
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Grid
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AC
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Thermal energy
demand

Electrical energy
demand

Cooling energy
demand
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Energy balance

The thermal, cooling and electric energy demands are met by the HEP according to:

22¢
2 lilil Eyser,th kECHP, th—user,k "£GB,th—user,k "EASHP,th,k T £TES, th,out—user.k

Euser,cool,k:EASHP,cool,k+ECC,cool,k + EAC,cool,k

Euser,el,k T EASHP,elk + £CC el k = Epv.elk T Lcup,elk T £Grid el taken,k
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Objective function

The on-site PE is given by the fuel and electric energy used throughout the considered time frame (i is

the time step):

A N : : .
- I:)Eop = Z I:)EfueI,CHP (I) + I:)EfueI,AB (I) + I:)EE (I) - I:)EE

el,taken el,sent
i=1

(1)

The total CED is represented by the CED of the optimized technologies and the Italian grid:

CED (P)

CED:Z 2 2 L CED (Bl )+CED (V )
Z

lifetime(z)
Riational4fid “8asnetwork

HEP components
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Why should we care about off-site PE consumption?

Cradle-to-gate/Upstream life cycle of an energy system

|

nelimy *‘“ o | PN, WS

[

Raw materials Suppliers Transport Manufacturing Transport
& resources °
aw For the optimization,
Recycling only this phase is
S usually considered!

| Landfill/Incineration Waste

I

End-of-life/Downstream life cycle of an energy system
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Cradle-to-gate LCA

Off-site primary energy consumption are determined by carrying
out a cradle-to-gate LCA

‘ /7‘\ o
RESOUICES iy ‘A ‘E
-
Raw materials o o
extraction Transport
s

Energy |, ===
carriers --.--

\ Energy system

Suppliers

- N

Manufacturing

System bound%

00

S
el=

Transport

OO0g= 004

- i

Emissions

Transport /

 Solar thermal collector (STC);

« Photovoltaic panel (PV);

« Combined heat and power (CHP);
« Ground source heat pump (GSHP);
 Air source heat pump (ASHP);

« Absorption chiller (ABS);
 Pellet boiler (PB);

* Hot water storage.

The primary energy
consumed throughout the
cradle-to-gate life cycle
IS represented by the
Cumulative Energy
Demand (CED)
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Modeling and data collection

eco nvent

Centre

The LCI data were taken from the
Ecoinvent® database considering a
specific capacity with a focus on the
European market.

7\
oPenLca

) g

A model for each system was
constructed in openLCA®.
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Scaling of LCA

Market analysis
Technical reports
and brochures

Inventory analysis
Scientific literature

@IA databases

—

—

Scaling laws
A

Weight

Size

Materials
composition

>

Inventory scaling
me;=a; X W

—

LCA model

~

Cradle-to-gate LCA of

energy systems
different sizes

at

/
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Scaling of LCA
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CED impact curves vs. technology size
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Optimization — Genetic algorithm

a Decision variables A
{PV, CHP, GB, ASHP, CC, AC, TES}
2 {APV' CLCHP’ CLGB' CLASHP' CLCC' CLAC' CLTES}
{NDbpypanets NPeupcr, NDep e, NDasupcr, Nbee e, NPac ey Nbrgs ot
- " J
Population of individuals ] e N\
Input data
‘l’ Energy demands
[ Simulation model ]<— Environmental data
{ MIGA operators J ‘1’ Economic data
New population

EGrid,el,taken; EGrid,el,sent; Vfuel,CHP; Vfuel,GB

v

Technical specifications data
1\ [ Operational results ] - J

Convergence
check

LCA model
Cradle-to-gate & Operation

Objective function J

PE + CED,,,

[ Optimal solution ]
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Optimization results (Sizes)

[EN
]
—_
(e}

Decision variables
() —_ N w 5N [@a} (@) g (06] O

il

Decision variables
(e} = [\ w 5N Ul (@) ~ [o0] O

i I I

AN - VY D DNDND>D DD Y O O
PV CHP CHP CHP GB GB GB AC AC AC CC CC TES TES RY v VY v QA S RS A S S A S T A\ 4
CL1 CL2 CL3 CL1 CL2 CL3 CL1 CL2 CL3 CL1 CL2 CL1 CL2 CzSQCzSQQgSQ& c&g &Q QS(’ y»() VS’Q VS’() é’Q c"c&@Q&é’g
Caso A: i sistemi considerati sono fotovoltaico, Caso B: rispetto al caso A, in questo caso c¢’¢ anche
cogeneratori, caldaie, frigoriferi ad assorbimento, la possibilita di integrare delle pompe di calore

frigoriferi a compressione e accumulo termico
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Optimization results (Objective function)
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Optimization results (Thermal energy production)
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Optimization results (Cooling energy production)
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Optimization results (Electrical energy production)

Nondimensional electrical energy production [-]
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Why should we consider LCA In the optimization
process?




Case study — Office building

Monthly heating, hot water, cooling and electric energy demands

mZone 1 (Business) mZone 2 (Offices) = Off Zone mZone 1 (Business) @ Zone 2 (Offices) O Off Zone
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Multi-Generation Energy System
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Energy balance

The thermal, cooling and electric energy demands are met by the HEP according to:

E,, (1) = Esre i (1) + Ecpp i (1) + Egspip tn (1) + Enspip i (1) + Estorage,th () +Egin (D)
ECool (I) = EGSHP,c:ooI (I) T EASHP,cooI (I) T EABS,cooI (I) T EAC,cooI (I)

Eel(i) T EGSHP,eI (I) + EASHP,eI (I) + EAC,eI (I) = Epv,e| (I) + ECHp’e| (|) + Egrid,el (|)
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Optimization

LCA model W

\
dscaling | | Ll D C Fitness function
! evaluation for

. the individuals:
SOP definition for each — : ]>:
ndividual Simulation model H PE,, G fval

individuals

{ Population of

New GA operators
: (elitism, crossover and L
population mutation) termination?
The decision variables are:
Pcrpetnom Pastphnom: Pastpinnoms Pags hnom: Astc @nd Apy Optimal
combination
of sizes
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“LCA not integrated” vs. “LCA integrated”

Two approaches are considered

/\

“LCA not integrated” approach “LCA integrated” approach
The primary energy \
P | consumptioni oyl ey o ey ]
' ; minimized Raw materials Suppliers  Transport Manufacturing Transport Operation
Operation throughout the & resources
operation phase
The objective function is represented by: The objective function is represented by:

@ fval = PE,, @ fval = PE,, + CED
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Optimization results

Decision variables

LCA not integrated

LCA integrated

Acrc [M?] 40.2 77.5
Apy [M?] 287.8 249.9
Pchpetnom [KWe] 93 0
Pgshpt,nom [KWir] 300 243
Pastphnom [KW] 65 92
Pags thynom [KWi] 156.1 0
Vstorage [I] 892.6 248.1

The two approaches (“LCA not
integrated” and “LCA integrated”)
provide two different combinations
of sizes.
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Optimization results

The contribution of the grid
represented by CED4 has the
largest effect on the optimization
results.

6000
@ LCA not integrated

5000 m LCA integrated
The integration of LCA may

lead to a higher primary
energy saving (about 4.4 %)

o
o
o
o

Annual primary energy
consumption [GJ,/year]

The total primary
energy consumption
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Optimization of the operation of a micro-grid




Micro-grid

- - oy

Impianto Colonnina

di ricarica dei

Fotavoltaico
Apy=510 m? veicoli elettrici
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WA
Impianto
Fotovoltaico

Ap=5000 m?
Mpy=0.19

Impianto Storage

di trigenerazione Eggsmax=270 kWh
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Neinom=0.3860 N5ss=0.9
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Environmental and economic data

Ambient temperature for Milan-Italy Solar radiation for Milan-Italy
(source: https://ec.europa.eu/jrc/en/pvgis) (source: https://ec.europa.eu/jrc/en/pvgis)
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Energy loads

The heating, cooling and electric loads of the case study
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Decision variables
; SoCrgs ¢ continuous
mmmn Peipy—ioaar — continuous b , _
=Eman P pyopese  continuous thTES—load ~ COMLINUOUS
N ] Pelpyogriae  CONEINUOUS PinrEs—ac continuous
( Peychpt continuous { : Peigrid—toad,t continuous
Pty cupsioadt continuous Pet gria—evt continuous
< Py cup—act continuous
Py cup—TEs ¢ continuous
isONy integer The problem has 18 continuous variables and 2 integer variables.
\ start; integer
. The operational variables must be optimized over one year (8760 hours).
o SoCgEs ¢ continuous
| 7 P, gessgye  continuous _ ,
eLEEemET . * The total number of variables is (18+2)x8760 =175200.
- Pe1 BES—10ad continuous
* Since continuous and integer variables are present, the problem can be
PeooLac.t continuous formulated as a Mixed-Integer Linear Programming (MILP).
* The objective function and problem constraints must be linear!
continuous ) ) . .
, * In this project, the scheduling problem has been solved in Matlab
continuous

P cool, ASHP,t
I th,ASHP,t
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Problem constraints

Perpvoioadt + PeicHp—ioadt T PetBEs—ioadt T Pel,grid—»load,t = Perioadat T Peprpt VU ET < Electrical load balance
Pencup—ioadt T PeirES—10ad,t + Ptnasup,t = Ptnjioad,t Vt €T <«——— Thermalload balance

Pcooract + Peootasupt = Peootioaa,t Vt €T «—— Coolingload balance

Peies—ev,t + Petgria—evit = PeLevi <«—— EV load balance

The increase/decrease should be less than a % of the

_DRPmax X Pel,load,peak,day < Pel,DRP,tS DRPmax X Pel,load,peak,day A .
daily peak load (DRP,,,,=10%; 20%; 30%)

day

Z Poiprpt = 0 <«—— The overall load over a certain time (day=24 h) remains fixed
t=1
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Problem constraints

Pe1,pv—ioadt + Pei,pv—pEst T Pel,PV—>grid,t < Pejrvt <«—— Balance of PV production

< iSON¢ X Pei.cHpmaxt <«—— Maximum CHP production

Pei,cup,t
Peicrp,e 2 ISONe X Peyctipmint  «—— Minimum CHP production

ISON; — iSON;_y < start; <«—— CHP startup Perpvogriae < Peipv tott = Maximum power sent to the grid

Pencupt = k1 X iSONp + Kk X Peycupt  «—— CHP thermal power as function of power de-rating
Prueicup,e = k3 X ISON; + kg X Peycppe + Starte X Pryeicup startup +—— CHP fuel consumption as function of power de-rating and startup

SoCrgst = S0Crgse—1 + Pencupotese—1 X At — (PenrES—10ad,t—1 + PenTES>act—1) X At <+——  State of charge of the thermal storage

S0Cggst = S0Cpgst—1 + Perpyopesit—1 X Npes X At — ((Pel,BES—>load,t—1 + Poi BES—EV t—1) /TIBES) X At «<—— State of charge of the batteries

Pe1,BEs—10ad,t T Pei.es—ev,t = PeipEsmax «—— Maximum discharging power of the batteries

Peipv-pest X At < Capacitye; pgsmax <+—— Maximum charging power of the batteries

Pergrida—toadt T Pelgria—ev,t < (Pel,load,t + Pel,EV’t) <+—— Maximum power taken from the grid
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Objective function

T=8760
Operational costs over one
Op.costs = Z C +C +C : —C ; :
p CHP,t O&M,ASHP+AC,t el,grid,taken,t el,grid,sent,t year of operation
t=1

Operational costs of

Ccupt = Cfuel,t(P cupelt) + Cstartup,t(Peupete) + Cemis,e(P cupelt) + Coame(Perpert) — the CHP

Cost of the electricity taken from

Col ari = (PUN+APUN) X P,; grid— X At
elgridtakent = ( t ) el.grid—load the grid in case of shortage

Cost of the electricity sent to the

Col gri = PUN; X P q X At . .
el,grid,sent,t t 2 Fel,pv-grid grid in case of surplus production
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Results — Energy analysis

Electricity production

I rv

I cHP
[CBES
[ lcrid
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49%

Cooling production
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14%
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Electric vehicles charging

46%
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Results — Energy analysis

CHP sorted electricity production (kWh)
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The CHP runs for 3700 hours a year.

The total number of startups is 279.

The average electrical efficiency is around 39%.
The average electrical efficiency is around
38.6%.
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Results — Optimal scheduling

Week #3 of January
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Results — Optimal scheduling

Week #3
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Results — Optimal scheduling

Week #3 of June
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