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temperature and high output. The mass of the magnetic core restricts the use of the LVDT

for high-frequency applications [10.4].

As long as the core is not moved very far from the center of the coil, the output volt-

age varies linearly with the displacement of the core, as shown in Fig. 10.8; hence the

name linear variable differential transformer.

10.3 Vibration Pickups
When a transducer is used in conjunction with another device to measure vibrations, it is

called a vibration pickup. The commonly used vibration pickups are known as seismic

instruments. A seismic instrument consists of a mass-spring-damper system mounted on

the vibrating body, as shown in Fig. 10.9. Then the vibratory motion is measured by find-

ing the displacement of the mass relative to the base on which it is mounted.

The instrument consists of a mass m, a spring k, and a damper c inside a cage, which

is fastened to the vibrating body. With this arrangement, the bottom ends of the spring and

the dashpot will have the same motion as the cage (which is to be measured, y) and their

vibration excites the suspended mass into motion. Then the displacement of the mass rela-

tive to the cage, where x denotes the vertical displacement of the suspended

mass, can be measured if we attach a pointer to the mass and a scale to the cage, as shown

in Fig. 10.9.3

The vibrating body is assumed to have a harmonic motion:

(10.13)

The equation of motion of the mass m can be written as

(10.14)mx
$

+ c1x 
#
- y 

#
2 + k1x - y2 = 0

y1t2 = Y sin vt

z = x - y,

3The output of the instrument shown in Fig. 10.9 is the relative mechanical motion of the mass, as shown by the

pointer and the graduated scale on the cage. For high-speed operation and convenience, the motion is often con-

verted into an electrical signal by a transducer.
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FIGURE 10.9 Seismic instrument.

By defining the relative displacement z as

(10.15)

Eq. (10.14) can be written as

(10.16)

Equations (10.13) and (10.16) lead to

(10.17)

This equation is identical to Eq. (3.75); hence the steady-state solution is given by

(10.18)

where Z and are given by (see Eqs. (3.76) and (3.77)):

(10.19)

(10.20)

(10.21)

and

(10.22)z =
c

2mvn

 r =
v

vn

 f = tan-1
a

cv

k - mv2
b = tan-1

a
2zr

1 - r2
b

 Z =
Yv2

[1k - mv2
2

2
+ c2v2]1/2

=
r2Y

[11 - r2
2

2
+ 12zr22]1/2

f

z1t2 = Z sin 1vt - f2

mz
$
+ cz 

#
+ kz = mv2Y sin vt

mz
$
+ cz 

#
+ kz = -my

$

z = x - y
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measuring instrument.

The variations of Z and with respect to r are shown in Figs. 10.10 and 10.11. As will be

seen later, the type of instrument is determined by the useful range of the frequencies, indi-

cated in Fig. 10.10.

f

10.3.1

Vibrometer

A vibrometer or a seismometer is an instrument that measures the displacement of a vibrat-

ing body. It can be observed from Fig. 10.10 that when (range II).

Thus the relative displacement between the mass and the base (sensed by the transducer) is

essentially the same as the displacement of the base. For an exact analysis, we consider Eq.

(10.19). We note that

(10.23)z1t2 M Y sin1vt - f2

v/vn Ú 3Z/Y L 1
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E X A M P L E  1 0 . 2
Amplitude by Vibrometer

A vibrometer having a natural frequency of 4 rad/s and is attached to a structure that per-

forms a harmonic motion. If the difference between the maximum and the minimum recorded values

is 8 mm, find the amplitude of motion of the vibrating structure when its frequency is 40 rad/s.

Solution: The amplitude of the recorded motion Z is 4 mm. For and

and Eq. (10.19) gives

Thus the amplitude of vibration of the structure is 

*

Y = Z/1.0093 = 3.9631 mm.

Z =

Y(10)2

[(1 - 102)2
+ 52(0.2)(10))2]1/2

= 1.0093Y

vn = 4 rad/s, r = 10.0,

z = 0.2, v = 40.0 rad/s,

z = 0.2

if

(10.24)

A comparison of Eq. (10.23) with shows that z(t) gives directly the motion

y(t) except for the phase lag This phase lag can be seen to be equal to 180° for 

Thus the recorded displacement z(t) lags behind the displacement being measured y(t) by

time This time lag is not important if the base displacement y(t) consists of a

single harmonic component.

Since has to be large and the value of is fixed, the natural frequency

of the mass-spring-damper must be low. This means that the mass must be

large and the spring must have a low stiffness. This results in a bulky instrument, which is

not desirable in many applications. In practice, the vibrometer may not have a large value

of r and hence the value of Z may not be equal to Y exactly. In such a case, the true value

of Y can be computed by using Eq. (10.19), as indicated in the following example.

vn = 1k/m

vr = v/vn

t¿ = f/v.

z = 0.f.

y(t) = Y sin vt

r2

[(1 - r2)2
+ (2zr)2]1/2

L 1

10.3.2
Accelerometer

An accelerometer is an instrument that measures the acceleration of a vibrating body (see

Fig. 10.12). Accelerometers are widely used for vibration measurements [10.7] and also to

record earthquakes. From the accelerometer record, the velocity and displacements are

obtained by integration. Equations (10.18) and (10.19) yield

(10.25)-z(t)vn
2
=

1

[(1 - r2)2
+ (2zr)2]1/2

 5-Yv2 sin(vt - f)6
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FIGURE 10.12 Accelerometers.

(Courtesy of Bruel and Kjaer Instruments, Inc.,

Marlborough, MA.)

This shows that if

(10.26)

Eq. (10.25) becomes

(10.27)

By comparing Eq. (10.27) with we find that the term gives

the acceleration of the base except for the phase lag Thus the instrument can be made

to record (give) directly the value of The time by which the record lags the

acceleration is given by If consists of a single harmonic component, the time

lag will not be of importance.

The value of the expression on the left-hand side of Eq. (10.26) is shown plotted in

Fig. 10.13. It can be seen that the left-hand side of Eq. (10.26) lies between 0.96 and 1.04 for

if the value of lies between 0.65 and 0.7. Since r is small, the natural fre-

quency of the instrument has to be large compared to the frequency of vibration to be mea-

sured. From the relation we find that the mass needs to be small and the spring

needs to have a large value of k (i.e., short spring), so the instrument will be small in size. Due

vn = 1k/m,

z0 r 0.6

y
$

t¿ = f/v.

y
$
= -z(t)vn

2.

f.y
$
,

z(t)vn
2y

$
(t) = -  Yv2 sin vt,

-  z(t)vn
2
M -  Yv2 sin(vt - f)

1

[(1 - r2)2
+ (2zr)2]1/2

M 1
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Eq. (10.26) with r.

to their small size and high sensitivity, accelerometers are preferred in vibration measure-

ments. In practice, Eq. (10.26) may not be satisfied exactly; in such cases the quantity

can be used to find the correct value of the acceleration measured, as illustrated in the

following example.

1

[(1 - r
2
)

2
+ (2zr)

2
]

1/2

E X A M P L E  1 0 . 3
Design of an Accelerometer

An accelerometer has a suspended mass of 0.01 kg with a damped natural frequency of vibration of

150 Hz. When mounted on an engine undergoing an acceleration of 1g at an operating speed of

6000 rpm, the acceleration is recorded as by the instrument. Find the damping constant and

the spring stiffness of the accelerometer.

Solution: The ratio of measured to true accelerations is given by

(E.1)

which can be written as

(E.2)[(1 - r
2
)

2
+ (2zr)

2
] = (1/0.9684)

2
= 1.0663

1

[(1 - r
2
)

2
+ (2zr)

2
]

1/2
=

Measured value

True value
=

9.5

9.81
= 0.9684

9.5 m/s2
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The operating speed of the engine gives

The damped natural frequency of vibration of the accelerometer is

Thus

(E.3)

Equation (E.3) gives

(E.4)

Substitution of Eq. (E.4) into (E.2) leads to a quadratic equation in as

(E.5)

The solution of Eq. (E.5) gives

or

By choosing arbitrarily, the undamped natural frequency of the accelerometer can be

found as

Since we have

The damping constant can be determined from

*

c = 2mvnz = 210.01211368.8889210.72532 = 19.8571 N-s/m

k = mvn
2
= 10.01211368.888922

= 18738.5628 N/m

vn = 1k/m,

vn =
vd

41 - z2
=

942.48

41 - 0.72532
= 1368.8889 rad/s

z = 0.7253

z = 0.7253, 0.9547

z2
= 0.5260, 0.9115

1.5801z4
- 2.2714z2

+ 0.7576 = 0

z2

r = 0.666741 - z2 or r2
= 0.444411 - z2

2

v

vd

=
v

41 - z2vn

=
r

41 - z2
=

628.32

942.48
= 0.6667

vd = 41 - z2vn = 15012p2 = 942.48 rad/s

v =

6000(2p)

60
= 628.32 rad/s
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A velometer measures the velocity of a vibrating body. Equation (10.13) gives the velocity

of the vibrating body

(10.28)

and Eq. (10.18) gives

(10.29)

If

(10.30)

then

(10.31)

A comparison of Eqs. (10.28) and (10.31) shows that, except for the phase difference

gives directly provided that Eq. (10.30) holds true. In order to satisfy 

Eq. (10.30), r must be very large. In case Eq. (10.30) is not satisfied, then the velocity of

the vibrating body can be computed using Eq. (10.29).

y( 
#
t),f, z 

#
(t)

z 
#
(t) M vY cos(vt - f)

r
2

[(1 - r2)2
+ (2zr)2]1/2

M 1

z 
#
(t) =

r
2vY

[(1 - r2)2
+ (2zr)2]1/2

 cos(vt - f)

y
#
1t2 = vY cos vt

E X A M P L E  1 0 . 4
Design of a Velometer

Design a velometer if the maximum error is to be limited to 1 percent of the true velocity. The nat-

ural frequency of the velometer is to be 80 Hz and the suspended mass is to be 0.05 kg.

Solution: The ratio (R) of the recorded and the true velocities is given by Eq. (10.29):

(E.1)

The maximum of (E.1) occurs when (see Eq. (3.82))

(E.2)r = r* =
1

41 - 2z2

R =
r

2

[(1 - r2)2
+ (2zr)2]1/2

=

Recorded velocity

True velocity

10.3.3
Velometer
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Substitution of Eq. (E.2) into (E.1) gives

which can be simplified as

(E.3)

For an error of 1 percent, or 0.99, and Eq. (E.3) leads to

(E.4)

and

(E.5)

Equation (E.5) gives imaginary roots and Eq. (E.4) gives

or

We choose the value arbitrarily. The spring stiffness can be found as

since

The damping constant can be determined from

*

c = 2zvnm = 210.75510121502.656210.052 = 37.9556 N-s/m

vn = 8012p2 = 502.656 rad/s

k = mvn
2
= 0.051502.65622

= 12633.1527 N/m

z = 0.755101

z = 0.755101, 0.655607

z2
= 0.570178, 0.429821

z4
- z2

+ 0.255075 = 0

z4
- z2

+ 0.245075 = 0

R = 1.01

1

44z2
- 4z4

= R

a
1

1 - 2z2
b

A c1 - a
1

1 - 2z2
b d

2

+ 4z2
a

1

1 - 2z2
b

= R
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FIGURE 10.14 Phase-shift error.

10.3.4

Phase Distortion

As shown by Eq. (10.18), all vibration-measuring instruments exhibit phase lag. Thus the

response or output of the instrument lags behind the motion or input it measures. The time

lag is given by the phase angle divided by the frequency The time lag is not important if

we measure a single harmonic component. But, occasionally, the vibration to be recorded

is not harmonic but consists of the sum of two or more harmonic components. In such a

case, the recorded graph may not give an accurate picture of the vibration, because differ-

ent harmonics may be amplified by different amounts and their phase shifts may also be

different. The distortion in the waveform of the recorded signal is called the phase distor-

tion or phase-shift error. To illustrate the nature of the phase-shift error, we consider a

vibration signal of the form shown in Fig. 10.14(a) [10.10]:

(10.32)

Let the phase shift be 90° for the first harmonic and 180° for the third harmonic of Eq. (10.32).

The corresponding time lags are given by and 

The output signal is shown in Fig. 10.14(b). It can be seen that the output sig-

nal is quite different from the input signal due to phase distortion.

As a general case, let the complex wave being measured be given by the sum of several

harmonics as

(10.33)y(t) = a1 sin vt + a2 sin 2vt + Á

180°/(3v).

t2 = u2/(3v) =t1 = u1/v = 90°/v

y1t2 = a1 sin vt + a3 sin 3vt

v.
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If the displacement is measured using a vibrometer, its response to each component of the

series is given by an equation similar to Eq. (10.18), so that the output of the vibrometer

becomes

(10.34)

where

(10.35)

Since is large for this instrument, we can find from Fig. 10.11 that 

and Eq. (10.34) becomes

(10.36)

Thus the output record will be simply opposite to the motion being measured. This is

unimportant and can easily be corrected.

By using a similar reasoning, we can show, in the case of a velometer, that

(10.37)

for an input signal consisting of several harmonics. Next we consider the phase distortion

for an accelerometer. Let the acceleration curve to be measured be expressed, using

Eq. (10.33), as

(10.38)

The response or output of the instrument to each component can be found as in Eq. (10.34),

and so

(10.39)

where the phase lags are different for different components of the series in Eq. (10.39).

Since the phase lag varies almost linearly from 0° at to 90° at for 

(see Fig. 10.11), we can express as

(10.40)f M ar = a 
v

vn

= bv

f

z = 0.7r = 1r = 0f

fj

z
$
1t2 = -  a1v

2
 sin1vt - f12 - a212v22

 sin12vt - f22 - Á

y
$
(t) = -  a1v

2
 sin vt - a2(2v)

2
 sin 2vt - Á

z
 #
(t) M -y

 #
(t)

z(t) M -  [a1 sin vt + a2 sin 2vt + Á
 ] M -y(t)

j = 1, 2, Á ,

fj M p,v/vn

tan fj =

2zaj 
v

vn

b

1 - aj 
v

vn

b

2
,          j = 1, 2, Á

z(t) = a1 sin(vt - f1) + a2 sin(2vt - f2) + Á
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where and are constants. The time lag is given by

(10.41)

This shows that the time lag of the accelerometer is independent of the frequency for any

component, provided that the frequency lies in the range Since each compo-

nent of the signal has the same time delay or phase lag, we have, from Eq. (10.39),

(10.42)

where Note that Eq. (10.42) assumes that that is, even the

highest frequency involved, is less than This may not be true in practice. Fortu-

nately, no significant phase distortion occurs in the output signal, even when some of the

higher-order frequencies are larger than The reason is that, generally, only the first

few components are important to approximate even a complex waveform; the amplitudes

of the higher harmonics are small and contribute very little to the total waveform. Thus

the output record of the accelerometer represents a reasonably true acceleration being

measured [10.7, 10.11].

10.4 Frequency-Measuring Instruments

Most frequency-measuring instruments are of the mechanical type and are based on the

principle of resonance. Two kinds are discussed in the following paragraphs: the Fullarton

tachometer and the Frahm tachometer.

Single-Reed Instrument or Fullarton Tachometer. This instrument consists of a variable-

length cantilever strip with a mass attached at one of its ends. The other end of the strip is

clamped, and its free length can be changed by means of a screw mechanism (see Fig.

10.15(a)). Since each length of the strip corresponds to a different natural frequency, the

reed is marked along its length in terms of its natural frequency. In practice, the clamped

end of the strip is pressed against the vibrating body, and the screw mechanism is

manipulated to alter its free length until the free end shows the largest amplitude of

vibration. At that instant, the excitation frequency is equal to the natural frequency of the

cantilever; it can be read directly from the strip.

Multireed-Instrument or Frahm Tachometer. This instrument consists of a number of

cantilevered reeds carrying small masses at their free ends (see Fig. 10.15(b)). Each reed

has a different natural frequency and is marked accordingly. Using a number of reeds

makes it possible to cover a wide frequency range. When the instrument is mounted on a

vibrating body, the reed whose natural frequency is nearest the unknown frequency of the

vn.

vn.nv,

0 r 1t = t - b.

 = -  a1v
2 sin vt - a212v22

 sin 2vt - Á

 -  v2
z
$
1t2 = -  a1v

2
 sin1vt - vb2 - a212v22

 sin12vt - 2vb2 - Á

0 r 1.

t¿ =
f

v
=
bv

v
= b

b = a/vna
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