Classificazione dei segnali ed analisi in
frequenza

Analisi dei Dati Meccanica delle Vibrazioni — Modulo If 1

1. Introduzione

4 [ dati che rappresentano un Q I fenomeno fisico in esame &
fenomeno fisico e che da spesso tradotto da un

questo sono ottenuti trasduttore in un segnale
mediante I'mpiego di elettrico e, se visualizzato

. D mediante un oscilloscopio, pud
opportuni sistemi di misura . , plo, pu

apparire come nell’esempio di
vengono spesso figura:

denominati segnali.

O Esempi di segnali sono:
= fluttuazioni di temperatura

in una stanza in funzione
I
= variazioni di tensione in s ‘\!V \\\/ Wv ' \IW ‘

x(t)

uscita da un trasduttore
= modifiche di pressione in
un punto di un campo
acustico
Analisi d&i Dati Meccanica delle Vibrazioni — Modulo If 2




1.1 Classificazione dei dati

U I segnali possono essere
classificati come:

= Deterministici
= Non-deterministici

O Sono deterministici quei dati
che possono essere descritti da
esplicite relazioni matematiche.

Q Si consideri, ad esempio, una
massa rigida m sospesa ad un
telaio mediante una molla priva
di massa e avente costante
elastica k

O Sappiamo che, spostata dalla
sua posizione di equilibrio di
una quantita X e abbandonata
all'istante {=0 con velocita
iniziale nulla, la massa oscillera
in modo tale che la sua distanza

- x(t) dalla posizione di equilibrio
sara espressa dalla relazione:

x(t)= X cos }—k—t t20
m
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Classificazione dei dati

O Esistono, tuttavia, molti altri
fenomeni fisici che producono
dati di tipo non deterministico.

0O Ad esempio:

s Jaltezza delle onde in un mare
agitato

s [a pressione acustica dell’aria
che fluisce in un tubo

= ['uscita elettrica di un
generatore di rumore, ecc.

= [a risposta di una struttura ad
un sisma

= il comportamento di veicoli
viaggianti su una strada
irregolare

O Non & possibile, in questi casi,
prevedere il valore dei dati in un
qualungue istante futuro.

Q Non é possibile utilizzare
esplicite relazioni matematiche,
ma si deve ricorrere a strumenti
di tipo probabilistico.

O Varie terminologie sono
utilizzate in letteratura per
descrivere questi segnali, ad
esempio si parla di:

s  processi casuali
= processi stocastici
= serie temporali (time series)

Analisi dei Dati

Meccanica delle Vibrazioni — Modulo I




2. Segnali deterministici

O | dati di tipo deterministico Q [ dati periodici possono essere
possono essere classificati rappresentati analiticamente da
secondo lo schema di figura: una funzione che si ripete

esattamente ad intervalli
regolari di tempo.

x(t)=x(t £nly) n=123,--

O L'intervalio di tempo necessario

per un intero ciclo & detto
Periodici Non Periodici periodo Tp .
Q It numero di cicli per unita di
’——‘l—‘ tempo € chiamato frequenza
) P fondamentale f1.
Quasi I Transitori |

periodici
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2.1 Segnali periodici

Q | dati periodici possono O Le frequenze 60, 75 e 100 hanno come massimo
essere sviluppati in serie comune divisore 5.
di Fourier. O La frequenza fondamentale & f7 = 5 Hz.

Q Inaltre parole, consistono O Sono nulle tutte le ampiezze corrispondenti alle
di una componente armoniche superiori, tranne quelle corrispondenti
statica (valore medio) e di alle armoniche numero 12, 15 e 20.

un numero infinito di
componenti sinusoidali
dette armoniche, che
hanno ampiezza e fase.

Q Una funzione periodica pud quindi essere

aventi frequenze multiple di una frequenza

O Le frequenze delle fondamentale. Reciprocamente, la somma di pit
componenti armqquche' termini sinusoidali, le cui frequenze siano tra loro
sono tutte multipli interi commensurabili, ossia i cui rapporti siano numeri
della frequenza razionali, da luogo ad una funzione periodica.

fond ntale. . . . .
ame 0O Cosl, nell'esempio sopra riportato, i rapporti

60/75, 60/100 e 75/100 sono tutti numeri
razionali.

x() = 1.0sin(2760¢) + 0.8sin(2775¢) + 0.5sin(27100¢)

espressa come una somma di termini sinusoidali
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Segnali periodici
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x(2) =1.0sin(2760¢) + 0.8sin(27275t) + 0.5sin(277100¢)
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Segnali quasi periodici e transitori

O Si consideri, ora, la
seguente funzione:

x(£) = X, sin2¢+9) + X, sin(v2 1+ %)

a !I_rapporto 212 & O | dati non periodici diversi da quelli
irazionale e pertanto il definiti come quasi periodici sono
periodo della indicati come transitori.

fondamentale risulta

infinitamente lungo. QO Esempi di dati transitori sono

mostrati in figura
O Questi dati sono definiti

come quasi periodici in

guanto le frequenze delle i .
componenti non sono 075 05 31 —
T . g 0.25
multipli interi di una S s \ g 0 f \\/
frequenza fondamentale. N g
.. ; v
074
-1
DD 0.2 0.4 08 1] 02 0.4 0B
Tempa, tfsi Tempa, tis]
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QO Come & noto, una funzione x(f)

2.2 Serie di Fourier

periodica di periodo T si pud
rappresentare mediante la serie di
Fourier:

(1) = X+ X, cosQrm fit + @)+ X, cosQr2 fit +@,) +.. 4 X cosQrnfit +¢,)

x(t) =X, + . X, cos2z nfit +¢,)

n=1
i ¢la frethJenza fondamentale O |l termine corrispondente ad n=1¢&
(frequenza dell’armonica detto fondamentale
fondamentale, che ha ampiezza X,) o o
X il val dio di x(t O Quelli di ordine superiore (n > 1)
o @il valore medio di x(t) sono detti armoniche.
X & ampiezza della n—esima

n
armonica, di frequenza nf;

R . O Si é riportata la notazione piu usata,
@, ¢ lafase della n—esima

) cioé quella solo in coseno ma,

armonica naturalmente, si pud trovarla anche
500 it Sero, 11 Seno € TUSENo, U

La funzione deve essere neila forma esponenziale.

assolutamente integrabile: rlx(t)[dt <
il
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Se si ha una funzione periodica,

effettuarne I'analisi di Fourier significa Serle dl Fourler

ricavare le ampiezze X, e le fasi ¢, s s

Si pud pensare di compiere I'analisi di os s
Fourier con un filtro che abbia la . .
caratteristica di lasciar passare solo le

componenti comprese tra una certa Co os 1 s 2 o os 1 15 2
frequenza f* e la f* pit un certo s s

incremento. s
!
. . . . . . o5 0.5
La serie dei valori dei coefficienti X e ¢, . )

costituiscono lo spettro della funzione
x(f) e ne forniscono una rappresentazione R T BT R S S R I R
nel dominio delle frequenze. fme el fime 11

Fenomeno di Gibbs
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2.3 Trasformata di Fourier

O Per una funzione x(t) non periodica,
con la condizione che f'integrale da
—0 a +eo del valore assoluto di x(t)
sia una quantita finita, al posto della
serie si definisce la Trasformata di

Fourier: X(f) _ F{X(Z)}: oj)fx(lf) e—i27zftdt

O La trasformata di Fourier & una

funzione complessa, per cui si X(f)=RX(N]+iI[X()]

rappresenta con {a parte reale e la
parte immaginaria:

X(N) =X (e

U Oppure mediante modulo e fase:

S— — ; _ XL
XN = VRIX (AP + X ()] 1g[ ()= RX(/)]
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Trasformata inversa di Fourier

O Si definisce inoltre trasformata
inversa di Fourier la seguente
funzione:

X0 =F{X(f)}= jX(f) e df

QU La trasformata inversa di Fourier esprime il fatto che ogni
funzione x(f) puo essere descritta da un integrale che
rappresenta il contributo di componenti armoniche aventi uno
spettro di frequenza continuo da —w a +eo. Si pué anche dire
che la quantita X(f)df rappresenta il contributo a x(t) delle
armoniche comprese nellintervallo da fa f +df.
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2. 4 Proprieta della Trasformata di Fourier

QO Trasformata di Fourier della
convoluzione di due funzioni y(t) = r h()x(t—7)dt

Y(f)=H(HX()

Y(f) = Jj:y(t)e‘ﬂﬂfldt = f:(.E;h(f)x(t_z-)dz.)e—ﬂzzfzdz _
= f:( f:h(T)X(f _ z—)dz.)e—jlﬂf(tﬂ'—r)dt _

[The " e [T at- o) a—) =
=H(f)X(f)
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Proprieta della Trasformata di Fourier

Q Trasformata di Fourier del
prodotto di due funzioni (1) = s(t)w(?)

F{s(yw()}= [S(W(f -g)dg

Q [nfatti, essendo:

©

F{y(t)} = F{S(t)w(t)} = J-S(Z)W(t)e_ﬂ”f’dt

—0

F{p(0)} = [[ [SUWW (e TP ardfdf, =

a siha:
= [ [SUW(£)S(f - fi~ L) dfdf, =
= [S(Hm(f - fdf,
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CHARAC"TERISTICS OF VIBRATION AND SHOCK

2.1. PERIODIC VIBRATION

Periodic vibration may be looked upon as an oscillating motion of a particle,
or body, about a reference position, the motion repeating itself exactly after
certain periods of time. The simplest form of periodic vibration is the so-
called harmonic motion which when plotted as a function of time, is repre-
sented by a sinusoidal curve, Fig.2.1. Here 7 is the period of vibration, i.e.
the time elapsed between two successive, exactly equal conditions of motion.

Displacement

v

\/ Time

Fig.2.1. Example of a pure harmonic (sinusoidal) vibration signal

271257

The frequency of the vibration is given by:

{2.1)

~l

Turning to the magnitude of the vibration this may be characterized by dif-
ferent quantities, all of which have definite mathematical relationships to
each other as fong as harmonic motion is considered.
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If the vibration has the form of a pure translational oscillation along one
axis (x) only, the instantaneous disp/acement of the particle (or body) from

the reference position can be mathematically described by means of the equa-
tion:

X = Xpgak Sin <27r%> = Xpeok Sin (21f1) = Xpoas sin(wt) (2.2)
where
w = 2nf = angular frequency
Xpeak = Maximum displacement from the reference position
t =time

As the velocity of a moving particle (or body) is the time rate of change of
the displacernent, the motion can also be described in terms of velocity (v):

v = %; = o Xpeak COS(WE) = Vpsar cOS{wl) = Vpeak Sin (wt + n/2) (2.3)

Finally, the acceleration (a) of the motion is the time rate of change of the
velocity:

dv _ d?x _ 5 . ~ : _ ,
== g e Xpeak Sin (wt) = ~ Apeak sin(wt) = Apeak Sin(wt+n)

(2.4)

From the above equations it can be seen that the form and period of vibra-
tion remain the same whether it is the displacement, the velocity or the accel-
eration that is being studied. However, the velocity leads the displacement by
a phase angle of 80° (7/2) and the acceleration again leads the velocity by a
phase angle of 80° (7/2]. As characterizing values for the magnitude the
peak values have been used, i.e. Xoeak » Vpesk and Apest . The magnitude de-
scription in terms of peak values is quite useful as long as pure harmonic vi-
bration is considered because it applies directly in the equations given above.
If, on the other hand, more complex vibrations are being studied other de-
scriptive quantities may be preferred. One of the reasons for this is that the
peak value describes the vibration in terms of a quantity which depends only
upon an instantaneous vibration magnitude regardless of the time history
producing it.

A further descriptive quantity, which does take the time history into ac-
count, is the average absolute value, defined as (see also Fig.2.2)
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Amplitude

271258

Fig.2.2. Example of a harmonic vibration signal with indication of the peak,
the RMS and the average absolute value

7 (T
Xaverage = 7 le!df

Even though this quantity takes into account the time history of the vibra-

tion over one period (T) it has been found to be of limited practical interest. A -

much more usefu! descriptive quantity which also takes the time history into
account, is the RMS (root mean square) value (Fig.2.2):

-
Xams = )/ = [ x2(t) dt {2.5)

el

The major reason for the importance of the RMS-value as a descriptive
quantity is its simple relationship to the power content of the vibrations.

For a pure harmonic motion the relationship between the various values is:
Xams = ~I_x -1 X
= 4 =
mMS 2\/? verage '\/? peak

A more general form of these relationships may be given by:

7
Xrms = Fr Xaverage = FXpeak
¢
2.6
- Xams . _ Xpeak (2.8
or Frm pBMS. p - Som
XAverage XRMS

22

The factors £, and F, are called “form-factor’” and "crest-factor”, respec-
tively, and give some indication of the waveshape of the vibrations being stud-
ied.

For pure harmonic motion:

|

Fr=T_=1.11(=1dB)
P,

N

and Fo =VZ=1.414 (= 3dB)

Most of the vibrations encountered in daily life are not pure harmonic mo-
tions even though many of them may be characterized as periodic. A typical
non-harmonic periodic motion is shown in Fig.2.3 (piston acceleration of a
combustion engine). By determining the Peak, Average Absolute and RMS-
value of this vibration as well as the form-factor and crest-factor a lot of use-
ful information is obtained, and it can be clearly concluded that the motion is
not harmonic. However, it will be practically impossible, on the basis of this
information, to predict all the various effects that the vibration might produce
in connected structural elements. Other methods of description must there-
fore be used.

\ANARVANNAY

271269

Acceleration

Fig.2.3. Example of a non-harmonic periodic motion (piston acceleration of a
combustion engine)

One of the most powerful descriptive methods is the method of frequency
analysis. This is based on a mathematical theorem, first formulated by FOU-
RIER, which states that any periodic curve, no matter how complex, may be
looked upon as a combination of a number of pure sinusoidal curves with har-
monically related frequencies.

f(t) = Xo + Xy sin(wt + @) + Xy sin (2wt + 95)
+ Xgsin (3wt + ¢3) + ... T Xpsin(nwt + ¢p) (2.7)
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Fig.2.4. lllustration of how the waveform shown in Fig.2.3 can be "broken
up’ into a sum of harmonically related sinewaves

The number of terms required may be infinite, but in that case as the num-
ber of elements in the series is increased it becomes an increasingly better
approximation to the original curve. The various elements constitute the vibra-
tion frequency spectrum. In Fig.2.4 the nonharmonic periodic motion of
Fig.2.3 is redrawn together with the two most important harmonic curves re-
presenting its frequency spectrum. A somewhat more convenient method of
representing this spectrum is shown in Fig.2.5 b, while Fig.2.6 shows some
further examples of periodic time functions and their frequency spectra. A
specific feature of periodic vibrations, which becomes clear by looking at
Fig.2.5 and 2.8 is that their spectra consist of discrete /ines when presented

- Acceleration

=
e
Time
-

x

1 1
f4 (=}—1) fp (=?;) Freguency, f

a) b) 271261

Fig.2.56. lllustration of how the signal, Fig.2.3 can be described in terms of a
frequency spectrum
a) Description in the time domain
b) Description in the frequency domain
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Fig.2.6. Examples of periodic signals and thejr frequency spectra
a) Descriptions in the time domain
b) Descriptions in the frequency domain

in the so-called frequency domain (Figs.2.5 b and 2.6 b). This is in contrast
to random vibirations which show continuous frequency spectra (section 2.2,
Fig.2.12).
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2.2, STATIONARY RANDOM VIBRATION

Random vibrations are met rather frequently in nature and may be charac-
terized as vibratory processes in which the vibrating particles undergo irregu-
lar motion cycles that never repeat themselves exactly, see Fig.2.7. To obtain
a complete description of the vibrations, an infinitely long time record is thus
theoretically necessary. This is of course an impossible requirement, and fi-
nite time records would have to be used in practice. Even so, if the time re-
cord becomes too long it will also become a very inconvenient means of de-
scription and other methods have therefore been devised and are commonly
used. These methods have their origin in statistical mechanics and communi-
cation theory and involve concepts such as amplitude probability distributions
and probability densities, and continuous vibration frequency spectra in terms
of mean square spectral densities*.

= c H
£l

Fig.2.7. Example of a random vibration signal

Without going into too much mathematical detail the meaning of the above
concepts should be briefly reviewed because of their importance in relation to
practical vibration measurements.

The concept of probability is of a mathematical origin and denotes the
chance of a particular event happening. If the event in question is absolutely
certain to happen the probability of occurrence of the event is said to be 1.
On the other hand, if the event in question is certain not to happen the proba-
bility of occurrence is said to be 0. Thus probabilities are, in the sense used
here, positive real numbers between 1 and 0.

*  Mean square spectral density is also often termed “Power Spectral Density” (P.S.D.} because

the mean square is a quantity proportionat to power.
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Fig.2.8. Shetch illustrating the concepts of probability and probability density

In the study of continuous processes such as stationary* random vibra-
tions it is often convenient to use the concept of probability density instead of
probability. Physically the probability density can be defined as the probability
of finding instantaneous amplitude values within a certain amplitude interval,
Ax, divided by the size of that interval (thus: density), see Fig.2.8. This
means that while probabilities are dimensionless quantities the probability
density is a quantity having a certain dimension.

Mathematically formulated the probability density at some specified ampli-
tude level, x, is:

p(x) = Jim P(x) - P(x+ dx) (2.8)
Ax—o 4x
Here pfx) designates the probability density while #(x/ is the probability that
any instantaneous amplitude value exceeds the level x and P{x + Ax) is the
probability of occurrence of instantaneous amplitude values exceeding the le-
vel x+Ax. By plotting the value of p(x/ for all values of x a probability density
curve is obtauned which has the feature that an integration of the curve from
a value x, tb a value x, immediately tells the probability of occurrence of in-
stantaneous amplitude values within the interval fx2 — x;), independent of
the actual magnitude of Xy and x, . The presentation of experimental prebabii-
ity data in terms of probability density curves bears some advantages because
it allows for a direct comparison of data between experiments (and between
experimenters) independent of the width of the amplitude interval, Ax, used in
the experiment. Finally, theoretical probability data are commonly presented
" Stationary random vibrations are defined as random vibrations whose statistical characteristics
do not change with time.
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in the form of probability density curves and this method of presentation
must therefore be considered the most generally acceptable one.

From the definition of probability density it follows that by integrating the
probability density curve over all possible amplitude values the magnitude of
the integral will be 1 (because the probability of finding a certain amplitude
value within all possible amplitude values is 1). The practical procedure in-
volved in converting experimental and/or theoretical data into probability den-
sity data ensuring that the area under the probability density curve is 1, is
called normalization. The most commonly known normalized probability den-
sity curve, the normal (Gaussian) curve, is shown in Fig.2.9.

Even though probability density data are very useful signal descriptions and
give excellent information on how, on the average, the instantaneous ampli-
tudes in a vibratory signal are distributed, they give little or no information as
to the time history or frequency content of the process being studied. To try
and remedy this, and to obtain further descriptive data, statistical physicists
introduced a function called the autocorrelation function, w(r). This function
describes (on the average) how a particular instantaneous amplitude value de-

pends upon previously oceurring instantaneous amplitude values in that ¢(7)
is defined as:

N~

|

where £(t) is the magnitude of the vibratory. proces’s at an arbitrary instant of

f(t)f(t+1)dt (2.9)

~i~

w(t) = /lim

T—o

N~

o4
o L T T T L T P [T 171 IS
— Probabitity density function -
C ix} T1 exp (-1 22 ]

= xp (—m— =
0 3 = p a T p 2 02 -
a | —
02 | a
o L -
ot [C 7
L / \ -
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Fig.2.9. The normalized Gaussian probability density curve
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time, t, and f{t + 7) designates the magnitude of the same process observed
at a time, 7, later, see Fig.2.10.

Amplitude
(1)

fity + 1
fitq)

S 269034

Fig.2.10. Basic concepts involved in deriving the autocorrelation function

In the case of an "ideal”” stationary random process (white noise} the auto-
correlation fundtion would consist of an infinitely narrow impulse-function
around zero (7 = 0), see Fig.2.11 a), as in such a process each instantaneous
amplitude value should be completely independent of all other instantaneous
amplitude values.

However, in practice the autocorrelation functions associated with station-
ary random vibrations cluster around 7 = O, but are never "infinitely narrow"
impuise-functions, Fig.2.11 b)andc). The reason for this spreading out of
the curve around zero is that all practical random processes are frequency li-
mited, and the narrower the frequency limits the more spread-out are the
corresponding autocorrelation functions (because the rate at which a signal
can change from its current value is much more limited),

From the autpcorrelation function another, very important function in prac-
tice, can be deduced, which has a certain resemblance to the Fourier fre-
quency spectra described in section 2.1 for periodic vibrations. This function
has been termed the mean square spectral density function (power spectral
density function) and can be derived from the autocorrelation function as fol-
lows: Assuming that the integral of ¢(r) from —= to + is finite (see
Fig.2.11) one can write:

S(F) = w(t)e~/2nft g (2.10)

where fis frequency.
From the theory of Fourier integrals it is furthermore known that (1) can
aiso be found from the above integral by inversion:

w(t) = E S (fyel2nftgf (2.11)
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Fig.2.17. Examples of autocorrelation functions
a) Autocorrelation function for an ideal stationary random process
containing frequencies from O to « (constant spectral density)
b) Autocorrelation function for a “practical”’ wide band stationary
random process

¢) Autocorrelation function for a narrow band stationary random
process

The Fourier integral relations between (1) and S{(f) are often called the
Wiener-Khinchin relations and play a very important role in the theory of
random processes.

In physically realizable stationary processes one operates with positive fre-
quencies only* and (1) = Y{—r) whereby the integral for ¢{(7) becomes:

w(t) = Z[wS(f,) cos(2nft)df

or, if a function G(f) is defined so that

G(f) = 2S(f)  for >0

then w (1) =J‘°° G(f) cos (2nfz) df (2.12)

(o]

Note that frequency can be interpreted as rate of change of phase, in which case the concept of

positive and negative frequencies is meaningful, A 2-sided frequency domain is useful analyti-
cally because of symmetry with the time domain, but in practical measurements it is most com-
mon to combine positive and negative frequency contributions to obtain a one-sided power spec-
trum. For a more detaited discussion see the B & K book ""Frequency Analysis’,
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To interpret the function G(f) consider the case where 7 = O:

I I
wio) = fim L ‘er(t)f(t+o)dt = sim L 2 Fwar
7'—-*007--—2 T-"cor\'z
arnd v (o) =( G(Hdf
JO
T -
s Jim 1J2,f2<r)dr=j G(f)dr (2.13)
T T -3 0

Both of these integrals are measures of the power involved in the process,
one in terms df the process time function, f(t), and the other in terms of a fre-
qguency functidn, G(f). Because of the squaring involved in the above time
function description, G{(f) has been designated as the mean square spectral
density function (or power spectral density function).

Traditionally, power spectra have been measured using analog frequency
analyzers whoge mode of operation may be understood as follows:

An ideal analog frequency analyzer will allow only that part of the signal to
be measured which has frequency components within a narrow frequency
band, B, see Fig.2.12. Assuming that no attenuation or amplification of
these frequenty components takes place in the analyzer the signal which is
passed on to its indicating arrangement is:

.
- s r
Gunar=|"" Gnar = im L7 50 o

. f T T
0 T—cw 3

Here fz(t) i$ the above-mentioned part of the complete signal, f(t), which
has frequency components within B. if now B is made so small that G{f) can
be considered constant within this frequency range then

8
. G(hdf = G(HB
thus, in the limiting case when 8 — 0, one obtains;

G = Jim lim = £ (1) dt (2.14)
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Fig.2.12. Determination of the mean square spectral density by means of
ideal filters

This equation forms the basis of most analog experimental techniques used
in the mean square spectral density analysis of random signals, although the
actual bandwidth 8 used must of course be finite, in order that the meas-
urement time 7 does not need to be infinite, The resuits (as a power spectral
density) will only be valid, however, if B is sufficiently small that the above as-
sumption is valid, i.e. that G{f) is approximately constant within 8. This will
be the case for practical purposes if B is, say, less than 1/3 of the width of
any peaks in the spectrum being measured.

At one time, a digital alternative to analog analysis was based on the al-
ready-mentioned Wiener-Khinchin relationship. The autocorrelation function
was first calculated digitally, and this then Fourier transformed by digital eval-
uation of the Fourier integral. It is only in the last few years, however, that
digital alternatives to analog analyzers have been competitive in the sense
that they could be incorporated as hardware in a portable standalone unit.
One of the major factors here has been the increasing speed and miniaturiza-
tion of digital components in general, resulting in continually reducing costs
for a given calculation. Another major factor has been the development of
the so-called Fast Fourier Transform (FFT) algorithm which has typically al-
lowed savings of 100:1 in digital evaluation of the Fourier integral. This has
in fact meant that it is now quicker to calculate the autocorrelation function
by inverse transformation of the power spectrum, the latter being obtained by
Fourier transforming the time signal.
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The FFT procedure produces a constant bandwidth spectrurn, but for con-
stant percentage bandwidth (where the filter bandwidth is a constant percen-
tage of its centre frequency) another digital analysis technique known as rec-

ursive digital filtering is found to be better. The choice of appropriate analysis
method is discussed in Chapter 7.

Before closing the discussion on methods used to describe and analyze ran-
dom vibration phenomena some important “practical”’ facts should be pointed
out:

Returning to the equation (2.13)

.
r -

iim L (2,f2(t)dr =J G(f) of
7L o

T—oo [ O~

it can be seen that the expression on the left hand side of this equation has a
close resemblance to.the square of the expression previously used to define
the RMS-value of a periodic vibration signal (Equation 2.5). This means that
the description of a complex signal in terms of its overall RMS-value is
equally meaningful whether the signal has a periodic or a random character.

When it comes to spectra/ description, however, a periodic signal may well
be described in terms of the AMS-values of its various components (its fre-
quency spectrum), white random vibration signals are best described in terms
of mean square spectral density functions. This is due to the fact that random
signals produce continuous frequency spectra and the RMS-value measured
within a certain frequeney band will therefore depend upon the width of the
band. The detailed measurement evaluation techniques will, in view of the
above, normally also differ, a fact which is more specially discussed in Chap-
ter 7 of this book and in the B & K book "Frequency Analysis”.

2.3. TRANSIENT PHENOMENA AND SHOCKS

Transient phenomena and mechanical shocks are, like random vibrations
encountered relatively often in daily life. They may originate from such widely
different releases of energy as rough handling of equipment, explosions and
supersonic motion. However, common for this type of energy release is its
short duration and sudden occurrence.

A simple shock may be defined as a transmission of kinetic energy to a sys-
tem which takes place in a relatively short time compared with the natural pe-
riod of oscillation of the system, while transient phenomena (also termed
complex shocks) may last for several periods of vibration of the system,
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Shocks and transient vibrations may be described in terms of force, acceler-
ation, velocity or displacement and for a complete description it is necessary
to obtain an exact time history record of the quantity in question.

in many cases the ultimate goal is not the waveform itself, but rather a
means to estimate the effect that the corresponding shock or transient vibra-
tion would have on a certain mechanical system. A more useful method of de-
scription might then again be found in the form of Fourier analysis. !f the
time function for a shock is f{t) then its Fourier transform is given by:

Fif) = | _f(nye 2™t (2.15)

The analogy between this expression and the mean square spectral density
function of stationary random vibrations {Equation (2.10)) is readily seen.
There is, however, a very distinct difference in that the mean square spectral
density function for stationary random vibrations is the Fourier transform of
an already time-averaged, even function, the autocorrelation function, with
the dimensions of amplitude squared. In the above Fourier integral for tran-
sient or shock functions the function f{t) itself must be time-limited and has
the dimensions of amplitude only. Because it in general is not an even func-
tion, its Fourier transform will be complex, but it is found that the square of
the amplitude of the Fourier transform at each frequency gives a measure of
the energy distribution of the transient.

It may be useful to see how this difference in dimensions influences the
units in a particular case. Assuming that signal amplitude is expressed in
volts (V), then the autocorrelation function for a stationary random signal
woulid have units of volts squared (VZ) or power. The Fourier transform, of
this has the units V2s, or V2 /Hz, i.e. power per unit frequency or power
spectral density. A shock or transient function, however, has units of Volts
and its Fourier transform (amplitude) units of Volt-seconds (Vs). The ampli-
tude squared thus has units V252 or V2s/Hz, i.e. energy per unit frequency
or energy spectral density. A transient of course has finite energy when inte-
grated over all time, while a stationary random signal would have infinite en-
ergy, though finite power.

Most analyzers assume a signal is continuous and give a result in terms of
power per analysis bandwidth. The conversion of this to the correct units is
discussed in Chapter 7 and in more detail in the B & K book "Frequency Ana-
lysis”’.

In Fig.2.13 various shock time functions and the amplitudes of their Fou-
rier spectra are given. It is seen from the figure that in general a shock pulse
contains energy spread over all frequencies from zero to infinity, and that the
spectra are continuous with no discrete freguency components.
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Fig.2.13. Example of shock time functions and their Fourier transforms (am-
plitude spectra)
al A rectangular shock pulse
b} A final peak sawtooth shock pulse
¢) A half-sine shock pulse

In the expressions for £(f) given in the figure all the expressions within the
pgra.llel brackets approach unity as f goes to zero, so that at very low frequen-
cies the magnitude of the spectrum component is equal to the area {ampli-
tude-time iritegral) of the shock pulse, irrespective of the pulse shape. This
fundamental relationship is of considerable practical importance, for example
in shock testing. It means that so long as the shock pulse is short compared
with the natural period of the mechanical system on which its acts, the sever-

ity of the shock is determined by the area of the shock pulse alone (see also
Fig.3.13 b ).
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In the case of transient phenomena the situation is somewhat different..
Such phenomena, in the sense used in this book, may consist either of a
single period "'shock-wave”, or of an oscillating transient. The Fourier spec-
trum function of a typical oscillating transient is shown in Fig.2.14 and it is
seen that the magnitude of the spectrum components in this special case
tends towards zero as the frequency f goes to zero. Also, a maximum magni-
tude of the spectrum is reached around 7, which corresponds roughiy to the
frequency of oscillation of the transient. This maximum is broader the quicker
the transient phenomenon ceases.

f
Fif)l = 3

\23_2[“2 ~ 472 (f2 ~ £,2)]2 + 442 ¢2
ks

® E=
3 w
Bo| ) = e~Stcos (27t t+ )
€
< . «

¢ = tan—} ( ) PR

27 f,
L P EY.
= f
v Time ° Frequency
Transient time function Fourier spectra
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Fig.2.14. Example of an oscillating transient and its Fourier spectrum func-
tion

If the “transient' does not cease at all, i.e. when the “transient’” is no
longer a transient but. a periodic phenomenon (in this case a harmonic vibra-
tion), the frequency spectrum degenerates into a discrete spectral line {infin-
itely narrow maximum at £,).

2.4. NON-STATIONARY RANDOM VIBRATION

Theoretically all kinds of random vibrations encountered in practice are non-
stationary because their statistical properties vary with time. However, from
an engineering point of view this variation in statistical properties may be so
slow, or of such a character, that many of the phenomena studied can be con-
sidered stationary in a practical sense.

Non-stationary random vibrations may therefore, in practice, be defined as
random vibrations whose statistical properties vary with time within time in-
tervals considered essential for their proper description. To analyze and de-
scribe such vibration data it is thus necessary to take their variation in statisti-
cal properties with time into account. A typical example of seriously non-sta-
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tionary random vibrations is the vibrations induced in space vehicles during
faunch and re-entry.

To theoretically analyze non-stationary random vibrations properly it is ne-
cessary to intfoduce the concept of ensemble averaging. An ensemble aver-
age is an average taken over a large number (an ensemble) of repeated exper-
iments, see Fig.2.15. As can be seen from the figure an ensemble average
can be taken at any particular instant of time ty, ty, t3 etc., and when the av-
srage values are plotted against time a more or fess complete description of
the vibration i5 obtained. There are, on the other hand, several reasons why
this method of description is not very useful in practice. Firstly, it requires
that the non-stationary process can be repeated a very large number of
times. In the case of space vehicle launch and re-entry for instance this is
not possible due to the cost of such experiments. Secondly, the amount of

data necessary for a thorough description is so large that their proper meas-
urement will ppse serious problems.

It is therefore normally necessary to seek other methods of description, and
in general somme sort of time averaging is used. There are, however, certain li-
mitations impased upon this kind of time averaging in that the response and
averaging time of the measurement equipment employed should preferably
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Fig.2.16. lllustration of an ensemble of random functions
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be small relative to important time trends in the non-stationary data. This
again may lead to considerable statistical uncertainties in the measurements.

Fig.2.16 illustrates some basic and important types of non-stationary ran-

dom vibrations.

Q
S
Amplitude

C)ZKMN\/V/\/\*\A M

vy o

Time
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Fig.2.16. Examples of some basic types of nonstationary random vibrations
a) Time-varying mean value
b) Time-varying mean square value
¢) Time-varying mean and mean square value
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2.1 Segnali periodici

Q | dati periodici possono
essere sviluppati in serie
di Fourier.

Q In altre parole, consistono
di una componente
statica (valore medio) e di
un numero infinito di
componenti sinusoidali
dette armoniche, che
hanno ampiezza e fase.

Q J/ Le frequenze delle
[ componenti armoniche
| sono tutte multipli interi
| della frequenza

i fondamentale.
k)

H3

°

Q
Q

Hz
Le frequenze 60, 75 e 100 hanno come massimo
comune divisore 5H &

La frequenza fondamentale & f1 = 5 Hz.

Sono nulle tutte le ampiezze corrispondenti alle
armoniche superiori, tranne quelle corrispondenti
alle armoniche numero 12, 15 e 20.

Una funzione periodica puo quindi essere
espressa come una somma di termini sinusoidali
aventi frequenze multiple di una frequenza
fondamentale. Reciprocamente, la somma di piu
termini sinusoidali, le cui frequenze siano tra loro
commensurabili, ossia i cui rapporti siano numeLi

razionali, da luogo ad una funzione periodica.
e———

Cosi, nell’esempio sopra riportato, i rapporti
60/75, 60/100 e 75/100 sono tutti numeri
razionali. Hz

/ P

/
x(¢) = 1.0sin(2760¢) + 0.8sin(2775¢) + 0.5sin(271 00¢)
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Segnali periodici
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The factors F, and F. are called “form-factor’” and “crest-factor”, respec-
tively, and give some indication of the waveshape of the vibrations being stud-
ied.

For pure harmonic motion:

F,="_=1.11(=1dB)
F 2y

and F, =V2=1.414 (= 3dB)

Most of the vibrations encountered in daily life are not pure harmonic mo-
tions even though many of them may be characterized as periodic. A typical
non-harmonic periodic motion is shown in Fig.2.3 (piston acceleration of a
combustion engine). By determining the Peak, Average Absolute and RMS-
value of this vibration as well as the form-factor and crest-factor a lot of use-
ful information is obtained, and it can be clearly concluded that the motion is
not harmonic. However, it will be practically impossible, on the basis of this
information, to predict all the various effects that the vibration might produce
in connected structural elements. Other methods of description must there-
fore be used.

NANANANAY
S U U U

Acceleration

Time

271259

Fig.2.3. Example of a non-harmonic periodic motion (piston acceleration of a
combustion engine)

One of the most powerful descriptive methods is the method of frequency
analysis. This is based on a mathematical theorem, first formulated by FOU-
RIER, which states that any periodic curve, no matter how complex, may be
looked upon as a combination of a number of pure sinusoidal curves with har-
monically related frequencies.

f(t) = Xo + X, sin(wt + @) + X, sin (2wt + ¢,)
+X;ysin(Bwt + ¢3) + ...+ Xysin(nwt + ¢p) (2.7)
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Acceleration

271260

Fig.2.4. lllustration of how the waveform shown in Fig.2.3 can be “broken
up” into a sum of harmonically related sinewaves

The number of terms required may be infinite, but in that case as the num-
ber of elements in the series is increased it becomes an increasingly better
approximation to the original curve. The various elements constitute the vibra-
tion frequency spectrum. In Fig.2.4 the nonharmonic periodic motion of
Fig.2.3 is redrawn together with the two most important harmonic curves re-
presenting its frequency spectrum. A somewhat more convenient method of
representing this spectrum is shown in Fig.2.5 b, while Fig.2.6 shows some
further examples of periodic time functions and their frequency spectra. A
specific feature of periodic vibrations, which becomes clear by looking at
Fig.2.5 and 2.6 is that their spectra consist of discrete /ines when presented

Acceleration

g

1 1
f, (=— f, (=— Frequency, f
1 TI) 2 T2) equency

a) - b) 271261

Fig.2.5. lllustration of how the signal, Fig.2.3 can be described in terms of a
frequency spectrum
a) Description in the time domain
b) Description in the frequency domain
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Fig.2.6. Examples of periodic signals and their frequency spectra

a) Descriptions in the time domain
b) Descriptions in the frequency domain

in the so-called frequency domain (Figs.2.5 b and 2.6 b). This is in contrast
to random vibrations which show continuous frequency spectra (section 2.2,

Fig.2.12).
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Q Se si ha una funzione periodica,
effettuarne I'analisi di Fourier significa
ricavare le ampiezze X e le fasi ¢,.

O  Sipud pensare di compiere I'analisi di

Fourier con un filtro che abbia la

caratteristica di lasciar passare solo le
componenti comprese tra una certa

frequenza f* e la f* piu un certo
incremento.

QO La serie dei valori dei coefficienti X e ¢,
costituiscono lo spettro della funzione
x(f) e ne forniscono una rappresentazione

nel dominio delle frequenze.
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Segnali quasi periodici e transitori

O Si consideri, ora, la
seguente funzione:

x(t) = X, sin(2t+9,)+ X, sin(+2 1+ %)

Q Iirapporto 22 & | Q | dati non periodici diversi da quelli
irrazionale e pertanto il definiti come quasi periodici sono
periodo della indicati come transitori.

fondamentale risulta

infinitamente lungo. O Esempi di dati transitori sono

mostrati in figura
O Questi dati sono definiti

come quasi periodici in
quanto le frequenze delle 1 1

: \ 0.75
componenti non sono 0.75 05 fi—
5. K 5 . uE 0.25
multipli interi di una S 05 \ 2 o j *.\[\VA
frequenza fondamentale. gl Y PV
N 0.75 |—
0 -1
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Tempo, t[s] Tempo, t[s]
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plitude spectra)

a) A rectangular shock pulse

b) A final peak sawtooth shock pulse
¢) A half-sine shock pulse

Fig.2.13. Example of shock time functions and their Fourier transforms (am-






