

L'analisi vibratoria come strumento per l'ottimizzazione dinamica e la diagnostica sperimentale di sistemi meccanici

Emiliano Mucchi

Gruppo di Vibrazioni e Meccanica Applicata alle Macchine

1. Ottimizzazione vibro-acustica di sistemi meccanici mediante modellazione ed analisi sperimentale

2. Controllo qualità e diagnostica di difetti mediante analisi vibratoria

3. Progettazione ed analisi di meccanismi/sistemi meccanici (coprogettazione, analisi di movimento, cinematica)

Sviluppare un modello: perchè?

Identificare le cause di malfunzionamenti

Identificare le sorgenti di vibrazioni

Prevedere gli effetti di modifiche progettuali

Diminuire il numero di test nello sviluppo di nuovi prototipi

Progettazione dinamico/vibratoria di sistemi meccanici

PIATTAFORMA MECCANICA

Riduzione del livello vibratorio in condizione operative mediante opportune modifiche progettuali verificate sul modello

Progettazione dinamico/vibratoria di macchine e meccanismi

PIATTAFORMA MECCANICA MATERIALI

COSTRUIAMO INSIEME IL FUTURO

Mechanical system

7

Pump Components

Gear

- •12 teeth
- •Pressure angle: 20°

Operational parameters •Pressure: 3.5 ÷ 100 bar •Angular speed (range 1500÷ 3400 rpm)

COSTRUIAMO INSIEME IL FUTURO

Methodology

CANICA

COSTRUIAMO INSIEME IL LURO

LP model

Pressure evolution around the gears

Structural FE model

Evaluate the accelerations in the external surface of the

Structural FE model

Structural FE model

Mechanical system

Oil has been included as lumped mass

Vibro-acoustic FE model

acoustic FE model

Vibro-

Damning	Vibro-
Damping	acoustic FE
	model

	Modal damping [%] for the 1 st mode	Modal damping [%] for the 2 nd mode
With oil at 23 bar	5	0.87

•6 PCB accelerometers •dF=1.25Hz •24 measurements in two directions •H1 estimator X'¶ RETE ALTA TECNOLOGIA E MILIA - ROMAGNA HIGH TECHNOLOGY NETWORK POR FESR 2007-201 TIVO COMPETITIVITÀ E OCCUPAZIONE Regione Emilia-Romagna COSTRUIAMO INSIEME IL 16TURO MECCANICA MATERIALI (a)

BE model

BE model

Test bench chamber's walls are sandwich panel of steel and mineral wool

COSTRUIAMO INSIEME IL LUTURO

Indirect BE model: results

3000 rpm 90 bar Point B*

PIATTAFORMA

MECCANICA

Band of analysis: 0-350Hz (tennis elbow problem)

Free-free EMA

A 17

COST

R 2007-2013 OMPETITIVITÀ CCUPAZIONE

TURO

Hand-held EMA

EMA hypotheses:

-linearity

-time invariance (i.e. the structure dynamic characteristics do not change in

time)

Clamped EMA

Test sperimentali

Alimentatore a magneti tangenziali

3.

4.

ECHNOLOGY NETWORK

Alimentatore a magneti verticali

- 1. Analisi modali
- 2. Accelerazioni operative
 - Rigidezza degli antivibranti
 - Misura della forza elettromagnetica

Smorzamento

HIGH TECHNOLOGY NETWORK

PIATTAFORMA MECCANICA

MATERIAL

Forza elettromagnetica

COSTRUIAMO INSIEME IL FUTURO

3 condizioni per ogni alimentatore

A) senza tazza B) con tazza C) con tazza e con tappi (ξ₃)

Modo a 52Hz

1. *tuning* dei parametri del modello

- Rigidezza delle balestre (confr fra fn nel caso "senza tazza");
- ii. Inerzia tazza (confr fra fn nel caso "con tazza");

	Experimental data		Numerical data	Numerical data
Mode #	f _n [Hz] BFT	f _n [Hz] BFV	f _n [Hz] BFT	f _n [Hz] BFV
1	4.8	7.7	5.9	8.0
2	8.2	15.3	10	14.1
3	52	50.1	52.6	52.0

Applicazione

Alimentatore a magneti verticali

	Forza trasmessa a telaio (orig)	Forza trasmessa a telaio (mod1)
Dir tangenziale	139 N	56 N
Dir verticale	169 N	103 N

Mod1: Variazione dell'inclinazione balestra di 5 deg

OBJECT OF THE INVESTIGATION

This research activity consists of an intensive campaign testing conducted on a EC-135 helicopter cabin.

EUROCOPTER EC-135

EC135 is a light twin-engine, multipurpose helicopter with up to 8 seats for pilot/s and passengers.

MEASURED GRID POINTS

Measured gread points of the cabin external

surface by means of Microflown sensors

RESULTS: mode shapes

First mode shape coloured map of the cabin external surface (a) (45.2 [Hz]) and the cabin internal surface (b) (46.3 [Hz])

Goal of this research

Evaluation of the **rigid-body inertia proprieties** (mass, COG and inertia tensor) of a **prosthesis** for trans-femoral amputees, namely the aboveknee prosthesis **C-Leg 3C100**

•Accurate geometrical wireframe •weight

Practical tests showed that the best results are obtained with at least 6 excitation DOFs and 24 response DOFs

Inertia Restrain Methods (IRM):

Kinematics step

 $\ddot{\mathbf{P}}_{i} = \ddot{\mathbf{O}} + \left[\ddot{\dot{\boldsymbol{\omega}}} + \left(\tilde{\boldsymbol{\omega}}^{2}\right)\right]\mathbf{P}_{i}$ 1)

Acceleration of the point Pi

2) $\frac{\ddot{\mathbf{P}}_{i}}{F_{i}} = \begin{bmatrix} \mathbf{I}_{3} & -\tilde{\mathbf{P}}_{i} \end{bmatrix} \begin{bmatrix} \mathbf{O}/F_{j} \\ \dot{\boldsymbol{\omega}}/F_{i} \end{bmatrix}$

more than 3 non-aligned response points (between 8 and 12 response points in three directions are suggested) allow to calculates the 6 FRFs

~ skew-symmetric matrix

Prosthesis Test

+		Test 1	Test 2
	RB Inertia Property	Prosthesis	Hydraulic part+ modular pipe
	G_{x}	14.11	13.68
	G_{y}	-0.2275	-0,3020
	G_{z}	-3.6185	-3.3832
	$J_{_{XX}}$	0.003001	0.002384
	$J_{_{yy}}$	0.05909	0.05760
	J_{zz}	0.05677	0.05696
	$J_{_{\chi y}}$	0.0005828	0.001172
	J_{xz}	-0.008662	-0.006094
	J_{yz}	-0.0001996	-0.0003415

POR FESR 2007-2013 OBJETTIVO COMPETITIVITÀ E OCCUPAZIONE Regione Emilia-Romagna

RETE ALT E M I L I A HIGH TECH

MECCANICA MATERIALI

2. Controllo qualità e diagnostica di difetti mediante analisi vibratoria

Diagnostica di malfunzionamenti

Controllo qualità

Organo sano

Manutenzione predittiva

lande have not seen and the anti-photon of the land the second and the second and the second and the second and

Organo danneggiato

Tecnica basata sulla correlazione di immagini per la classificazione buono/scarto in motori a c.i.

Diagnostica e controllo qualità in motori C.I.

MATERIALI

Diagnostica e controllo qualità in motori C.I.

Healthy REFERENCE Pattern

Rod screws tightened with a preload of only 3 kgm (RS3 engine)

Percentage of common white pixel correlations

Pattern REFERENCE Healthy – Pattern Healthy engine (THRESHOLD) = 25.08%
Pattern REFERENCE healthy – Pattern Faulty RS3 engine = 10.80%
Pattern REFERENCE healthy – Pattern Faulty RS4 engine = 21.83%
Pattern REFERENCE healthy – Pattern Faulty CRM engine = 22.07%

Diagnostica e controllo qualità in ruote dentate e riduttori (ordinari e epicicliodali)

Tipologie di difetti studiati: -cattiva lavorazione -usura -scarsa lubrificazione -cricche -ammaccature

5 mm

COSTRUIAMO INSIEME IL FUTURO

Diagnostica e controllo qualità in ruote dentate e riduttori

università di ferrara da seicento anni guardiamo avanti.

neEmilia-Romagna

Diagnostica e controllo qualità in cuscinetti

MATERIAL

Tipologie di difetti studiati: -cattiva lavorazione -usura -pitting -cricche -piste e/o sfere danneggiate

Comparsa del difetto alla 22° acquisizione durante un test di durata

Componente analizzato: possibili criticità

Le difettosità più critiche sono:

- Mancato incollaggio tra battistrada e mozzo;
- Presenza di ruggine sulla superficie del mozzo

Battistrada in poliuretano

Mozzo in ghisa

Realizzazione dei difetti

- Mancato incollaggio tra battistrada e mozzo;
- Presenza di ruggine sulla superficie del mozzo

Apparato sperimentale 😥 tellure Rôta

Celle di carico

Rullo guidato da un motore elettrico comandato da inverter

Sensore di emissione acustica

Accelèrometro triassiale

Tecniche di analisi del segnale

Segnale mediato con il giro del rullo

Segnale depurato dalla periodicita' del rullo

<u>ANALISI</u> <u>CICLOSTAZIONARIETA'</u> <u>DEL PRIMO ORDINE</u>

Segnale mediato con il giro della ruota

Segnale residuo

Parametri statistici applicati alla media sincrona (Kurtosis, RMS)

Indicatori di ciclostazionarietà del primo e del secondo ordine

I parametri statistici applicati alla media sincrona, valutata sul giro di rotazione della ruota, sono sensibili a difetti di mancato incollaggio di dimensione minima pari a circa 8 mm di estensione circonferenziale

L'indicatore di ciclostazionarieta' del secondo ordine permette di evidenziare la presenza di difetti di mancato incollaggio piu' piccoli o difetti di ruggine

Sistema di monitoraggio e diagnostica: HARDWARE

- SCHEDA ACQUISIZIONE NATIONAL INSTRUMENTS NI 9234, 24-Bit Sigma-Delta ADCs, 51.2 kS/s Max SampRate, 4 Input Simultaneous, Software Selectable IEPE AC/DC Coupling, Anti-Aliasing Filters, 102 dB Dynamic Range cDAQ-9174, CompactDAQ chassis (4 slot USB)
- ACCELEROMETRO MODELLO 623C00, SERIAL NUMBER 10763 ICP ACCELEROMETER IMI SENSITIVITY: 9.7 mV/g, peso 30-40 g sensibilità 10mV/g - ICP - range frequenza[0.5 10kHz
- **sensori tachimetrici** PCB per la stima della velocità di rotazione delle ruote.

•ACCELEROMETRO INDUSTRIALE

•KIT TACHIMETRICO.

Sistema di monitoraggio e diagnostica: SOFTWARE

Model based diagnostics (on-going)

Co-progettazione di sistemi meccanici complessi comprendente ideazione dell'architettura meccanica, analisi cinematica, progettazione degli azionamenti, progettazione e verifica dei componenti, analisi di affidabilità, verifiche sperimentali.

Progettazione dinamico/vibratoria di meccanismi per trasporto pasta alimentare per ridurre gli effetti inerziali (miglioramento di leggi di moto)

3. Progettazione ed analisi di meccanismi/sistemi meccanici (co-progettazione)

Progettazione cinematica/dinamica di presse piegatrici per miglioramento di leggi di moto

Analisi vibrazioni

Individuazione di soluzioni progettuali migliorative

5400rpm – direzione Y del manico

5400 rpm – direzione Y del manico

Data

Mechnalis Modale Sperimentale del telaio e della sella

Il telaio e la sella sono stati eccitati mediante martello strumentato misurando la risposta vibratoria con accelerometri triassiali.

Sono stati eccitati complessivamente 28 punti (punti da 1 a 28) prevalentemente in direzione x e z. La risposta vibratoria è stata misurata in 2 punti (punti 5 e 19).

FORME MODALI

direzione e l'ampiezza relativa dello spostamento.

Modo 1: 27.55 Hz Spostamento prevalente lungo Z che si intensifica nei punti vicino alla sella e ai pedali.

Modo 2: 127.34 Hz Spostamento prevalente lungo Z.

Verifica di soluzioni progettuali

Individuazione di soluzione progettuali migliorative

Strumentazione disponibile

•Strumentazione completa per analisi modale sperimentale e analisi vibroacustica (accelerometri, martelli strumentati, shaker)

- •Frontali di acquisizione dati da laboratorio e imbarcabili fino a 50 canali
- •Software Multibody e ad elementi finiti per la simulazione e ottimizzazione dinamica.
- •Banco prova per test di componenti rotanti(giunti, ruote dentate, riduttori, cuscinstti)
- •Sensori senza contatto (laser doppler e Microflown)

Workstation ad alte prestazioni

TECHNOLOGY NETWO

