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Introduction

Digital signal processing is an area of science and engineering that has developed
rapidly over the past 40 years. This rapid development is a result of the significant
advances in digital computer technology and integrated-circuit fabrication. The dig-
ital computers and associated digital hardware of four decades ago were relatively
large and expensive and, as a consequence, their use was limited to general-purpose
non-real-time (off-line) scientific computations and business applications. The rapid
developments in integrated-circuit technology, starting with medium-scale integra-
tion (MSI) and progressing to large-scale integration (LSI), and now, very-large-scale
integration (VLSI) of electronic circuits has spurred the development of powertul,
smaller, faster, and cheaper digital computers and special-purpose digital hardware.
These inexpensive and relatively fast digital circuits have made it possible to construct
highly sophisticated digital systems capable of performing complex digital signal pro-
cessing functions and tasks, which are usually too difficult and/or too expensive to
be performed by analog circuitry or analog signal processing systems. Hence many
of the signal processing tasks that were conventionally performed by analog means
are realized today by less expensive and often more reliable digital hardware.

We do not wish to imply that digital signal processing is the proper solution for
all signal processing problems. Indeed, for many signals with extremely wide band-
widths, real-time processing is a requirement. For such signals, analog or, perhaps,
optical signal processing is the only possible solution. However, where digital cir-
cuits are available and have sufficient speed to perform the signal processing, they
are usually preferable.

Not only do digital circuits yield cheaper and more reliable systems for signal
processing, they have other advantages as well. In particular, digital processing
hardware allows programmable operations. Through sottware, one can more cas-
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ily modity the signal processing functions to be performed by the hardware. Thus
digital hardware and associated software provide a greater degree of flexibility in
system design. Also, there is often a higher order of precision achievable with digital
hardware and software compared with analog circuits and analog signal processing
systems. For all these reasons, there has been an explosive growth in digital signal
processing theory and applications over the past three decades.

In this book our objective 1s to present an introduction of the basic analysis tools
and techniques tor digital processing of signals. We begin by introducing some of
the necessary terminology and by describing the important operations associated
with the process of converting an analog signal to digital form suitable for digital
processing. As we shall see, digital processing of analog signals has some drawbacks.
First, and foremost, conversion of an analog signal to digital form, accomplished by
sampling the signal and quantizing the samples, results in a distortion that prevents us
from reconstructing the original analog signal from the quantized samples. Control
ot the amount of this distortion 1s achieved by proper choice of the sampling rate and
the precision 1n the quantization process. Second, there are finite precision effects
that must be considered 1n the digital processing of the quantized samples. While
these important issues are considered 1in some detail in this book, the emphasis is
on the analysis and design of digital signal processing systems and computational
techniques.

1.7 Signals, Systems, and Signal Processing

A signal 1s defined as any physical quantity that varies with time, space, or any other
independent variable or variables. Mathematically, we describe a signal as a function
of one or more independent variables. For example, the functions

s1(t) = St
(1.1.1)

5 (1) = 20¢°

describe two signals, one that varies linearly with the independent variable ¢ (time)
and a second that varies quadratically with t. As another example, consider the
function

s(x.y) =3x 4+ 2xy + 10y? (1.1.2)

This function describes a signal of two independent variables x and y that could
represent the two spatial coordinates in a plane.

The signals described by (1.1.1) and (1.1.2) belong to a class of signals that are
precisely defined by specifying the functional dependence on the independent vari-
able. However, there are cases where such a functional relationship is unknown or
too highly complicated to be of any practical use.

For example, a speech signal (see Fig. 1.1.1) cannot be described functionally by
expressions such as (1.1.1). In general, a segment of speech may be represented to
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Figure 1.1.1
Example of a speech signal.

a high degree of accuracy as a sum of several sinusoids of different amplitudes and

frequencies, that 1s, as
N

Z A; (1) sin[27 Fi (1)t + 6;(1)] (1.1.3)

1 =1

where {A; (1)}, {Fi()}, and {0; (1)} are the sets of (possibly time-varying) amplitudes.
frequencies, and phases, respectively, of the sinusoids. In fact, one way to interpret
the information content or message conveyed by any short time segment of the speech
signal is to measure the amplitudes, frequencies, and phases contained in the short
time segment of the signal.

Another example of a natural signal is an electrocardiogram (ECG). Such a
signal provides a doctor with information about the condition of the patient’s heart.
Similarly, an electroencephalogram (EEG) signal provides information about the
activity of the brain.

Speech, electrocardiogram, and electroencephalogram signals are examples of
information-bearing signals that evolve as functions of a single independent variable.
namely, time. An example of a signal that is a function of two independent variables
is an image signal. The independent variables in this case arc the spatial coordinates.
These are but a few examples of the countless number of natural signals encountered
In practice.

Associated with natural signals are the means by which such signals are gener-
ated. For example, speech signals are generated by forcing air through the vocal
cords. Images are obtained by exposing a photographic film to a scene or an object.
Thus signal generation is usually associated with a system that responds to a stimulus
or force. In a speech signal, the system consists of the vocal cords and the vocal tract,
also called the vocal cavity. The stimulus in combination with the system is called a
signal source. Thus we have speech sources, images sources, and various other types
of signal sources.

A system may also be defined as a physical device that performs an operation on
a signal. For example, a filter used to reduce the noise and interference corrupting a
desired information-bearing signal is called a system. In this case the filter performs
some operation(s) on the signal, which has the effect of reducing (filtering) the noise
and interference from the desired information-bearing signal.
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When we pass a signal through a system, as in filtering, we say that we have
processed the signal. In this case the processing of the signal involves filtering the
noise and interference from the desired signal. In general, the system 1s characterized
by the type of operation that it performs on the signal. For example, if the operation
s linear, the system is called linear. If the operation on the signal 1s nonlinear, the
system 1s said to be nonlinear. and so forth. Such operations are usually referred to
as signal processing.

For our purposes, it is convenient to broaden the definition of a system to include
not only physical devices, but also software realizations of operations on a signal. In
digital processing of signals on a digital computer, the operations performed on a
signal consist of a number of mathematical operations as specified by a software
program. In this case, the program represents an implementation of the system 1in
software. Thus we have a system that is realized on a digital computer by means of
a sequence of mathematical operations; that is, we have a digital signal processing
system realized in software. For example, a digital computer can be programmed
to perform digital filtering. Alternatively, the digital processing on the signal may
be performed by digital hardware (logic circuits) configured to perform the desired
specified operations. In such a realization, we have a physical device that performs
the specified operations. In a broader sense, a digital system can be implemented as
a combination of digital hardware and software. each of which performs its own set
of specified operations.

This book deals with the processing of signals by digital means, either in software
or in hardware. Since many of the signals encountered in practice are analog, we
will also consider the problem of converting an analog signal into a digital signal for
processing. Thus we will be dealing primarily with digital systems. The operations
performed by such a system can usually be specified mathematically. The method
or set of rules for implementing the system by a program that performs the corre-
sponding mathematical operations is called an algorithm. Usually, there arc many
ways or algorithms by which a system can be implemented, either in software or
in hardware, to perform the desired operations and computations. In practice, we
have an interest in devising algorithms that are computationally efficient, fast, and
casily implemented. Thus a major topic in our study of digital signal processing
s the discussion of efficient algorithms for performing such operations as filtering,
correlation, and spectral analysis.

1.1.1  Basic Elements of a Digital Signal Processing System

Most of the signals encountered in science and engineering are analog in nature.
That s, the signals are functions of a continuous variable, such as time or space, and
usually take on values in a continuous range. Such signals may be processed directly
by appropriate analog systems (such as filters. frequency analyzers, or frequency mul-
tipliers) for the purpose of changing their characteristics or extracting some desired
information. In such a case we say that the signal has been processed directly in its
analog form, as illustrated in Fig. 1.1.2. Both the input signal and the output signal
are 1n analog form.
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Digital signal processing provides an alternative method for processing the ana-
log signal, as illustrated in Fig. 1.1.3. To perform the processing digitally, there 1s a
need for an interface between the analog signal and the digital processor. This inter-
face is called an analog-to-digital (A/D) converter. The output of the A/D converter
is a digital signal that 1s appropriate as an mput to the digital processor.

The digital signal processor may be a large programmable digital computer or a
small microprocessor programmed to perform the desired operations on the mput
signal. It may also be a hardwired digital processor configured to pertorm a specified
set of operations on the input signal. Programmable machines provide the tlexibility
to change the signal processing operations through a change in the software, whercas
hardwired machines are difficult to reconfigure. Consequently, programmable signal
processors are in very common use. On the other hand, when signal processing
operations are well defined, a hardwired implementation of the operations can be
optimized, resulting in a cheaper signal processor and, usually, one that runs faster
than its programmable counterpart. In applications where the digital output from
the digital signal processor 1s to be given to the user in analog form, such as in speech
communications, we must provide another intertace from the digital domain to the
analog domain. Such an interface is called a digital-to-analog (D/A) converter. Thus
the signal 1s provided to the user in analog form., as illustrated in the block diagram of
Fig. 1.1.3. However, there are other practical applications involving signal analysis,
where the desired information 1s conveyed in digital form and no D/A converter 1s
required. For example, in the digital processing of radar signals, the information
extracted from the radar signal, such as the position of the aircratt and its speed, may
simply be printed on paper. There 1s no need for a D/A converter in this case.

i.1.2 Advantages of Digital over Analog Signal Processing

There are many reasons why digital signal processing of an analog signal may be
preferable to processing the signal directly in the analog domain, as mentioned brielly
carlier. First, a digital programmable system allows tlexibility 1n reconfiguring thc
digital signal processing operations simply by changing the program. Reconfigu-

Analog Digital Analog
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Digital Digital
Input output
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Figure 1.1.3 Block diagram of a digital signal processing system.
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ration of an analog system usually implies a redesign of the hardware followed by
testing and verification to see that it operates properly.

Accuracy considerations also play an important role in determining the form
of the signal processor. Tolerances in analog circuit components make it extremely
ditficult for the system designer to control the accuracy of an analog signal process-
Ing system. On the other hand, a digital system provides much better control of
accuracy requirements. Such requirements, in turn, result in specifying the accuracy
requirements in the A/D converter and the digital signal processor, in terms of word
length, floating-point versus fixed-point arithmetic, and similar factors.

Digital signals are easily stored on magnetic media (tape or disk) without de-
terioration or loss of signal fidelity beyond that introduced in the A/D conversion.
As a consequence, the signals become transportable and can be processed off-line
in a remote laboratory. The digital signal processing method also allows for the im-
plementation of more sophisticated signal processing algorithms. It is usually very
difficult to perform precise mathematical operations on signals in analog form but
these same operations can be routinely implemented on a digital computer using
software.

In some cases a digital implementation of the signal processing system is cheaper
than its analog counterpart. The lower cost may be due to the fact that the digital
hardware 1s cheaper, or perhaps it is a result of the flexibility for modifications pro-
vided by the digital implementation.

As a consequence of these advantages, digital signal processing has been applied
in practical systems covering a broad range of disciplines. We cite, for example, the
application of digital signal processing techniques in speech processing and signal
transmission on telephone channels, in image processing and transmission, in seis-
mology and geophysics, in o1l exploration, in the detection of nuclear explosions, in
the processing of signals received from outer space, and in a vast variety of other
applications. Some of these applications are cited in subsequent chapters.

As already indicated, however, digital implementation has its limitations. One
practical limitation is the speed of operation of A/D converters and digital signal
processors. We shall see that signals having extremely wide bandwidths require
fast-sampling-rate A/D converters and fast digital signal processors. Hence there
are analog signals with large bandwidths for which a digital processing approach is
beyond the state of the art of digital hardware.

1.2 Classification of Signals

T'he methods we use in processing a signal or in analyzing the response of a sys-
tem to a signal depend heavily on the characteristic attributes of the specific signal.
There are techniques that apply only to specific families of signals. Consequently,
any 1nvestigation 1in signal processing should start with a classification of the signals
involved in the specific application.

1.2.1 Multichannel and Multidimensional Signals

As explained in Section 1.1, a signal is described by a function of one or more in-
dependent variables. The value of the function (i.e., the dependent variable) can be
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a real-valued scalar quantity, a complex-valued quantity, or perhaps a vector. For
example, the signal

s1(t) = Asin3mt

is a real-valued signal. However, the signal
52(t) = Ae’”™ = Acos3nt + jAsin3nt

1s complex valued.

In some applications, signals are generated by multiple sources or multiple sen-
sors. Such signals, in turn, can be represented i vector form. Figure 1.2.1 shows the
three components of a vector signal that represents the ground acceleration due to
an earthquake. This acceleration 1s the result of three basic types of elastic waves.
The primary (P) waves and the secondary (S) waves propagate within the body of
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Figure 1.2.1 Three components of ground acceleration measured a few kilometers from
the epicenter of an earthquake. (From Earthquakes, by B. A. Bold, ©1988 by
W. H. Freeman and Company. Reprinted with permission of the publisher.)
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Figure 1.2.2
Example of a
two-dimensional signal.

rock and are longitudinal and transversal, respectively. The third type of elastic wave
is called the surface wave, because it propagates near the ground surface. If s, (7).
k = 1, 2, 3, denotes the electrical signal from the kth sensor as a function of time,

the set of p = 3 signals can be represented by a vector S3(7), where

sy (1) T
S3(1) = | s2(1)
_s3(t) _

We refer to such a vector of signals as a multichannel signal.In electrocardiography,
for example, 3-lead and 12-lead electrocardiograms (ECG ) are often used 1n practice,
which result in 3-channel and 12-channel signals.

Let us now turn our attention to the independent variable(s). If the signal 1s
a function of a single independent variable, the signal 1s called a one-dimensional
signal. On the other hand, a signal is called M -dimensional if 1ts value is a function
of M independent variables.

e picture shown in Fig. 1.2.2 is an example of a two-dimensional signal, since
the intensity or brightness / (x, y) at each pointis a function of two independent vari-
ables. On the other hand, a black-and-white television picture may be represented
as /(x,y,t) since the brightness is a function of time. Hence the TV picture may
be treated as a three-dimensional signal. In contrast, a color TV picture may be de-
scribed by three intensity functions of the form 7, (x. v, 1), I,(x, y. 1), and I,(x, y.1).
corresponding to the brightness of the three principal colors (red, green, blue) as
functions of time. Hence the color TV picture is a three-channel, three-dimensional

signal, which can be represented by the vector

—If'(“r& J’P‘JT)“
I(x, v, 0) = | I,(x, y. 1)
_ [ (x, v, 1) _
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In this book we deal mainly with single-channel, one-dimensional real- or com-
plex-valued signals and we refer to them simply as signals. In mathematical terms
these signals are described by a function of a single independent variable. Although
the independent variable need not be time, 1t 1s common practice to use ¢ as the
independent variable. In many cases the signal processing operations and algorithms
developed in this text for one-dimensional, single-channel signals can be extended
to multichannel and multidimensional signals.

1.2.2 Continuous-Time Versus Discrete-Time Signals

Signals can be further classified into tour different categories depending on the char-
acteristics of the time (independent) variable and the values they take. Continuous-
time signals or analog signals are defined for every value of time and they take
on values 1n the continuous interval («. b), where ¢ can be —o0 and b can be oc.
Mathematically, these signals can be described by functions of a continuous vari-
able. The speech waveform in Fig. 1.1.1 and the signals x{(t) = cost, x»(t) = e "',
—oC < t < oo are examples of analog signals. Discrete-time signalsare defined only
at certain specific values of time. These time instants need not be equidistant, but 1n
practice they are usually taken at equally spaced intervals for computational conve-
nience and mathematical tractability. The signal x(z,) = eIl =0, +1., +2....
provides an example of a discrete-time signal. If we use the index n of the discrete-
time instants as the independent variable, the signal value becomes a function of an
integer variable (i.e., a sequence of numbers). Thus a discrete-time signal can be rep-
resented mathematically by a sequence of real or complex numbers. To emphasize
the discrete-time nature of a signal, we shall denote such a signal as x(n) instead ot
x(r). If the time instants ¢, are equally spaced (1.e., t, = nT), the notation x(n7T) 1s
also used. For example, the sequence

Iy

0.8, ifn=>0
0. otherwise

(1.2.1)

x(n) =
1s a discrete-time signal, which 1s represented graphically as in Fig. 1.2.3.
In applications, discrete-time signals may arise in two ways:

1. By sclecting values of an analog signal at discrete-time instants. This process
1s called sampling and 1s discussed in more detail in Section 1.4. All measur-
ing instruments that take measurements at a regular interval ot time provide

x(n)

-1 0 2 3 4 R 6 7 ce 7

Figure 1.2.3 Graphical representation of the discrete time signal
x(n)=08" for n >0 and x(n) =0 for n < 0.
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Figure 1.2.4 Wolfer annual sunspot numbers (1770-1869).

discrete-time signals. For example, the signal x(n) in Fig. 1.2.3 can be obtained
by sampling the analog signal x(¢z) = 0.8, > 0 and x(¢r) =0, 1 < 0 once every
second.

2. By accumulating a variable over a period of time. For example, counting the
number of cars using a given street every hour, or recording the value ot gold
every day, results in discrete-time signals. Figure 1.2.4 shows a graph of the
Wolfer sunspot numbers. Each sample of this discrete-time signal provides the
number of sunspots observed during an interval ot 1 year.

1.2.3 Continuous-Valued Versus Discrete-Valued Signals

The values of a continuous-time or discrete-time signal can be continuous or discrete.
If a signal takes on all possible values on a finite or an infinite range, it 1s said to be
a continuous-valued signal. Alternatively, if the signal takes on values from a finite
set of possible values, it is said to be a discrete-valued signal. Usually, these values
are equidistant and hence can be expressed as an integer multiple of the distance
between two successive values. A discrete-time signal having a set of discrete values
is called a digital signal. Figure 1.2.5 shows a digital signal that takes on one of four
possible values.

In order for a signal to be processed digitally, 1t must be discrete in time and its
values must be discrete (i.e., it must be a digital signal). If the signal to be processed
is in analog form, it is converted to a digital signal by sampling the analog signal
at discrete instants in time, obtaining a discrete-time signal, and then by quantizing
its values to a set of discrete values, as described later in the chapter. The process
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Figure 1.2.5 Digital signal with four differcnt amplitude values.

of converting a continuous-valued signal into a discrete-valued signal, called guan-
tization. is basically an approximation process. It may be accomplished simply by
rounding or truncation. For example, if the allowable signal valucs in the digital
signal are integers, say 0 through 15, the continuous-value signal is quantized nto
these integer values. Thus the signal value 8.58 will be approximated by the value &
if the quantization process is performed by truncation or by 9 if the quantization
process is performed by rounding to the nearest integer. An explanation ot the
analog-to-digital conversion process is given later in the chapter.

1.2.4 Deterministic Versus Random Signals

The mathematical analysis and processing of signals requires the availability ot a
mathematical description for the signal itself. This mathematical description, often
referred to as the signal model, leads to another important classification ot signals.
Any signal that can be uniquely described by an explicit mathematical expression,
a table of data, or a well-defined rule is called deterministic. This term 1s used to
emphasize the fact that all past, present, and future values of the signal are known
precisely, without any uncertainty.

In many practical applications, however, there are signals that either cannot be
described to any reasonable degree of accuracy by explicit mathematical formulas,
or such a description is too complicated to be of any practical use. The lack of such a
relationship implies that such signals evolve in time in an unpredictable manner. We
refer to these signals as random.The output of a noise generator, the scismic signal
of Fig. 1.2.1, and the speech signal in Fig. 1.1.1 are examples of random signals.

The mathematical framework for the theoretical analysis of random signals 1s
provided by the theory of probability and stochastic processes. Some basic elements
of this approach, adapted to the needs of this book, are presented in Section 12.1.
It should be emphasized at this point that the classification of a real-world signal
as deterministic or random is not always clear. Sometimes, both approaches lead to
meaningful results that provide more insight into signal behavior. At other times,
the wrong classification may lead to erroneous results, since some mathematical
tools may apply only to deterministic signals while others may apply only to random
sienals. This will become clearer as we examine specific mathecmatical tools.
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1.3 The Concept of Frequency in Continuous-Time and
Discrete-Time Signals

The concept of frequency is familiar to students in engineering and the sciences. This
concept is basic in, for example, the design of a radio receiver, a high-fidelity system,
or a spectral filter for color photography. From physics we know that frequency is
closely related to a specific type of periodic motion called harmonic oscillation, which
is described by sinusoidal functions. The concept of frequency is directly related to
the concept of time. Actually, it has the dimension of inverse time. Thus we should
expect that the nature of time (continuous or discrete) would affect the nature of the

frequency accordingly.

1.3.1 Continuous-Time Sinusoidal Signals

A simple harmonic oscillation is mathematically described by the following continuous-
time sinusoidal signal:

x,(t) = Acos(Qt +6), —00 << (1.3.1)

shown in Fig. 1.3.1. The subscript « used with x(¢) denotes an analog signal. This
signal is completely characterized by three parameters: A is the amplitude of the
sinusoid, € is the frequency in radians per second (rad/s), and 6 is the phase n
radians. Instead of Q. we often use the frequency F in cycles per second or hertz
(Hz), where

Q=21F (1.3.2)

In terms of F, (1.3.1) can be written as
x, (1) = AcosQua Ft+60), —oo <t <0 (1.3.3)

We will use both forms, (1.3.1) and (1.3.3). in representing sinusoidal signals.

x, (1) =A cos(2Ft + 0)

+

~T,=1/F—

- A
/\ /\A cos 6 /\
0 \ t
Figure 1.3.1

Example of an analog
sinusoidal signal.
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The analog sinusoidal signal in (1.3.3) is characterized by the following proper-
ties:

A1. For every fixed value of the frequency F, x,(7) is periodic. Indeed, it can easily
be shown, using elementary trigonometry, that

Xq(t + Tp) = X, (1)

where 7, = 1/F 1s the fundamental period of the sinusoidal signal.

A2. Continuous-time sinusoidal signals with distinct (different) frequencies are
themselves distinct.

A3. Increasing the frequency F results in an increase in the rate of oscillation of
the signal, in the sense that more periods are included in a given time interval.

We observe that for F = 0, the value 7, = oo is consistent with the fundamental
relation F = 1/T,. Due to continuity of the time variable 7, we can increase the
frequency F . without limit, with a corresponding increase in the rate of oscillation.

The relationships we have described for sinusoidal signals carry over to the class
of complex exponential signals

X, (1) = Ae/ B4 (1.3.4)

This can easily be seen by expressing these signals in terms of sinusoids using the
Euler identity

¢e=/? = cos¢ £ jsing (1.3.5)

By definition, frequency is an inherently positive physical quantity. This 1s ob-
vious if we interpret frequency as the number of cycles per unit time in a periodic
signal. However, in many cases, only for mathematical convenience, we need to
introduce negative frequencies. To see this we recall that the sinusoidal signal (1.3.1)

may be expressed as

A . A .
x, (1) = Acos(Q +0) = ,2_ C;,I(QHH} | ; e—.I(Qr+H) (]36)

which follows from (1.3.5). Note that a sinusoidal signal can be obtained by adding
two equal-amplitude complex-conjugate exponential signals, sometimes called pha-
sors, illustrated in Fig. 1.3.2. As time progresses the phasors rotate in opposite di-
rections with angular frequencies £ radians per second. Since a positive frequency
corresponds to  counterclockwise uniform angular motion, a negative frequency
simply corresponds to clockwise angular motion.

For mathematical convenience, we use both negative and positive frequencies
throughout this book. Hence the frequency range for analog sinusoidsis —oo < I <

.
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= Re

Figure 1.3.2
Representation of a
cosine function by a pair
of complex-conjugate
exponentials (phasors).

1.3.2 Discrete-Time Sinusoidal Signals

A discrete-time sinusoidal signal may be expressed as
x(n) = Acos(wn +0), —o00<n<o (1.3.7)

where n is an integer variable, called the sample number, A is the amplitude of the
sinusoid, w is the frequency in radians per sample, and 6 is the phase 1n radians.
If instead of w we use the frequency variable f defined by

w=21f (1.3.8)

the relation (1.3.7) becomes
x(n) = AcosQafn-+86), —o00o<n<oo (1.3.9)

The frequency f has dimensions of cycles per sample. In Section 1.4, where we
consider the sampling of analog sinusoids, we relate the frequency variable f of a
discrete-time sinusoid to the frequency F in cycles per second for the analog sinusoid.
For the moment we consider the discrete-time sinusoid in (1.3.7) independently of
the continuous-time sinusoid given in (1.3.1). Figure 1.3.3 shows a sinusoid with

frequency w = x/6 radians per sample (f = Tli cycles per sample) and phase
0 =m/3.

x(n) =A cos(wn + 6)

A
L - TA ¢
® | @ $ | @ @  ©
L © ® ® L &
. @ ® @ ®
: 0 7

Figure 1.3.3
Example of a discrete-time ¢ ¢ ¢ ¢
sinusoidal signal (w.= /6 JE o |
and 0 = 7 /3). T4 @
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In contrast to continuous-time sinusoids, the discrete-time sinusoids are charac-
terized by the following properties:

B1l. A discrete-time sinusoid is periodic only if its frequency [ is a rational number.

By definition, a discrete-time signal x(n) 1s periodic with period N(N > 0) 1t and

only 1if
x(n+ N) = x(n) for all n (1.3.10)

The smallest value of N for which (1.3.10) is true 1s called the fundamental period.
The proof of the periodicity property 1s simple. For a sinusoid with frequency fg
to be periodic, we should have

cos|2m fo(N +n) + 0] = cos(2x fon + 0)

This relation is true if and only if there exists an integer k such that

21 folN = 2kn
or, equivalently,
k _
0= — 1.3.11
fo=+ ( )

According to (1.3.11), a discrete-time sinusoidal signal is periodic only if its frequency
fo can be expressed as the ratio of two integers (1.e., fo 1s rational).

To determine the fundamental period N of a periodic sinusoid, we express 1ts
frequency fp asin (1.3.11) and cancel common factors so that k and N are relatively
prime. Then the fundamental period of the sinusoid is equal to N. Observe that a
small change in frequency can result 1in a large change in the period. For example,
note that f; = 31/60 implies that Ny = 60, whereas f> = 30/60 results in Ny = 2.

B2. Discrete-time sinusoids whose frequencies are separated by an integer multiple
of 2 are identical.

To prove this assertion, let us consider the sinusoid cos(wgn + 6). It easily follows
that

cos{(wg + 2m)n + 6] = cos{won + 2mn + 0) = cos(won + ) (1.3.12)

As a result, all sinusoidal sequences
xr(n) = Acos(wgn + 8), k=0,1,2,... (1.3.13)

where
wk = wo + 2k, —T < wy <77

are indistinguishable (i.e., identical). Any sequence resulting from a sinusoid with a
frequency |w| > 7, or | f| > %, 1s identical to a sequence obtained from a sinusoidal
signal with frequency |w| < 7. Because of this similarity, we call the sinusoid having

the frequency |w| > 7 an alias of a corresponding sinusoid with frequency |w| < 7.

Thus we regard frequencies 1in the range —7 < w < 7, or m% < f < % as unique
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and all frequencies |w| > 7, or |f] > %, as aliases. The reader should notice the
difference between discrete-time sinusoids and continuous-time sinusoids, where
the latter result in distinct signals for Q or F in the entire range —o0 < 2 < o0 Or

—0 < F < 00.

B3. The highest rate of oscillation in a discrete-time sinusoid is attained when v = w

(or w = —m ) or, equivalently, [ = % (or [ = —% .

To illustrate this property, let us investigate the characteristics ot the sinusoidal
signal sequence
x(n) = Ccos wgn

when the frequency varies from 0 to #. To simplify the argument, we take values
of wg =0, n/8, w/4, 7/2, = corresponding to f = 0, T‘%, %—,, = % which result 1n
periodic sequences having periods N = 00, 16, 8, 4, 2, as depicted mn Fig. 1.3.4. We
note that the period of the sinusoid decreases as the frequency increases. In fact, we
can see that the rate of oscillation increases as the frequency increases.

To see what happensfor 7 < wg < 2w, we consider the sinusoids with frequencies
w1 = wo and w» = 27 — wp. Note that as wq varies from 7 to 27, w» varies from n

to 0. It can be easily seen that

x1(n) = Acoswin = A COS wyn
x2(n) = Acoswrn = Acos(Zm — wy)n (1.3.14)

= A cos(—won) = x1(n)

i x(n)

CMU::O

..?....ll..".il.'iﬂ.'l,?'lll.'

.x:(n:) a)ozg x(n) WU:E
¢ li'i ® g 1e ¢
° oo oo ¢le ®
R . ,

o|||o o ® o ® ® el® o o
ol 3 ol 3 ® ¢ ® ®
x(n) | wq :—g | x(n) | wpg=7
® ¢ ® e $ ® ® n--.i.-l-i.tltt-

Figure 1.3.4 Signal x(n) = coswgn for various values of the frequency wy.
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Hence w» is an alias of w;. If we had used a sine function instead of a cosine function,
the result would basically be the same, except for a 180° phase difference between
the sinusoids x; (n) and x»(n). In any case, as we increase the relative frequency wy ot
1 discrete-time sinusoid from 7 to 2, its rate of oscillation decreases. For wy = 27
the result is a constant signal, as in the case for wy = 0. Obviously, for wy = =
(or f = %) we have the highest rate of oscillation.

As for the case of continuous-time signals, negative frequencies can be intro-
duced as well for discrete-time signals. For this purpose we use the 1dentity

A A
x(n) = Acos(wn +6) = 5 e/ (@0 5 g~/ (@nt?) (1.3.15)

Since discrete-time sinusoidal signals with frequencies that are separated by an
integer multiple of 27 are identical, it follows that the frequencies in any interval
w1 < w < w) + 27 constitute all the existing discrete-time sinusoids or complex
exponentials. Hence the frequency range for discrete-time sinusoids 1s finite with
duration 27 . Usually, we choose therange 0 <w <2r or —7 <w <7 (0 < f <1,

1

—5 < f < %)? which we call the fundamental range.

1.2.3 Harmonically Related Complex Exponentials

Sinusoidal signals and complex exponentials play a major role in the analysis of
signals and systems. In some cases we deal with sets of harmonically related complex
exponentials (or sinusoids). These are sets of periodic complex exponentials with
fundamental frequencies that are multiples of a single positive frequency. Although
we confine our discussion to complex exponentials, the same properties clearly hold
for sinusoidal signals. We consider harmonically related complex exponentials in
both continuous time and discrete time.

Continuous-time exponentials. The basic signals for continuous-time, harmoni-
cally related exponentials are

s (1) = e/l = pJemkfol = (0 1, 42, ... (1.3.16)

We note that for each value of k, s, (¢) is periodic with fundamental period 1/(kFy) =
T,/ k or fundamental frequency k Fj. Since a signal that is periodic with period 7,/ k
is also periodic with period k(T,/k) = T, for any positive integer k, we see that all
of the s;(¢) have a common period of 7,. Furthermore, according to Section 1.3.1,
Fy is allowed to take any value and all members of the set are distinct, in the sense
that if k1 # ky, then s31(¢) # sp2(F).

From the basic signals in (1.3.16) we can construct a linear combination of har-
monically related complex exponentials of the form

X X
x,(t) = Z CeSp(t) = Z cp el KT (1.3.17)
k=—0oC k=—00C
where ¢, k = 0, +1, +2,... are arbitrary complex constants. The signal x,(7)

is periodic with fundamental period 7, = 1/Fy, and 1ts representation in terms of
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2. Quantization. This is the conversion of a discrete-time continuous-valued signal
into a discrete-time, discrete-valued (digital) signal. The value of each signal
sample is represented by a value selected from a finite set of possible values.
The difference between the unquantized sample x(n) and the quantized output
x,(n) 1s called the quantization error.

3. Coding. Inthe coding process, each discrete value x, (n) is represented by a b-bit
binary sequence. .

Although we model the A/D converter as a sampler followed by a quantizer and
coder, in practice the A/D conversion 1s performed by a single device that takes x, (1)
and produces a binary-coded number. The operations of sampling and quantization
can be performed in either order but, in practice, sampling 1s always performed
before quantization.

In many cases of practical interest (e.g., speech processing) it 1s desirable to con-
vert the processed digital signals into analog form. (Obviously, we cannot listen to
the sequence of samples representing a speech signal or see the numbers correspond-
ing to a TV signal.) The process of converting a digital signal into an analog signal
is known as digital-to-analog (D/A) conversion. All D/A converters “connect the
dots” in a digital signal by performing some kind of interpolation, whose accuracy
depends on the quality of the D/A conversion process. Figure 1.4.2 illustrates a sim-
ple form of D/A conversion, called a zero-order hold or a staircase approximation.
Other approximations are possible, such as linearly connecting a pair of successive
samples (linear interpolation), fitting a quadratic through three successive samples
(quadratic interpolation), and so on. Is there an optimum (i1deal) interpolator? For
signals having a limited frequency content (finite bandwidth), the sampling theorem
introduced in the following section specifies the optimum form of interpolation.

Sampling and quantization are treated in this section. In particular, we demon-
strate that sampling does not result in a loss of information, nor does it mtroduce
distortion in the signal if the signal bandwidth is finite. In principle, the analog signal
can be reconstructed from the samples, provided that the sampling rate 1s sutficiently
high to avoid the problem commonly called aliasing. On the other hand, quantization

L
Original Staircase
_ Approximaton
Signal /
X/“"'* AN //
3 | ~ | |
% (/ o [ _,.-"'T/
= / |
<
/
/
/
Figure 1.4.2 /
Zero-order hold | : _ ! | I _
digital-to-analog G 2T 4T 6T 8T

(D/A) conversion. Time
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is a noninvertible or irreversible process that results in signal distortion. We shall
show that the amount of distortion is dependent on the accuracy, as measured by the
number of bits, in the A/D conversion process. The factors affecting the choice ot
the desired accuracy of the A/D converter are cost and sampling rate. In general,
the cost increases with an increase in accuracy and/or sampling rate.

1.4.1 Sampling of Analog Signals

There are many ways to sample an analog signal. We limit our discussion to periodic
or uniform sampling, which is the type of sampling used most often in practice. This
is described by the relation

x(n) =x,(nT), —00 < N < X (1.4.1)

where x(n) is the discrete-time signal obtained by “taking samples” of the analog
signal x,(r) every T seconds. This procedure 1s illustrated in Fig. 1.4.3. The time
interval T between successive samplesis called the sampling period or sample interval
and its reciprocal 1/T = F, is called the sampling rate (samples per second) or the
sampling frequency (hertz).

Periodic sampling establishes a relationship between the time variables ¢ and n
of continuous-time and discrete-time signals, respectively. Indeed, these variables
are linearly related through the sampling period T or, equivalently, through the
sampling rate Fy, =1/T, as '

As a consequence of (1.4.2), there exists a relationship between the frequency
variable F (or Q) for analog signals and the frequency variable f (or w) for discrete-
time signals. To establish this relationship, consider an analog sinusoidal signal of
the form

x, (1) = AcosQu Ft +0) (1.4.3)
Analog ’r-:tf(f) - m I'(H) :XH(”D - Discrete—t_ime
signal F=UT signal
Sampler
'Xif(r) I(H) xg(r)
v e J/
! ‘. x(n) = x,(nT)
&# h"" /
’ ®
;’ “'*
g [T
() t 0l 1 23456789 7l
TorT ... 5T ... 9T ...t=nl

Figure 1.4.3 Periodic sampling ot an analog signal.
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which, when sampled periodically at a rate Fy; = 1/7 samples per second, yields

X,(nT)=x(n) =Acos@rn FnT + 0)
Vi (1.4.4)
= A cOoSs ( 9)

A)

If we compare (1.4.4) with (1.3.9), we note that the frequency variables F' and
f are linearly related as

= — 1.4.5
f=+ (1.4.5)

or, equivalently, as
w= QT (1.4.6)

The relation in (1.4.5) justifies the name relative ornormalized frequency, which 1s
sometimes used to describe the frequency variable f. As (1.4.5) implies, we can use
f to determine the frequency F in hertz only if the sampling frequency F; 1s known.

We recall from Section 1.3.1 that the ranges of the frequency variables F or €2
for continuous-time sinusoids are

—00 < F < 00

(1.4.7)

—00 < §2 < o0

However, the situation 1s different for discrete-time sinusoids. From Section 1.3.2

we recall that
1 1

-5 <f <3
2 2 (1.4.8)

— T < W <77

By substituting from (1.4.5) and (1.4.6) into (1.4.8), we find that the frequency of the
continuous-time sinusoid when sampled at a rate F;, = 1/T must fall in the range

1 F, F 1
2T 2 - 2 2T ( )
or, equivalently,
____fi = —naF, <Q<nak, = il (1.4.10)
T T

These relations are summarized in Table 1.1.

From these relations we observe that the fundamental difference between con-
tinuous-time and discrete-time signals is in their range of values of the frequency
variables F and f, or Q and w. Periodic sampling of a continuous-time signal
implies a mapping of the infinite frequency range for the variable F (or ) into a
finite frequency range for the variable f (or w). Since the highest frequency in a
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TABLE 1.1 Relations Among Frequency Variables

Continuous-time signals Discrete-time signals
Q=2nF w=2nf
radians 7 | radians cycles
SEC sample  sample
AN
w=QT, f=F/F, > Cr<w<n
/ 1 _ ]
L —5 =< f =<3
<£2 =w/T.F=f-F;
N
—00 < 2 < o0 - /T <Q <m/T
—o0 < F < o0 ——F%/ZfFEE}./Z

discrete-time signali1s w = m or f = % it follows that, with a sampling rate Fj, the
corresponding highest values of F and €2 are

F 1
Fmax = ““2— — ﬁ
(1.4.11)
T
~ Lmax = T b5 = T

Therefore, sampling introduces an ambiguity, since the highest frequency 1n a contin-
uous-time signal that can be uniquely distinguished when such a signal 1s sampled at
arate Iy, = 1/T 1S Fmax = F, /2, or Qmax = 7 Fy. To see what happens to frequencies
above F,/2, let us consider the following example.

FAAMPLE 4T

The implications of these frequency relations can be fully appreciated by considering the two
analog sinusoidal signals

x1(t) = cos 2 (10)¢
(1.4.12)

Xo (1) = cos 2w (50)¢t

which are sampled at a rate F; = 40 Hz. The corresponding discrete-time signals or sequences
are

n) 5 10 T
- ) = — = COS§ —
x1(n COS 21T 10 7 2n
(1.4.13)
(n) = 2 50 - S
X2(n) = COS2m m N = COS 2n

However, cos3mtn/2 = cosQRnn + nn/2) = cosmn/2. Hence xp(n) = xi(n). Thus the sinu-
soidal signals are identical and, consequently, indistinguishable. If we are given the sampled
values generated by cos(w/2)n, there is some ambiguity as to whether these sampled values
correspond to xi(¢) or x;(¢). Since x,(¢) yields exactly the same values as x () when the two
are sampled at F, = 40 samples per second, we say that the frequency F> = 50 Hz 1S an alias
of the frequency F; = 10 Hz at the sampling rate of 40 samples per second.
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(¢) Suppose that the signal is sampled at the rate F, = 75 Hz. What is the discrete-time
signal obtained after sampling?

(d) What is the frequency 0 < F < F;/2 of a sinusoid that yields samples 1dentical to those
obtained in part (c)?

Solution.
(a) The frequency of the analog signal is ¥ = 50 Hz. Hence the minimum sampling rate
required to avoid aliasing 1s F; = 100 Hz.

(b) If the signal is sampled at F; = 200 Hz, the discrete-time signal is

(n) = 3¢os 1007 3 COS "
— —— — F1
o 200 >

(¢) If the signal is sampled at F; = 75 Hz, the discrete-time signal 1s

) = 3 1007 ; A
—_— — 3C -
x(n COS T n 0S z n
27\
:3005(2:@' E)n
3
2
=3cos—3£n

(d) For the sampling rate of F; =75 Hz, we have
F=fF=T75f
The frequency of the sinusoid in part (¢) 1S f = % Hence
F =25 Hz
Clearly, the sinusoidal signal
y, (1) = 3cos2m F't

— 3cos S50t

sampled at F, = 75 samples/s yields identical samples. Hence F = 50 Hz is an alas of
I = 25 Hz for the sampling rate F;, = 75 Hz.

1.4.2 The Sampling Theorem

Given any analog signal, how should we select the sampling period T or, equivalently,
the sampling rate F;? To answer this question, we must have some information about
the characteristics of the signal to be sampled. In particular, we must have some gen-
eral information concerning the frequency content of the signal. Such information 1s
eenerally available to us. For example, we know generally that the major frequency
components of a speech signal fall below 3000 Hz. On the other hand, television
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signals, in general, contain important frequency components up to 5 MHz. The in-
formation content of such signals is contained in the amplitudes, frequencies, and
phases of the various frequency components, but detailed knowledge of the charac-
teristics of such signals is not available to us prior to obtaining the signals. In fact,
the purpose of processing the signals is usually to extract this detailed information.
However, if we know the maximum frequency content of the general class of signals
(e.g., the class of speech signals, the class of video signals, etc.), we can specity the
sampling rate necessary to convert the analog signals to digital signals.

Let us suppose that any analog signal can be represented as a sum of sinusoids

of different amplitudes, frequencies, and phases, that 1s,

N
¥ (1) = ) AjcosQmFit +6;) (1.4.18)

i=1

where N denotes the number of frequency components. All signals, such as speech
and video, lend themselves to such a representation over any short time segment.
The amplitudes, frequencies, and phases usually change slowly with time from one
time segment to another. However, suppose that the frequencies do not exceed some
known frequency, say Fnax. For example, Fpax = 3000 Hz for the class of speech
signals and Fhax = 5 MHz for television signals. Since the maximum frequency may
vary slightly from different realizations among signals of any given class (e.g., it may
vary slightly from speaker to speaker), we may wish to ensure that Fj,,x does not
exceed some predetermined value by passing the analog signal through a filter that
severely attenuates frequency components above Fpax. Thus we are certain that no
signal in the class contains frequency components (having significant amplitude or
power) above Fnax. In practice, such filtering is commonly used prior to sampling.

From our knowledge of Fy.x, we can select the appropriate sampling rate. We
know that the highest frequency in an analog signal that can be unambiguously
reconstructed when the signal is sampled at arate Fy, =1/7 1s F;/2. Any frequency
above F,/2 or below —F, /2 results in samples that are identical with a corresponding
frequency in the range — F,/2 < F < F,/2. To avoid the ambiguities resulting from
aliasing, we must select the sampling rate to be sufficiently high. That 1s, we must
select F,/2 to be greater than Fy.. Thus to avoid the problem of aliasing, Fj 1s
selected so that '

F, > 2 Fmax (1.4.19)

where Fpax 1S the largest frequency component in the analog signal. With the sam-
pling rate selected in this manner, any frequency component, say |F;| < Fpnax, In the
analog signal is mapped into a discrete-time sinusoid with a frequency

1 Foo1
—=<fi=—= =3 (1.4.20)
2 Iy — 2
or, equivalently,
—n <w; =2nfi <7m (1.4.21)
Since, | f| = % or |w| = 7 is the highest (unique) frequency in a discrete-time sig-

nal, the choice of sampling rate according to (1.4.19) avoids the problem of aliasing.
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In other words, the condition F, > 2Fn.x ensures that all the sinusoidal compo-
nents in the analog signal are mapped into corresponding discrete-time frequency
components with frequencies in the fundamental interval. Thus all the frequency
components of the analog signal are represented in sampled form without ambigu-
ity, and hence the analog signal can be reconstructed without distortion from the
sample values using an “appropriate” interpolation (digital-to-analog conversion)
method. The “appropriate” or ideal interpolation formula 1s specified by the sam-

pling theorem.

Sampling Theorem. If the highest frequency contained in an analog signal x,(7) 1s
Fon.x = B and the signal is sampled at a rate F; > 2Fy.x = 2B, then x,(¢) can be
exactly recovered from its sample values using the interpolation function

sin 27 Bt
1) = 1.4.22
g(1) Y ( )

Thus x,(¢) may be expressed as

x, (1) = Z X, (%) g (t ; ) (1.4.23)

l=—00

where x,(n/F,) = x,(nT) = x(n) are the samples of x, (7).
When the sampling of x,(¢) is performed at the minimum sampling rate F; = 2B,
the reconstruction formula in (1.4.23) becomes

B = yn sn2x B(t —n/2B)
Yall) = Z ta (28) 2n B(t — n/2B) (14.24)

H=—00

The sampling rate Fy = 2B = 2 Fiax 1s called the Nyquist rate. Figure 1.4.61llustrates
the ideal D/A conversion process using the interpolation function in (1.4.22).

As can be observed from either (1.4.23) or (1.4.24), the reconstruction of x,(¢)
from the sequence x(n) is a complicated process, involving a weighted sum of the
interpolation function g(¢) and its time-shifted versions g(r —nT) for —o0 < n < 00,
where the weighting factors are the samples x(n). Because of the complexity and
the infinite number of samples required in (1.4.23) or (1.4.24), these reconstruction
formulas are primarily of theoretical interest. Practical interpolation methods are
given 1n Chapter 6.

Figure 1.4.6 | _ {

Ideal D/A conversion - v

(interpolation). (n—2)T (n— DT nT (n+ DT
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EXAMPLE T.4.3

Consider the analog signal

x,(t) = 3cos50mt + 10sin 300wt — cos 100

What is the Nyquist rate for this signal?

Solution. The frequencies present in the signal above are
Fi =25 Hz, F> = 150 Hz, F3 = 50 Hz
Thus F,.« = 150 Hz and according to (1.4.19),
F. > 2F .« = 300 Hz
The Nyquist rate 1s Fy = 2Fnax. Hence

Fy = 300 Hz

Discussion. It should be observed that the signal component 10sin 300z ¢, sampled at the
Nyquist rate Fy = 300, results in the samples 10sin 7», which are identically zero. In other
words, we are sampling the analog sinusoid at its zero-crossing points, and hence we miss this
signal component completely. This situation does not occur if the sinusoid 1s offset in phase
by some amount . In such a case we have 10sin(30077 + 6) sampled at the Nyquist rate
Fy = 300 samples per second, which yields the samples

10sin(rn + 0) = 10(sinwn cos O + cos wn sin ¢/)
= 10s1mn 6 cos n

= (—1)"10sm &

Thus if # # 0 or 7, the samples of the sinusoid taken at the Nyquist rate are not all zero.
However, we still cannot obtain the correct amplitude from the samples when the phase 6 1s
unknown. A simple remedy that avoids this potentially troublesome situation is to sample the
analog signal at a rate higher than the Nyquist rate.

EXAMPLE T 44

Consider the analog signal

x, (1) = 3cos 20007t + 5sin 60007 ¢ + 10 cos 12,0007 ¢

(a) What is the Nyquist rate for this signal?

(b) Assume now that we sample this signal using a sampling rate F, = 5000 samples/s. What
is the discrete-time signal obtained after sampling?

(¢) What is the analog signal y,(z) that we can reconstruct from the samples it we use 1deal
interpolation?
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Solution.

(a)

(b)

(¢)

The frequencies existing in the analog signal are
F_1 =1 kHZ, F2 = 3 kHZ.J. F3 = 6 kHz
Thus Fnhax = 6 kHz, and according to the sampling theorem,

F; > 2F.« = 12 kHz

The Nyquist rate 1s
Fy = 12 kHz

Since we have chosen F, = 5 kHz, the folding frequency 1s

F

and this is the maximum frequency that can be represented uniquely by the sampled
signal. By making use of (1.4.2) we obtain

o)
x(n)y=x,nT) = x, r

— 3¢cos 27 (%—)n +5sin27 (2)n + 10cos 27 (

| =~

) n

=3cos2m (2)n+5sin27 (1 — £)n+10cos2x (1 + 2)n

L fed
LA

-

| —

)n+5sin2x (—%)n + 10cos2x (é—)n

Lo

:3005231'(

w1

[

Finally, we obtain
x{(n) =13cos2x (%) n—>S5sin2r (%) n

The same result can be obtained using Fig. 1.4.4. Indeed, since F; = 5 kHz, the folding
frequency 1s F;/2 = 2.5 kHz. This 1s the maximum frequency that can be represented
uniquely by the sampled signal. From (1.4.17) we have Fy = F, — kF,. Thus Fj can be
obtained by subtracting from F; an integer multiple of F; such that —F;/2 < Fy < F;/2.
The frequency Fp 1s less than F/2 and thus 1t 1s not affected by aliasing. However, the
other two frequencies are above the folding frequency and they will be changed by the

aliasing effect. Indeed,
F,=F,—F, =—2kHz

F,=F;— F, = 1 kHz

From (1.4.5) it follows that f; = % Hh = —%,, and f; = % which are 1n agreement with
the result above.

Since the frequency components at only 1 kHz and 2 kHz are present in the sampled
signal, the analog signal we can recover is

ya(t) = 13 cos 20007t — 5 s1in 40007 ¢

which 1s obviously different from the original signal x,(¢). This distortion of the original
analog signal was caused by the aliasing effect, due to the low sampling rate used.
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Although aliasing is a pitfall to be avoided, there are two useful practical ap-
plications based on the exploitation of the aliasing effect. These applications are
the stroboscope and the sampling oscilloscope. Both instruments are designed to
operate as aliasing devices in order to represent high frequencies as low frequencies.

To elaborate, consider a signal with high-frequency components confined to a
given frequency band By < F < By, where B, — By = B 18 defined as the bandwidth
of the signal. We assume that B << Bj < B;. This condition means that the
frequency components in the signal are much larger than the bandwidth B of the
signal. Such signals are usually called bandpass or narrowband signals. Now, 1f this
signalis sampled atarate F; > 2B,but F; << Bp, then all the frequency components
contained 1n the signal will be aliases of frequencies in the range 0 < F < Fy/2.
Consequently, if we observe the frequency content of the signal in the fundamental
range 0 < F < F;/2, we know precisely the frequency content of the analog signal
since we know the frequency band By < F' < B, under consideration. Consequently,
if the signal 1s a narrowband (bandpass) signal, we can reconstruct the original signal
from the samples, provided that the signal 1s sampled at a rate F; > 2B, where B
is the bandwidth. This statement constitutes another form of the sampling theorem,
which we call the bandpass form in order to distinguish it from the previous form ot
the sampling theorem, which applies in general to all types of signals. The latter 1s
sometimes called the baseband form. The bandpass form of the sampling theorem

i1s described in detail in Section 6.4.

1.4.3 Quantization of Continuous-Amplitude Signals

As we have seen, a digital signal is a sequence of numbers (samples) in which each
number is represented by a finite number of digits (finite precision).
The process of converting a discrete-time continuous-amplitude signal into a
digital signal by expressing each sample value as a finite (instead of an infinite)
number of digits is called quantization. The error introduced in representing the
continuous-valued signal by a finite set of discrete value levels 1s called quantization
error Or quantization noise.

We denote the quantizer operation on the samples x(n) as Q{x(n)] and let x,(n)
denote the sequence of quantized samples at the output of the quantizer. Hence

xq(n) = Qlx(n)]

Then the quantization error is a sequence e, (n) defined as the difference between
the quantized value and the actual sample value. Thus

eq(n) = x,(n) — x(n) (1.4.25)

We illustrate the quantization process with an example. Let us consider the discrete-
time signal

09" n=>0

x(”):lo n <0
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Figure 1.4.7 Illustration of quantization.

obtained by sampling the analog exponential signal x,(t) = 0.9°, r > 0 with a sam-
pling frequency F; = 1 Hz (see Fig. 1.4.7(a)). Observation of Table 1.2, which shows
the values of the first 10 samples of x(n), reveals that the description of the sample
value x(n) requires n significant digits. It is obvious that this signal cannot be pro-
cessed by using a calculator or a digital computer since only the first few samples
can be stored and manipulated. For example, most calculators process numbers with
only eight significant digits.

However, let us assume that we want to use only one significant digit. To elim-
inate the excess digits, we can either simply discard them (truncation) or discard
them by rounding the resulting number (rounding). The resulting quantized signals
xy(n) are shown 1n 'Table 1.2. We discuss only quantization by rounding, although
1t 1S Just as easy to treat truncation. The rounding process is graphically illustrated
in Fig. 1.4.7(b). The values allowed in the digital signal are called the quantization
levels, whereas the distance A between two successive quantization levels is called
the quantization step size or resolution. The rounding quantizer assigns each sam-
ple of x(n) to the nearest quantization level. In contrast, a quantizer that performs
truncation would have assigned each sample of x(n) to the quantization level below
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TABLE 1.2 Numerical Illustration of Quantization with One Significant Digit Using Trunca-
tion or Rounding |

x(n) Xq(n) Xy (1) e, (n) = x4(n) — x(n)
n Discrete-time signal (Truncation) (Rounding) (Rounding)
0 1 1.0 1.0 0.0
1 0.9 0.9 0.9 0.0
2 0.81 0.8 0.8 —0.01
3 0.729 0.7 0.7 —0.029
4 0.6561 0.6 0.7 0.0439
5 0.59049 0.5 0.6 0.00951
6 (0.531441 0.5 0.5 —0.031441
7 0.4782969 0.4 0.5 0.0217031
8 0.43046721 0.4 0.4 —0.03046721
9 0.387420489 0.3 0.4 0.012579511

it. The quantization error e, (n) in rounding 1s limited to the range of —A/2to A/2,
that 1s, _
A A
<) = 5 (1.4.26)
In other words, the instantaneous quantization error cannot exceed half of the quan-
tization step (see Table 1.2). '
If xiy and xmax represent the mimimum and maximum values of x(n) and L 18
the number of quantization levels, then

Xmax — Amin |
A — 1.4.27
1 ( )

We define the dynamic range of the signal as xmax — Xmin- In our example we have
Xmax = 1, Xmin = 0, and L = 11, which leads to A = 0.1. Note that if the dynamic
range is fixed, increasing the number of quantization levels L results in a decrease of
the quantization step size. Thus the quantization error decreases and the accuracy
of the quantizer increases. In practice we can reduce the quantization error to an
insignificant amount by choosing a sufficient number of quantization levels.

Theoretically, quantization of analog signals always results in a loss of informa-
tion. This is a result of the ambiguity introduced by quantization. Indeed, quantiza-
tion is an irreversible or noninvertible process (i.e., a many-to-one mapping) since
all samples in a distance A/2 about a certain quantization level are assigned the
same value. This ambiguity makes the exact quantitative analysis of quantization
extremely difficult. This subject is discussed further in Chapter 6, where we use

statistical analysis.
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Figure 1.4.8 Sampling and quantization of a sinusoidal signal.

1.4.4 Quantization of Sinusoidal Signals

Figure 1.4.8 illustrates the sampling and quantization of an analog sinusoidal signal
xq,(t) = AcosQpt using a rectangular grid. Horizontal lines within the range of
the quantizer indicate the allowed levels of quantization. Vertical lines indicate the
sampling times. Thus, from the original analog signal x,(¢) we obtain a discrete-time
signal x(n) = x,(nT) by sampling and a discrete-time, discrete-amplitude signal
x4 (nT) after quantization. In practice, the staircase signal x,(7) can be obtained by
using a zero-order hold. This analysis 1s usetul because sinusoids are used as test
signals in A/D converters.

It the sampling rate F; satisfies the sampling theorem, quantization is the only
error in the A/D conversion process.

Thus we can evaluate the quantization error by quantizing the analog signal x, ()
instead of the discrete-time signal x(n) = x,(nT). Inspection of Fig. 1.4.8 indicates
that the signal x,(¢) 1s almost linear between quantization levels (see Fig. 1.4.9). The

€, (t)
AR ————— —
"',t_...
0 T {
~A2 |———
(a) (b)

Figure 1.4.9 The quantization error e, (t) = x,(t) — x,(1).
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corresponding quantization error e,(f) = Xa(f) — Xq (t) is shown in Fig. 1.4.9. In
Fig. 1.4.9, T denotes the time that x,(f) stays within the quantization levels. The

mean-square €rror power P, 1s
1 T 1 T
P,=— | e()dt= —f e; (1) dt (1.4.28)
0

Since e, (1) = (A/2T)t, —T <t <T,W€ have

P—lfr = 212dr—A2 (1.4.29)
T Jy \ 2t 12 o

If the quantizer has b bits of accuracy and the quantizer covers the entire range 2A,
the quantization step is A = 2A/2”. Hence

A%/3
P, = >3 (1.4.30)
The average power of the signal x,(z) 18
I A*
P.=— | (AcosQqt)* dt = — (1.4.31)

The quality of the output of the A/D converter 1s usually measured by the signal-to-
quantization noise ratio (SONR), which provides the ratio of the signal power to the
Nnoise power:

P, 3
SONR = = = = .2%
© P, 2
Expressed in decibels (dB), the SONR 1s
SONR(dB) = 10log,, SONR = 1.76 4 6.026 (1.4.32)

This implies that the SONR increases approximately 6 dB for every bit added to the
word length, that is, for each doubling of the quantization levels.

Although formula (1.4.32) was derived for sinusoidal signals, we shall see 1n
Chapter 6 that a similar result holds for every signal whose dynamic range spans the
range of the quantizer. This relationship is extremely important because 1t dictates
the number of bits required by a specific application to assure a given signal-to-noise
ratio. For example, most compact disc players use a sampling frequency of 44.1 kHz
and 16-bit sample resolution, which implies a SONR of more than 96 dB.

1.4.5 Coding of Quantized Samples

The coding process in an A/D converter assigns a unique binary number to each
quantization level. If we have L levels we need at least L different binary numbers.
With a word length of b bits we can create 2" different binary numbers. Hence
we have 2° > L. or equivalently, b > log, L. Thus the number of bits required in
the coder is the smallest integer greater than or equal to log, L. In our example
(Table 1.2) it can easily be seen that we need a coder with b = 4 bits. Commercially
available A/D converters may be obtained with finite precision of b = 16 or less.
Generally, the higher the sampling speed and the finer the quantization, the more
expensive the device becomes.
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1.4.6 Digital-to-Analog Conversion

lo convert a digital signal into an analog signal we can use a digital-to-analog (D/A)
converter. Asstated previously, the task of a D/A converter is to interpolate between
samples.

The sampling theorem specifies the optimum interpolation for a bandlimited
signal. However, this type of interpolation is too complicated and, hence, impractical,
as indicated previously. From a practical viewpoint, the simplest D/A converter is
the zero-order hold shown in Fig. 1.4.2, which simply holds constant the value of one
sample until the next one is received. Additional Improvement can be obtained by
using linear

interpolation as shown in Fig. 1.4.10 to connect successive samples with straight-
line segments. Better interpolation can be achieved by using more sophisticated
higher-order interpolation techniques.

In general, suboptimum interpolation techniques result in passing frequencies
above the folding frequency. Such frequency components are undesirable and are
usually removed by passing the output of the interpolator through a proper analog
filter, which is called a postfilter or smoothing filter.

Thus D/A conversion usually involves a suboptimum interpolator followed by a
postiilter. D/A converters are treated in more detail in Chapter 6.

1.4.7 Analysis of Digital Signals and Systems Versus Discrete-Time
Signals and Systems

We have seen that a digital signal is defined as a function of an integer independent
variable and its values are taken from a finite set of possible values. The usefulness
of such signals is a consequence of the possibilities offered by digital computers.
Computers operate on numbers, which are represented by a stringof 0’s and 1’s. The
length of this string (word length) is fixed and finite and usually 1s 8, 12, 16, or 32 bits.
The effects of finite word length in computations cause complications in the analysis
of digital signal processing systems. To avoid these complications, we neglect the
quantized nature of digital signals and systems in much of our analysis and consider
them as discrete-time signals and systems.

In Chapters 6, 9, and 10 we Investigate the consequences of using a finite word
length. This is an important topic, since many digital signal processing problems are
solved with small computers or microprocessors that employ fixed-point arithmetic.
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Consequently, one must look carefully at the problem of fimite-precision arithmetic
and account for it in the design of software and hardware that performs the desired

signal processing tasks.

1.5 Summary and References

1.1

1.2

In this introductory chapter we have attempted to provide the motivation for digital
signal processing as an alternative to analog signal processing. We presented the ba-
sic elements of a digital signal processing system and defined the operations needed
to convert an analog signal into a digital signal ready for processing. Of particular
importance is the sampling theorem, which was introduced by Nyquist (1928) and
later popularized in the classic paper by Shannon (1949). The sampling theorem
as described in Section 1.4.2 is derived in Chapter 6. Sinusoidal signals were intro-
duced primarily for the purpose of illustrating the aliasing phenomenon and for the
subsequent development of the sampling theorem.

Quantization effects that are inherentin the A/D conversion of a signal were also
introduced in this chapter. Signal quantization is best treated 1n statistical terms, as

described in Chapters 6, 9, and 10.

Finally, the topic of signal reconstruction, or D/A conversion, was described
briefly. Signal reconstruction based on staircase interpolationis treated in Section 6.3.

There are numerous practical applications of digital signal processing. The
book edited by Oppenheim (1978) treats applications to speech processing, image
processing, radar signal processing, sonar signal processing, and geophysical signal
processing.

Problems

Classify the following signals according to whether they are (1) one- or multi-dimen-
sional; (2) single or multichannel, (3) continuous time or discrete time, and (4) analog

or digital (in amplitude). Give a brief explanation.

(a) Closing prices of utility stocks on the New York Stock Exchange.

(b) A color movie.

(¢) Position of the steering wheel of a car in motion relative to car’s reference frame.

(d) Position of the steering wheel of a car in motion relative to ground reterence
frame.

(e) Weight and height measurements of a child taken every month.

Determine which of the following sinusoids are periodic and compute their funda-
mental period.

(a) cos0.0ltn () cos(xi%)  (¢)cos3zn  (d)sindn  (e) sin (7 )



