
Galileo Galilei (1564 1642), an Italian astronomer, philosopher, and professor
of mathematics at the Universities of Pisa and Padua, in 1609 became the first
man to point a telescope to the sky. He wrote the first treatise on modern dynam-
ics in 1590. His works on the oscillations of a simple pendulum and the vibration
of strings are of fundamental significance in the theory of vibrations.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics (2nd rev. ed.), Dover
Publications, Inc., New York, 1948.)
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2 CHAPTER 1 FUNDAMENTALS OF VIBRATION

systems. The various classifications of vibration namely, free and forced vibration,

undamped and damped vibration, linear and nonlinear vibration, and deterministic and

random vibration are indicated. The various steps involved in vibration analysis of an

engineering system are outlined, and essential definitions and concepts of vibration are

introduced.

The concept of harmonic motion and its representation using vectors and complex

numbers is described. The basic definitions and terminology related to harmonic motion,

such as cycle, amplitude, period, frequency, phase angle, and natural frequency, are given.

Finally, the harmonic analysis, dealing with the representation of any periodic function in

terms of harmonic functions, using Fourier series, is outlined. The concepts of frequency

spectrum, time- and frequency-domain representations of periodic functions, half-range

expansions, and numerical computation of Fourier coefficients are discussed in detail.

Learning Objectives

After completing this chapter, the reader should be able to do the following:

* Describe briefly the history of vibration

* Indicate the importance of study of vibration

* Give various classifications of vibration

* State the steps involved in vibration analysis

* Compute the values of spring constants, masses, and damping constants

* Define harmonic motion and different possible representations of harmonic motion

* Add and subtract harmonic motions

* Conduct Fourier series expansion of given periodic functions

* Determine Fourier coefficients numerically using the MATLAB program

1.1 Preliminary Remarks
The subject of vibration is introduced here in a relatively simple manner. The chapter

begins with a brief history of vibration and continues with an examination of its impor-

tance. The various steps involved in vibration analysis of an engineering system are out-

lined, and essential definitions and concepts of vibration are introduced. We learn here that

all mechanical and structural systems can be modeled as mass-spring-damper systems. In

some systems, such as an automobile, the mass, spring and damper can be identified as

separate components (mass in the form of the body, spring in the form of suspension and

damper in the form of shock absorbers). In some cases, the mass, spring and damper do

not appear as separate components; they are inherent and integral to the system. For exam-

ple, in an airplane wing, the mass of the wing is distributed throughout the wing. Also, due

to its elasticity, the wing undergoes noticeable deformation during flight so that it can be

modeled as a spring. In addition, the deflection of the wing introduces damping due to rel-

ative motion between components such as joints, connections and support as well as inter-

nal friction due to microstructural defects in the material. The chapter describes the
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 3

modeling of spring, mass and damping elements, their characteristics and the combination

of several springs, masses or damping elements appearing in a system. There follows a pre-

sentation of the concept of harmonic analysis, which can be used for the analysis of gen-

eral periodic motions. No attempt at exhaustive treatment of the topics is made in Chapter

1; subsequent chapters will develop many of the ideas in more detail.

1.2 Brief History of the Study of Vibration
1.2.1
Origins of 
the Study of 
Vibration

People became interested in vibration when they created the first musical instruments, proba-

bly whistles or drums. Since then, both musicians and philosophers have sought out the rules

and laws of sound production, used them in improving musical instruments, and passed them

on from generation to generation. As long ago as 4000 B.C. [1.1], music had become highly

developed and was much appreciated by Chinese, Hindus, Japanese, and, perhaps, the

Egyptians. These early peoples observed certain definite rules in connection with the art of

music, although their knowledge did not reach the level of a science. 

Stringed musical instruments probably originated with the hunter s bow, a weapon

favored by the armies of ancient Egypt. One of the most primitive stringed instruments, the

nanga, resembled a harp with three or four strings, each yielding only one note. An exam-

ple dating back to 1500 B.C. can be seen in the British Museum. The Museum also exhibits

an 11-stringed harp with a gold-decorated, bull-headed sounding box, found at Ur in a

royal tomb dating from about 2600 B.C. As early as 3000 B.C., stringed instruments such

as harps were depicted on walls of Egyptian tombs.

Our present system of music is based on ancient Greek civilization. The Greek philoso-

pher and mathematician Pythagoras (582 507 B.C.) is considered to be the first person to

investigate musical sounds on a scientific basis (Fig. 1.1). Among other things, Pythagoras

FIGURE 1.1 Pythagoras. (Reprinted

with permission from L. E. Navia,

Pythagoras: An Annotated Bibliography,

Garland Publishing, Inc., New York, 1990).
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4 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1 2 3
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FIGURE 1.2 Monochord.

conducted experiments on a vibrating string by using a simple apparatus called a mono-

chord. In the monochord shown in Fig. 1.2 the wooden bridges labeled 1 and 3 are fixed.

Bridge 2 is made movable while the tension in the string is held constant by the hanging

weight. Pythagoras observed that if two like strings of different lengths are subject to the

same tension, the shorter one emits a higher note; in addition, if the shorter string is half

the length of the longer one, the shorter one will emit a note an octave above the other.

Pythagoras left no written account of his work (Fig. 1.3), but it has been described by oth-

ers. Although the concept of pitch was developed by the time of Pythagoras, the relation

between the pitch and the frequency was not understood until the time of Galileo in the

sixteenth century.

Around 350 B.C., Aristotle wrote treatises on music and sound, making observations

such as the voice is sweeter than the sound of instruments,  and the sound of the flute is

sweeter than that of the lyre.  In 320 B.C., Aristoxenus, a pupil of Aristotle and a musician,

FIGURE 1.3 Pythagoras as a musician. (Reprinted with permission from D. E. Smith, History

of Mathematics, Vol. I, Dover Publications, Inc., New York, 1958.)
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 5

wrote a three-volume work entitled Elements of Harmony. These books are perhaps the old-

est ones available on the subject of music written by the investigators themselves. In about

300 B.C., in a treatise called Introduction to Harmonics, Euclid, wrote briefly about  music

without any reference to the physical nature of sound. No further advances in scientific

knowledge of sound were made by the Greeks. 

It appears that the Romans derived their knowledge of music completely from the

Greeks, except that Vitruvius, a famous Roman architect, wrote in about 20 B.C. on the

acoustic properties of theaters. His treatise, entitled De Architectura Libri Decem, was lost

for many years, to be rediscovered only in the fifteenth century. There appears to have been

no development in the theories of sound and vibration for nearly 16 centuries after the

work of Vitruvius.

China experienced many earthquakes in ancient times. Zhang Heng, who served as a

historian and astronomer in the second century, perceived a need to develop an instrument

to measure earthquakes precisely. In A.D. 132 he invented the world s first seismograph [1.3,

1.4]. It was made of fine cast bronze, had a diameter of eight chi (a chi is equal to 0.237

meter), and was shaped like a wine jar (Fig. 1.4). Inside the jar was a mechanism consist-

ing of pendulums surrounded by a group of eight levers pointing in eight directions. Eight

dragon figures, with a bronze ball in the mouth of each, were arranged on the outside of the

seismograph. Below each dragon was a toad with mouth open upward. A strong earth-

quake in any direction would tilt the pendulum in that direction, triggering the lever in the

dragon head. This opened the mouth of the dragon, thereby releasing its bronze ball,

which fell in the mouth of the toad with a clanging sound. Thus the seismograph enabled

the monitoring personnel to know both the time and direction of occurrence of the earth-

quake.

FIGURE 1.4 The world s first seismograph,
invented in China in A.D. 132. (Reprinted with 

permission from R. Taton (ed.), History of Science,

Basic Books, Inc., New York, 1957.)
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6 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Galileo Galilei (1564 1642) is considered to be the founder of modern experimental sci-

ence. In fact, the seventeenth century is often considered the century of genius  since the

foundations of modern philosophy and science were laid during that period. Galileo was

inspired to study the behavior of a simple pendulum by observing the pendulum move-

ments of a lamp in a church in Pisa. One day, while feeling bored during a sermon, Galileo

was staring at the ceiling of the church. A swinging lamp caught his attention. He started

measuring the period of the pendulum movements of the lamp with his pulse and found to

his amazement that the time period was independent of the amplitude of swings. This led

him to conduct more experiments on the simple pendulum. In Discourses Concerning Two

New Sciences, published in 1638, Galileo discussed vibrating bodies. He described the

dependence of the frequency of vibration on the length of a simple pendulum, along with

the phenomenon of sympathetic vibrations (resonance). Galileo s writings also indicate

that he had a clear understanding of the relationship between the frequency, length, ten-

sion, and density of a vibrating stretched string [1.5]. However, the first correct published

account of the vibration of strings was given by the French mathematician and theologian,

Marin Mersenne (1588 1648) in his book Harmonicorum Liber, published in 1636.

Mersenne also measured, for the first time, the frequency of vibration of a long string and

from that predicted the frequency of a shorter string having the same density and tension.

Mersenne is considered by many the father of acoustics. He is often credited with the dis-

covery of the laws of vibrating strings because he published the results in 1636, two years

before Galileo. However, the credit belongs to Galileo, since the laws were written many

years earlier but their publication was prohibited by the orders of the Inquisitor of Rome

until 1638.

Inspired by the work of Galileo, the Academia del Cimento was founded in Florence

in 1657; this was followed by the formations of the Royal Society of London in 1662 and

the Paris Academie des Sciences in 1666. Later, Robert Hooke (1635 1703) also con-

ducted experiments to find a relation between the pitch and frequency of vibration of a

string. However, it was Joseph Sauveur (1653 1716) who investigated these experiments

thoroughly and coined the word acoustics  for the science of sound [1.6]. Sauveur in

France and John Wallis (1616 1703) in England observed, independently, the phenome-

non of mode shapes, and they found that a vibrating stretched string can have no motion

at certain points and violent motion at intermediate points. Sauveur called the former

points nodes and the latter ones loops. It was found that such vibrations had higher fre-

quencies than that associated with the simple vibration of the string with no nodes. In fact,

the higher frequencies were found to be integral multiples of the frequency of simple

vibration, and Sauveur called the higher frequencies harmonics and the frequency of sim-

ple vibration the fundamental frequency. Sauveur also found that a string can vibrate with

several of its harmonics present at the same time. In addition, he observed the phenome-

non of beats when two organ pipes of slightly different pitches are sounded together. In

1700 Sauveur calculated, by a somewhat dubious method, the frequency of a stretched

string from the measured sag of its middle point.

Sir Isaac Newton (1642 1727) published his monumental work, Philosophiae

Naturalis Principia Mathematica, in 1686, describing the law of universal gravitation as

well as the three laws of motion and other discoveries. Newton s second law of motion is

routinely used in modern books on vibrations to derive the equations of motion of a

1.2.2
From Galileo 
to Rayleigh
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 7

vibrating body. The theoretical (dynamical) solution of the problem of the vibrating string

was found in 1713 by the English mathematician Brook Taylor (1685 1731), who also

presented the famous Taylor s theorem on infinite series. The natural frequency of vibra-

tion obtained from the equation of motion derived by Taylor agreed with the experimen-

tal values observed by Galileo and Mersenne. The procedure adopted by Taylor was

perfected through the introduction of partial derivatives in the equations of motion by

Daniel Bernoulli (1700 1782), Jean D Alembert (1717 1783), and Leonard Euler

(1707 1783).

The possibility of a string vibrating with several of its harmonics present at the same

time (with displacement of any point at any instant being equal to the algebraic sum of dis-

placements for each harmonic) was proved through the dynamic equations of Daniel

Bernoulli in his memoir, published by the Berlin Academy in 1755 [1.7]. This character-

istic was referred to as the principle of the coexistence of small oscillations, which, in

present-day terminology, is the principle of superposition. This principle was proved to be

most valuable in the development of the theory of vibrations and led to the possibility of

expressing any arbitrary function (i.e., any initial shape of the string) using an infinite

series of sines and cosines. Because of this implication, D Alembert and Euler doubted the

validity of this principle. However, the validity of this type of expansion was proved by J.

B. J. Fourier (1768 1830) in his Analytical Theory of Heat in 1822.

The analytical solution of the vibrating string was presented by Joseph Lagrange

(1736 1813) in his memoir published by the Turin Academy in 1759. In his study,

Lagrange assumed that the string was made up of a finite number of equally spaced iden-

tical mass particles, and he established the existence of a number of independent frequen-

cies equal to the number of mass particles. When the number of particles was allowed to

be infinite, the resulting frequencies were found to be the same as the harmonic frequen-

cies of the stretched string. The method of setting up the differential equation of the motion

of a string (called the wave equation), presented in most modern books on vibration the-

ory, was first developed by D Alembert in his memoir published by the Berlin Academy

in 1750. The vibration of thin beams supported and clamped in different ways was first

studied by Euler in 1744 and Daniel Bernoulli in 1751. Their approach has become known

as the Euler-Bernoulli or thin beam theory.

Charles Coulomb did both theoretical and experimental studies in 1784 on the tor-

sional oscillations of a metal cylinder suspended by a wire (Fig. 1.5). By assuming that

the resisting torque of the twisted wire is proportional to the angle of twist, he derived the

equation of motion for the torsional vibration of the suspended cylinder. By integrating

the equation of motion, he found that the period of oscillation is independent of the angle

of twist.

There is an interesting story related to the development of the theory of vibration of

plates [1.8]. In 1802 the German scientist, E. F. F. Chladni (1756 1824) developed the

method of placing sand on a vibrating plate to find its mode shapes and observed the

beauty and intricacy of the modal patterns of the vibrating plates. In 1809 the French

Academy invited Chladni to give a demonstration of his experiments. Napoléon

Bonaparte, who attended the meeting, was very impressed and presented a sum of 3,000

francs to the academy, to be awarded to the first person to give a satisfactory mathemati-

cal theory of the vibration of plates. By the closing date of the competition in October
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8 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1811, only one candidate, Sophie Germain, had entered the contest. But Lagrange, who

was one of the judges, noticed an error in the derivation of her differential equation of

motion. The academy opened the competition again, with a new closing date of October

1813. Sophie Germain again entered the contest, presenting the correct form of the differ-

ential equation. However, the academy did not award the prize to her because the judges

wanted physical justification of the assumptions made in her derivation. The competition

was opened once more. In her third attempt, Sophie Germain was finally awarded the prize

in 1815, although the judges were not completely satisfied with her theory. In fact, it was

later found that her differential equation was correct but the boundary conditions were

erroneous. The correct boundary conditions for the vibration of plates were given in 1850

by G. R. Kirchhoff (1824 1887).

In the meantime, the problem of vibration of a rectangular flexible membrane, which

is important for the understanding of the sound emitted by drums, was solved for the first

time by Simeon Poisson (1781 1840). The vibration of a circular membrane was studied

by R. F. A. Clebsch (1833 1872) in 1862. After this, vibration studies were done on a

number of practical mechanical and structural systems. In 1877 Lord Baron Rayleigh pub-

lished his book on the theory of sound [1.9]; it is considered a classic on the subject of

sound and vibration even today. Notable among the many contributions of Rayleigh is the

method of finding the fundamental frequency of vibration of a conservative system by

making use of the principle of conservation of energy now known as Rayleigh s method.
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FIGURE 1.5 Coulomb s device for tor-
sional vibration tests. (Reprinted with permis-

sion from S. P. Timoshenko, History of Strength

of Materials, McGraw-Hill Book Company, Inc.,

New York, 1953.)
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1.2 BRIEF HISTORY OF THE STUDY OF VIBRATION 9

1.2.3

Recent

Contributions

In 1902 Frahm investigated the importance of torsional vibration study in the design of the

propeller shafts of steamships. The dynamic vibration absorber, which involves the addition

of a secondary spring-mass system to eliminate the vibrations of a main system, was also pro-

posed by Frahm in 1909. Among the modern contributers to the theory of vibrations, the

names of Stodola, De Laval, Timoshenko, and Mindlin are notable. Aurel Stodola

(1859 1943) contributed to the study of vibration of beams, plates, and membranes. He devel-

oped a method for analyzing vibrating beams that is also applicable to turbine blades. Noting

that every major type of prime mover gives rise to vibration problems, C. G. P. De Laval

(1845 1913) presented a practical solution to the problem of vibration of an unbalanced rotat-

ing disk. After noticing failures of steel shafts in high-speed turbines, he used a bamboo fish-

ing rod as a shaft to mount the rotor. He observed that this system not only eliminated the

vibration of the unbalanced rotor but also survived up to speeds as high as 100,000 rpm [1.10].

Stephen Timoshenko (1878 1972), by considering the effects of rotary inertia and

shear deformation, presented an improved theory of vibration of beams, which has

become known as the Timoshenko or thick beam theory. A similar theory was presented

by R. D. Mindlin for the vibration analysis of thick plates by including the effects of

rotary inertia and shear deformation.

It has long been recognized that many basic problems of mechanics, including those

of vibrations, are nonlinear. Although the linear treatments commonly adopted are quite

satisfactory for most purposes, they are not adequate in all cases. In nonlinear systems,

phenonmena may occur that are theoretically impossible in linear systems. The mathe-

matical theory of nonlinear vibrations began to develop in the works of Poincaré and

Lyapunov at the end of the nineteenth century. Poincaré developed the perturbation

method in 1892 in connection with the approximate solution of nonlinear celestial

mechanics problems. In 1892, Lyapunov laid the foundations of modern stability theory,

which is applicable to all types of dynamical systems. After 1920, the studies undertaken

by Duffing and van der Pol brought the first definite solutions into the theory of nonlinear

vibrations and drew attention to its importance in engineering. In the last 40 years, authors

like Minorsky and Stoker have endeavored to collect in monographs the main results con-

cerning nonlinear vibrations. Most practical applications of nonlinear vibration involved

the use of some type of a perturbation-theory approach. The modern methods of perturba-

tion theory were surveyed by Nayfeh [1.11].

Random characteristics are present in diverse phenomena such as earthquakes,

winds, transportation of goods on wheeled vehicles, and rocket and jet engine noise. It

became necessary to devise concepts and methods of vibration analysis for these random

effects. Although Einstein considered Brownian movement, a particular type of random

vibration, as long ago as 1905, no applications were investigated until 1930. The intro-

duction of the correlation function by Taylor in 1920 and of the spectral density by

Wiener and Khinchin in the early 1930s opened new prospects for progress in the theory

of random vibrations. Papers by Lin and Rice, published between 1943 and 1945, paved

This method proved to be a helpful technique for the solution of difficult vibration prob-

lems. An extension of the method, which can be used to find multiple natural frequencies,

is known as the Rayleigh-Ritz method.
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10 CHAPTER 1 FUNDAMENTALS OF VIBRATION

FIGURE 1.6 Finite element idealization of the body of a bus [1.16]. (Reprinted with permission © 1974 Society of

Automotive Engineers, Inc.)

the way for the application of random vibrations to practical engineering problems. The

monographs of Crandall and Mark and of Robson systematized the existing knowledge in

the theory of random vibrations [1.12, 1.13].

Until about 40 years ago, vibration studies, even those dealing with complex engineering

systems, were done by using gross models, with only a few degrees of freedom. However, the

advent of high-speed digital computers in the 1950s made it possible to treat moderately com-

plex systems and to generate approximate solutions in semidefinite form, relying on classical

solution methods but using numerical evaluation of certain terms that cannot be expressed in

closed form. The simultaneous development of the finite element method enabled engineers

to use digital computers to conduct numerically detailed vibration analysis of complex

mechanical, vehicular, and structural systems displaying thousands of degrees of freedom

[1.14]. Although the finite element method was not so named until recently, the concept was

used centuries ago. For example, ancient mathematicians found the circumference of a circle

by approximating it as a polygon, where each side of the polygon, in present-day notation, can

be called a finite element. The finite element method as known today was presented by Turner,

Clough, Martin, and Topp in connection with the analysis of aircraft structures [1.15]. Figure

1.6 shows the finite element idealization of the body of a bus [1.16].

1.3 Importance of the Study of Vibration
Most human activities involve vibration in one form or other. For example, we hear

because our eardrums vibrate and see because light waves undergo vibration. Breathing is

associated with the vibration of lungs and walking involves (periodic) oscillatory motion

of legs and hands. Human speech requires the oscillatory motion of larynges (and tongues)

[1.17]. Early scholars in the field of vibration concentrated their efforts on understand-

ing the natural phenomena and developing mathematical theories to describe the vibration

of physical systems. In recent times, many investigations have been motivated by the
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1.3 IMPORTANCE OF THE STUDY OF VIBRATION 11

engineering applications of vibration, such as the design of machines, foundations, struc-

tures, engines, turbines, and control systems.

Most prime movers have vibrational problems due to the inherent unbalance in the

engines. The unbalance may be due to faulty design or poor manufacture. Imbalance in

diesel engines, for example, can cause ground waves sufficiently powerful to create a nui-

sance in urban areas. The wheels of some locomotives can rise more than a centimeter off

the track at high speeds due to imbalance. In turbines, vibrations cause spectacular mechan-

ical failures. Engineers have not yet been able to prevent the failures that result from blade

and disk vibrations in turbines. Naturally, the structures designed to support heavy cen-

trifugal machines, like motors and turbines, or reciprocating machines, like steam and gas

engines and reciprocating pumps, are also subjected to vibration. In all these situations, the

structure or machine component subjected to vibration can fail because of material fatigue

resulting from the cyclic variation of the induced stress. Furthermore, the vibration causes

more rapid wear of machine parts such as bearings and gears and also creates excessive

noise. In machines, vibration can loosen fasteners such as nuts. In metal cutting processes,

vibration can cause chatter, which leads to a poor surface finish.

Whenever the natural frequency of vibration of a machine or structure coincides with

the frequency of the external excitation, there occurs a phenomenon known as resonance,

which leads to excessive deflections and failure. The literature is full of accounts of sys-

tem failures brought about by resonance and excessive vibration of components and sys-

tems (see Fig. 1.7). Because of the devastating effects that vibrations can have on machines

FIGURE 1.7 Tacoma Narrows bridge during wind-induced vibration. The bridge opened on
July 1, 1940, and collapsed on November 7, 1940. (Farquharson photo, Historical Photography

Collection, University of Washington Libraries.)
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12 CHAPTER 1 FUNDAMENTALS OF VIBRATION

FIGURE 1.8 Vibration testing of the space shuttle Enterprise. (Courtesy of

NASA.)

FIGURE 1.9 Vibratory finishing process. (Reprinted courtesy of the Society of Manufacturing Engineers, © 1964 The

Tool and Manufacturing Engineer.)

and structures, vibration testing [1.18] has become a standard procedure in the design and

development of most engineering systems (see Fig. 1.8).

In many engineering systems, a human being acts as an integral part of the system.

The transmission of vibration to human beings results in discomfort and loss of efficiency.

The vibration and noise generated by engines causes annoyance to people and, sometimes,

damage to property. Vibration of instrument panels can cause their malfunction or diffi-

culty in reading the meters [1.19]. Thus one of the important purposes of vibration study

is to reduce vibration through proper design of machines and their mountings. In this
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1.4 BASIC CONCEPTS OF VIBRATION 13

connection, the mechanical engineer tries to design the engine or machine so as to mini-

mize imbalance, while the structural engineer tries to design the supporting structure so as

to ensure that the effect of the imbalance will not be harmful [1.20].

In spite of its detrimental effects, vibration can be utilized profitably in several consumer

and industrial applications. In fact, the applications of vibratory equipment have increased

considerably in recent years [1.21]. For example, vibration is put to work in vibratory con-

veyors, hoppers, sieves, compactors, washing machines, electric toothbrushes, dentist s

drills, clocks, and electric massaging units. Vibration is also used in pile driving, vibratory

testing of materials, vibratory finishing processes, and electronic circuits to filter out the

unwanted frequencies (see Fig. 1.9). Vibration has been found to improve the efficiency of

certain machining, casting, forging, and welding processes. It is employed to simulate earth-

quakes for geological research and also to conduct studies in the design of nuclear reactors.

1.4 Basic Concepts of Vibration

1.4.1
Vibration

Any motion that repeats itself after an interval of time is called vibration or oscillation.

The swinging of a pendulum and the motion of a plucked string are typical examples of

vibration. The theory of vibration deals with the study of oscillatory motions of bodies and

the forces associated with them.

1.4.2
Elementary Parts
of Vibrating
Systems

A vibratory system, in general, includes a means for storing potential energy (spring or

elasticity), a means for storing kinetic energy (mass or inertia), and a means by which

energy is gradually lost (damper).

The vibration of a system involves the transfer of its potential energy to kinetic energy

and of kinetic energy to potential energy, alternately. If the system is damped, some energy

is dissipated in each cycle of vibration and must be replaced by an external source if a state

of steady vibration is to be maintained.

As an example, consider the vibration of the simple pendulum shown in Fig. 1.10. Let

the bob of mass m be released after being given an angular displacement At position 1

the velocity of the bob and hence its kinetic energy is zero. But it has a potential energy of

magnitude with respect to the datum position 2. Since the gravitational

force mg induces a torque about the point O, the bob starts swinging to the left

from position 1. This gives the bob certain angular acceleration in the clockwise direction,

and by the time it reaches position 2, all of its potential energy will be converted into

kinetic energy. Hence the bob will not stop in position 2 but will continue to swing to posi-

tion 3. However, as it passes the mean position 2, a counterclockwise torque due to grav-

ity starts acting on the bob and causes the bob to decelerate. The velocity of the bob

reduces to zero at the left extreme position. By this time, all the kinetic energy of the bob

will be converted to potential energy. Again due to the gravity torque, the bob continues to

attain a counterclockwise velocity. Hence the bob starts swinging back with progressively

increasing velocity and passes the mean position again. This process keeps repeating, and

the pendulum will have oscillatory motion. However, in practice, the magnitude of oscil-

lation gradually decreases and the pendulum ultimately stops due to the resistance

(damping) offered by the surrounding medium (air). This means that some energy is dis-

sipated in each cycle of vibration due to damping by the air.

(u)

mgl sin u

mgl(1 - cos u)

u.
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m

k

x

x

(b) Spring-mass system(a) Slider-crank-
   spring mechanism

(c) Torsional system

u
u

FIGURE 1.11 Single-degree-of-freedom systems.

1.4.3
Number of
Degrees 
of Freedom

The minimum number of independent coordinates required to determine completely the

positions of all parts of a system at any instant of time defines the number of degrees of free-

dom of the system. The simple pendulum shown in Fig. 1.10, as well as each of the systems

shown in Fig. 1.11, represents a single-degree-of-freedom system. For example, the motion

of the simple pendulum (Fig. 1.10) can be stated either in terms of the angle or in terms

of the Cartesian coordinates x and y. If the coordinates x and y are used to describe the

motion, it must be recognized that these coordinates are not independent. They are related

to each other through the relation where l is the constant length of the pen-

dulum. Thus any one coordinate can describe the motion of the pendulum. In this example,

we find that the choice of as the independent coordinate will be more convenient than the

choice of x or y. For the slider shown in Fig. 1.11(a), either the angular coordinate or the

coordinate x can be used to describe the motion. In Fig. 1.11(b), the linear coordinate x can

u

u

x
2
+ y

2
= l

2
,

u

O

3 1
m

2

l

Datum

x

mg

y

l (1  cos u)

u

FIGURE 1.10 A simple pendulum.
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m1

k1

x1

m2

x2
k2

(a) (b) (c)

J2

J1
2

1

m

X

x

y
l

u

u

u

FIGURE 1.12 Two-degree-of-freedom systems.

be used to specify the motion. For the torsional system (long bar with a heavy disk at the

end) shown in Fig. 1.11(c), the angular coordinate can be used to describe the motion.

Some examples of two- and three-degree-of-freedom systems are shown in Figs. 1.12

and 1.13, respectively. Figure 1.12(a) shows a two-mass, two-spring system that is described

by the two linear coordinates and Figure 1.12(b) denotes a two-rotor system whose

motion can be specified in terms of and The motion of the system shown in Fig. 1.12(c)

can be described completely either by X and or by x, y, and X. In the latter case, x and y are

constrained as where l is a constant.

For the systems shown in Figs. 1.13(a) and 1.13(c), the coordinates 

and can be used, respectively, to describe the motion. In the case of theui (i = 1, 2, 3)

xi (i = 1, 2, 3)

x
2
+ y

2
= l

2

u

u2.u1

x2.x1

u

m1
m3

m2

k1 k2 k3 k4

x1 x2

(a)

(c)

(b)

x3

J1
J2 J3

1

1

2

2

3

3

y1

m1

m2

m3

y2

y3
x2

x1

x3

l1

l2

l3

u

u

u

u

u

u

FIGURE 1.13 Three degree-of-freedom systems.
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x
1
x
2

x
3

etc.

FIGURE 1.14 A cantilever beam
(an infinite-number-of-degrees-of-freedom 

system).

system shown in Fig. 1.13(b), specifies the positions of the masses

An alternate method of describing this system is in terms of and 

but in this case the constraints have to be

considered.

The coordinates necessary to describe the motion of a system constitute a set of

generalized coordinates. These are usually denoted as and may represent

Cartesian and/or non-Cartesian coordinates.

q1, q2, Á

xi
2
+ yi

2
= li

2 (i = 1, 2, 3)yi (i = 1, 2, 3);

ximi (i = 1, 2, 3).

ui (i = 1, 2, 3)

1.4.4
Discrete and
Continuous
Systems

A large number of practical systems can be described using a finite number of degrees of

freedom, such as the simple systems shown in Figs. 1.10 to 1.13. Some systems, especially

those involving continuous elastic members, have an infinite number of degrees of free-

dom. As a simple example, consider the cantilever beam shown in Fig. 1.14. Since the

beam has an infinite number of mass points, we need an infinite number of coordinates to

specify its deflected configuration. The infinite number of coordinates defines its elastic

deflection curve. Thus the cantilever beam has an infinite number of degrees of freedom.

Most structural and machine systems have deformable (elastic) members and therefore

have an infinite number of degrees of freedom.

Systems with a finite number of degrees of freedom are called discrete or lumped

parameter systems, and those with an infinite number of degrees of freedom are called

continuous or distributed systems.

Most of the time, continuous systems are approximated as discrete systems, and solutions

are obtained in a simpler manner. Although treatment of a system as continuous gives exact

results, the analytical methods available for dealing with continuous systems are limited to a

narrow selection of problems, such as uniform beams, slender rods, and thin plates. Hence

most of the practical systems are studied by treating them as finite lumped masses, springs,

and dampers. In general, more accurate results are obtained by increasing the number of

masses, springs, and dampers that is, by increasing the number of degrees of freedom.

1.5 Classification of Vibration
Vibration can be classified in several ways. Some of the important classifications are as

follows.

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 16



1.5 CLASSIFICATION OF VIBRATION 17

1.5.1
Free and Forced
Vibration

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its own, the

ensuing vibration is known as free vibration. No external force acts on the system. The

oscillation of a simple pendulum is an example of free vibration.

Forced Vibration. If a system is subjected to an external force (often, a repeating type

of force), the resulting vibration is known as forced vibration. The oscillation that arises in

machines such as diesel engines is an example of forced vibration.

If the frequency of the external force coincides with one of the natural frequencies of

the system, a condition known as resonance occurs, and the system undergoes dangerously

large oscillations. Failures of such structures as buildings, bridges, turbines, and airplane

wings have been associated with the occurrence of resonance.

1.5.2
Undamped 
and Damped
Vibration

If no energy is lost or dissipated in friction or other resistance during oscillation, the vibra-

tion is known as undamped vibration. If any energy is lost in this way, however, it is called

damped vibration. In many physical systems, the amount of damping is so small that it can

be disregarded for most engineering purposes. However, consideration of damping

becomes extremely important in analyzing vibratory systems near resonance.

1.5.3
Linear 
and Nonlinear
Vibration

If all the basic components of a vibratory system the spring, the mass, and the damper

behave linearly, the resulting vibration is known as linear vibration. If, however, any of the

basic components behave nonlinearly, the vibration is called nonlinear vibration. The dif-

ferential equations that govern the behavior of linear and nonlinear vibratory systems are

linear and nonlinear, respectively. If the vibration is linear, the principle of superposition

holds, and the mathematical techniques of analysis are well developed. For nonlinear

vibration, the superposition principle is not valid, and techniques of analysis are less well

known. Since all vibratory systems tend to behave nonlinearly with increasing amplitude

of oscillation, a knowledge of nonlinear vibration is desirable in dealing with practical

vibratory systems.

If the value or magnitude of the excitation (force or motion) acting on a vibratory system

is known at any given time, the excitation is called deterministic. The resulting vibration

is known as deterministic vibration.

1.5.4
Deterministic
and Random
Vibration In some cases, the excitation is nondeterministic or random; the value of the exci-

tation at a given time cannot be predicted. In these cases, a large collection of records

of the excitation may exhibit some statistical regularity. It is possible to estimate aver-

ages such as the mean and mean square values of the excitation. Examples of random

excitations are wind velocity, road roughness, and ground motion during earthquakes.

If the excitation is random, the resulting vibration is called random vibration. In this

case the vibratory response of the system is also random; it can be described only in

terms of statistical quantities. Figure 1.15 shows examples of deterministic and random

excitations.
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Force

0

(a) A deterministic (periodic) excitation (b) A random excitation

Time

Force

0

Time

FIGURE 1.15 Deterministic and random excitations.

1.6 Vibration Analysis Procedure
A vibratory system is a dynamic one for which the variables such as the excitations

(inputs) and responses (outputs) are time dependent. The response of a vibrating system

generally depends on the initial conditions as well as the external excitations. Most prac-

tical vibrating systems are very complex, and it is impossible to consider all the details for

a mathematical analysis. Only the most important features are considered in the analysis

to predict the behavior of the system under specified input conditions. Often the overall

behavior of the system can be determined by considering even a simple model of the com-

plex physical system. Thus the analysis of a vibrating system usually involves mathemat-

ical modeling, derivation of the governing equations, solution of the equations, and

interpretation of the results.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to represent

all the important features of the system for the purpose of deriving the mathematical (or

analytical) equations governing the system s behavior. The mathematical model should

include enough details to allow describing the system in terms of equations without mak-

ing it too complex. The mathematical model may be linear or nonlinear, depending on the

behavior of the system s components. Linear models permit quick solutions and are sim-

ple to handle; however, nonlinear models sometimes reveal certain characteristics of the

system that cannot be predicted using linear models. Thus a great deal of engineering judg-

ment is needed to come up with a suitable mathematical model of a vibrating system.

Sometimes the mathematical model is gradually improved to obtain more accurate

results. In this approach, first a very crude or elementary model is used to get a quick

insight into the overall behavior of the system. Subsequently, the model is refined by

including more components and/or details so that the behavior of the system can be

observed more closely. To illustrate the procedure of refinement used in mathematical

modeling, consider the forging hammer shown in Fig. 1.16(a). It consists of a frame, a

falling weight known as the tup, an anvil, and a foundation block. The anvil is a massive

steel block on which material is forged into desired shape by the repeated blows of the tup.

The anvil is usually mounted on an elastic pad to reduce the transmission of vibration to

the foundation block and the frame [1.22]. For a first approximation, the frame, anvil, elas-

tic pad, foundation block, and soil are modeled as a single degree of freedom system as

shown in Fig. 1.16(b). For a refined approximation, the weights of the frame and anvil and
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Tup

Tup

Tup

Frame

Anvil

Elastic pad

Foundation block

Soil

Anvil and
foundation block

x1

Soil damping Soil stiffness

Foundation block

x2

Damping of soil Stiffness of soil 

Anvil

x1

Damping of elastic pad Stiffness of elastic pad

(a)

(b)

(c)

FIGURE 1.16 Modeling of a forging hammer.
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20 CHAPTER 1 FUNDAMENTALS OF VIBRATION

the foundation block are represented separately with a two-degree-of-freedom model as

shown in Fig. 1.16(c). Further refinement of the model can be made by considering

eccentric impacts of the tup, which cause each of the masses shown in Fig. 1.16(c) to

have both vertical and rocking (rotation) motions in the plane of the paper.

Step 2: Derivation of Governing Equations. Once the mathematical model is avail-

able, we use the principles of dynamics and derive the equations that describe the vibra-

tion of the system. The equations of motion can be derived conveniently by drawing the

free-body diagrams of all the masses involved. The free-body diagram of a mass can be

obtained by isolating the mass and indicating all externally applied forces, the reactive

forces, and the inertia forces. The equations of motion of a vibrating system are usually in

the form of a set of ordinary differential equations for a discrete system and partial differ-

ential equations for a continuous system. The equations may be linear or nonlinear,

depending on the behavior of the components of the system. Several approaches are com-

monly used to derive the governing equations. Among them are Newton s second law of

motion, D Alembert s principle, and the principle of conservation of energy.

Step 3: Solution of the Governing Equations. The equations of motion must be solved

to find the response of the vibrating system. Depending on the nature of the problem, we

can use one of the following techniques for finding the solution: standard methods of solv-

ing differential equations, Laplace transform methods, matrix methods,1 and numerical

methods. If the governing equations are nonlinear, they can seldom be solved in closed

form. Furthermore, the solution of partial differential equations is far more involved than

that of ordinary differential equations. Numerical methods involving computers can be

used to solve the equations. However, it will be difficult to draw general conclusions about

the behavior of the system using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations gives the

displacements, velocities, and accelerations of the various masses of the system. These

results must be interpreted with a clear view of the purpose of the analysis and the possi-

ble design implications of the results.

E X A M P L E  1 . 1
Mathematical Model of a Motorcycle

Figure 1.17(a) shows a motorcycle with a rider. Develop a sequence of three mathematical models

of the system for investigating vibration in the vertical direction. Consider the elasticity of the tires,

elasticity and damping of the struts (in the vertical direction), masses of the wheels, and elasticity,

damping, and mass of the rider.

Solution: We start with the simplest model and refine it gradually. When the equivalent values of

the mass, stiffness, and damping of the system are used, we obtain a single-degree-of-freedom model

1The basic definitions and operations of matrix theory are given in Appendix A.
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1.6 VIBRATION ANALYSIS PROCEDURE 21

of the motorcycle with a rider as indicated in Fig. 1.17(b). In this model, the equivalent stiffness

includes the stiffnesses of the tires, struts, and rider. The equivalent damping constant 

includes the damping of the struts and the rider. The equivalent mass includes the masses of the

wheels, vehicle body, and the rider. This model can be refined by representing the masses of wheels,

(ceq)(keq)

Rider

Strut

Strut

Tire

Wheel

keq

meq

m
w

mr

m
w

m
v
*mr

m
v

ceq

cs csks

kt kt

ks

crkr

2m
w

m
v
*mr

2cs2ks

2kt

m
w

m
w

cs csks

kt kt

ks

Subscripts
t : tire
w : wheel
s : strut

v : vehicle
r : rider

eq : equivalent

(a)

(b)

(d) (e)

(c)

FIGURE 1.17 Motorcycle with a rider a physical system and
mathematical model.
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FIGURE 1.18 Deformation of a spring.

elasticity of the tires, and elasticity and damping of the struts separately, as shown in Fig. 1.17(c). In

this model, the mass of the vehicle body and the mass of the rider are shown as a single

mass, When the elasticity (as spring constant ) and damping (as damping constant )

of the rider are considered, the refined model shown in Fig. 1.17(d) can be obtained.

Note that the models shown in Figs. 1.17(b) to (d) are not unique. For example, by combining the

spring constants of both tires, the masses of both wheels, and the spring and damping constants of both

struts as single quantities, the model shown in Fig. 1.17(e) can be obtained instead of Fig. 1.17(c).

*

1.7 Spring Elements
A spring is a type of mechanical link, which in most applications is assumed to have negli-

gible mass and damping. The most common type of spring is the helical-coil spring used in

retractable pens and pencils, staplers, and suspensions of freight trucks and other vehicles.

Several other types of springs can be identified in engineering applications. In fact, any elas-

tic or deformable body or member, such as a cable, bar, beam, shaft or plate, can be con-

sidered as a spring. A spring is commonly represented as shown in Fig. 1.18(a). If the free

length of the spring, with no forces acting, is denoted l, it undergoes a change in length

when an axial force is applied. For example, when a tensile force F is applied at its free end

2, the spring undergoes an elongation x as shown in Fig. 1.18(b), while a compressive force

F applied at the free end 2 causes a reduction in length x as shown in Fig. 1.18(c).

A spring is said to be linear if the elongation or reduction in length x is related to the

applied force F as

(1.1)

where k is a constant, known as the spring constant or spring stiffness or spring rate. The

spring constant k is always positive and denotes the force (positive or negative) required to

F = kx

crkrmv + mr.

(mr)(mv)
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1.7 SPRING ELEMENTS 23

cause a unit deflection (elongation or reduction in length) in the spring. When the spring

is stretched (or compressed) under a tensile (or compressive) force F, according to

Newton s third law of motion, a restoring force or reaction of magnitude is

developed opposite to the applied force. This restoring force tries to bring the stretched (or

compressed) spring back to its original unstretched or free length as shown in Fig. 1.18(b)

(or 1.18(c)). If we plot a graph between F and x, the result is a straight line according to

Eq. (1.1). The work done (U) in deforming a spring is stored as strain or potential energy

in the spring, and it is given by

(1.2)U =
1

2
 kx2

-  F(or +F)

1.7.1
Nonlinear
Springs

Most springs used in practical systems exhibit a nonlinear force-deflection relation, par-

ticularly when the deflections are large. If a nonlinear spring undergoes small deflections,

it can be replaced by a linear spring by using the procedure discussed in Section 1.7.2. In

vibration analysis, nonlinear springs whose force-deflection relations are given by

(1.3)

are commonly used. In Eq. (1.3), a denotes the constant associated with the linear part and

b indicates the constant associated with the (cubic) nonlinearity. The spring is said to be

hard if linear if and soft if The force-deflection relations for vari-

ous values of b are shown in Fig. 1.19.

b 6 0.b = 0,b 7 0,

F = ax + bx3;   a 7 0

Force (F)

Linear spring (b * 0)

Soft spring (b + 0)

Hard spring (b , 0)

Deflection (x)
O

FIGURE 1.19 Nonlinear and linear springs.
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Displacement (x)

Spring force (F)

O
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k2

k1
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k2(x * c2)

k1(x * c1)

(a)

(b)

+x

FIGURE 1.20 Nonlinear spring force-displacement relation.

Some systems, involving two or more springs, may exhibit a nonlinear force-dis-

placement relationship although the individual springs are linear. Some examples of such

systems are shown in Figs. 1.20 and 1.21. In Fig. 1.20(a), the weight (or force) W travels

F

c

x

Spring force (F)
Weightless
rigid bar

x , 0 corresponds to position
of the bar with no force

Displacement
of force

x

O

O

c

k2

F , k1x + k2(x * c)F , k1x

(b)(a)

k1

2

k1

2

FIGURE 1.21 Nonlinear spring force-displacement relation.
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1.7 SPRING ELEMENTS 25

freely through the clearances and present in the system. Once the weight comes into

contact with a particular spring, after passing through the corresponding clearance, the

spring force increases in proportion to the spring constant of the particular spring (see Fig.

1.20(b)). It can be seen that the resulting force-displacement relation, although piecewise

linear, denotes a nonlinear relationship.

In Fig. 1.21(a), the two springs, with stiffnesses and have different lengths. Note

that the spring with stiffness is shown, for simplicity, in the form of two parallel springs,

each with a stiffness of Spring arrangement models of this type can be used in the

vibration analysis of packages and suspensions used in aircraft landing gears.

When the spring deflects by an amount the second spring starts providing

an additional stiffness to the system. The resulting nonlinear force-displacement rela-

tionship is shown in Fig. 1.21(b).

k2

x = c,k1

k 1/2.

k 1

k2,k1

c2c1

1.7.2
Linearization 
of a Nonlinear
Spring

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deformation. Beyond

a certain value of deformation (after point A in Fig. 1.22), the stress exceeds the yield point

of the material and the force-deformation relation becomes nonlinear [1.23, 1.24]. In many

practical applications we assume that the deflections are small and make use of the linear

relation in Eq. (1.1). Even, if the force-deflection relation of a spring is nonlinear, as shown

in Fig. 1.23, we often approximate it as a linear one by using a linearization process [1.24,

1.25]. To illustrate the linearization process, let the static equilibrium load F acting on the

spring cause a deflection of If an incremental force is added to F, the spring

deflects by an additional quantity The new spring force can be expressed

using Taylor s series expansion about the static equilibrium position as

(1.4)

For small values of the higher-order derivative terms can be neglected to obtain

(1.5)F + ¢F = F(x*) +
dF

dx
`

x*

 (¢x)

¢x,

 = F(x*) +
dF

dx
`

x*

 (¢x) +
1

2!
 
d2F

dx2
`

x*

 (¢x)2
+ Á

F + ¢F = F(x* + ¢x)

x*

F + ¢F¢x.

¢Fx*.

Stress

Strain

Yield
point, A

Force (F )

Deformation (x)

Yield
point, A

x + x1 * x2

x2 x1

FIGURE 1.22 Nonlinearity beyond proportionality limit.
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F * ,F + F(x* * ,x)

F + F(x*)

F + F(x)

x* * ,xx*

Force (F )

Deformation (x)

k +
dF

dx
x*

FIGURE 1.23 Linearization process.

E X A M P L E  1 . 2
Equivalent Linearized Spring Constant

A precision milling machine, weighing 1000 lb, is supported on a rubber mount. The force-deflec-

tion relationship of the rubber mount is given by

(E.1)

where the force (F) and the deflection (x) are measured in pounds and inches, respectively. Determine

the equivalent linearized spring constant of the rubber mount at its static equilibrium position.

Solution: The static equilibrium position of the rubber mount under the weight of the milling

machine, can be determined from Eq. (E.1):

or

(E.2)200(x*)3 + 2000x* - 1000 = 0

1000 = 2000x* + 200(x*)3

(x*),

F = 2000x + 200x3

Since we can express as

(1.6)

where k is the linearized spring constant at given by

(1.7)

We may use Eq. (1.6) for simplicity, but sometimes the error involved in the approxima-

tion may be very large.

k =
dF

dx
`

x*

x*

¢F = k ¢x

¢FF = F(x*),

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 26
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The roots of the cubic equation, (E.2), can be found (for example, using the function roots in

MATLAB) as

The static equilibrium position of the rubber mount is given by the real root of Eq. (E.2):

The equivalent linear spring constant of the rubber mount at its static equilibrium

position can be determined using Eq. (1.7):

Note: The equivalent linear spring constant, predicts the static deflection of

the milling machine as

which is slightly different from the true value of 0.4884 in. The error is due to the truncation of the

higher-order derivative terms in Eq. (1.4).

*

x =
F

keq

=
1000

2143.1207
= 0.4666 in.

keq = 2143.1207 lb/in.,

keq =
dF

dx
`

x*

= 2000 + 600(x*)2
= 2000 + 600(0.48842) = 2143.1207 lb/in.

x* = 0.4884 in.

x* = 0.4884, -0.2442 + 3.1904i, and -0.2442  -   3.1904i

1.7.3
Spring
Constants 
of Elastic
Elements

As stated earlier, any elastic or deformable member (or element) can be considered as a

spring. The equivalent spring constants of simple elastic members such as rods, beams,

and hollow shafts are given on the inside front cover of the book. The procedure of find-

ing the equivalent spring constant of elastic members is illustrated through the following

examples.

E X A M P L E  1 . 3
Spring Constant of a Rod

Find the equivalent spring constant of a uniform rod of length l, cross-sectional area A, and Young s

modulus E subjected to an axial tensile (or compressive) force F as shown in Fig. 1.24(a).

l

F

(a)

(b)

F

d

d

AE

l
k *

FIGURE 1.24 Spring constant of a rod.
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E X A M P L E  1 . 4
Spring Constant of a Cantilever Beam

Find the equivalent spring constant of a cantilever beam subjected to a concentrated load F at its end

as shown in Fig. 1.25(a).

Solution: We assume, for simplicity, that the self weight (or mass) of the beam is negligible and the

concentrated load F is due to the weight of a point mass From strength of materials

[1.26], we know that the end deflection of the beam due to a concentrated load is given by

(E.1)

where E is the Young s modulus and I is the moment of inertia of the cross section of the beam about

the bending or z-axis (i.e., axis perpendicular to the page). Hence the spring constant of the beam is

(Fig. 1.25(b)):

(E.2)k =

W

d
=

3EI

l3

d =

Wl3

3EI

F = W

(W = mg).

Solution: The elongation (or shortening) of the rod under the axial tensile (or compressive) force

F can be expressed as

(E.1)

where is the strain and is the stress induced in the rod. 

Using the definition of the spring constant k, we obtain from Eq. (E.1):

(E.2)

The significance of the equivalent spring constant of the rod is shown in Fig. 1.24(b).

*

k =

force applied

resulting deflection
=

F

d
=

AE

l

s =

force

area
=

F

A
e =

change in length

original length
=

d

l

d =

d

l
 l = el =

s

E
 l =

Fl

AE

d

W * mg

F * W

W

d

x(t)

k *
3EI

l3

(a) Cantilever with end force

l
E, A, I

x(t)

(b) Equivalent spring

FIGURE 1.25 Spring constant of a cantilever beam.

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 28



1.7 SPRING ELEMENTS 29

Notes:

1. It is possible for a cantilever beam to be subjected to concentrated loads in two directions at its

end one in the y direction and the other in the z direction as shown in Fig. 1.26(a).

When the load is applied along the y direction, the beam bends about the z-axis (Fig. 1.26(b))

and hence the equivalent spring constant will be equal to

(E.3)k =

3EIzz

l3

(Fz)(Fy)

dz

dy

dy

z

y

y

d O

Od

Fz

Fz

Fy

Fy

Fy

z

Fz

x

x

xOw

w

k

k

l

(a)

(b)

(c)

dz

FIGURE 1.26 Spring constants of a beam in two directions.

M01_RAO8193_05_SE_C01.QXD  8/21/10  2:06 PM  Page 29



30 CHAPTER 1 FUNDAMENTALS OF VIBRATION

When the load is applied along the z direction, the beam bends about the y-axis (Fig. 1.26(c))

and hence the equivalent spring constant will be equal to

(E.4)

2. The spring constants of beams with different end conditions can be found in a similar manner

using results from strength of materials. The representative formulas given in Appendix B can

be used to find the spring constants of the indicated beams and plates. For example, to find the

spring constant of a fixed-fixed beam subjected to a concentrated force P at (Case 3 in

Appendix B), first we express the deflection of the beam at the load point using

as

(E.5)

and then find the spring constant (k) as

(E.6)

where 

3. The effect of the self weight (or mass) of the beam can also be included in finding the spring

constant of the beam (see Example 2.9 in Chapter 2).

*

I = Izz.

k =
P

y
=

3EIl3

a2(l - a)2(al - a2)

y =

P(l - a)2a2

6EIl3
 [3al - 3a2

- a(l - a)] =

Pa2(l - a)2(al - a2)

3EIl3

b = l - a,
(x = a),

x = a

k =

3EIyy

l3

1.7.4
Combination of
Springs

In many practical applications, several linear springs are used in combination. These

springs can be combined into a single equivalent spring as indicated below.

Case 1: Springs in Parallel. To derive an expression for the equivalent spring constant

of springs connected in parallel, consider the two springs shown in Fig. 1.27(a). When a

load W is applied, the system undergoes a static deflection as shown in Fig. 1.27(b).

Then the free-body diagram, shown in Fig. 1.27(c), gives the equilibrium equation

(1.8)W = k1dst + k2dst

dst

k1

k1
k1

k2

k2
k2

k1   st

  st

k2   st

W W

(a) (b) (c)

d

d d

FIGURE 1.27 Springs in parallel.
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1.7 SPRING ELEMENTS 31

If denotes the equivalent spring constant of the combination of the two springs, then

for the same static deflection we have

(1.9)

Equations (1.8) and (1.9) give

(1.10)

In general, if we have n springs with spring constants in parallel, then the

equivalent spring constant can be obtained:

(1.11)

Case 2: Springs in Series. Next we derive an expression for the equivalent spring con-

stant of springs connected in series by considering the two springs shown in Fig. 1.28(a).

Under the action of a load W, springs 1 and 2 undergo elongations and respectively,

as shown in Fig. 1.28(b). The total elongation (or static deflection) of the system, is

given by

(1.12)

Since both springs are subjected to the same force W, we have the equilibrium shown in

Fig. 1.28(c):

(1.13)

If denotes the equivalent spring constant, then for the same static deflection,

(1.14)W = keqdst

keq

W = k2d2

W = k1d1

dst = d1 + d2

dst,

d2,d1

keq = k1 + k2 +
Á + kn

keq

k1, k2, Á , kn

keq = k1 + k2

W = keqdst

dst,

keq

k1

k1

k1

k2

k2

k2

W W

W

W
1

st

 W * k1 1

 W * k2 2

1

2

(a) (b) (c)

d
d

d

d

d

d

FIGURE 1.28 Springs in series.
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32 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Equations (1.13) and (1.14) give

or

(1.15)

Substituting these values of and into Eq. (1.12), we obtain

that is,

(1.16)

Equation (1.16) can be generalized to the case of n springs in series:

(1.17)

In certain applications, springs are connected to rigid components such as pulleys, levers,

and gears. In such cases, an equivalent spring constant can be found using energy equiva-

lence, as illustrated in Examples 1.8 and 1.9.

1

keq

=
1

k1
+

1

k2
+ Á +

1

kn

1

keq

=
1

k1
+

1

k2

keqdst

k1
+

keqdst

k2
= dst

d2d1

d1 =

keqdst

k1
 and d2 =

keqdst

k2

k1d1 = k2d2 = keqdst

E X A M P L E  1 . 5
Equivalent k of a Suspension System

Figure 1.29 shows the suspension system of a freight truck with a parallel-spring arrangement. Find

the equivalent spring constant of the suspension if each of the three helical springs is made of steel

with a shear modulus and has five effective turns, mean coil diameter

and wire diameter 

Solution: The stiffness of each helical spring is given by

(See inside front cover for the formula.)

Since the three springs are identical and parallel, the equivalent spring constant of the suspen-

sion system is given by

keq = 3k = 3(40,000.0) = 120,000.0 N/m

k =
d4G

8D3n
=

(0.02)4(80 * 109)

8(0.2)3(5)
= 40,000.0 N/m

d = 2 cm.D = 20 cm,

G = 80 * 109 N/m2
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1.7 SPRING ELEMENTS 33

*

FIGURE 1.29 Parallel arrangement of springs in a freight truck. (Courtesy of Buckeye Steel

Castings Company.)

E X A M P L E  1 . 6
Torsional Spring Constant of a Propeller Shaft

Determine the torsional spring constant of the steel propeller shaft shown in Fig. 1.30.

Solution: We need to consider the segments 12 and 23 of the shaft as springs in combination. From

Fig. 1.30 the torque induced at any cross section of the shaft (such as AA or BB) can be seen to be

0.3 m
0.2 m

2 m

0.25 m
0.15 m

3 m

31 2

A

A

B

B

T

FIGURE 1.30 Propeller shaft.
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34 CHAPTER 1 FUNDAMENTALS OF VIBRATION

equal to the torque applied at the propeller, T. Hence the elasticities (springs) corresponding to the

two segments 12 and 23 are to be considered as series springs. The spring constants of segments 12

and 23 of the shaft ( and ) are given by

Since the springs are in series, Eq. (1.16) gives

*

kteq
=

kt12
kt23

kt12
+ kt23

=

(25.5255 * 106)(8.9012 * 106)

(25.5255 * 106
+ 8.9012 * 106)

= 6.5997 * 106 N-m/rad

 = 8.9012 * 106 N-m/rad

 kt23
=

GJ23

l23
=

Gp(D23
4
- d23

4 )

32l23
=

(80 * 109)p(0.254
- 0.154)

32(3)

 = 25.5255 * 106 N-m/rad

 kt12
=

GJ12

l12
=

Gp(D12
4
- d12

4 )

32l12
=

(80 * 109)p(0.34
- 0.24)

32(2)

kt23
kt12

E X A M P L E  1 . 7
Equivalent k of Hoisting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beam as shown in

Fig. 1.31(a). Determine the equivalent spring constant of the system when the suspended length of

the wire rope is l. Assume that the net cross-sectional diameter of the wire rope is d and the Young s

modulus of the beam and the wire rope is E.

Solution: The spring constant of the cantilever beam is given by

(E.1)

The stiffness of the wire rope subjected to axial loading is

(E.2)

Since both the wire rope and the cantilever beam experience the same load W, as shown in Fig.

1.31(b), they can be modeled as springs in series, as shown in Fig. 1.31(c). The equivalent spring

constant is given by

or

(E.3)keq =
E

4
+

pat3d2

pd2b3
+ lat3

*

1

keq

=
1

kb

+
1

kr

=
4b3

Eat3
+

4l

pd2E

keq

kr =
AE

l
=
pd2E

4l

kb =
3EI

b3
=

3E

b3
+

1

12
 at3

* =
Eat3

4b3
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t

b

d

W

a

W

W

W

W

W

l

Beam

Rope

kb

kr

keq

(a)

(b) (c) (d)

W

FIGURE 1.31 Hoisting drum.

*

E X A M P L E  1 . 8
Equivalent k of a Crane

The boom AB of the crane shown in Fig. 1.32(a) is a uniform steel bar of length 10 m and area of

cross section A weight W is suspended while the crane is stationary. The cable CDEBF

is made of steel and has a cross-sectional area of Neglecting the effect of the cable CDEB,

find the equivalent spring constant of the system in the vertical direction.

Solution: The equivalent spring constant can be found using the equivalence of potential energies

of the two systems. Since the base of the crane is rigid, the cable and the boom can be considered to

be fixed at points F and A, respectively. Also, the effect of the cable CDEB is negligible; hence the

weight W can be assumed to act through point B as shown in Fig. 1.32(b).

100 mm2
.

2,500 mm2
.
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36 CHAPTER 1 FUNDAMENTALS OF VIBRATION

W

keq

1.5 m

1.5 m
F A

C

D

B

E

W

10
 m

45 

45  

A

B

F

W
l1, k1

l2  10 m, k2

x

3 m

45 

(a)

(b) (c)

u

90   u

FIGURE 1.32 Crane lifting a load.

A vertical displacement x of point B will cause the spring (boom) to deform by an amount and

the spring (cable) to deform by an amount The length of the cable FB, is given by Fig. 1.32(b):

The angle satisfies the relation

The total potential energy (U) stored in the springs and can be expressed, using Eq. (1.2) as

(E.1)U =
1

2
 k1 [x cos (90° - u)]2

+
1

2
 k2 [x cos (90° - 45°)]2

k2k1

l1
2
+ 32

- 2(l1)(3) cos u = 102,  cos u = 0.8184, u = 35.0736°

u

l1
2
= 32

+ 102
- 2(3)(10) cos 135° = 151.426, l1 = 12.3055 m

l1,
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1.7 SPRING ELEMENTS 37

where

and

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential energy

of the equivalent spring is given by

(E.2)

By setting we obtain the equivalent spring constant of the system as

*

keq = k1 sin2 u + k2 sin2 45° = k1 sin2 35.0736° + k2 sin2 45° = 26.4304 * 106 N/m

U = Ueq,

Ueq =
1
2 k
#

eqx2

(Ueq)

k2 =
A2E2

l2
=

(2500 * 10-6)(207 * 109)

10
= 5.1750 * 107 N/m

k1 =
A1E1

l1
=

(100 * 10-6)(207 * 109)

12.3055
= 1.6822 * 106 N/m

E X A M P L E  1 . 9
Equivalent k of a Rigid Bar Connected by Springs

A hinged rigid bar of length l is connected by two springs of stiffnesses and and is subjected

to a force F as shown in Fig. 1.33(a). Assuming that the angular displacement of the bar is small,

find the equivalent spring constant of the system that relates the applied force F to the resulting dis-

placement x.

(u)

k2k 1

x D

F

F

C x

B

A
k1

k2

l1

l3

l2

B

A

(c)(a) (b)

O

k1

k2

k2 x2

l1

l2

x2

x1

l

k1 x1 A*

F

x

B*

C*

O

u

FIGURE 1.33 Rigid bar connected by springs.
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38 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Solution: For a small angular displacement of the rigid bar the points of attachment of springs

and (A and B) and the point of application (C) of the force F undergo the linear or horizontal

displacements and respectively. Since is small, the horizontal displacements

of points A, B, and C can be approximated as and respectively. The

reactions of the springs, and will be as indicated in Fig. 1.33(b). The equivalent spring

constant of the system referred to the point of application of the force F can be determined by

considering the moment equilibrium of the forces about the hinge point O:

or

(E.1)

By expressing F as Eq. (E.1) can be written as

(E.2)

Using and Eq. (E.2) yields the desired result:

(E.3)

Notes:

1. If the force F is applied at another point D of the rigid bar as shown in Fig. 1.33(c), the equiv-

alent spring constant referred to point D can be found as

(E.4)

2. The equivalent spring constant, of the system can also be found by using the relation:

Work done by the applied force energy stored in springs and (E.5)

For the system shown in Fig. 1.33(a), Eq. (E.5) gives

(E.6)

from which Eq. (E.3) can readily be obtained.

3. Although the two springs appear to be connected to the rigid bar in parallel, the formula of par-

allel springs (Eq. 1.12) cannot be used because the displacements of the two springs are not the

same.

*

1

2
 Fx =

1

2
 k1x1

2
+

1

2
 k2x2

2

k2k1F = Strain

keq,

keq = k1+
l1

l3
*

2

+ k2 +
l2

l3
*

2

keq = k1+
l1

l
*

2

+ k2 +
l2

l
*

2

x = lu,x1 = l1u, x2 = l2u,

F = keqx = k1+
x1l1

l
* + k2 +

x2l2

l
*

k eqx,

F = k1+
x1l1

l
* + k2+

x2l2

l
*

k1x1(l1) + k2x2(l2) = F(l)

(keq)

k2x2,k1x 1

x = lu,x1 = l1u, x2 = l2u

ul sin u,l1 sin u, l2 sin u,

k2k1

(u),
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1.7 SPRING ELEMENTS 39

1.7.5
Spring Constant
Associated with
the Restoring
Force due to
Gravity

In some applications, a restoring force or moment due to gravity is developed when a

mass undergoes a displacement. In such cases, an equivalent spring constant can be asso-

ciated with the restoring force or moment of gravity. The following example illustrates

the procedure.

E X A M P L E  1 . 1 0
Spring Constant Associated with Restoring Force due to Gravity

Figure 1.34 shows a simple pendulum of length l with a bob of mass m. Considering an angular dis-

placement of the pendulum, determine the equivalent spring constant associated with the restoring

force (or moment).

Solution: When the pendulum undergoes an angular displacement the mass m moves by a

distance along the horizontal (x) direction. The restoring moment or torque (T) created by the

weight of the mass (mg) about the pivot point O is given by

(E.1)

For small angular displacements can be approximated as (see Appendix A) and

Eq. (E.1) becomes

(E.2)

By expressing Eq. (E.2) as

(E.3)

the desired equivalent torsional spring constant can be identified as

(E.4)kt = mgl

kt

T = ktu

T = mglu

sin u L uu, sin u

T = mg(l sin u)

l sin u

u,

u

O

l

mgy

m

x

l sin u

u

FIGURE 1.34 Simple pendulum. *
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40 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1.8 Mass or Inertia Elements

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic energy

whenever the velocity of the body changes. From Newton s second law of motion, the

product of the mass and its acceleration is equal to the force applied to the mass. Work is

equal to the force multiplied by the displacement in the direction of the force, and the work

done on a mass is stored in the form of the mass s kinetic energy.

In most cases, we must use a mathematical model to represent the actual vibrating sys-

tem, and there are often several possible models. The purpose of the analysis often deter-

mines which mathematical model is appropriate. Once the model is chosen, the mass or

inertia elements of the system can be easily identified. For example, consider again the

cantilever beam with an end mass shown in Fig. 1.25(a). For a quick and reasonably accu-

rate analysis, the mass and damping of the beam can be disregarded; the system can be

modeled as a spring-mass system, as shown in Fig. 1.25(b). The tip mass m represents the

mass element, and the elasticity of the beam denotes the stiffness of the spring. Next, con-

sider a multistory building subjected to an earthquake. Assuming that the mass of the

frame is negligible compared to the masses of the floors, the building can be modeled as

a multi-degree-of-freedom system, as shown in Fig. 1.35. The masses at the various floor

levels represent the mass elements, and the elasticities of the vertical members denote the

spring elements.

k5

m5

x5

k4

m4

x4

k3

m3

x3

k2

m2

x2

k1

m1

x1

k5

k4

k3

k2

k1

m5

x5

m4

x4

m3

x3

m2

x2

m1

x1

(a) (b)

FIGURE 1.35 Idealization of a multistory
building as a multi-degree-of-freedom system.

1.8.1

Combination 

of Masses

In many practical applications, several masses appear in combination. For a simple

analysis, we can replace these masses by a single equivalent mass, as indicated below

[1.27].
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1.8 MASS OR INERTIA ELEMENTS 41

Case 1: Translational Masses Connected by a Rigid Bar. Let the masses be attached

to a rigid bar that is pivoted at one end, as shown in Fig. 1.36(a). The equivalent mass can

be assumed to be located at any point along the bar. To be specific, we assume the loca-

tion of the equivalent mass to be that of mass The velocities of masses and

can be expressed in terms of the velocity of mass by assuming small angu-

lar displacements for the bar, as

(1.18)

and

(1.19)

By equating the kinetic energy of the three-mass system to that of the equivalent mass sys-

tem, we obtain

(1.20)

This equation gives, in view of Eqs. (1.18) and (1.19):

(1.21)

It can be seen that the equivalent mass of a system composed of several masses (each mov-

ing at a different velocity) can be thought of as the imaginary mass which, while moving

with a specified velocity v, will have the same kinetic energy as that of the system.

Case 2: Translational and Rotational Masses Coupled Together. Let a mass m hav-

ing a translational velocity be coupled to another mass (of mass moment of inertia ) 

having a rotational velocity as in the rack-and-pinion arrangement shown in Fig. 1.37. u

#

,

J0x
#

meq = m1 + +
l2

l1
*

2

m2 + +
l3

l1
*

2

m3

1

2
 m1x

#

1
2
+

1

2
 m2x

#

2
2
+

1

2
 m3x

#

3
2
=

1

2
 meqx

#

eq
2

x
#

eq = x
#

1

x
#

2 =
l2

l1
 x
#

1, x
#

3 =
l3

l1
 x
#

1

m1(x
#

1),m3(x
#

3)

m2(x
#

2)m1.

(a)

Pivot point

A B C

l1
l2

l3

m1 m2 m3

O

x1
+ x2

+ x3
+

(b)

Pivot point

A B C
l1

meq

O

xeq * x1
+ +

FIGURE 1.36 Translational masses connected by a rigid bar.
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These two masses can be combined to obtain either (1) a single equivalent translational

mass or (2) a single equivalent rotational mass as shown below.

1. Equivalent translational mass. The kinetic energy of the two masses is given by

(1.22)

and the kinetic energy of the equivalent mass can be expressed as

(1.23)

Since and the equivalence of T and gives

that is,

(1.24)

2. Equivalent rotational mass. Here and and the equivalence of T and

leads to

or

(1.25)Jeq = J0 + mR2

1

2
 Jeq u

#
2
=

1

2
 m(u

#

R)2 +
1

2
 J0 u

#
2

Teq

x
#
= u

#

R,u

#

eq = u

#

meq = m +
J0

R2

1

2
 meqx

# 2
=

1

2
 mx

# 2
+

1

2
 J0+

x
#

R
*

2

Tequ

#

= x
#
/R,x

#

eq = x
#

Teq =
1

2
 meqx

#

eq
2

T =
1

2
 mx

# 2
+

1

2
 J0 u

#
2

Jeq,meq

Rack, mass m

Pinion, mass moment of inertia J0

R

*

x*

u

FIGURE 1.37 Translational and rotational masses in a
rack-and-pinion arrangement.

E X A M P L E  1 . 1 1
Equivalent Mass of a System

Find the equivalent mass of the system shown in Fig. 1.38, where the rigid link 1 is attached to the

pulley and rotates with it.
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Solution: Assuming small displacements, the equivalent mass can be determined using the

equivalence of the kinetic energies of the two systems. When the mass m is displaced by a distance

x, the pulley and the rigid link 1 rotate by an angle This causes the rigid link 2 and

the cylinder to be displaced by a distance Since the cylinder rolls without

slippage, it rotates by an angle The kinetic energy of the system (T) can be

expressed (for small displacements) as:

(E.1)

where and denote the mass moments of inertia of the pulley, link 1 (about O), and cylinder, 

respectively, and indicate the angular velocities of the pulley, link 1 (about O), and cylin-

der, respectively, and and represent the linear velocities of the mass m and link 2, respectively.

Noting that and Eq. (E.1) can be rewritten as

(E.2)

By equating Eq. (E.2) to the kinetic energy of the equivalent system

(E.3)T =
1

2
 meqx
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 +
1

2
 +
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2
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* +

x
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rprc
*
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*

2
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2
 mx

# 2 +
1

2
 Jp+

x
#

rp
*

2

+
1

2
 +

m1l1
2

3
*  +

x
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rp
*

2

+
1

2
 m2+

x
#
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rp
*

2

J1 = m1l1
2/3,Jc = mcrc

2/2

x
#

2x
#
u

#

cu

#

p, u
#

1,

JcJp, J1,

T =
1

2
 mx 

# 2
+

1

2
 Jpu

#

p
2

+
1

2
 J1u

#

1
2
+

1

2
 m2x  

#

2
2
+

1

2
 Jcu

#

c
2
+

1

2
 mcx

  #
2
2

uc = x2/rc = xl1/rp rc.

x2 = up l1 = xl1/rp.
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(meq)

Pulley, mass moment of
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k1
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m
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Cylinder, mass mc
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x2(t)
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FIGURE 1.38 System considered for finding equivalent mass.
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E X A M P L E  1 . 1 2

Cam-Follower Mechanism

A cam-follower mechanism (Fig. 1.39) is used to convert the rotary motion of a shaft into the oscil-

lating or reciprocating motion of a valve. The follower system consists of a pushrod of mass a

rocker arm of mass and mass moment of inertia about its C.G., a valve of mass and a valve

spring of negligible mass [1.28 1.30]. Find the equivalent mass of this cam-follower system

by assuming the location of as (i) point A and (ii) point C.

Solution: The equivalent mass of the cam-follower system can be determined using the equivalence

of the kinetic energies of the two systems. Due to a vertical displacement x of the pushrod, the rocker

arm rotates by an angle about the pivot point, the valve moves downward by

and the C.G. of the rocker arm moves downward by The

kinetic energy of the system (T) can be expressed as2

(E.1)T =
1

2
 mpx

#

p
2

+
1

2
 mvx

#

v
2
+

1

2
 Jru

#

r
2
+

1

2
 mrx

#

r
2

xr = url3 = xl3/l1.xv = url2 = xl2/l1,

ur = x/l1

meq

(meq)

mr,Jrmr,

mp,

2If the valve spring has a mass then its equivalent mass will be (see Example 2.8). Thus the kinetic 

energy of the valve spring will be 
1
2 (

1
3 ms)x

#

v
2.

1
3 msms,

x * xp

A

Pushrod
(mass mp)

Roller
follower

Cam

Shaft

Valve
spring

x
v

l1

l3

O G
B

Rocker arm
(mass moment of inertia, Jr)  r

C

Valve
(mass m

v
)

l2

u

FIGURE 1.39 Cam-follower system.

we obtain the equivalent mass of the system as

(E.4)

*

meq = m +

Jp

rp
2

+
1

3
 
m1l1

2

rp
2

+
m2l1

2

rp
2

+
1

2
 
mcl1

2

rp
2

+ mc 
l1
2

rp
2
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where and are the linear velocities of the pushrod, C.G. of the rocker arm, and the valve, 

respectively, and is the angular velocity of the rocker arm.

(i) If denotes the equivalent mass placed at point A, with the kinetic energy of the

equivalent mass system is given by

(E.2)

By equating T and and noting that

we obtain

(E.3)

(ii) Similarly, if the equivalent mass is located at point C, and

(E.4)

Equating (E.4) and (E.1) gives

(E.5)

*

1.9 Damping Elements
In many practical systems, the vibrational energy is gradually converted to heat or sound.

Due to the reduction in the energy, the response, such as the displacement of the system,

gradually decreases. The mechanism by which the vibrational energy is gradually con-

verted into heat or sound is known as damping. Although the amount of energy converted

into heat or sound is relatively small, the consideration of damping becomes important for

an accurate prediction of the vibration response of a system. A damper is assumed to have

neither mass nor elasticity, and damping force exists only if there is relative velocity

between the two ends of the damper. It is difficult to determine the causes of damping in

practical systems. Hence damping is modeled as one or more of the following types.

Viscous Damping. Viscous damping is the most commonly used damping mechanism

in vibration analysis. When mechanical systems vibrate in a fluid medium such as air, gas,

water, or oil, the resistance offered by the fluid to the moving body causes energy to be

dissipated. In this case, the amount of dissipated energy depends on many factors, such as

the size and shape of the vibrating body, the viscosity of the fluid, the frequency of vibra-

tion, and the velocity of the vibrating body. In viscous damping, the damping force is pro-

portional to the velocity of the vibrating body. Typical examples of viscous damping
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46 CHAPTER 1 FUNDAMENTALS OF VIBRATION

include (1) fluid film between sliding surfaces, (2) fluid flow around a piston in a cylinder,

(3) fluid flow through an orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry-Friction Damping. Here the damping force is constant in magnitude

but opposite in direction to that of the motion of the vibrating body. It is caused by friction

between rubbing surfaces that either are dry or have insufficient lubrication.

Material or Solid or Hysteretic Damping. When a material is deformed, energy is

absorbed and dissipated by the material [1.31]. The effect is due to friction between the

internal planes, which slip or slide as the deformations take place. When a body having

material damping is subjected to vibration, the stress-strain diagram shows a hysteresis

loop as indicated in Fig. 1.40(a). The area of this loop denotes the energy lost per unit vol-

ume of the body per cycle due to damping.3

3When the load applied to an elastic body is increased, the stress and the strain in the body also increase.
The area under the curve, given by

denotes the energy expended (work done) per unit volume of the body. When the load on the body is decreased,
energy will be recovered. When the unloading path is different from the loading path, the area ABC in Fig. 1.40(b)
the area of the hysteresis loop in Fig. 1.40(a) denotes the energy lost per unit volume of the body.

u =

L
s de

s-e
(e)(s)

Stress (force)

Hysteresis
loop

Loading

Unloading

Area

Strain
(displacement)

(a)

A

B

C D

Energy
expended (ABD)

Energy
recovered (BCD)

Stress (s)

de

Strain (e)

(b)

s

FIGURE 1.40 Hysteresis loop for elastic materials.

1.9.1
Construction
of Viscous
Dampers

Viscous dampers can be constructed in several ways. For instance, when a plate moves rel-

ative to another parallel plate with a viscous fluid in between the plates, a viscous damper

can be obtained. The following examples illustrate the various methods of constructing

viscous dampers used in different applications.
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E X A M P L E  1 . 1 3
Damping Constant of Parallel Plates Separated by Viscous Fluid

Consider two parallel plates separated by a distance h, with a fluid of viscosity between the plates.

Derive an expression for the damping constant when one plate moves with a velocity v relative to the

other as shown in Fig. 1.41.

Solution: Let one plate be fixed and let the other plate be moved with a velocity v in its own plane.

The fluid layers in contact with the moving plate move with a velocity v, while those in contact with

the fixed plate do not move. The velocities of intermediate fluid layers are assumed to vary linearly

between 0 and v, as shown in Fig. 1.41. According to Newton s law of viscous flow, the shear stress

developed in the fluid layer at a distance y from the fixed plate is given by

(E.1)

where is the velocity gradient. The shear or resisting force (F) developed at the bot-

tom surface of the moving plate is

(E.2)

where A is the surface area of the moving plate. By expressing F as

(E.3)

the damping constant c can be found as

(E.4)c =

mA

h

F = cv

F = tA =

mAv

h

du/dy = v/h

t = m 

du

dy

(t)

m

Surface area of plate * A

Viscous
fluid

F (damping force)

y
h

v *
dx
dt

u *
vy
h

FIGURE 1.41 Parallel plates with a viscous fluid in between.

E X A M P L E  1 . 1 4
Clearance in a Bearing

A bearing, which can be approximated as two flat plates separated by a thin film of lubricant (Fig. 1.42),

is found to offer a resistance of 400 N when SAE 30 oil is used as the lubricant and the relative veloc-

ity between the plates is 10 m/s. If the area of the plates (A) is determine the clearance between

the plates. Assume the absolute viscosity of SAE 30 oil as reyn or 0.3445 Pa-s.50 m

0.1 m2,

*
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h

v

Area (A)

FIGURE 1.42 Flat plates separated by thin
film of lubricant.

Solution: Since the resisting force (F) can be expressed as where c is the damping constant

and v is the velocity, we have

(E.1)

By modeling the bearing as a flat-plate-type damper, the damping constant is given by Eq. (E.4) of

Example 1.13:

(E.2)

Using the known data, Eq. (E.2) gives

(E.3)

*

c = 40 =

(0.3445)(0.1)

h
 or h = 0.86125 mm

c =

mA

h

c =

F

v
=

400

10
= 40 N-s/m

F = cv,

E X A M P L E  1 . 1 5
Damping Constant of a Journal Bearing

A journal bearing is used to provide lateral support to a rotating shaft as shown in Fig. 1.43. If the

radius of the shaft is R, angular velocity of the shaft is radial clearance between the shaft and the

bearing is d, viscosity of the fluid (lubricant) is and the length of the bearing is l, derive an expres-

sion for the rotational damping constant of the journal bearing. Assume that the leakage of the fluid

is negligible.

Solution: The damping constant of the journal bearing can be determined using the equation for the

shear stress in viscous fluid. The fluid in contact with the rotating shaft will have a linear velocity

(in tangential direction) of while the fluid in contact with the stationary bearing will have

zero velocity. Assuming a linear variation for the velocity of the fluid in the radial direction, we have

(E.1)v(r) =

vr

d
=

rRv

d

v = Rv,

m,

v,
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The shearing stress in the lubricant is given by the product of the radial velocity gradient and the

viscosity of the lubricant:

(E.2)

The force required to shear the fluid film is equal to stress times the area. The torque on the shaft (T)

is equal to the force times the lever arm, so that

(E.3)

where is the surface area of the shaft exposed to the lubricant. Thus Eq. (E.3) can be

rewritten as

(E.4)T = a
mRv

d
b(2pRl)R =

2pmR3lv

d

A = 2pRl

T = (tA)R

t = m 

dv

dr
=

mRv

d

(t)

v

Viscous fluid
(lubricant)

(a)

Journal
(shaft)

l

d

d

R

R

v

(b)

BearingViscous
fluid

FIGURE 1.43 A journal bearing.
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P

Cylinder

Piston

Viscous
fluid

l

d d

v0

D

(a)

P

Cylinder

Piston

Viscous
fluid

l

d d

v0

D

dy dy
y y

(b)

FIGURE 1.44 A dashpot.

From the definition of the rotational damping constant of the bearing 

(E.5)

we obtain the desired expression for the rotational damping constant as

(E.6)

Note: Equation (E.4) is called Petroff s law and was published originally in 1883. This equation is

widely used in the design of journal bearings [1.43].

*

ct =
2pmR3l

d

ct =
T

v

(ct):

E X A M P L E  1 . 1 6
Piston-Cylinder Dashpot

Develop an expression for the damping constant of the dashpot shown in Fig. 1.44(a).

Solution: The damping constant of the dashpot can be determined using the shear-stress equation

for viscous fluid flow and the rate-of-fluid-flow equation. As shown in Fig. 1.44(a), the dashpot

consists of a piston of diameter D and length l, moving with velocity in a cylinder filled with a

liquid of viscosity [1.24, 1.32]. Let the clearance between the piston and the cylinder wall be d.

At a distance y from the moving surface, let the velocity and shear stress be v and and at a distance

let the velocity and shear stress be and respectively (see Fig. 1.44(b)).

The negative sign for dv shows that the velocity decreases as we move toward the cylinder wall. The

viscous force on this annular ring is equal to

(E.1)F = pDl dt = pDl 
dt

dy
 dy

(t + dt),(v - dv)(y + dy)

t,

m

v0
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But the shear stress is given by

(E.2)

where the negative sign is consistent with a decreasing velocity gradient [1.33]. Using Eq. (E.2) in

Eq. (E.1), we obtain

(E.3)

The force on the piston will cause a pressure difference on the ends of the element, given by

(E.4)

Thus the pressure force on the end of the element is

(E.5)

where denotes the annular area between y and If we assume uniform mean

velocity in the direction of motion of the fluid, the forces given in Eqs. (E.3) and (E.5) must be equal.

Thus we get

or

(E.6)

Integrating this equation twice and using the boundary conditions at and at

we obtain

(E.7)

The rate of flow through the clearance space can be obtained by integrating the rate of flow through

an element between the limits and 

(E.8)

The volume of the liquid flowing through the clearance space per second must be equal to the vol-

ume per second displaced by the piston. Hence the velocity of the piston will be equal to this rate of

flow divided by the piston area. This gives

(E.9)v0 =

Q

¢
p

4
D2

Q =

L

d

0

vpD dy = pDB
2Pd3

6pD2lm
-

1

2
 v0dR

y = d:y = 0

v =
2P

pD2lm
 (yd - y2) - v0¢1 -

y

d

y = d,

v = 0y = 0v = -v0

d2
v

dy2
= -

4P

pD2lm

4P

D
 dy = -pDl dy m 

d2
v

dy2

(y + dy).(pD dy)

p(pD dy) =
4P

D
 dy

p =
P

¢
pD2

4

=
4P

pD2

F = -pDl dy m 
d2

v

dy2

t = -m 
dv

dy
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Equations (E.9) and (E.8) lead to

(E.10)

By writing the force as the damping constant c can be found as

(E.11)

*

c = mB
3pD3l

4d3
 ¢1 +

2d

D
R

P = cv0,

P = C

3pD3l¢1 +
2d

D

4d3
Smv0

1.9.2
Linearization of
a Nonlinear
Damper

If the force (F)-velocity (v) relationship of a damper is nonlinear:

(1.26)

a linearization process can be used about the operating velocity as in the case of a

nonlinear spring. The linearization process gives the equivalent damping constant as

(1.27)c =
dF

dv
 

`

v*

(v*),

F =  F(v)

1.9.3
Combination of
Dampers

In some dynamic systems, multiple dampers are used. In such cases, all the dampers are

replaced by a single equivalent damper. When dampers appear in combination, we can use

procedures similar to those used in finding the equivalent spring constant of multiple

springs to find a single equivalent damper. For example, when two translational dampers,

with damping constants and appear in combination, the equivalent damping constant

can be found as (see Problem 1.55):

(1.28)

(1.29)Series dampers: 1

ceq

=
1

c1
+

1

c2

 Parallel dampers: ceq = c1 + c2

(ceq)
c2,c1

E X A M P L E  1 . 1 7
Equivalent Spring and Damping Constants of a Machine Tool Support

A precision milling machine is supported on four shock mounts, as shown in Fig. 1.45(a). The

elasticity and damping of each shock mount can be modeled as a spring and a viscous damper, as

shown in Fig. 1.45(b). Find the equivalent spring constant, and the equivalent damping con-

stant, of the machine tool support in terms of the spring constants and damping constants

of the mounts.(ci)

(ki)ceq,

keq,
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A
B

C
D
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c1 c2
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k2

W
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(b)

A
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D

Fs1 Fd1 Fs2 Fd2

Fs4 Fd4 Fs3 Fd3
W

G

x x*

(c)

A
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D

keq
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G

x x*

(d)

(a)
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(at all four corners)Base
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Overarm

A

C

B

k4

FIGURE 1.45 Horizontal milling machine.
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Solution: The free-body diagrams of the four springs and four dampers are shown in Fig. 1.45(c).

Assuming that the center of mass, G, is located symmetrically with respect to the four springs and

dampers, we notice that all the springs will be subjected to the same displacement, x, and all the

dampers will be subject to the same relative velocity where x and denote the displacement and

velocity, respectively, of the center of mass, G. Hence the forces acting on the springs and the

dampers can be expressed as

(E.1)

Let the total forces acting on all the springs and all the dampers be and respectively (see

Fig. 1.45,(d)). The force equilibrium equations can thus be expressed as

(E.2)

where with W denoting the total vertical force (including the inertia force) acting on

the milling machine. From Fig. 1.45(d), we have

(E.3)

Equation (E.2), along with Eqs. (E.1) and (E.3), yields

(E.4)

when and for 

Note: If the center of mass, G, is not located symmetrically with respect to the four springs and

dampers, the ith spring experiences a displacement of and the ith damper experiences a velocity of

, where and can be related to the displacement x and velocity of the center of mass of the

milling machine, G. In such a case, Eqs. (E.1) and (E.4) need to be modified suitably.

*

1.10 Harmonic Motion

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it

may display considerable irregularity, as in the case of ground motion during an earth-

quake. If the motion is repeated after equal intervals of time, it is called periodic motion.

The simplest type of periodic motion is harmonic motion. The motion imparted to the mass

m due to the Scotch yoke mechanism shown in Fig. 1.46 is an example of simple harmonic

motion [1.24, 1.34, 1.35]. In this system, a crank of radius A rotates about the point O. The

other end of the crank, P, slides in a slotted rod, which reciprocates in the vertical guide

R. When the crank rotates at an angular velocity the end point S of the slotted link andv,

x
#

x
#

ixix
#

i

xi

i = 1, 2, 3, 4.ci = cki = k

ceq = c1 + c2 + c3 + c4 = 4c

keq = k1 + k2 + k3 + k4 = 4k

Fd = ceqx
#

Fs = keqx

Fs + Fd = W,

Fd = Fd1 + Fd2 + Fd3 + Fd4

Fs = Fs1 + Fs2 + Fs3 + Fs4

Fd,Fs

Fdi = cix
#
; i = 1, 2, 3, 4

Fsi = kix; i = 1, 2, 3, 4

(Fdi)
(Fsi)

x
#

x
#
,
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hence the mass m of the spring-mass system are displaced from their middle positions by

an amount x (in time t) given by

(1.30)

This motion is shown by the sinusoidal curve in Fig. 1.46. The velocity of the mass m at

time t is given by

(1.31)

and the acceleration by

(1.32)
d

2
x

dt
2
= -v

2
A sin vt = -v

2
x

dx

dt
= vA cos vt

x = A sin u = A sin vt

Slotted rod

O

A

P

R

S

m

k

x(t)

A

O

*A

2p 3p u + vt

x

x + A sin vt

p

u + vt

FIGURE 1.46 Scotch yoke mechanism.
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2p

2p

3p

p

p

3p

x * A cos vt

y * A sin vt

O

P

y

P
P

A A

O O

Angular
displacement

One cycle of motion

One
cycle

of motion

x

A

u * vtu * vt

u * vt

v

FIGURE 1.47 Harmonic motion as the projection of the end of a rotating vector.

It can be seen that the acceleration is directly proportional to the displacement. Such a

vibration, with the acceleration proportional to the displacement and directed toward the

mean position, is known as simple harmonic motion. The motion given by 

is another example of a simple harmonic motion. Figure 1.46 clearly shows the similarity

between cyclic (harmonic) motion and sinusoidal motion.

x = A cos vt

1.10.1
Vectorial
Representation
of Harmonic
Motion

Harmonic motion can be represented conveniently by means of a vector of magnitude

A rotating at a constant angular velocity In Fig. 1.47, the projection of the tip of the vec-

tor on the vertical axis is given by

(1.33)y = A sin vt

X
:

= OP
¡

v.

OP
¡
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and its projection on the horizontal axis by

(1.34)x = A cos vt

1.10.2
Complex-
Number
Representation
of Harmonic
Motion

As seen above, the vectorial method of representing harmonic motion requires the

description of both the horizontal and vertical components. It is more convenient to rep-

resent harmonic motion using a complex-number representation. Any vector in the xy-

plane can be represented as a complex number:

(1.35)

where and a and b denote the x and y components of respectively (see 

Fig. 1.48). Components a and b are also called the real and imaginary parts of the vector

If A denotes the modulus or absolute value of the vector and represents the argu-

ment or the angle between the vector and the x-axis, then can also be expressed as

(1.36)

with

(1.37)

and

(1.38)

Noting that and can be expanded in a series as

(1.39) cos u = 1 -
u

2

2!
+
u

4

4!
- Á = 1 +

(iu)2

2!
+

(iu)4

4!
+ Á

i sin ui2 = -1, i3
= - i, i4

= 1, Á , cos u

u = tan-1
 

b

a

A = (a2
+ b2)1/2

X
:

= A cos u + iA sin u

X
:

uX
:

,X
:

.

X
:

,i = 1-1

X
:

= a + ib

X
:

y  (Imaginary)

x (Real)

b

aO

X + a * ib + Aeiu

u

FIGURE 1.48 Representation of a complex number.
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58 CHAPTER 1 FUNDAMENTALS OF VIBRATION

(1.40)

Equations (1.39) and (1.40) yield

(1.41)

and

(1.42)

Thus Eq. (1.36) can be expressed as

(1.43)X
:

= A(cos u + i sin u) = Aeiu

(cos u - i sin u) = 1 - iu +
(iu)2

2!
-

(iu)3

3!
+ Á = e-iu

(cos u + i sin u) = 1 + iu +
(iu)2

2!
+

(iu)3

3!
+ Á = eiu

 i sin u = iBu -
u

3

3!
+

u
5

5!
- ÁR = iu +

(iu)3

3!
+

(iu)5

5!
+ Á

1.10.3
Complex
Algebra

Complex numbers are often represented without using a vector notation as

(1.44)

where a and b denote the real and imaginary parts of z. The addition, subtraction, multi-

plication, and division of complex numbers can be achieved by using the usual rules of

algebra. Let

(1.45)

(1.46)

where

(1.47)

and

(1.48)

The sum and difference of and can be found as

(1.49)

(1.50) = (a1 - a2) + i(b1 - b2)

 z1 - z2 = A1e
iu1 - A2eiu2 = (a1 + ib1) - (a2 + ib2)

 = (a1 + a2) + i(b1 + b2)

 z1 + z2 = A1e
iu1 + A2eiu2 = (a1 + ib1) + (a2 + ib2)

z2z1

uj = tan-1
¢

bj

aj
;  j = 1, 2

Aj = 2aj
2
+ bj

2;  j = 1, 2

z2 = a2 + ib2 = A2eiu2

z1 = a1 + ib1 = A1e
iu1

z = a + ib
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1.10 HARMONIC MOTION 59

1.10.4
Operations on
Harmonic
Functions

Using complex-number representation, the rotating vector of Fig. 1.47 can be written as

(1.51)

where denotes the circular frequency (rad/sec) of rotation of the vector in counter-

clockwise direction. The differentiation of the harmonic motion given by Eq. (1.51) with

respect to time gives

(1.52)

(1.53)

Thus the displacement, velocity, and acceleration can be expressed as4

(1.54)

(1.55)

(1.56)

where Re denotes the real part. These quantities are shown as rotating vectors in Fig. 1.49.

It can be seen that the acceleration vector leads the velocity vector by 90°, and the latter

leads the displacement vector by 90°.

Harmonic functions can be added vectorially, as shown in Fig. 1.50. If

and then the magnitude of the resultant 

vector is given by

(1.57)

and the angle by

(1.58)a = tan-1
+

A2 sin u

A1 + A2 cos u
*

a

A = 2(A1 + A2 cos u)2
+ (A2 sin u)2

X
:

Re( X
:

2) = A2 cos(vt + u),Re( X
:

1) = A1 cos vt

= v
2A cos (vt + 180°)

= -v
2A cos vtacceleration = Re[-v2Aeivt]

= vA cos (vt + 90°)

= -vA sin vtvelocity = Re[ivAeivt]

= A cos vtdisplacement = Re[Aeivt]

d2 X
:

dt2
=

d

dt
 (ivAeivt) = -v

2Aeivt
= -v

2X
:

d X
:

dt
=

d

dt
 (Aeivt) = ivAeivt

= ivX
:

X
:

v

X
:

= Aeivt

X
:

4If the harmonic displacement is originally given as then we have

where Im denotes the imaginary part.

acceleration  = Im[-v2Aeivt] = v
2 A sin(vt + 180°)

velocity  = Im[ivAeivt] = vA sin(vt + 90°)

displacement = Im[Aeivt] = A sin vt

x(t) = A sin vt,
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x(t)

x(t)

x(t)

O
2p

p/2

p/2
vt

vt

Im

Re

X  ivX

X     2
 
X

X

p

v

v

FIGURE 1.49 Displacement, velocity, and accelerations as rotating vectors.

Im

y

x
Re

O

X

A cos (vt  a)

X2

X1

A2 sin u

A2 cos u

u
a

vt

v

FIGURE 1.50 Vectorial addition of harmonic functions.

Since the original functions are given as real components, the sum is given by 

Re( X
:

) = A cos(vt + a).

X
:

1 + X
:

2

E X A M P L E  1 . 1 8

Addition of Harmonic Motions

Find the sum of the two harmonic motions 

Solution: Method 1: By using trigonometric relations: Since the circular frequency is the same for

both and we express the sum as

(E.1)

That is,

(E.2) = 10 cos vt + 15(cos vt cos 2 - sin vt sin 2)

A(cos vt cos a - sin vt sin a) = 10 cos vt + 15 cos(vt + 2)

x(t) = A cos(vt + a) = x1(t) + x2(t)

x2(t),x1(t)

x1(t) = 10 cos vt and x2(t) = 15 cos(vt + 2).
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1.10 HARMONIC MOTION 61

That is,

(E.3)

By equating the corresponding coefficients of and on both sides, we obtain

(E.4)

and

(E.5)

Method 2: By using vectors: For an arbitrary value of the harmonic motions and can

be denoted graphically as shown in Fig. 1.51. By adding them vectorially, the resultant vector x(t)

can be found to be

(E.6)

Method 3: By using complex-number representation: The two harmonic motions can be denoted in

terms of complex numbers:

(E.7)

The sum of and can be expressed as

(E.8)

where A and can be determined using Eqs. (1.47) and (1.48) as and a = 74.5963°.A = 14.1477a

x(t) = Re[Aei(vt+a)]

x2(t)x1(t)

x2(t) = Re[A2ei(vt+2)] K Re[15ei(vt+2)]

x1(t) = Re[A1e
ivt] K Re[10eivt]

x(t) = 14.1477 cos(vt + 74.5963°)

x2(t)x1(t)vt,

a = tan-1
+

15 sin 2

10 + 15 cos 2
* = 74.5963°

 = 14.1477

 A = 2(10 + 15 cos 2)2
+ (15 sin 2)2

 A sin a = 15 sin 2

 A cos a = 10 + 15 cos 2

sin vtcos vt

cos vt(A cos a) - sin vt(A sin a) =  cos vt(10 + 15 cos 2) - sin vt(15 sin 2)

Im
x(t)

x2(t)

x1(t)

15

10

14.1477

74.6

Re
vt

O

vt  114.6

FIGURE 1.51 Addition of harmonic motions.

*
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1.10.5
Definitions and
Terminology

The following definitions and terminology are useful in dealing with harmonic motion and

other periodic functions.

Cycle. The movement of a vibrating body from its undisturbed or equilibrium position to

its extreme position in one direction, then to the equilibrium position, then to its extreme

position in the other direction, and back to equilibrium position is called a cycle of vibra-

tion. One revolution (i.e., angular displacement of radians) of the pin P in Fig. 1.46 or

one revolution of the vector in Fig. 1.47 constitutes a cycle.

Amplitude. The maximum displacement of a vibrating body from its equilibrium position

is called the amplitude of vibration. In Figs. 1.46 and 1.47 the amplitude of vibration is

equal to A.

Period of oscillation. The time taken to complete one cycle of motion is known as the

period of oscillation or time period and is denoted by It is equal to the time required for

the vector in Fig. 1.47 to rotate through an angle of and hence

(1.59)

where is called the circular frequency.

Frequency of oscillation. The number of cycles per unit time is called the frequency of

oscillation or simply the frequency and is denoted by f. Thus

(1.60)

Here is called the circular frequency to distinguish it from the linear frequency

The variable denotes the angular velocity of the cyclic motion; f is measured

in cycles per second (hertz) while is measured in radians per second.

Phase angle. Consider two vibratory motions denoted by

(1.61)

(1.62)

The two harmonic motions given by Eqs. (1.61) and (1.62) are called synchronous because

they have the same frequency or angular velocity, Two synchronous oscillations need

not have the same amplitude, and they need not attain their maximum values at the same

time. The motions given by Eqs. (1.61) and (1.62) can be represented graphically as shown

in Fig. 1.52. In this figure, the second vector leads the first one by an angle 

known as the phase angle. This means that the maximum of the second vector would occur

radians earlier than that of the first vector. Note that instead of maxima, any other cor-

responding points can be taken for finding the phase angle. In Eqs. (1.61) and (1.62) or in

Fig. 1.52 the two vectors are said to have a phase difference of 

Natural frequency. If a system, after an initial disturbance, is left to vibrate on its own,

the frequency with which it oscillates without external forces is known as its natural fre-

quency. As will be seen later, a vibratory system having n degrees of freedom will have,

in general, n distinct natural frequencies of vibration.

f.

f

f,OP
¡

1OP
¡

2

v.

x2 = A2 sin(vt + f)

x1 = A1 sin vt

v

vf = v/2p.

v

f =
1

t
=

v

2p

v

t =
2p

v

2pOP
¡

t.

OP
¡

2p
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1.10 HARMONIC MOTION 63

Beats. When two harmonic motions, with frequencies close to one another, are added, the

resulting motion exhibits a phenomenon known as beats. For example, if

(1.63)

(1.64)

where is a small quantity, the addition of these motions yields

(1.65)

Using the relation

(1.66)

Eq. (1.65) can be rewritten as

(1.67)

This equation is shown graphically in Fig. 1.53. It can be seen that the resulting motion,

x(t), represents a cosine wave with frequency which is approximately equal to

and with a varying amplitude of Whenever the amplitude reaches a max-

imum, it is called a beat. The frequency at which the amplitude builds up and dies

down between 0 and 2X is known as beat frequency. The phenomenon of beats is often

observed in machines, structures, and electric power houses. For example, in machines and

structures, the beating phenomenon occurs when the forcing frequency is close to the nat-

ural frequency of the system (see Section 3.3.2).

Octave. When the maximum value of a range of frequency is twice its minimum value, it

is known as an octave band. For example, each of the ranges 75 150 Hz, 150 300 Hz, and

300 600 Hz can be called an octave band. In each case, the maximum and minimum val-

ues of frequency, which have a ratio of 2:1, are said to differ by an octave.

Decibel. The various quantities encountered in the field of vibration and sound (such

as displacement, velocity, acceleration, pressure, and power) are often represented

(d)

2X cos dt/2.v,

v + d/2,

x(t) = 2X cos 
dt

2
 cos+v +

d

2
* t

cos A + cos B = 2 cos+
A + B

2
*  cos+

A - B

2
*

x(t) = x1(t) + x2(t) = X[cos vt +  cos(v + d)t]

d

x2(t) = X cos(v + d)t

 x1(t) = X cos vt

P2

P1

O

x2

x1

A2

A1

x1  A1 sin vt

x2  A2 sin

(vt  f)

u  vt

f

v

u1  vt

u2  vt  f

f

v

FIGURE 1.52 Phase difference between two vectors.
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64 CHAPTER 1 FUNDAMENTALS OF VIBRATION

using the notation of decibel. A decibel (dB) is originally defined as a ratio of electric

powers:

(1.68)

where is some reference value of power. Since electric power is proportional to the

square of the voltage (X), the decibel can also be expressed as

(1.69)

where is a specified reference voltage. In practice, Eq. (1.69) is also used for express-

ing the ratios of other quantities such as displacements, velocities, accelerations, and

pressures. The reference values of in Eq. (1.69) are usually taken as 

for pressure and for acceleration.

1.11 Harmonic Analysis5

Although harmonic motion is simplest to handle, the motion of many vibratory systems is

not harmonic. However, in many cases the vibrations are periodic for example, the type

shown in Fig. 1.54(a). Fortunately, any periodic function of time can be represented by

Fourier series as an infinite sum of sine and cosine terms [1.36].

If x(t) is a periodic function with period its Fourier series representation is given by

(1.70)=
a0

2
+ a

q

n=1

(an  
cos nvt + bn  

sin nvt)

+ b1 
sin vt + b2  

sin 2 vt + Á

x(t) =
a0

2
+ a1 

cos vt + a2  
cos 2 vt + Á

t,

1 mg = 9.81 * 10-6 m/s2

2 * 10-5 N/m2X0

X0

dB = 10 log+
X

X0

*

2

= 20 log+
X

X0

*

P0

dB = 10 log+
P

P0

*

x(t)

2X

*2X

0

x(t)

2X

Beat period,

tb +
2p

d

t

2X cos
dt

2

FIGURE 1.53 Phenomenon of beats.

5The harmonic analysis forms a basis for Section 4.2.

1.11.1
Fourier Series
Expansion
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1.11 HARMONIC ANALYSIS 65

where is the fundamental frequency and are constant

coefficients. To determine the coefficients and we multiply Eq. (1.70) by 

and respectively, and integrate over one period for example, from 0

to Then we notice that all terms except one on the right-hand side of the equation

will be zero, and we obtain

(1.71)

(1.72)

(1.73)

The physical interpretation of Eq. (1.70) is that any periodic function can be repre-

sented as a sum of harmonic functions. Although the series in Eq. (1.70) is an infinite sum,

we can approximate most periodic functions with the help of only a few harmonic func-

tions. For example, the triangular wave of Fig. 1.54(a) can be represented closely by

adding only three harmonic functions, as shown in Fig. 1.54(b).

Fourier series can also be represented by the sum of sine terms only or cosine terms

only. For example, the series using cosine terms only can be expressed as

(1.74)

where

(1.75)

(1.76)

and

(1.77)fn = tan-1
+

bn

an

*

 dn = (an
2
+ bn

2
)

1/2

d0 = a0/2

x(t) = d0 + d1 cos(vt - f1) + d2 cos(2vt - f2) + Á

bn =
v

pL

2p/v

0

x(t) sin nvt dt =
2

tL

t

0

x(t) sin nvt dt

an =
v

pL

2p/v

0

x(t) cos nvt dt =
2

tL

t

0

x(t) cos nvt dt

a0 =
v

pL

2p/v

0

x(t) dt =
2

tL

t

0

x(t) dt

2p/v.

t = 2p/vsin nvt,

cos nvtbn,an

a0, a1, a2, Á , b1, b2, Áv = 2p/t

A

0

x(t)

2t 3t t

A

0

x(t)

2t 3t t

A

2

One-term approximation
Two-term approximation

Three-term approximation
Actual function

(a) (b)

tt

FIGURE 1.54 A periodic function.
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Gibbs  Phenomenon. When a periodic function is represented by a Fourier series, an

anomalous behavior can be observed. For example, Fig. 1.55 shows a triangular wave and

its Fourier series representation using a different number of terms. As the number of terms

(n) increases, the approximation can be seen to improve everywhere except in the vicinity

of the discontinuity (point P in Fig. 1.55). Here the deviation from the true waveform

becomes narrower but not any smaller in amplitude. It has been observed that the error in

amplitude remains at approximately 9 percent, even when This behavior is known

as Gibbs  phenomenon, after its discoverer.

k: q .

x(t)

t
P

n  4

n  6

n  8
Error

FIGURE 1.55 Gibbs  phenomenon.

1.11.2
Complex Fourier
Series

The Fourier series can also be represented in terms of complex numbers. By noting, from

Eqs. (1.41) and (1.42), that

(1.78)

and

(1.79)

and can be expressed as

(1.80)

and

(1.81)sin vt =
e

ivt
- e

-ivt

2i

cos vt =
e

ivt
+ e

-ivt

2

sin vtcos vt

e
-ivt

= cos vt - i sin vt

e
ivt

= cos vt + i sin vt
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Thus Eq. (1.70) can be written as

(1.82)

where By defining the complex Fourier coefficients and as

(1.83)

and

(1.84)

Eq. (1.82) can be expressed as

(1.85)

The Fourier coefficients can be determined, using Eqs. (1.71) to (1.73), as

(1.86) =
1

tL

 
t

0

x(t)e
-invt

dt

cn =
an - ibn

2
=

1

tL

 
t

0

x(t)[cos nvt - i sin nvt]dt

cn

x(t) = a
q

n=-q

 cne
invt

c-n =
an + ibn

2

cn =
an - ibn

2

c-ncnb0 = 0.

+ a
q

n=1

 b e
invt

¢
an

2
-

ibn

2
+ e

-invt
¢

an

2
+

ibn

2
r

= e
i(0)vt

¢
a0

2
-

ib0

2

x(t) =
a0

2
+ a

q

n=1

 ban¢
e

invt
+ e

-invt

2
+ bn¢

e
invt

- e
-invt

2i
r

1.11.3
Frequency
Spectrum

The harmonic functions or in Eq. (1.70) are called the harmonics of

order n of the periodic function x(t). The harmonic of order n has a period These har-

monics can be plotted as vertical lines on a diagram of amplitude ( and or and

) versus frequency called the frequency spectrum or spectral diagram. Figure

1.56 shows a typical frequency spectrum.

(nv),fn

dnbnan

t/n.

bn sin nvtan cos nvt
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0

dn

2vv 3v 4v 5v 6v 7v 8v 9v Frequency (nv) 9v Frequency (nv)
0

2 3v 4v 5 vvv 6v 7v 8v

nf

FIGURE 1.56 Frequency spectrum of a typical periodic function of time.

1.11.4
Time- and
Frequency-
Domain
Representations

The Fourier series expansion permits the description of any periodic function using either

a time-domain or a frequency-domain representation. For example, a harmonic function

given by in time domain (see Fig. 1.57(a)) can be represented by the ampli-

tude and the frequency in the frequency domain (see Fig. 1.57(b)). Similarly, a periodic

function, such as a triangular wave, can be represented in time domain, as shown in

Fig. 1.57(c), or in frequency domain, as indicated in Fig. 1.57(d). Note that the amplitudes

and the phase angles corresponding to the frequencies can be used in place of the

amplitudes and for representation in the frequency domain. Using a Fourier integral

(considered in Section 14.9) permits the representation of even nonperiodic functions in

bnan

vnfndn

v

x(t) = A sin vt

x(t)

A

*A

x0

0 t

A

0

A sin (vt + f0)

(a) (b)

(d)

x(t)

A

x0

0 t

x(v)

a0

a1

a2
a3 a4

0

a
n
 (coefficients of cosine terms in Eq. (1.70))

(c)

b1

b2
b3 b4

0

b
n
 (coefficients of sine terms in Eq. (1.70))

v1 , v v2 , 2v v3 , 3v v4 ,  4v

v1 , v v2 , 2v v3 , 3v v4 ,  4v

v
n

v
n

v
v

FIGURE 1.57 Representation of a function in time and frequency domains.
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1.11 HARMONIC ANALYSIS 69

either a time domain or a frequency domain. Figure 1.57 shows that the frequency-domain

representation does not provide the initial conditions. However, in many practical applica-

tions the initial conditions are often considered unnecessary and only the steady-state con-

ditions are of main interest.

1.11.5

Even and Odd

Functions

An even function satisfies the relation

(1.87)

In this case, the Fourier series expansion of x(t) contains only cosine terms:

(1.88)

where and are given by Eqs. (1.71) and (1.72), respectively. An odd function satis-

fies the relation

(1.89)

In this case, the Fourier series expansion of x(t) contains only sine terms:

(1.90)

where is given by Eq. (1.73). In some cases, a given function may be considered as even

or odd depending on the location of the coordinate axes. For example, the shifting of the

vertical axis from (a) to (b) or (c) in Fig. 1.58(i) will make it an odd or even function. This

means that we need to compute only the coefficients or Similarly, a shift in the time

axis from (d) to (e) amounts to adding a constant equal to the amount of shift. In the case

of Fig. 1.58(ii), when the function is considered as an odd function, the Fourier series

expansion becomes (see Problem 1.107):

(1.91)

On the other hand, if the function is considered an even function, as shown in Fig. 1.50(iii),

its Fourier series expansion becomes (see Problem 1.107):

(1.92)

Since the functions and represent the same wave, except for the location of the

origin, there exists a relationship between their Fourier series expansions also. Noting that

(1.93)x1+ t +
t

4
* = x2(t)

x2(t)x1(t)

x2(t) =
4A

p
a

q

n=1

(-1)n+1

(2n - 1)
 cos 

2p(2n - 1)t

t

x1(t) =
4A

p
a

q

n=1

1

(2n - 1)
 sin 

2p(2n - 1)t

t

an.bn

bn

x(t) = a

q

n=1

bn sin nvt

x(- t) = -  x(t)

ana0

x(t) =
a0

2
+ a

q

n=1

an cos nvt

x(- t) = x(t)
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we find from Eq. (1.91),

(1.94)

Using the relation Eq. (1.94) can be expressed

as

(1.95) + cos 
2p(2n - 1)t

t

 sin 
2p(2n - 1)

4
r

 x1¢ t +
t

4
=

4A

p
a

q

n=1

b
1

(2n - 1)
 sin 

2p(2n - 1)t

t

 cos 
2p(2n - 1)

4

sin(A + B) = sin A cos B +  cos A sin B,

 =
4A

p
a

q

n=1

1

(2n - 1)
 sin b

2p(2n - 1)t

t

+

2p(2n - 1)

4
r

x1¢ t +
t

4
 =

4A

p
a

q

n=1
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 sin 
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¢ t +
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FIGURE 1.58 Even and odd functions.
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Since for and 

for Eq. (1.95) reduces to

(1.96)

which can be identified to be the same as Eq. (1.92).

x1+ t +
t

4
* =

4A

p

 a

q

n=1

 
(-1)n+1

(2n - 1)
 cos 

2p(2n - 1)t

t

n = 1, 2, 3, Á ,

sin [2p(2n - 1)/4] =  (-1)n+1n = 1, 2, 3, Á ,cos [2p(2n - 1)/4] = 0

1.11.6
Half-Range
Expansions

In some practical applications, the function x(t) is defined only in the interval 0 to as

shown in Fig. 1.59(a). In such a case, there is no condition of periodicity of the function,

since the function itself is not defined outside the interval 0 to However, we can extend

the function arbitrarily to include the interval to 0 as shown in either Fig. 1.59(b) or

Fig. 1.59(c). The extension of the function indicated in Fig. 1.59(b) results in an odd func-

tion, while the extension of the function shown in Fig. 1.59(c) results in an even

function, Thus the Fourier series expansion of yields only sine terms and that

of involves only cosine terms. These Fourier series expansions of and arex2(t)x1(t)x2(t)

x1(t)x2(t).

x1(t),

-t

t.

t

t

x1(t)

0

t

x2(t)

0*t t

*t t

t
t

x(t)

0

(a) Original function

(b) Extension as an odd function

(c) Extension as an even function

FIGURE 1.59 Extension of a
function for half-range expansions.
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known as half-range expansions [1.37]. Any of these half-range expansions can be used to

find x(t) in the interval 0 to t.

1.11.7
Numerical
Computation 
of Coefficients

For very simple forms of the function x(t), the integrals of Eqs. (1.71) to (1.73) can be eval-

uated easily. However, the integration becomes involved if x(t) does not have a simple

form. In some practical applications, as in the case of experimental determination of the

amplitude of vibration using a vibration transducer, the function x(t) is not available in the

form of a mathematical expression; only the values of x(t) at a number of points

are available, as shown in Fig. 1.60. In these cases, the coefficients and 

of Eqs. (1.71) to (1.73) can be evaluated by using a numerical integration procedure like

the trapezoidal or Simpson s rule [1.38].

Let s assume that are an even number of equidistant points over the

period with the corresponding values of x(t) given by 

respectively; then the application of the trapezoidal rule

gives the coefficients and (by setting ) as:6

(1.97)

(1.98)

(1.99) bn =
2

N
 a

N

i=1
 xi sin 

2npti
t

 an =
2

N
 a

N

i=1
 xi cos 

2npti
t

 a0 =
2

Na
N

i=1
xi

t = N¢tbnan

x2 = x(t2), Á , xN = x(tN),
x1 = x(t1),t(N = even)

t1, t2, Á , tN

bnant1, t2, Á , tN

6
N Needs to be an even number for Simpson s rule but not for the trapezoidal rule. Equations (1.97) to (1.99)

assume that the periodicity condition, holds true.x0 = xN,

t

xN

tNtN 1

xN 1

t
1

t
2

t
3

x
1

x
2

x
3

t
4

x
4

t
5

x
5

t
0

t t t

t  N t

x(t)

FIGURE 1.60 Values of the periodic function x(t) at discrete points t1, t2, Á , tN.
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E X A M P L E  1 . 1 9
Fourier Series Expansion

Determine the Fourier series expansion of the motion of the valve in the cam-follower system shown

in Fig. 1.61.

Solution: If y(t) denotes the vertical motion of the pushrod, the motion of the valve, x(t), can be

determined from the relation:

or

(E.1)

where

(E.2)

and the period is given by By defining

A =

Yl2

l1

t =
2p

v
.

y(t) = Y
t

t
;   0 t t

x(t) =

l2

l1
 y(t)

tan u =

y(t)

l1
=

x(t)

l2

Pushrod

Roller
follower

y(t)

y(t)

0

Y

x(t)

l1

Rocker arm

l2

t

Valve
spring

Valve

2t 3t

O

v t

u

FIGURE 1.61 Cam-follower system.
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x(t) can be expressed as

(E.3)

Equation (E.3) is shown in Fig. 1.54(a). To compute the Fourier coefficients and we use Eqs.

(1.71) to (1.73):

(E.4)

(E.5)

(E.6)

Therefore the Fourier series expansion of x(t) is

(E.7)

The first three terms of the series are shown plotted in Fig. 1.54(b). It can be seen that the approxi-

mation reaches the sawtooth shape even with a small number of terms.

*

 =
A

p

B
p

2
- b sin vt +

1

2
 sin 2vt +

1

3
 sin 3vt + Á r R

x(t) =
A

2
-

A

p

 sin vt -
A

2p
 sin 2 vt - Á

 = -  

A

np
 ,   n = 1, 2, Á

 =
Av

ptL

2p/v

0

t sin nvt # dt =
A

2p2
 B

sin nvt

n2
-
vt cos nvt

n
R

0

2p/v

 bn =
v

pL

2p/v

0

x(t) sin nvt # dt =
v

pL

2p/v

0

A
t

t

 sin nvt # dt

 = 0,   n = 1, 2, Á

 =
Av

ptL

2p/v

0

t cos nvt # dt =
A

2p2
B

cos nvt

n2
+
vt sin nvt

n
R

0

2p/v

 an =
v

pL

2p/v

0

x(t) cos nvt # dt =
v

pL

2p/v

0

A
t

t

 cos nvt # dt

 a0 =
v

pL

2p/v

0

x(t) dt =
v

pL

2p/v

0

A
t

t

 dt =
v

p

 
A

t

¢
t2

2 0

2p/v

= A

bn,an

x(t) = A
t

t

;   0 t t

E X A M P L E  1 . 2 0
Numerical Fourier Analysis

The pressure fluctuations of water in a pipe, measured at 0.01-second intervals, are given in Table

1.1. These fluctuations are repetitive in nature. Make a harmonic analysis of the pressure fluctuations

and determine the first three harmonics of the Fourier series expansion.
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Solution: Since the given pressure fluctuations repeat every 0.12 sec, the period is sec and

the circular frequency of the first harmonic is radians per 0.12 sec or 

rad/sec. As the number of observed values in each wave (N) is 12, we obtain from Eq. (1.97)

(E.1)

The coefficients and can be determined from Eqs. (1.98) and (1.99):

(E.2)

(E.3)

The computations involved in Eqs. (E.2) and (E.3) are shown in Table 1.2. From these calculations,

the Fourier series expansion of the pressure fluctuations p(t) can be obtained (see Eq. 1.70):

(E.4) - 2333.3 sin 157.08t + Á  N/m2

 + 1416.7 cos 104.72t + 3608.3 sin 104.72t - 5833.3 cos 157.08t

p(t) = 34083.3 - 26996.0 cos 52.36t + 8307.7 sin 52.36t

bn =
2

N
 a

N

i=1
 pi sin 

2npti

t

=
1

6
 a

12

i=1
 pi sin 

2npti

0.12

an =
2

N
 a

N

i=1
 pi cos 

2npti

t

=
1

6
 a

12

i=1
 pi cos 

2npti

0.12

bnan

a0 =
2

N
 a

N

i=1
 pi =

1

6
 a

12

i=1
 pi = 68166.7

v = 2p/0.12 = 52.362p
t = 0.12

TABLE 1.1

Time Station, i Time (sec), ti Pressure (kN/m2), pi

0 0 0

1 0.01 20

2 0.02 34

3 0.03 42

4 0.04 49

5 0.05 53

6 0.06 70

7 0.07 60

8 0.08 36

9 0.09 22

10 0.10 16

11 0.11 7

12 0.12 0
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TABLE 1.2

n * 1 n * 2 n * 3

i ti pi
pi cos 

2Pti

0.12
pi sin 

2Pti

0.12
pi cos 

4Pti

0.12
pi sin 

4Pti

0.12
pi cos 

6Pti

0.12
pi sin 

6Pti

0.12

1 0.01 20000 17320 10000 10000 17320 0 20000

2 0.02 34000 17000 29444 -17000 29444 -34000 0

3 0.03 42000 0 42000 -42000 0 0 -42000

4 0.04 49000 -24500 42434 -24500 -42434 49000 0

5 0.05 53000 -45898 26500 26500 -45898 0 53000

6 0.06 70000 -70000 0 70000 0 -70000 0

7 0.07 60000 -51960 -30000 30000 51960 0 -60000

8 0.08 36000 -18000 -31176 -18000 31176 36000 0

9 0.09 22000 0 -22000 -22000 0 0 22000

10 0.10 16000 8000 -13856 -8000 -13856 -16000 0

11 0.11 7000 6062 -3500 3500 -6062 0 -7000

12 0.12 0 0 0 0 0 0 0

( )a
12

i=1

409000 -161976 49846 8500 21650 -35000 -14000

( )
1

6
 a

12

i=1

68166.7 -26996.0 8307.7 1416.7 3608.3 -5833.3 -2333.3

*

1.12 Examples Using MATLAB7

Graphical Representation of Fourier Series Using MATLAB

7The source codes of all MATLAB programs are given at the Companion Website.

E X A M P L E  1 . 2 1
Plot the periodic function

(E.1)

and its Fourier series representation with four terms

(E.2)

for with and t =
2p

v

= 2.A = 1, v = p,0 t t

x(t) =
A

p

 b
p

2
- ¢sin vt +

1

2
 sin 2vt +

1

3
 sin 3vt r

x(t) = A 
t

t

,   0 t t
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