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A B S T R A C T   

An optimized energy and economic scheduling of hybrid energy plants can lead to a significant reduction of 
primary energy consumption and operational costs. Various optimization methods, with their own advantages 
and limitations, have been proposed in the literature. However, the scheduling optimization of complex hybrid 
energy plants that are composed of renewable, conventional and storage energy technologies is still an area 
which demands contribution. Dynamic programming has proved to be a powerful approach because of its ability 
to solve a variety of optimization problems with nonlinear objective functions and constraints, as well as to find 
global optimal solutions. Thus, this paper goes beyond previous analysis available in the literature by developing 
a novel methodology based on dynamic programming for the optimization of the energy and economic sched-
uling of hybrid energy plants. The hybrid energy plant considered in this paper includes renewable energy 
systems, fossil fuel energy systems and energy storage technologies. The actual fluctuation of the electricity 
prices is also considered in this work. The optimal scheduling was identified by considering the minimization of 
primary energy consumption or operational costs, as well as a hybrid scenario for meeting thermal, cooling and 
electrical energy demands of the user. Hybrid scenarios of minimizing both primary energy consumption and 
operational costs weighted by two different weight coefficients α and β, are also evaluated. The validity and 
capability of the optimization methodology is demonstrated by considering two case studies. The first case is a 
commercial building and the second case regards a University campus. Compared to commonly-used operation 
strategies, the energy scheduling optimization (α = 1 and β = 0) by means of dynamic programming allows a 
primary energy saving between 3.8% and 8.3% for the first case study and a saving between 0.5% and 17.4% for 
the second case study. Moreover, the economic scheduling optimization (α = 0 and β = 1) enables operational 
cost reduction in the range 11.7%–25.1% for the first case study and in the range 4.3%–14% for the second case 
study. For both case studies, the economic scheduling optimization shows that fulfilling the user energy demands 
by a combined heat and power is economically more convenient than importing electricity from the grid. Finally, 
unlike the operation strategies used as benchmarks, the dynamic programming methodology is flexible and able 
to solve scheduling optimization problems under different optimization constraints and can also allow 
customized hybrid solutions.   

1. Introduction 

A reduction of primary energy consumption is usually expected to 
contribute to increased sustainability of the residential and tertiary 
sectors. According to the European Commission [1], buildings are 
responsible for about 40% of the energy demand. Several strategies are 
adopted for reducing primary energy consumption, operational costs 
and pollutant emissions, such as: (i) increase the penetration of renew-
able energy systems, (ii) integration of thermal and electric energy 

storage technologies, (iii) improvement of the efficiency of energy 
generation systems. A major drawback of renewable energy systems is 
associated with their unpredictability because of the intermittent nature 
of the environmental conditions. This leads to fluctuations in energy 
production from renewable sources and thus the connection to the 
electric grid and the use of back-up systems is required to meet the 
required energy demands. In the current context, in order to reduce the 
consumption, costs and harmful emissions of fossil fuels there is a 
growing trend to use Hybrid Energy Plants (HEPs) [2]. Generally, a HEP 
is composed of different energy technologies which use two or more 

* Corresponding author. 
E-mail address: hilal.bahlawan@unife.it (H. Bahlawan).  

Contents lists available at ScienceDirect 

Applied Thermal Engineering 

journal homepage: www.elsevier.com/locate/apthermeng 

https://doi.org/10.1016/j.applthermaleng.2021.116577 
Received 2 September 2020; Received in revised form 12 November 2020; Accepted 6 January 2021   

mailto:hilal.bahlawan@unife.it
www.sciencedirect.com/science/journal/13594311
https://www.elsevier.com/locate/apthermeng
https://doi.org/10.1016/j.applthermaleng.2021.116577
https://doi.org/10.1016/j.applthermaleng.2021.116577
https://doi.org/10.1016/j.applthermaleng.2021.116577
http://crossmark.crossref.org/dialog/?doi=10.1016/j.applthermaleng.2021.116577&domain=pdf


Applied Thermal Engineering 187 (2021) 116577

2

energy sources to meet the energy demands of a certain user. 
The performance of a HEP can be affected by various factors, such as 

the operation strategy of the plant components and the climatic condi-
tions. These factors influence the energy production of the systems and 
consequently the primary energy consumption and operational costs of 
the HEP. Therefore, implementing optimization methods for energy 
management and economic dispatch is a key factor to achieve the ex-
pected benefits from HEPs with lowest energy consumption and costs 
[3]. Indeed, a smart energy management helps to optimize the exploi-
tation of fossil and renewable sources, reduce the pollutant emissions 
and minimize the energy costs [4]. The optimal energy management and 
economic dispatch of HEPs is a challenging task since the optimal so-
lution depends on the renewable energy sources, environmental data, 
technical specifications of the energy systems and user energy demands 
[5]. 

A variety of optimization methods has been presented in the litera-
ture to solve the problem of operation optimization [6]. Among these 
methods, the most prominent are linear programming [7,8] and mixed 
integer linear programming [9]. In spite of the contributions of these 
methods to the operation optimization of energy systems, they are only 
suitable for linear problems, while for complex systems, such as HEPs, 
they are computationally expensive due to the large number of decision 
variables [10]. 

As the difficulties associated with the operation optimization of HEPs 
arise, mainly because the nature of these systems make the optimization 
problem strongly nonlinear, new and more efficient algorithms that are 
capable of tackling nonlinearities must be investigated for the man-
agement of HEPs. In fact, nonlinear constraints corresponding to the 
variation of the nominal efficiency of the energy units in relation to the 
external temperature and part-load operation and non-convexity cor-
responding to the binary nature of on/off decisions must be accounted 
for [11]. Otherwise, ignoring these effects may affect the reliability of 
the optimal operation strategy capable of minimizing primary energy 

consumption or operational costs. Regarding this issue, some optimi-
zation methods have been developed and proved to be effective in many 
applications and made the problem readily solvable [12]. Among these 
methods, genetic algorithm [13] and particle swarm optimization [14] 
methods are the most commonly used algorithms [12]. These optimi-
zation methods belong to the category of meta-heuristic optimization 
algorithms and they have the advantage of dealing with linear and 
nonlinear problems. Compared to mathematical programming tech-
niques, which follow deterministic rules to find the optimal solution, in 
meta-heuristic optimization methods, the optimal solution is found by 
following a stochastic approach [11]. 

Meta-heuristic optimization methods proved their robustness and 
ability to solve nonlinear and non-differentiable problems. However, 
despite the contributions of these methods to the scheduling optimiza-
tion of HEPs, they still suffer from some disadvantages such as high 
execution time for complex problems, premature convergence, trapping 
in local optima and need the definition of a high number of parameters 
[11]. 

Recently, Dynamic Programming (DP) has attracted lots of research 
in the area of energy systems [15]. Generally, DP is an optimization 
method that is used to solve problems in which decisions should be made 
sequentially by dividing the original problem into sub-problems [16]. 
The basic idea of this method is that the minimal cost solution of the 
original problem is found through multistage optimization where at 
each stage a decision is made in an optimum way from a finite number of 
decisions. DP method has been extensively used to solve scheduling 
optimization problems due its ability in dealing with non-convex, 
nonlinear and dynamic variables [17,18]. Moreover, it is capable of 
reaching the global optimal solution in the discrete state-space [19]. 
Chen et al. [20] presented a DP algorithm to solve the energy manage-
ment problem of a combined heat and power system with energy stor-
age. The study aimed to improve the energy efficiency of the system by 
considering a household as an application. The optimization is 

Nomenclature 

Abbreviations 
AB auxiliary boiler 
ABS absorption chiller 
AC auxiliary chiller 
ASHP air source heat pump 
CHP combined heat and power 
DP dynamic programming 
GSHP ground source heat pump 
HP heat pump 
HEP hybrid energy plant 
OC operational costs 
PEC primary energy consumption 
PV photovoltaic system 
S summer 
SOP switch-on priority 
STC solar thermal collector 
TES thermal energy storage 
W winter 

Symbols 
A area 
c coefficient 
COP coefficient of performance 
E energy 
f conversion factor 
k time variable 
l generic energy system 

L number of energy systems 
load ratio between actual thermal power and nominal thermal 

power 
N last time-step 
P power 
t time 
T temperature 
U input or decision variable 
V volume 
x state variable 
y function 
α weight of primary energy 
β weight of operational costs 
η efficiency 

Subscripts and superscripts 
cool cooling 
diss dissipation 
el electrical 
fuel fuel 
grid national grid 
in entering 
k time variable 
nom nominal 
op optimal 
out outgoing 
sent sent to the grid 
taken taken from the grid 
th thermal  
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conducted on a short-term basis (24 h) and the results were compared to 
an experimental test. Results showed that DP allows to improve the 
overall energy efficiency of the system. However, in their study, atten-
tion has been only given to electrical and thermal energy demands and 
the option of integrating renewable energy sources is not evaluated. The 
optimal operating schedule of a tri-generation system with storage units 
was investigated in [21] by means of a DP algorithm. Plant operation 
was optimized by minimizing the operational costs considering off- 
design performance and randomness of renewables. The optimal 
schedule allowed a reduction of the operational costs over a time hori-
zon of 24 h. 

Facci et al. [22] developed a methodology to determine the optimal 
operation strategy of a fuel cell-based tri-generation plant. Energy and 
economic objective functions were optimized in their study and the 
analysis was carried out on a yearly basis. Moreover, hourly electrical, 
thermal and cooling energy demands for a small hotel were considered 
in their work. They found that the optimized control strategy allows to 
reduce the primary energy consumption and the operational costs of the 
plant. Similarly, in another work, the control strategy of a fuel cell-based 
combined heat and power system with boiler and mechanical chiller was 
optimized by the same authors [23]. They evaluated different combi-
nations of building types, climatic conditions, energy costs and objective 
functions. Thiem et al. [24] developed and implemented a model pre-
dictive controller based on dynamic programming algorithm for the 
operation optimization of a cooling system composed of a compression 
chiller and an ice storage. The proposed model allowed lower opera-
tional costs compared to an open-loop control strategy. Further, DP has 
been used to control the operation in an organic Rankine cycle waste 
heat recovery system [25], showing that DP is suitable for real -time 
applications even though it is limited by dimensionality computation 
issues. The works mentioned before were able to tackle a number of 
challenges, such as the variation of systems efficiency with load, the 
effect of environmental conditions and the dynamic behavior of the 
considered systems. However, despite their contribution to the litera-
ture, these works did not consider the integration of renewable energy 
systems. Though renewable energy systems (such as solar thermal col-
lectors and photovoltaic panels) depend on the availability of renewable 
sources and are non-controllable, they are widely used to meet building 
energy demands [26]. Therefore, their integration would be advisable, 
especially in combination with energy storage technologies. 

Recently, Mahmoudimehr et al. [27] employed the DP method for 
the optimal performance management of a solar power plant equipped 
with thermal energy storage. The aim of the study was to optimize the 
daily electricity generation and revenue obtained from selling elec-
tricity. The daily operation (24 h) of the plant was optimized by deciding 
the amount of solar salt within the thermal tank. Compared to a genetic 
algorithm based method, DP allowed an increase of electricity genera-
tion and daily revenues up to 7.5% and 12.6%, respectively. Further-
more, the operation of a large scale hydro-photovoltaic hybrid power 
plant was investigated by Li et al. [28] by using a DP method. The study 
aimed to maximize the energy production and guaranteed rate by 
considering the carryover storage as an independent decision variable. 

From the literature survey documented above, the DP method 
proved to be able to optimally schedule a variety of energy plants up to a 
good standard. However, the operation optimization of complex HEPs 
that are composed of renewable, conventional and storage energy 
technologies is still an area which demands contribution. Moreover, 
compared to linear programming and meta-heuristic optimization 
methods, the DP algorithm proves to be preferable for solving a variety 
of optimization problems because of: (i) its ability to deal with nonlinear 
objective functions and constraints, (ii) its capability of finding the 
global optimal solution due to its deterministic nature and (iii) its simple 
implementation [16]. This paper contributes to the literature by pre-
senting a novel DP-based optimization method to solve the scheduling 
optimization problem of a complex HEP which comprises a Solar 
Thermal Collector (STC), Photovoltaic system (PV), Combined Heat and 
Power (CHP), Ground Source Heat Pump (GSHP), Air Source Heat Pump 
(ASHP), Absorption Chiller (ABS), Auxiliary Chiller (AC), Auxiliary 
Boiler (AB) and Thermal Energy Storage (TES). The applicability of the 
methodology is demonstrated by considering two case studies; the first 
case study is a tower composed of thirteen floors used for commercial 
purposes, while the second case study is a University campus. The 
optimization of energy, economic and hybrid scheduling are investi-
gated in this paper. In the energy scheduling optimization, the optimal 
scheduling of the different HEP units is found by minimizing the Primary 
Energy Consumption (PEC). In the economic scheduling optimization, 
the optimal scheduling is found by minimizing the operational costs, 
while in the hybrid scheduling optimization the optimal scheduling is 
identified by minimizing a hybrid energy/economic objective function. 
Finally, it has to be considered that the sizes of the different systems 

Fig. 1. Layout of the hybrid energy plant.  
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considered in this study are fixed and consequently the investment costs 
are also fixed. Thus, only the primary energy consumption and opera-
tional costs are considered [29]. 

The scheduling optimization is conducted by considering the actual 
hourly fluctuation of the Italian electricity market during the year 2019. 
Moreover, the revenue obtained from selling the electricity to the grid is 
also considered. The optimization is conducted on hourly basis and 
throughout one year. 

The rest of the paper is structured as follows: Section 2 gives details 
about the HEP components and describes the DP optimization method. 
Section 2 also presents the model of the HEP formulated in the state 
space and discusses the objective functions optimized in this paper. The 
case studies are outlined in Section 3. Section 4 presents the results and 
Section 5 concludes the paper. 

2. Materials and methods 

For real time applications, energy scheduling optimization studies 
are usually conducted by considering a short-term time horizon (e.g., 24 
h), as illustrated in [29], while scheduling optimization problems during 
the design and planning phase of HEPs are usually addressed by 
considering one year of operation with an hourly resolution [30]. This is 
mainly due to the fact that high levels of spatial and temporal resolution 
may increase the required computing resources [30]. Moreover, models 
at the levels of the case studies considered in this paper generally use an 
hourly resolution because the dynamics of the thermal demand is very 
slow due to the large thermal inertia [31]. Therefore, in this paper, the 
scheduling optimization problem is solved by considering one year and 
the analysis is carried out on an hourly basis. For this purpose, a model 
for the simulation of the HEP is developed and implemented in Matlab®. 
The HEP components are modelled as grey-box models by means of 
power and efficiency curves. Nonlinearities associated with the varia-
tion of the performance of the considered systems according to both 
ambient conditions and load de-rating are also taken into account, as 
well as the start-up of the CHP and the thermal energy dissipation of the 
TES. 

2.1. Hybrid energy plant description 

Fig. 1 shows a scheme of plant layout. As mentioned before, the HEP 
is composed of a Solar Thermal Collector (STC), Photovoltaic system 
(PV), Combined Heat and Power (CHP), Ground Source Heat Pump 
(GSHP), Air Source Heat Pump (ASHP), Absorption Chiller (ABS) and 
Thermal Energy Storage (TES). Moreover, a gas Boiler (AB) and a 
compression Chiller (AC) are used as auxiliary systems. The heat pumps 
(GSHP and ASHP) are considered reversible, thus allowing to produce 
thermal energy in winter and cooling energy in summer. 

From Eqs. (1), (2) and (3), thermal, cooling and electrical energy 
balances are satisfied at each time-step (k = 1 h) of the optimization time 
frame (N = 8760 h): 

EAB,th→user,k = Euser,th,k − (ESTC,th→user,k + ECHP,th→user,k + EGSHP,th,k + EASHP,th,k

+ ETES,th,out→user,k)

(1)  

EAC,cool,k = Euser,cool,k − (EABS,cool,k + EGSHP,cool,k + EASHP,cool,k) (2)  

Egrid,el,taken,k = Euser,el,k +EGSHP,el,k +EASHP,el,k +EAC,el,k − (EPV,el,k + ECHP,el,k)

(3) 

In Eq. (1), the term Euser,th,k represents the thermal energy demand 
which is the sum of space heating and hot water energy demands. This 
can be met by the STC, CHP, GSHP, ASHP and TES. In Eq. (2), the term 
Euser,cool,k represents the cooling energy demand which can be met by 
the GSHP, ASHP and ABS. The electrical energy demand (Euser,el,k) 
together with the electricity required by the heat pumps and 

compression chiller are met by the CHP and PV systems. 
Finally, as reported in the balance equations, if the energy demands 

are not met by these systems, the AB ensures the fulfillment of the 
thermal demand (EAB,th,k), the AC ensure the fulfillment of the cooling 
demand (EAC,cool,k) while the remaining electrical energy demand is 
imported from the grid (Egrid,el,taken,k). Moreover, the interaction with 
the electric grid is supposed to be bilateral, i.e., any excess of electricity, 
produced from the CHP and PV can be sent to the grid. 

The thermal energy flows between the CHP, STC, AB, TES and ABS 
are expressed by the following equations: 

ECHP,th,k = ECHP,th→user,k +ECHP,th→ABS,k +ECHP,th→TES,k +ECHP,th→diss,k (4)  

ESTC,th,k = ESTC,th→user,k +ESTC,th→ABS,k +ESTC,th→TES,k +ESTC,th→diss,k (5)  

ETES,th,in,k = ESTC,th→TES,k +ECHP,th→TES,k (6)  

EABS,th,in,k = ESTC,th→ABS,k +ECHP,th→ABS,k +ETES,th→ABS,k +EAB,th→ABS,k (7) 

In particular, Eq. (4) states that the thermal energy produced from 
the CHP is used to meet the user thermal energy demand, the ABS and to 
fill up the TES. The unrecovered thermal energy is supposed to be 
released to the environment (ECHP,th→diss,k). The thermal energy pro-
duced from the STC is split in the same way as the CHP (see Eq. (5)). As 
stated in Eq. (6), the TES can be filled up by the STC and CHP system. 
The thermal energy required by the ABS is supplied by the CHP, STC, 
TES and AB. 

2.2. Dynamic programming method 

The DP method is based on Bellman’s principle of optimality [16], 
according to which an optimal policy can be constructed sequentially 
[32]. The DP method requires the formulation of the optimization 
problem in the state-space as follows: 

xk+1 = y(xk, uk) (8)  

Ek = g(xk, uk) (9) 

Eq. (8) is a discrete-time dynamic system where x represents the state 
variables which are used to describe the state of the HEP at each time 
interval of the time horizon and they include information about the 
sequence of decisions made so far. The term u stands for input or deci-
sion variables that are used to schedule the HEP components, while the 
term E of Eq. (9) represents the output variables of the controllable HEP 
components (i.e., energy production). 

The aim of the optimization is to schedule the HEP components so 
that a cost function is minimized: 

Z(x0) =
∑N− 1

k=0
hk(xk, uk)+ hN(xN) (10)  

where hN is the final cost, while hk is the intermediate cost of applying 
the control uk at xk. Let the optimal control policy be uop, the optimal 
cost function is defined as follows: 

Zop(x0) = min
u∈U

Z(x0) (11)  

with U representing the space of all admissible control policies. Eq. (11) 
can be rewritten as: 

Zop(x0) =
∑N− 1

k=0
Zop

k + Zop
N (12)  

where 

Zop
k = min

uk∈Uk
{hk(xk, uk, k)+ Zop

k+1} (13) 

The relationship in Eq. (13), normally called Bellman equation, 
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represents a formal statement of the principle of optimality. As stated 
before, the cost function expressed by Eq. (13) is solved by dividing the 
original problem into simple sequences of sub-problems and by moving 
backward in time starting from the time-step k = N-1 to time-step k = 0. 
Once the entire problem is solved for all k ∈ {0,…,N-1}, the optimal 
scheduling policy can be found by tracking back the optimal policies 
which were found for the tail sub-problems. At the end of the recursion, 
the optimal scheduling policy that minimizes the cost function is 
tracked: 

uop = {uop
0 (x0),…, uop

N− 1(xN− 1) } (14)  

2.2.1. Model representation in the state space 

2.2.1.1. State variables. In this work, the state-space model is dis-
cretized with a time-step of one hour and two state variables are iden-
tified according to Eq. (15) and Eq. (16).  

(1) Combined heat and power 

xCHP,k+1 =

{
1 if uCHP,k ∕= 0
0 if uCHP,k = 0 (15) 

The state variable reported in Eq. (15) corresponds to the CHP sys-
tem which is represented by binary values [0,1] describing the operating 
condition (on or off) of the CHP at the beginning of each time-step k. 
This state variable is introduced to model the start-up of the CHP.  

(2) Thermal energy storage 

As a second state, the state of charge of the TES is considered in the 
DP model. This is updated as follows: 

xTES,k+1 = (1 − cdiss)⋅
(
xTES,k +ETES,th,in,k − ETES,th,out,k

)
(16) 

As reported in Eq. (16), the heat dissipation is included in the storage 
model and assumed proportional to the stored energy. In particular, a 
dissipation coefficient of 0.5% is considered [33]. 

2.2.1.2. Decision variables. Five decision variables are identified to 
optimally schedule the components of the HEP. These correspond to the 
CHP, GSHP, ASHP, ABS and TES. The STC and PV systems are activated 
first, since the production of renewable energy systems clearly depends 
on ambient conditions. However, the energy produced from the STC 
system depends on the amount of energy to be stored in the TES and the 
energy produced from the PV system is auto-consumed, while the excess 
of electricity is sent to the grid.  

(1) Renewable energy systems 

The thermal energy and electric energy produced by the STC and the 
PV systems are calculated by means of Eq. (17) and Eq. (18), 
respectively: 

ESTC,th,k = Gk⋅ASTC⋅ηSTC,k⋅Δk (17)  

EPV,el,k = Gk⋅APV ⋅ηPV,k⋅Δk (18) 

with G representing the solar radiation expressed in [kW/m2]. 
The efficiency of the STC is expressed as reported in Eq. (19) [34]: 

ηSTC,k = ηo − b1⋅
(

Tav − Tk

G

)

− b2⋅
(

Tav − Tk

G

)2

(19)  

where ηo stands for the optical efficiency of the collector (equal to 0.8), 
b1 and b2 two correction factors, G the solar radiation, Tk the external 
ambient temperature and Tav the average temperature. The latter is 
considered equal to 50 ◦C during winter and 80 ◦C during summer. 

The overall performance of the PV system is calculated by the 

following equation [35,36]: 

ηPV,k = ηBoS⋅ηM,ref ⋅[1 − λ⋅(Tc,k − Tref )] (20)  

with ηBoS is the balance of system (equal to 0.9), ηM,ref the performance 
of the PV module at standard conditions (equal to 0.14), λ a penalty 
coefficient (equal to 0.005 [◦C− 1]), Tref the operating temperature of the 
cells at standard conditions (equal to 20 ◦C) and Tc,k the effective 
operating temperature of the cell.  

(2) Combined heat and power 

The CHP system is a small scale gas turbine fed by natural gas. The 
thermal and electrical energy production of the CHP system at the k-th 
time-step are expressed by Eq. (21) and Eq. (22), respectively: 

ECHP,th,k = uCHP,k⋅PCHP,th,nom(Tk)⋅Δk (21)  

ECHP,el,k = ηCHP,el(uCHP,k,Tk)⋅
ECHP,th(uCHP,k,Tk)

ηCHP,th(uCHP,k, Tk)
(22)  

where; 

uCHP,k =
PCHP,th,k

PCHP,th,nom(Tk)
(23) 

As can be seen from Eq. (23), the decision variable for the CHP is 
defined as the ratio between the thermal power produced at the k-th 
time-step and the nominal thermal power of the CHP corrected ac-
cording to the ambient temperature. The decision variable is discretized 
into equally spaced values in the modulation range of the CHP including 
the turned-off condition (uCHP,th = 0). The fuel energy consumption for 
the CHP is calculated by taking into account the penalty for CHP start- 
up: 

ECHP,fuel,k =
ECHP,th(uCHP,k,Tk)

ηCHP,th(uCHP,k,Tk )
+ECHP,fuel,start− up,k(xCHP,k, uCHP,k) (24)  

where; 

ECHP,fuel,start− up,k =

(
PCHP,el,nom

ηCHP,el,nom

)

⋅
(
Δtstart− up

)
; if xCHP,k = 0 and uCHP,k ∕= 0

(25) 

The fuel energy consumed during a start-up (ECHP,fuel,start-up) is 
assumed equal to the consumption of the system during a Δtstart-up equal 
to 5 min at nominal conditions [37]. The effect of the ambient tem-
perature and load on the CHP performance is also accounted for.  

(3) Heat pumps 

For the HP (i.e., GSHP or ASHP) unit, the thermal/cooling energy 
produced and the electrical energy consumed are represented by Eq. 
(26) and Eq. (27), respectively: 

EHP,th/cool,k =

{
uHP,k⋅PHP,th,nom(Tk)⋅Δk In winter

uHP,k⋅PHP,cool,nom(Tk)⋅Δk In summer (26)  

EHP,el,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

EHP,th(uHP,k, Tk)

COPHP(uHP,k,Tk)
In winter

EHP,cool(uHP,k, Tk)

EERHP(uHP,k, Tk)
In summer

(27)  

where; 

uHP,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PHP,th,k

PHP,th,nom(Tk)
In winter

PHP,cool,k

PHP,cool,nom(Tk)
In summer

(28) 
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As reported in Eq. (28), for both heat pumps (GSHP and ASHP), the 
decision variables (uGSHP and uASHP) are defined as the ratio between the 
thermal power produced and the corrected nominal thermal power 
during winter, while they are defined as the ratio between the cooling 
power produced and the corrected nominal cooling power during 
summer. Moreover, Tk stands for the ground temperature for the GSHP, 
while it stands for ambient temperature for the ASHP. 

Both heat pumps are able to modulate between 0% and 100% of the 
nominal thermal/cooling load. Moreover, the effect of the external 
temperature (air temperature for the ASHP and ground temperature for 
the GSHP) and the load on the heat pump performance is also considered 
[38].  

(4) Absorption chiller 

The fourth decision variable refers to the ABS unit, where the cooling 
energy produced and the thermal energy absorbed by the ABS are 
calculated as follows: 

EABS,cool,k = uABS,k⋅PABS,cool,nom⋅Δk (29)  

EABS,th,k =
EABS,cool,k(uABS,k)

EERABS,K
(30)  

where 

uABS,k =
PABS,cool,k

PABS,cool,nom
(31) 

The ABS unit considered in this study is a single-effect H2O-BrLi with 
a nominal Energy Efficiency Ratio (EER) assumed equal to 0.7 [39].  

(5) Thermal energy storage 

A decision variable is also defined in order to control the amount of 
thermal energy used to meet the thermal energy demand. This is 
expressed by Eq. (32): 

ETES,th,out,k = uTES,k⋅xTES,k (32)    

(6) Auxiliary systems 

Finally, the remaining thermal and cooling energy demands not 
fulfilled by the systems reported above are met by the auxiliary systems, 
i.e., AB and AC: 

EAB,th,k = EAB,fuel,k⋅ηAB,k (33)  

EAC,cool,k = EAC,el,k⋅EERAC,k (34)  

2.2.2. Objective function 
The optimal scheduling problem of the various energy technologies 

involved in the HEP is solved by investigating the following Hybrid 
Objective Function (HOF): 

HOF(x0) = α⋅NPEC(x0)+ β⋅NOC(x0) (35)  

α and β are two weights which can assume values between 0 and 1. NPEC 
and NOC are the normalized primary energy consumption and 
normalized operational costs, respectively. The case (α = 1, β = 0) 
corresponds to the energy scheduling optimization, while the case (α =
0, β = 1) corresponds to the economic scheduling optimization. 

The Primary Energy Consumption (PEC) throughout one year of 
operation is expressed as reported in Eq. (36): 

PEC(x0) = min
u∈U

∑N− 1

k=0
ECHP,fuel,k(xk, uk)+EAB,fuel,k(xk, uk)

+ fgrid→user⋅Egrid,el,taken,k(xk, uk) − fuser→grid⋅Egrid,el,sent,k(xk, uk) (36) 

From Eq. (36), the PEC is defined as the sum of the fuel energy 
consumed by the CHP, the fuel energy consumed by the AB and the fuel 
energy related to the electrical energy taken/sent to the grid. 

The Operational Costs (OC) associated with the operation of the HEP 
throughout one year is defined as follows: 

Fig. 2. Daily profiles for the energy demands (a), electricity price (b), ambient temperature (c) and total solar radiation (d).  
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OC(x0) = FCHEP +min
u∈U

∑N− 1

k=0
VCHEP(xk, uk)+FUCHEP(xk, uk)

+ECHEP(xk, uk)+EMCgrid→user(xk, uk) − EMCuser→grid(xk, uk) (37) 

The term FC stands for the fixed cost, VC stands for the variable cost, 
FUC is for the fuel cost, EC is for the emission cost and EMC refers to the 
cost of the electricity market. It should be mentioned that the FC does 
not depend on the scheduling strategy of the HEP components because 
these are fixed expenses on a yearly basis and they are calculated as a 
function of the system sizes: 

FCHEP =
∑L

l=1
SFCl⋅Pl,nom (38)  

with SFC and P representing the specific fixed cost and nominal size of 
the l-th system, respectively. The VC values are calculated as a function 
of the energy produced throughout one year: 

VCHEP,k =
∑L

l=1
SVCl⋅El,k (39)  

with SVC and E representing the specific variable cost and energy pro-
duction of the l-th system, respectively. The FUC is calculated as follows: 

FUCHEP,k = SFUC⋅(FuelCHP,k + FuelAB,k) (40)  

where SFUC is the specific cost of the natural gas. Similarly, the EC is 
calculated by using Eq. (41): 

ECHEP,k = SEC⋅FEk (41)  

with SEC and FE representing the specific emission cost and fuel emis-
sion, respectively. Finally, the cost of the electricity is calculated by 
considering the hourly trend of the electricity market: 

EMCgrid→user,k = (EEPk + ΔEEP)⋅Egrid,el,taken,k (42)  

EMCuser→grid,k = (EEPk)⋅Egrid,el,sent,k (43) 

The term EEP represents the hourly electricity price [€/MWh] of the 
Italian electricity market (see Fig. 2b). The revenue from selling elec-
tricity to the grid [€/MWh] is lower than the cost of the electricity 
bought from the grid by a fixed amount (ΔEEP) equal to 95 €/MWh 
which is specific to the considered Country. 

2.2.3. Scheduling optimization 
The discrete-time optimal scheduling problem of minimizing the 

primary energy consumption and operational costs over one year with 
an hourly time-step is formulated as follows: 

min
{uCHP ,uHP ,uABS ,uTES}

∈[umin ,umax ]

∑N− 1

k=0
α⋅NPEC

(
xCHP,k, xTES,k , uCHP,k, uHP,k, uABS,k , uTES,k

)

+ β⋅NOC
(
xCHP,k, xTES,k, uCHP,k, uHP,k, uABS,k, uTES,k

)
(44)  

s.t. 

xCHP,k+1 =

{
1 if uCHP,k ∕= 0
0 if uCHP,k = 0 (45)  

xTES,k+1 = (1 − cdiss)⋅
(
xTES,k +ETES,th,in,k − ETES,th,out,k

)
(46)  

xCHP,0 = 0; xTES,0 = 0 (47)  

xCHP,N = 0 ∨ 1; xTES,min ≤ xTES,N ≤ xTES,max (48)  

N = 8760 (49) 

In this paper, the scheduling optimization problem (Eqs. (44)–(49)) 
of the HEP components is solved by using a solver developed by 

Sundstrom and Guzzella in [19] that deals with discrete-time optimal- 
control problems using Bellman’s DP algorithm. Both solver and plant 
model are implemented in Matlab® [40]. 

3. Case studies 

3.1. Commercial building 

The first case study considered in this work consists of a tower 
composed of thirteen floors where 1189 m2 (corresponding to 5735 m3) 
are used for commercial purposes and 4457 m2 (corresponding to 20187 
m3) are used as offices. The tower is situated in northern Italy in the 
climatic zone “A” [41]. 

Fig. 2a shows the thermal, cooling and electrical energy demand 
profiles for the day in which the peak of the demands occurs [42]. 
Moreover, the heating period lasts from 15th October to 15th April, 
while the cooling period lasts from 15th June to 15th September. The 
energy demand for hot water (which is included in the thermal demand) 
and electricity are present throughout the whole year. 

Fig. 2b reports the profile of a day-ahead (24 h) electricity price of 
the 2019 Italian electricity market [43]. Since the market price for 
electricity is determined according to supply and demands bids of 
market participants, the profile of the day-ahead electricity price 
changes throughout the year. Thus, in this study, the real profile of the 
2019 electricity price of the Italian market is considered [43]. Figures 2c 
and 2d report the hourly ambient temperature and total solar radiation, 
calculated for the climatic zone “A”, for a typical day of January, July 
and October. These were calculated by following the standard reported 
in [41]. 

According to the Italian market, the cost of natural gas is considered 
equal to 0.23 €/Stdm3 [44]. Moreover, the cost for CO2 emissions is 
assumed equal to 22 €/tCO2 considering an emission factor equal to 
1.972 ⋅10− 3 tCO2/Stdm3 [45]. 

Table 1 reports the fixed and variable costs associated with the 
operation and maintenance of the different HEP components. Since no 

Table 1 
Fixed and variable operational costs for the HEP components.  

Technology Fixed costs [€/(kW⋅year)] Variable costs [€/kWh] Reference 

CHP  8.36  0.0150 [46,47] 
GSHP  7.22  0.0005 [46] 
ASHP  7.22  0.0005 [46] 
ABS  9.20  0.0017 [46,48] 
AB  2.21  0.0011 [46] 
AC  7.22  0.0005 [46]  

Table 2 
Sizes of the HEP components [42].  

Technology Size Value 

PV APV [m2] 209 
STC ASTC [m2] 119 
CHP Pel,CHP,nom [kWe] 100  

ηel,CHP,nom [-] 0.27  
Pth,CHP,nom [kWth] 195  
ηth,CHP,nom [-] 0.54 

GSHP Pth,GSHP,nom [kWth] 242  
COPASHP,nom [-] 3.35  
Pcool,GSHP,nom [kWc] 198  
EERGSHP,nom [-] 4.6 

ASHP Pth,GSHP,nom [kWth] 17  
COPASHP,nom [-] 2.8  
Pcool,GSHP,nom [kWc] 15  
EERASHP,nom [-] 2.7 

ABS Pcool,ABS,nom [kWc] 109  
EERABS,nom [-] 0.7 

TES VTES [l] 1330  
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moving parts are presented in the STC, PV and TES, these costs are 
ignored for these systems. For instance, the maintenance costs for STC 
plants is lower than 1 €/MWh [46]. 

The yearly fixed costs, which are independent of the running time of 
the system and its operation strategy, are calculated as a function of the 
system nominal capacity. Moreover, they include the costs for admin-
istration, property tax, insurance and operational staff. The variable 
costs are calculated as a function of system energy production. It should 
be mentioned that fixed and variable costs do not include fuel costs, but 
only the costs related to the operation and maintenance of the system. 

The sizes of the different plant components are summarized in 
Table 2. These sizes are obtained by optimizing the sizes of the HEP 
components by using a genetic algorithm. The AB and AC are sized by 
considering the peak of the thermal and cooling power demand, 
respectively. 

The results obtained by the DP method are compared to commonly 
used operation strategies. The considered strategies are reported in 
Table 3. The term “W” stands for winter, while “S” stands for summer. 
The SOP strategies are constructed by considering all the possible 
combinations of the winter (W) and summer strategies (S). Thus, four-
teen Switch-On Priority (SOP) strategies (7 W multiplied by 2 S) are used 
as benchmarks. It should be mentioned that for all SOP combinations, 
the renewable energy systems (STC and PV) are the first to be activated, 
while the auxiliary systems (AB and AC) are the last. 

3.2. University campus 

As a second case study the campus of the University of Parma (Italy) 
is considered in this paper [49]. The campus includes 21 buildings which 
are distributed over an area of approximately 77 ha. For the sake of 
brevity, thermal, cooling and electrical energy demands are not reported 
in this paper. More details about the energy demands, ambient condi-
tions and description of the case study can be found in [50,51]. It has to 
be mentioned that energy demands were normalized with respect to 
their corresponding peak value because of confidentiality reasons. 

In this case study, the HEP is composed of a PV, CHP (based on a 
medium scale gas turbine), ABS, AC, AB and TES. Table 4 presents the 
normalized sizes of the plant components which belong to the hybrid 
demand following “HDF-L” case reported in [50]. Moreover, battery 

energy storage technologies are not considered, while the AB and ABS 
are sized by considering the peak of the thermal and cooling power 
demand, respectively. Fixed and variable costs associated with the 
operation and maintenance of the plant components are reported in 
Table 5. 

For this case study, the results obtained by the DP method are 
compared to four operation strategies investigated in [50]. Two of the 
strategies are Thermal Demand Following (TDF1 and TDF2) strategies, 
while the other two are Electric Demand Following (EDF1 and EDF2) 
strategies. 

The operation strategy TDF1 differs from TDF2 in that the cooling 
demand is first met by the ABS followed by the AC, while in TDF2 the 
starting order is the opposite. This difference also stands between EDF1 
and EDF2. 

Finally, all simulations have been carried out on a personal computer 
with 2 cores and 16 GB RAM. The time taken by the DP to solve the 
scheduling optimization problem is around 90 min. 

4. Results and discussion 

4.1. Commercial building 

This section reports and discusses the results obtained from the en-
ergy, economic and hybrid scheduling optimization of the different 
energy technologies composing the energy plant. Fig. 3 shows the 
optimization results in terms of PEC and OC for the DP and SOP oper-
ation strategies by considering the energy scheduling optimization (α =
1, β = 0) and economic scheduling optimization (α = 0, β = 1). With 
reference to the energy scheduling optimization (α = 1, β = 0), the DP 
method always allows better results in terms of primary energy saving 
compared to the SOP scheduling strategies. The achievable primary 
energy saving ranges from 3.83% (compared to W6S2) to 8.31% 
(compared to W7S1). The amount of primary energy consumed by the 
CHP falls almost in the middle between the W6S2 and W7S1 cases, 
which represent the best and worst cases in terms of PEC, respectively 
(see Table A1). Moreover, the electrical energy taken from the grid, 
when the DP is used, falls between these two cases. Therefore, it can be 
inferred that, in order to reduce the PEC, the DP algorithm optimally 
operates the systems which are fed by fossil fuel (such as the CHP and 
AB) and the systems powered by electricity (such as the GSHP, ASHP and 
AC). This can be clearly observed from the split of the energy con-
sumption among the different energy systems composing the plant (see 
Table A1). 

Furthermore, the economic scheduling optimization by using the DP 
strategy always allows a reduction of the operational costs. The cost 
reduction which can be achieved thanks to the DP algorithm ranges from 
11.7% (W1S1, W2S1 and W5S1) to 25.1% (W3S2 and W6S2). By 
considering the best and worst SOP cases, i.e. W1S1 and W3S2, it ap-
pears that the electrical energy taken from the grid is the mostly 
responsible for the increase of the operational costs with about 43 k€ for 
the W1S1 and 71 k€ for the W3S2 (Table A4). In fact, by using the DP 
algorithm, the cost of the electricity taken from the grid decreases to 
about 15 k€. On the other hand, this causes an increase of the opera-
tional costs related to the fuel consumption and emission of the CHP. 
However, the use of the CHP is economically more convenient than 
fulfilling the energy demands by buying electricity from the grid. Thus, 
moving from the energy to the economic scheduling optimization, the 

Table 3 
Energy systems switch-on priority for winter and summer.  

Winter Summer 

W1: TES, CHP, GSHP, ASHP S1: ABS, GSHP, ASHP 
W2: TES, GSHP, ASHP, CHP S2: GSHP, ASHP, ABS 
W3: GSHP, ASHP, TES, CHP  
W4: GSHP, TES, CHP, ASHP  
W5: TES, CHP, ASHP, GSHP  
W6: ASHP, GSHP, TES, CHP  
W7: ASHP, TES, CHP, GSHP   

Table 4 
Sizes of the HEP components [50].  

Technology Size Value 

PV APV/Aavailable [-] 1 
CHP Pel,CHP,nom/Pel,campus,peak [-] 0.57  

Pth,CHP,nom/ Pth,campus,peak [-] 0.32  
ηel,CHP,nom [-] 0.30 

ABS Pcool,ABS,nom/Pcool,campus,peak [-] 1  
EERABS,nom [-] 0.7 

AB Pth,AB,nom/Pth,campus,peak 1  
ηth,AB,nom [-] 0.93 

AC Pcool,AC,nom/Pcool,campus,peak [-] 1  
EERAC,nom [-] 4 

TES Eth,TES,max/Pth,campus,peak [h] 0.22  

Table 5 
Fixed and variable operational costs for the HEP components.  

Technology Fixed costs [€/(kW⋅year)] Variable costs [€/kWh] Reference 

CHP 19.5  0.010 [46,52] 
ABS 2  0.001 [46,48] 
AB 2  0.001 [46] 
AC 2  0.003 [46]  
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option of CHP-based energy production becomes an economically 
favorable option. However, the reduction of the operational costs occurs 
to the cost of an increase of the primary energy consumption, which is 
expected because in this case only the operational costs were minimized 
(α = 0, β = 1), i.e. the optimization is mono-objective. 

Another relevant finding regards the cost of the electricity exchanged 

with the grid. Results show that the average cost of the electricity taken 
from the grid is about 146 €/MWh for the DP case, about 148 €/MWh for 
W1S1 and about 150 €/MWh for the W3S2 strategy. This means that the 
DP algorithm allows electricity purchase from the grid with a lower cost 
compared to the SOP strategies. 

Moreover, it was found that the average price of the electricity sold 

Fig. 3. Primary energy consumption and operational costs for the energy (α = 1; β = 0) and economic (α = 0; β = 1) scheduling optimization.  

Fig. 4. Contribution of the HEP components to the thermal energy demand for the energy a) and economic b) scheduling optimization.  

Fig. 5. Contribution of the HEP components to the cooling energy demand for the energy a) and economic b) scheduling optimization.  

H. Bahlawan et al.                                                                                                                                                                                                                              



Applied Thermal Engineering 187 (2021) 116577

10

to the grid is about 66 €/MWh for the DP, about 60 €/MWh for the W1S1 
and about 50 €/MWh for W3S2. Thus, when the DP strategy is adopted, 
the excess of electrical energy production is sold to the grid at a higher 
price. In fact, since the actual electricity market is considered in this 
work, the DP algorithm allows to optimize the interaction between the 
HEP and the grid by buying electricity from the grid during the hours of 
day when the price is lower and to sell electricity to the grid when the 
price is higher. In this work, the amount of electricity sent to the grid is 
small and consequently the revenue from selling electricity is negligible. 
However, the effect of the revenue from selling electricity would be 
more influencing when other renewable systems are integrated and 
large scale case studies (e.g. micro-grids) are considered. 

Fig. 4 shows the production of thermal energy from the different HEP 
components for the energy and economic scheduling optimization. From 
Fig. 4a, the DP algorithm meets 75% of the thermal energy demand by 
exploiting the CHP and 23.7% by means of the STC. GSHP and AB sys-
tems are rarely used and just to cover thermal peak demands. Moreover, 
compared to the SOP strategies, the thermal energy met by the STC is 
higher; this means a higher utilization factor of renewable energy 
sources. 

It worth to be noted that when the DP strategy is followed, the 
amount of energy lost through the storage is equal to about 12 MWh per 
year, while it is equal to about 22 MWh per year for both the W6S2 and 
W7S1 strategies. Indeed, since the energy dissipation is proportional to 

the energy stored in the TES, the DP tries to limit the amount of energy 
kept in the TES. 

As highlighted in Fig. 4b, the economic scheduling optimization by 
means of DP increases the production of thermal energy from the CHP by 
about 112 MWh per year, compared to the energy scheduling optimi-
zation (Fig. 4a). This is because in addition to building thermal demand, 
the CHP is required to meet the thermal demand required by the ABS, 
which in turn meets a higher cooling energy demand when the systems 
are optimized by minimizing the operational costs (see Fig. 5b). In fact, 
as discussed at the beginning of this section, the use of the CHP is 
economically more convenient than fulfilling the energy demands by 
buying electricity from the grid. This is also confirmed by the W1S1 
strategy (i.e., the SOP with lowest costs), in which the thermal energy 
demand is mostly fulfilled by the CHP system (Fig. 4b). Instead, for the 
W3S2-SOP (i.e., the SOP with highest costs), most of the thermal energy 
demand is met by the GSHP, while the remaining part is covered by the 
STC. Finally, it is worth noting that the AB is in practice never exploited, 
for both scheduling optimization. 

Fig. 5a shows that, if the DP strategy is adopted, the cooling energy 
demand is mostly fulfilled by the GSHP followed by the ABS, when the 
systems are optimally operated by minimizing the energy consumption. 
A similar share of cooling energy between the HEP components is also 
found for the W6S2 strategy (i.e., the SOP with lowest energy con-
sumption). Conversely, when the W7S1 is adopted (i.e., the SOP with 

Fig. 6. Contribution of the HEP components to the electrical energy demand for the energy a) and economic b) scheduling optimization.  

Fig. 7. Primary energy consumption and operational costs for the hybrid scheduling optimization.  
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highest energy consumption), the system which meets most of the 
cooling demand is the ABS, while the remaining part is fulfilled by the 
GSHP. 

For the economic scheduling optimization, a similar behavior be-
tween the DP and W1S1 displays for the contribution of the HEP com-
ponents to the cooling energy demand (Fig. 4b). More in details, since 
the ABS in the W1S1 case is the system which is activated first, this 
meets about more than half of the cooling energy demand by recuper-
ating a fraction of the thermal energy produced by the STC and CHP 
systems. Then, the remaining part is met by the GSHP, which according 
to the W1S1, is the second system to be activated. Instead, when 
adopting the W3S2 strategy, the cooling demand is almost entirely met 
by the GSHP. From the analysis of these results, it seems that in order to 
reduce the operational costs, it is better to meet the cooling energy de-
mand by using energy systems which are powered by thermal energy (i. 
e., the ABS) instead of systems powered by electricity (i.e., the heat 
pumps). 

From Fig. 6, the electrical energy produced by the different HEP 
components and the electricity taken from the grid is mainly used to 
meet building electrical energy demand and to operate the GSHP, ASHP 
and AC units. With reference to energy scheduling optimization 
(Fig. 6a), almost the whole electrical energy demand is taken from the 
grid for the W6S2. Instead, for the W7S1 and DP strategies, a consid-
erable part is also provided by the CHP system. 

As clearly shown in Fig. 6b, the adoption of a DP strategy leads to a 
high production of electrical energy from the CHP, which allows to 
reduce the amount of electrical energy taken from the grid. This is 
mainly due to the high cost associated with the electricity taken from the 
Italian grid. The adoption of the W1S1 causes a 27.1% of production 
from the CHP and about 69.4% of electricity is taken from the grid. 
Regarding the W3S2, almost the whole building electricity demand and 
the electricity required by the heat pumps is taken from the grid. 
Consequently, higher operational costs are associated with the use of the 
SOP strategies (see Table A4). Finally, it has to be highlighted that the 
electrical energy produced from the PV and self-consumed is almost the 
same for the energy and economic scheduling strategies with about 22.2 
MWh per year. 

Fig. 7 reports the optimization results of the DP algorithm by 
considering a hybrid objective function with different combinations of 
the weights α and β, which further proves the effectiveness of the DP- 
based optimization strategy. Compared to the DP optimization of the 
energy scenario (α = 1, β = 0), the optimization of the operational costs 

by means of the DP (α = 0, β = 1) allows to reduce the operational costs 
by about 12%. However, this reduction of the operational costs occurs to 
the cost of an increase of the primary energy consumption of about 25%. 
Moreover, the optimization of the operational costs shows that the 
cogeneration of thermal and electrical energy from a CHP coupled with 
an ABS is economically more convenient than fulfilling the energy de-
mands by heat pumps and importing electricity from the grid. 

It should be mentioned that according to the European directives 
[53] the cogeneration efficiency of the CHP must be higher than 75%. 
However, passing from the case (α = 1, β = 0) to (α = 0, β = 1), the 
overall cogeneration efficiency decreases from about 82% to about 53%. 
As highlighted in Fig. 7, the best compromise between energy con-
sumption and operational costs can be reached by considering the 
hybrid optimization cases (α = 0.5, β = 0.5) and (α = 0.75, β = 0.25). In 
fact, compared to the SOP strategies, the case (α = 0.5, β = 0.5) allows a 
minimum primary energy saving of about 1.2% and a minimum cost 
saving of about 3.8%, while the case (α = 0.75, β = 0.25) allows a 
minimum primary energy saving of about 3.6% and a minimum cost of 
0.43%. Moreover, for both cases, the annual cogeneration efficiency is 
about 82%. 

Finally, Fig. 7 clearly shows that the adoption of the DP strategy 
always allows better results than the SOP operation strategies. This is 
mainly due to the fact that when a SOP strategy is used, the starting 
order of the plant components is fixed and the systems are required to 
fulfill the energy demands in a predefined sequence. Instead, at each 
time-step of the considered time frame, the DP algorithm defines the 
operation strategy which minimizes the primary energy consumption 
and/or the operational costs. Moreover, due to its deterministic nature, 
DP is able to find the global optimal solution of the problem [16,19]. 

4.2. University campus 

In order to further demonstrate the effectiveness of the proposed 
methodology, an additional investigation is made in this section by 
considering a second case study, represented by the campus of the 
University of Parma. Fig. 8 compares the optimization results of the DP 
algorithm by considering different combination of the weights α and β to 
the results of the thermal and electrical demand following strategies, i.e. 
TDF1, TDF2, EDF1 and EDF2. Moreover, because of confidentiality 
reasons, the primary energy consumption and operational costs are re-
ported in Fig. 8 by dividing their values by the total thermal, cooling and 
electrical energy demands of the campus. 

Fig. 8. Primary energy consumption and operational costs for the hybrid scheduling optimization.  
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Results in Fig. 8 show that thermal demand following strategies 
(TDF1 and TDF2) are more convenient in terms of primary energy 
consumption than electrical demand following strategies (EDF1 and 
EDF2), which instead are more economically beneficial. In particular, 
among the strategies used as benchmarks, TDF2 is the strategy with the 
lower primary energy consumption, while EDF1 allows the lower 
operational costs. However, it is clear that energy scheduling optimi-
zation (α = 1, β = 0) by means of DP allows a lower primary energy 
consumption than TDF2 as well as the economic scheduling optimiza-
tion (α = 0, β = 1) which allows lower operational costs compared to 
EDF1. More in detail, the energy scheduling optimization (α = 1, β = 0) 
by means of DP allows a primary energy saving between about 0.5% 
(compared to TDF2) and 17.4% (compared to EDF2). Moreover, the 
economic scheduling optimization (α = 0, β = 1) enables to reduce the 
operational costs by about 4.3% (compared to EDF1) and 14% 
(compared to TDF2). 

Another interesting feature that makes DP superior to the operation 
strategies considered as benchmarks relies on its flexibility and ability to 
solve scheduling optimization problems under different optimization 
constraints. Indeed, DP proved its ability to handle hybrid objective 
functions by considering different combinations of weights α and β. In 
fact, the other operation strategies (TDF and EDF) fulfill the energy 
demands by following a predefined sequence of operation regardless of 
the optimization objective and constraints. 

Fig. 9 describes the fraction of primary energy consumption of the 
different terms reported in Eq. (36). As for the other case study, Fig. 9 
shows how the option of using a CHP becomes economically more 
beneficial when the objective is to optimize the operational costs (α = 0, 
β = 1). This is clearly highlighted by the fraction of the primary energy 
consumption of the CHP which increases as the optimization objective 
passes from the energy (α = 1, β = 0) to the economic (α = 0, β = 1) 
scheduling optimization. On the contrary, passing from the energy to the 
economic scheduling optimization, the fraction of the electricity taken 
from the grid progressively decreases. 

5. Conclusions 

This paper presented a new general methodology based on a dy-
namic programming algorithm for the optimization of the energy and 
economic scheduling of a hybrid energy plant composed of renewable 

energy systems, fossil fuel energy systems and energy storage technol-
ogies. The developed optimization methodology was successfully 
applied to two different case studies, i.e. a commercial building and a 
University campus. The optimal scheduling was conducted by consid-
ering energy, economic and hybrid objective functions. 

From the optimization results of the commercial building case study, 
compared to switch-on priority operation strategies, the energy sched-
uling optimization (α = 1, β = 0) by means of dynamic programming 
allowed a primary energy saving between 3.8% and 8.3%. Instead, the 
economic scheduling optimization (α = 0, β = 1) enabled to reduce the 
yearly operational costs by about 11.7% to 25.1%. Furthermore, the 
energy scheduling optimization results of the University campus showed 
that it was possible to achieve a primary energy saving between 0.5% 
and 17.4%, compared to commonly used thermal and electrical energy 
demand following strategies. Regarding the economic scheduling opti-
mization, the saving of the operational costs was between 4.3% and 
14%. 

As the optimization objective moves from the energy scheduling to 
the economic optimization, for both case studies, it was possible to infer 
that fulfilling the user energy demands by using a combined heat and 
power system becomes economically more convenient than the option of 
importing electricity from the grid. 

Finally, the results showed that both energy (α = 1, β = 0) and 
economic (α = 0, β = 1) scheduling optimization by means of dynamic 
programming always outperformed traditional operation strategies. The 
strength and superiority of the dynamic programming was also 
demonstrated in this paper by showing its ability to handle hybrid 
objective functions. 
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See Tables A1–A4. 

Fig. 9. Fraction of primary energy consumption for the DP optimization.  
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Table A2 
Operational costs for the DP and SOP operation strategies of the energy scheduling optimization.   

DP SOP   

W1S1 W1S2 W2S1 W2S2 W3S1 W3S2 W4S1 W4S2 W5S1 W5S2 W6S1 W6S2 W7S1 W7S2 
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OC [k€]  66.83  66.27  68.62  66.27  68.62  75.80  78.15  75.80  78.15  66.27  68.62  75.77  78.12  67.50  69.86 
Saving [%]   − 0.85  2.61  − 0.85  2.61  11.83  14.49  11.83  14.49  − 0.85  2.61  11.80  14.46  1.00  4.34  

Table A3 
Primary energy consumption for the DP and SOP operation strategies of the economic scheduling optimization.   

DP SOP   

W1S1 W1S2 W2S1 W2S2 W3S1 W3S2 W4S1 W4S2 W5S1 W5S2 W6S1 W6S2 W7S1 W7S2 

ECHP,fuel [MWh] 1190.9 559.7 383.7 559.7 383.7 205.6 29.5 205.6 29.5 559.7 383.7 205.6 29.5 507.2 331.2 
EAB,fuel [MWh] 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Egrid,taken,fuel [MWh] 246.0 690.1 820.0 690.1 820.0 985.4 1115.3 985.4 1115.3 690.1 820.0 984.9 1114.7 727.1 856.9 
Egrid,sent,fuel [MWh] 72.6 61.9 60.4 61.9 60.4 12.8 11.2 12.8 11.2 61.9 60.4 12.8 11.3 45.9 44.3 
PEC [MWh] 1364 1188 1143 1188 1143 1178 1134 1178 1134 1188 1143 1178 1133 1188 1144 
Saving [%]  − 14.9 − 19.3 − 14.9 − 19.3 − 15.8 − 20.4 − 15.8 − 20.4 − 14.9 − 19.3 − 15.9 − 20.4 − 14.8 − 19.3  

Table A4 
Operational costs for the DP and SOP operation strategies of the economic scheduling optimization.   

DP SOP   

W1S1 W1S2 W2S1 W2S2 W3S1 W3S2 W4S1 W4S2 W5S1 W5S2 W6S1 W6S2 W7S1 W7S2 

FUCHEP [k€]  28.56  13.42  9.20  13.42  9.20  4.93  0.71  4.93  0.71  13.42  9.20  4.93  0.71  12.17  7.94 
ECHEP [k€]  5.39  2.53  1.74  2.53  1.74  0.93  0.13  0.93  0.13  2.53  1.74  0.93  0.13  2.29  1.50 
FCHEP [k€]  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35  6.35 
VCHEP [k€]  5.10  2.19  1.47  2.19  1.47  0.96  0.24  0.96  0.24  2.19  1.47  0.96  0.24  2.04  1.31 
EMCgrid,taken [k€]  15.24  43.38  51.44  43.38  51.44  62.91  70.97  62.91  70.97  43.38  51.44  62.88  70.94  45.81  53.87 
EMCgrid,sent [k€]  2.10  1.60  1.57  1.60  1.57  0.28  0.25  0.28  0.25  1.60  1.57  0.28  0.25  1.15  1.11 
OC [k€]  58.53  66.27  68.62  66.27  68.62  75.80  78.15  75.80  78.15  66.27  68.62  75.77  78.12  67.50  69.86 
Saving [%]   11.7  14.7  11.7  14.7  22.8  25.1  22.8  25.1  11.7  14.7  22.7  25.1  13.3  16.2  

Table A1 
Primary energy consumption for the DP and SOP operation strategies of the energy scheduling optimization.   

DP SOP   

W1S1 W1S2 W2S1 W2S2 W3S1 W3S2 W4S1 W4S2 W5S1 W5S2 W6S1 W6S2 W7S1 W7S2 

ECHP,fuel [MWh] 351.1 559.7 383.7 559.7 383.7 205.6 29.5 205.6 29.5 559.7 383.7 205.6 29.5 507.2 331.2 
EAB,fuel [MWh] 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Egrid,taken,fuel [MWh] 805.6 690.1 820.0 690.1 820.0 985.4 1115.3 985.4 1115.3 690.1 820.0 984.9 1114.7 727.1 856.9 
Egrid,sent,fuel [MWh] 68.4 61.9 60.4 61.9 60.4 12.8 11.2 12.8 11.2 61.9 60.4 12.8 11.3 45.9 44.3 
PEC [MWh] 1090 1188 1143 1188 1143 1178 1134 1178 1134 1188 1143 1178 1133 1188 1144 
Saving [%]  8.27 4.69 8.27 4.69 7.51 3.88 7.51 3.88 8.27 4.69 7.47 3.83 8.31 4.74  
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