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A.6.0. INTRODUCTION.

Nowadays, in the design of mechanical structures, the dynamic behaviour gets
more attention. Lifetime under cyclic loading, levels of vibration or noise radiation,
interaction between control systems and structure vibration, ... are often important
constraints for the designer. The analysis of the dynamic behaviour is however not
straightforward. Designers determine modal parameters of a mechanical structure either
by experimental or by numerical methods. Results of both investigations are expected to
correlate closely. Experimental measurements on prototypes give information about the
structure in the configuration of the test only. Finite element models allow to predict the
dynamic behaviour of the structure under various loading and boundary conditions, but
the reliability of the finite element models is often not guaranteed.

Model updating techniques verify and correct these finite element models by
means of the experimental data. The result of a model updating analysis is a finite
element model that is more reliable for further predictions. The model updating section
(A.6.1) is primarily based upon reference a.6.26 by S.Lammens.

Secondly, the existence of finite element or experimental models of the structure
to be tested, or of a similar structure, provides the test engineer with a lot of valuable
information for the test to be performed. This may increase the quality of the data and/or
reduce the testing time. Hence, this type of combining numerical and experimental
models, called pre-test analysis, is a structured way of using the existing experience.
Section A.6.2 covers the theory of some techniques that may be used for preparing a test
set-up.

A.6.1. MODEL UPDATING.

A.6.1.1. Introduction and general scheme

Model updating aims at the development of a finite element model that yields
accurate and reliable predictions of the dynamic behaviour of a mechanical structure.
Fig.a.6.1 shows the general scheme of a model updating study.
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Fig.a.6.1: General scheme of a model updating study.

The updating procedure starts with the construction of a finite element model.
The structure is divided in elements that are connected in nodes. Each node has one or
more degrees of freedom. Degrees of freedom represent displacement and deformation
of the structure in a discretised form. Every piece of structural material contributes to
the overall mass, stiffness and damping through element matrices. Assembly of all
clement matrices yields the global system matrices: the mass matrix, [M], the stiffness
matrix, [K], and the damping matrix, [C]. The damping matrix is often neglected,
because the wide variety of (non-linear) damping mechanisms makes it very difficult to
develop a reliable model of the damping behaviour. Furthermore the damping forces are

Reliable
F.E. model

often believed to be small in comparison with the inertial and elastic forces.

Starting from the system matrices modal parameters are calculated by solving the

equation of motion in the Laplace domain:

2.6.1 (- p L M1+ plcl+ [KI){ X} = {0}

This equation can be rewritten as an eigenvalue problem (see section A.1.2.2):
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This yields the eigenvalues 4,=0,+j®, and the corresponding eigenvectors {y},. Scaling
of the eigenvectors determines the modal masses m, and the modal stiffnesses k, (see
section A.1.2.7. and A.1.2.8).

Finite element analysis provides following input to the model updating procedure:
the system matrices: [M], [K], and [C] or frequency response functions,
the modal parameters: A4,=0,+j@,, {¥},, m, and k, for =1,N,,,.

As already mentioned, damping is often neglected: [C]=[0] and ©;,=0.

To avoid confusion with experimental data the analytical modal parameters will be

denoted with a superscript 2 throughout this chapter:
=0l +jol {yl, m, k.
These finite element analysis results will be updated during the model updating

process. Experimentally identified modal parameters are the reference data to be
matched by the analytical modal parameters.

In an experimental test frequency response functions of the structure are measured. Then
parameter estimation techniques identify the modal parameters (see section A.3). These
experimental parameters will be denoted in this chapter with a superscript *:

X . X
Ao=0l+joi {yt,m, k.

The updating procedure starts with the model matching step. Generally, the mesh
of measurement points does not correspond completely with the set of nodes of the
finite element model. First, a measurement point does not necessarily coincide with a
node of the finite element model. This problem can easily be avoided by a good
communication between the person that builds the analytical model and the person that
designs the measurement set-up. Next, and more important, finite element models are
normally composed of far more degrees of freedom than the number of degrees of
freedom that are measured during the test. For some of the correlation techniques and
for most of the correction techniques, the analytical and the experimental model must
show a one-to-one correspondence of the de%rees of freedom. In order to solve this mesh
incompatibility, either the analytical system matrices must be reduced to the number of
degrees of freedom of the experimental set-up, or the experimental data must be
expanded to the number of degrees of freedom of the finite element model. Section
A.6.12. gives an overview of some commonly used reduction and expansion
techniques. Reduction of system matrices or expansion of experimental data is an
important obstacle for a successful model updating.

After the model matching step, the updating procedure continues with a
correlation check. Analytical modal parameters are compared in various ways with
experimental modal parameters. If correlation is good, the updating process stops here
and the finite element model is considered sufficiently reliable for further calculations
and predictions. If, most likely, correlation is bad, the finite element model must be
corrected by the updating procedure in order to improve correlation with experimental
data. Section A.6.1.3. gives an overview of the most often used correlation techniques.
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In case of bad correlation the finite element model must be corrected. A fiist step
in the correction of the analytical model is the selection of the updating parameters. This
step identifies which parameters of the finite element model are inaccurate and have to
be corrected. The selection of the updating parameters is a crucial step for the success of
the updating procedure. Section A.6.1.4. gives an overview of the different sorts of
updating parameters.

The final step of the updating procedure is the correction step. The correction
step uses the experimental data in order to find new values for the updating parameters.
After the introduction of the updated parameters in the finite element model, this model
yields, in case of a successful correction step, analytical modal parameters that correlate
well with the experimental modal data. Section A.6.1.5. gives an overview of state of
the art correction techniques.

Data obtained with experimental techniques and data from the finite element
model are often not compatible, mainly for four reasons:

o measured degrees of freedom do not coincide with degrees of freedom in the finite
element model: The model matching step in the updating procedure provides an,
approximate, solution for this problem.

e the set of experimental modal data is incomplete: Not only the number of
experimental degrees of freedom is limited, but also the set of experimental modal
data is limited. The measurement of frequency response functions is not performed
but in a limited bandwidth. Hence, the set of identified modal data is incomplete:
Mode shapes outside this frequency range cannot be identified. Since these
incomplete experimental data are used as reference data in the updating procedure,
the solution of the updating process will not be unique.

e noise contaminates measurements: Relative errors of 3% on resonance frequencies,
relative errors of 10% on the components of the mode shapes and relative errors of
30% on modal masses and stiffnesses are considered to be acceptable. It is obvious
that the use of erroneous experimental data gives misleading indications in the
correlation and the error localisation step and causes the correction step to converge
to inaccurate and meaningless values. Most often, the experimental modal masses
and stiffnesses are not used in the updating procedure. The inaccuracy of the
experimental data will not be further discussed in this chapter, but it should be
stressed that a successful updating study is only possible with carefully measured
data.

o damping cannot be included accurately in the finite element model: Damping
information is inherently present in the experimental data but often neglected in the
finite element model. As a consequence, an undamped finite element model is
updated by means of experimental data of a damped structure. It is obvious that this
discrepancy can cause errors in the updating process. Mode normalisation techniques
are an approximate way to avoid the difficulty. The damping incompatibility will not
be further discussed.
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The example of appendix AA.6.1 illustrates many of the concepts introduced in
this model updating section.

A.6.1.2. Model matching.

A.6.1.2.1. Introduction.

The number of degrees of freedom of a finite element model most often exceeds
by far the number of measured degrees of freedom. Finite element analyses require fine
meshes of nodes in order to provide accurate predictions. It is not practical, and often
even not possible, to measure all the corresponding degrees of freedom on the real
structure:

e many finite element nodes are internal to the structure and cannot be accessed for
measurement,

e rotational degrees of freedom are difficult to measure,

e for the purpose of an experimental modal analysis study, it is not necessary to have a
fine mesh of measurement points.

Most updating methods, however, require a one-to-one correspondence between
the analytical and the experimental degrees of freedom. The number and the location of
the degrees of freedom must be identical for both data sets. The model matching step in
the updating procedure provides an approximate solution for this mesh incompatibility.

In a first phase, the corresponding analytical degree of freedom for every
experimental degree of freedom is identified. This action defines the set of "active"
degrees of freedom. All other analytical degrees of freedom are called "deleted" degrees
of freedom:

where: {X,} = active degrees of freedom,
{Xp} = deleted degrees of freedom,
{Xg} = full set of degrees of freedom.

After the creation of pairs of corresponding analytical and experimental degrees
of freedom, experimental mode shapes on the one hand and analytical mode shapes and
system matrices on the other hand still have a different dimension. In the second phase
of the model matching step this size incompatibility is solved by reduction of the
analytical model or by expansion of the experimental model.

Reduction of the analytical model eliminates the deleted degrees of freedom from
analytical mode shapes and system matrices. The reduction of mode shapes is quite
straightforward. Deleted degrees of freedom are omitted from the mode shapes.
Reduction of system matrices is less straightforward. So called reduction techniques
must be used. All different reduction techniques have a restricted validity. Reduced
system matrices give exact descriptions of the dynamic behaviour of the active degrees
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of freedom for one or a few specific frequencies only. Furthermore reduction of system
matrices destroys connectivity and as a consequence also the physical intrepretability of
the system matrix elements. This fact disables almost completely the use of reduction
methods in combination with error localisation and correction mlelhgdﬁ,thalm based on
local dlfferences ‘between the analytlcal and expenmental dat_a When used in methods
based on more global measures and at specific frequencies where the reduction can be
believed to be physically meaningful, reduction of analytical system matrices is however
often more favourable than expansion of experimental mode shapes. Section A.6.1.2.2.

discusses reduction methods in more detail.

Expansion techniques expand the measured mode shapes to the full set of degrees of
freedom of the finite element model. Most of the expansion techniques use data of the
finite element model to expand the measured mode shapes. Since the differences
between the experimental modal data and the analytical modal data are the base of most
of the updating procedures, the expansion of mode shapes should be made with great
care in order not to bias the information that is given by the experimental mode shapes.
Section A.6.1.2.3. gives a detailed overview of the most often used expansion
techniques

A.6.1.2.2. Reduction techniques.

General remarks.

Reduction techniques express the analytical system matrices in terms of the
degrees of freedom that correspond with the experimentally measured degrees of
freedom only. These degrees of freedom are called "active". The other degrees of
freedom ("deleted" degrees of freedom) are eliminated (see equation a.6.3).

Reduction techniques define a relation between the active and the deleted
degrees of freedom through a "transformation" matrix [1p] or [7E]:

2.6.4 {XD}= [TD]{XA},

a.6.5 {XF}= [IH{XA},
|1l

a.6.6 [TF]—LTD]ZI.

[7F] is used to create the reduced mass [MR] and reduced stiffness matrix [KR]. For an
undamped system following energy relations hold:

2.6.7 {x. ) IM{x.}={x,} M) x,} and
2.6.8 {x VK X, )= {x, ) [K* ) x,}.

Substitution of {Xg} by [Tr]{X4} gives:
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