Richiami di

 calcolo matriciale
C. 1 Definitions

Matrix. A matrix is a rectangular array of numbers. An array having m rows and n columns enclosed in brackets is called an m-by- n matrix. If $[A]$ is an $m \times n$ matrix, it is denoted as

$$
[A]=\left\{a_{i j} \left\lvert\,=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{C.1}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & a_{n l n}
\end{array}\right]\right.\right.
$$

where the numbers $a_{i j}$ are called the elements of the matrix. The first subscript i denotes the row and the second subscript j specifics the column in which the element $a_{i j}$ appears.

Square Matrix. When the number of rows (m) is equal to the number of columns (n), the matrix is called a square matrix of order n.

Column Matrix. A matrix consisting of only one column-that is, an $m \times 1$ matrix-is called a column matrix or more commonly a column vector. Thus if \vec{a} is a column vector having m elements, it can be represented as

$$
\vec{a}=\left\{\begin{array}{c}
a_{1} \tag{C.2}\\
a_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{m}
\end{array}\right\}
$$

Row Matrix. A matrix consisting of only one row-that is a $1 \times n$ matrix-is called a row matrix or a row vector. If $\lfloor b\rfloor$ is a row vector, it can be denoted as

$$
\lfloor b\rfloor=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n} \tag{C.3}
\end{array}\right]
$$

Diagonal Matrix. A square matrix in which all the elements are zero except those on the principal diagonal is called a diagonal matrix. For example, if $[A]$ is a diagonal matrix of order n, it is given by

$$
[A]=\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \tag{C.4}\\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\cdot & & & & \\
\cdot & & & & \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Identity Matrix. If all the elements of a diagonal matrix have a value 1 , then the matrix is called an identity matrix or unit matrix and is usually denoted as [I].

Zero Matrix. If all the elements of a matrix are zero, it is called a zero or null matrix and is denoted as [0]. If [0] is of order 2×4, it is given by

$$
[0]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \tag{C.5}\\
0 & 0 & 0 & 0
\end{array}\right]
$$

Symmetric Matrix. If the element in i th row and j th column is the same as the one in j th row and i th column in a square matrix, it is called a symmetric matrix. This means that if $[A]$ is a symmetric matrix, we have $a_{j i}=a_{i j}$. For example,

$$
[A]=\left[\begin{array}{rrr}
4 & -1 & -3 \tag{C.6}\\
-1 & 0 & 7 \\
-3 & 7 & 5
\end{array}\right]
$$

is a symmetric matrix of order 3.
Transpose of a Matrix. The transpose of an $m \times n$ matrix [A] is the $n \times m$ matrix obtained by interchanging the rows and columns of $[A]$ and is denoted as $[A]^{T}$. Thus if

$$
[A]=\left[\begin{array}{lll}
2 & 4 & 5 \tag{C.7}\\
3 & 1 & 8
\end{array}\right]
$$

then $[A]^{T}$ is given by

$$
[A]^{T}=\left[\begin{array}{ll}
2 & 3 \tag{C.8}\\
4 & 1 \\
5 & 8
\end{array}\right]
$$

Note that the transpose of a column matrix (vector) is a row matrix (vector), and vice versa.

Trace. The sum of the main diagonal elements of a square matrix $[A]=\left[a_{i j}\right]$ is called the trace of $[A]$ and is given by

$$
\begin{equation*}
\operatorname{Trace}[A]=a_{11}+a_{22}+\cdots+a_{n n} \tag{C.9}
\end{equation*}
$$

Determinant. If $[A]$ denotes a square matrix of order n, then the determinant of $[A]$ is denoted as $|[A]|$. Thus

$$
|[A]|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{C.10}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

The value of a determinant can be found by obtaining the minors and cofactors of the determinant.

The minor of the element $a_{i j}$ of the determinant $|[A]|$ of order n is a determinant of order $(n-1)$ obtained by deleting the row i and the column j of the original determinant. The minor of $a_{i j}$ is denoted as $M_{i j}$.

The cofactor of the element $a_{i j}$ of the determinant $|[A]|$ of order n is the minor of the element $a_{i j}$, with either a plus or a minus sign attached; it is defined as

$$
\begin{equation*}
\text { Cofactor of } a_{i j}=\beta_{i j}=(-1)^{i+j} M_{i j} \tag{C.11}
\end{equation*}
$$

where $M_{i j}$ is the minor of $a_{i j}$. For example, the cofactor of the element a_{32} of

$$
\operatorname{det}[A]=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{C.12}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

is given by

$$
\beta_{32}=(-1)^{5} M_{32}=-\left|\begin{array}{ll}
a_{11} & a_{13} \tag{C.13}\\
a_{21} & a_{23}
\end{array}\right|
$$

The value of a second order determinant $|[A]|$ is defined as

$$
\operatorname{det}[A]=\left|\begin{array}{ll}
a_{11} & a_{12} \tag{C.14}\\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

The value of an nth order determinant $|[A]|$ is defined as

$$
\operatorname{det}[A]=\sum_{j=1}^{n} a_{i j} \beta_{i j} \text { for any specific row } i
$$

or

$$
\begin{equation*}
\operatorname{det}[A]=\sum_{i=1}^{n} a_{i j} \beta_{i j} \text { for any specific column } j \tag{C.15}
\end{equation*}
$$

For example, if

$$
\operatorname{det}[A]=|[A]|=\left|\begin{array}{lll}
2 & 2 & 3 \tag{C.16}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|
$$

then, by selecting the first column for expansion, we obtain

$$
\begin{align*}
\operatorname{det}[A] & =2\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-4\left|\begin{array}{ll}
2 & 3 \\
8 & 9
\end{array}\right|+7\left|\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right| \\
& =2(45-48)-4(18-24)+7(12-15)=-3 \tag{C.17}
\end{align*}
$$

Properties of Determinants

1. The value of a determinant is not affected if rows (or columns) are written as columns (or rows) in the same order.
2. If all the elements of a row (or a column) are zero, the value of the determinant is zero.
3. If any two rows (or two columns) are interchanged, the value of the determinant is multiplied by -1 .
4. If all the elements of one row (or one column) are multiplied by the same constant a, the value of the new determinant is a times the value of the original determinant.
5. If the corresponding elements of two rows (or two columns) of a determinant are proportional, the value of the determinant is zero. For example,

$$
\operatorname{det}[A]=\left|\begin{array}{rrr}
4 & 7 & -8 \tag{C.18}\\
2 & 5 & -4 \\
-1 & 3 & 2
\end{array}\right|=0
$$

Adjoint Matrix. The adjoint matrix of a square matrix $[A]=\left[a_{i j}\right]$ is defined as the matrix obtained by replacing each element $a_{i j}$ by its cofactor $\beta_{i j}$ and then transposing. Thus

$$
\operatorname{Adjoint}[A]=\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \cdots & \beta_{1 n} \tag{C.19}\\
\beta_{21} & \beta_{22} & \cdots & \beta_{2 n} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
\beta_{n 1} & \beta_{n 2} & \cdots & \beta_{n n}
\end{array}\right]^{T}=\left[\begin{array}{cccc}
\beta_{11} & \beta_{21} & \cdots & \beta_{n 1} \\
\beta_{12} & \beta_{22} & \cdots & \beta_{n 2} \\
\cdot & & & \\
\cdot & & & \\
\cdot & & & \\
\beta_{1 n} & \beta_{2 n} & \cdots & \beta_{n n}
\end{array}\right]
$$

Inverse Matrix. The inverse of a square matrix $[A]$ is written as $[A]^{-1}$ and is defined by the following relationship:

$$
\begin{equation*}
[A]^{-1}[A]=[A][A]^{-1}=[I] \tag{C.20}
\end{equation*}
$$

where $[A]^{-1}[A]$, for example, denotes the product of the matrix $[A]^{-1}$ and $[A]$. The inverse matrix of $[A]$ can be determined (see Ref. [A.1]):

$$
\begin{equation*}
[A]^{-1}=\frac{\operatorname{adjoint}[A]}{\operatorname{det}[A]} \tag{C.21}
\end{equation*}
$$

when $\operatorname{det}[A]$ is not equal to zero. For example, if

$$
[A]=\left[\begin{array}{lll}
2 & 2 & 3 \tag{C.22}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

its determinant has a value $\operatorname{det}[A]=-3$. The cofactor of a_{11} is

$$
\beta_{11}=(-1)^{2}\left|\begin{array}{ll}
5 & 6 \tag{C.23}\\
8 & 9
\end{array}\right|=-3
$$

In a similar manner, we can find the other cofactors and determine
$[A]^{-1}=\frac{\operatorname{adjoint}[A]}{\operatorname{det}[A]}=\frac{1}{-3}\left[\begin{array}{rrr}-3 & 6 & -3 \\ 6 & -3 & 0 \\ -3 & -2 & 2\end{array}\right]=\left[\begin{array}{rrr}1 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 2 / 3 & -2 / 3\end{array}\right]$
Singular Matrix. A square matrix is said to be singular if its determinant is zero.

Basic Matrix Operations

Equality of Matrices. Two matrices $[A]$ and $[B]$, having the same order, are equal if and only if $a_{i j}=b_{i j}$ for every i and j.

Addition and Subtraction of Matrices. The sum of the two matrices [A] and $[B]$, having the same order, is given by the sum of the corresponding elements. Thus if $[C]=[A]+[B]=[B]+[A]$, we have $c_{i j}=a_{i j}+b_{i j}$ for every i and j. Similarly, the difference between two matrices $[A]$ and $[B]$ of the same order, $[D]$, is given by $[D]=[A]-[B]$ with $d_{i j}=a_{i j}-b_{i j}$ for every i and j.

Multiplication of Matrices. The product of two matrices $[A]$ and $[B]$ is defined only if they are conformable--that is, if the number of columns of $[A]$ is equal to the number of rows of $[B]$. If $[A]$ is of order $m \times n$ and $[B]$ is of order $n \times p$, then the product $[C]=[A][B]$ is of order $m \times p$ and is defined by $\left.[C]=\llbracket c_{i j}\right]$, with

$$
\begin{equation*}
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \tag{C.25}
\end{equation*}
$$

This means that $c_{i j}$ is the quantity obtained by multiplying the $i t h$ row of $[A]$ and the j th column of $[B]$ and summing these products. For example, if

$$
[A]=\left[\begin{array}{rrr}
2 & 3 & 4 \tag{C.26}\\
1 & -5 & 6
\end{array}\right] \quad \text { and } \quad[B]=\left[\begin{array}{rr}
8 & 0 \\
2 & 7 \\
-1 & 4
\end{array}\right]
$$

then

$$
\begin{align*}
{[C] } & =[A][B]=\cdot\left[\begin{array}{rrr}
2 & 3 & 4 \\
1 & -5 & 6
\end{array}\right]\left[\begin{array}{rr}
8 & 0 \\
2 & 7 \\
-1 & 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 \times 8+3 \times 2+4 \times(-1) & 2 \times 0+3 \times 7+4 \times 4 \\
1 \times 8+(-5) \times 2+6 \times(-1) & 1 \times 0+(-5) \times 7+6 \times 4
\end{array}\right] \\
& =\left[\begin{array}{rr}
18 & 37 \\
-8 & -11
\end{array}\right] \tag{C.27}
\end{align*}
$$

If the matrices are conformable, the matrix multiplication process is associative:

$$
\begin{equation*}
([A][B])[C]=[A]([B][C]) \tag{C.28}
\end{equation*}
$$

and is distributive:

$$
\begin{equation*}
([A]+[B])[C]=[A][C]+[B][C] \tag{C.29}
\end{equation*}
$$

The product $[A][B]$ denotes the premultiplication of $[B]$ by $[A]$ or the postmultiplication of $[A]$ by $[B]$. It is to be noted that the product $[A][B]$ is not necessarily equal to $[B][A]$.

The transpose of a matrix product can be found to be the product of the transposes of the separate matrices in reverse order. Thus, if $[C]=[A][B]$,

$$
\begin{equation*}
[C]^{T}=([A][B])^{T}=[B]^{T}[A]^{T} \tag{C.30}
\end{equation*}
$$

The inverse of a matrix product can be determined from the product of the inverse of the separate matrices in reverse order. Thus if $[C]=[A][B]$,

$$
\begin{equation*}
[C]^{-1}=([A][B])^{-1}=[B]^{-1}[A]^{-1} \tag{C.311}
\end{equation*}
$$

ce
C. 1 Barnett, Matrix Methods for Engineers and Scientists, McGraw-Hill, New York, 1982.

