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Loss Mechanisms in 
Turbomachines 
The origins and effects of loss in turbomachines are discussed with the emphasis 
on trying to understand the physical origins of loss rather than on reviewing the 
available prediction methods. Loss is defined in terms of entropy increase and the 
relationship of this to the more familiar loss coefficients is derived and discussed. 
The sources of entropy are, in general: viscous effects in boundary layers, viscous 
effects in mixing processes, shock waves, and heat transfer across temperature 
differences. These are first discussed in general and then the results are applied to 
turbomachinery flows. Understanding of the loss due to heat transfer requires some 
discussion of cycle thermodynamics. Sections are devoted to discussing blade bound
ary layer and trailing edge loss, tip leakage loss, endwall loss, effects of heat transfer, 
and miscellaneous losses. The loss arising from boundary layer separation is par
ticularly difficult to quantify. Most of the discussion is based on axial flow machines, 
but a separate section is devoted to the special problems of radial flow machines. 
In some cases, e.g., attached blade boundary layers, the loss mechanisms are well 
understood, but even so the loss can seldom be predicted with great accuracy. In 
many other cases, e.g., endwall loss, the loss mechanisms are still not clearly under
stood and prediction methods remain very dependent on correlations. The paper 
emphasizes that the use of correlations should not be a substitute for trying to 
understand the origins of loss, and suggests that a good physical understanding of 
the latter may be more valuable than a quantitative prediction. 

1 Introduction 
Efficiency is probably the most important performance pa

rameter for most turbomachines. This is especially true for gas 
turbine engines, whether used for aircraft propulsion or for 
land-based power plants, because their net power output is the 
difference between the turbine work and the compressor work. 
These are roughly in the ratio 2:1 so a small change in the 
efficiency of either component causes a much larger propor
tional change in the power output. 

Over the years enormous effects have been expended in 
trying to improve the efficiency of all types of turbomachines, 
and for many large machines the total-to-total efficiency is 
now over 90 percent. This makes further improvements ever 
more difficult to obtain; however, advances are still possible, 
not only in the efficiency itself but also in the amount, and 
hence cost, of the development work needed to achieve the 
required performance. Present levels of efficiency have been 
achieved by an ever-improving understanding of the fluid me
chanics and thermodynamics of the flow, which in turn has 
been obtained by a combination of improved experimental and 
theoretical methods applied both to whole machines and to 
individual components. In particular the advent of modern 
numerical methods of flow calculation has greatly improved 
our ability to model the flow through a machine. 

The factors influencing efficiency are extremely complex. 
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Before the advent of the aircraft gas turbine they were scarcely 
recognized and the development of turbomachines such as 
steam and hydraulic turbines, pumps, and fans proceeded 
largely on a trial and error basis. The explosion of research 
on aircraft engines in the 1940s and 50s led to a great im
provement in our understanding and several performance pre
diction methods were developed, e.g., Howell (1945), and 
Ainley and Mathieson (1951), some of which are still in use 
today. These methods categorized the sources of loss in the 
machine, typically as profile loss, secondary (or endwall) loss, 
and tip leakage loss, and attempted to predict each indepen
dently of the others. The predictions were usually based on 
correlations of experimental data obtained either from cascade 
tests or from the performance of actual machines. In some 
cases analytical models of the loss production mechanisms were 
formulated, e.g., Carter (1948), but these were usually highly 
idealized. 

These performance prediction methods were widely used in 
the 60s and 70s with comparatively little development. Al
though the predictions of the individual loss components were 
sometimes shown to be of very limited accuracy (Denton, 1973; 
Dunham, 1970), the overall methods were empirically tuned 
by each manufacturer to obtain agreement with his existing 
machines and were then extrapolated to predict the perform
ance of new designs. In this way the efficiency could usually 
be predicted to an accuracy of about ±2 percent. This success 
sometimes led to a view that the predictions were based on a 
sound understanding of the flow physics. It is the author's 
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view that this is seldom the case and that the success of these 
methods has led to an excessive reliance upon them and a 
reluctance to query their basic principles and assumptions. 
There have been many instances where a designer was unwilling 
to try out a new idea because a 30-year-old loss correlation 
predicted that it would give no improvement. 

In the late 1970s and 1980s the advent of new instrumen
tation, e.g., laser anemometer measurements and ensemble-
averaged hot-wire data, led to a greatly improved understand
ing of the flow, both in cascades and in actual machines. Better 
numerical predictions of the flow also contributed to this un
derstanding, especially as regards three-dimensional effects. 
These new measurements and calculations showed that the real 
flow in a turbomachine is extremely complicated due to both 
three-dimensional effects and unsteadiness. In particular 
boundary layer transition was found to be a much more com
plex phenomenon than previously imagined (Mayle, 1992). 
Although the simple models used for performance prediction 
were shown to be grossly oversimplified, it was not apparent 
how they could be extended to include the new physics. The 
latter was too complex to be described by a simple model while 
numerical solutions were (and are) not yet accurate enough to 
give quantitative predictions of unsteady turbulent flow. 

The result of these developments is currently that, while the 
improved understanding of the flow has been assimilated by 
many research workers and designers, most practical perform
ance prediction methods continue to be based on correlations. 
Such correlations can tell us nothing about new design features 
that were not available at the time the correlation was devel
oped. For example, such features as three-dimensional blade 
stacking for turbines or end-bending for compressors are not 
included in any published performance prediction method. 
Although the effects of such geometric changes on the inviscid 
flow can now be predicted numerically, their effects upon the 
loss can still not be quantified. In these circumstances a de
signer can only use his judgment and understanding of the 

flow physics in deciding on desirable changes. It is the author's 
view that a good physical understanding of the flow, and 
particularly of the origins of loss, is more important to the 
designer than is the availability of a good but oversimplified 
loss correlation. The objectives of this paper are to try to help 
young engineers to develop this understanding and to make 
more experienced engineers see things in a new light. 

Most publications are concerned with emphasizing how well 
their authors understand the problem they are addressing. In 
contrast this paper will .emphasize our lack of understanding 
of many loss generating mechanisms in the hope that if we 
realize our limitations we will more easily be able to overcome 
them. 

2 Loss Components and Loss Coefficients 

The historical breakdown of loss into "profile loss," "end-
wall loss," and "leakage loss" continues to be widely used 
although it is now clearly recognized that the loss mechanisms 
are seldom really independent. 

Profile loss is usually taken to be the loss generated in the 
blade boundary layers well away from the end walls. It is often 
assumed that the flow here is two dimensional so the loss may 
be based on two-dimensional cascade tests or boundary layer 
calculations. The extra loss arising at a trailing edge is usually 
included as profile loss. 

Endwall loss is still sometimes referred to as "secondary" 
loss because it arises partly from the secondary flows generated 
when the annulus boundary layers pass through a blade row. 
However, it will become clear that the loss does not arise 
directly from the secondary flow but is due to a combination 
of many factors. It is often difficult to separate endwall loss 
from profile loss and leakage loss and the title "secondary 
loss" is sometimes taken to include all the losses that cannot 
otherwise be accounted for. 

Tip leakage loss arises from the leakage of flow over the 
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TURBINE COMPRESSOR 

Fig. 1 Enthalpy-entropy diagram for cascade flow 

tips of rotor blades and the hub clearance of stator blades. 
The detailed loss mechanisms clearly depend on whether the 
blades are shrouded or unshrouded. The interaction between 
the leakage loss and the endwall loss may be very strong, 
especially for unshrouded compressor blades, and some meth
ods do not distinguish between endwall loss and leakage loss. 

The relative magnitudes of the above three categories of loss 
are dependent on the type of machine and on such details as 
blade aspect ratio and tip clearance. However, in many ma
chines the three are comparable in magnitude, each accounting 
for about 1/3 of the total loss. 

So far we have used the word "loss" without defining what 
we really mean by it. In general any flow feature that reduces 
the efficiency of a turbomachine will be called loss, but this 
does not include factors that affect the cycle efficiency as 
opposed to the turbine or compressor efficiency. 

2.1 Definitions of Loss Coefficient. There are many dif
ferent definitions of loss coefficient in regular use for indi
vidual blade rows. Perhaps the most common is the stagnation 
pressure loss coefficient; referring to Fig. 1 this is defined by 

Y= (Pol -P02)/{Poi ~P\) for a compressor blade (la) 

and 

Y=(Poi-Po2)/(Po2-P2) for a turbine blade (lb) 

The reason that this definition of loss coefficient is so common 
is that it is easy to calculate it from cascade test data and not 
because it is the most convenient to use in design. 

A more useful loss coefficient for design purposes is the 
energy or enthalpy loss coefficient; again referring to Fig. 1 
this is defined by 

f= — for a turbine blade (2a) 
h02-h2 

and 

>-_._ _ for a compressor blade (2b) 
ho\-hx 

where the isentropic final enthalpy, h^, is the value obtained 
in an isentropic expansion or compression to the same final 
static pressure as the actual process. There are many other 
definitions of blade row loss coefficient in use; these are com
pared by Brown (1972) who shows that the energy loss coef
ficient is most likely to be independent of Mach number. 

These blade row loss coefficients are perfectly satisfactory 
for cascade tests but are not directly applicable in machines 
where, in a rotating blade row, the relative stagnation pressure 
and the relative stagnation enthalpy can change as a result of 
changes in radius without there being any implied loss of ef
ficiency. In a machine we define the isentropic efficiency as 
the ratio of the actual work to the isentropic work and so the 
only factors that change this efficiency are departures from 
isentropic flow. These may be due to either heat transfer or 
to thermodynamic irreversibility. For most machines the flow 

is closely adiabatic and so only entropy creation by irrever
sibilities contributes significantly to the loss of efficiency. 

From the above v/e can conclude that the only rational meas
ure of loss in an adiabatic machine is entropy creation. Any 
irreversible flow process creates entropy and so inevitably re
duces the isentropic efficiency. It follows that individual blade 
row loss coefficients should really be defined in terms of en
tropy increase rather than stagnation pressure or kinetic energy 
loss. Entropy is a particularly convenient measure because, 
unlike stagnation pressure, stagnation enthalpy, or kinetic en
ergy, its value does not depend on whether it is viewed from 
a rotating or a stationary blade row. Once the entropy increase 
in every blade row has been calculated the results may be 
summed to find the entropy increase for the whole machine. 
If we know one other thermodynamic property of the flow at 
exit from the machine, e.g., pressure or enthalpy, the state of 
the fluid leaving it is completely determined and hence the 
machine efficiency can be calculated. 

Entropy is an unfamiliar quantity because it cannot be seen 
or measured directly, its value can only be inferred by meas
uring other properties. Basic thermodynamics tells us that for 
a single phase fluid entropy is a function of any two other 
thermodynamic properties such as temperature and pressure. 
For a perfect gas two of the relationships between specific 
entropy and more familiar quantities are 

s-sK!=Cp\n(T/Trd)-R\n(P/PKf) (3a) 

and 
s~sKf=Cvln(T/Trel) -R\n(p/pre{) (3b) 

The temperatures, pressures, and densities used in these equa
tions may be either all static values or all stagnation values 
because by definition the change from static to stagnation 
conditions is isentropic. Note that these equations only give 
changes of entropy, but this is also what determines turbo-
machine performance. The absolute value of entropy is always 
arbitrary. 

For adiabatic flow through a stationary blade row stagnation 
temperature is constant and so entropy changes depend only 
on stagnation pressure changes via 

As=-Rln(Po2/Pol) (4a) 

or, for small changes in stagnation pressure 

As=-RAP0/P0 (4b) 

Hence for stator blades and cascade flows loss of stagnation 
pressure can be taken to be synonymous with increase of en
tropy. 

We must always be careful to distinguish between specific 
and total entropy. When we calculate entropy increases in the 
future we will usually obtain the total rate of entropy creation 
and must then divide it by the mass flow rate to obtain the 
change of specific entropy. 

Because great use will be made of entropy throughout this 
paper it may be useful to introduce an analogy to help to 
understand it. Entropy may be considered to be like "smoke" 
that is created within the flow whenever something deleterious 
to machine efficiency is taking place. For example, "smoke" 
is continually being created in blade boundary layers and in 
shock waves. Once created the "smoke" cannot be destroyed 
and it is converted downstream through the machine and dif
fuses into the surrounding flow. The concentration of "smoke" 
at the exit from the machine includes a contribution from every 
source within the machine and the loss of machine efficiency 
is proportional to the average concentration of "smoke" at 
its exit. 

We can define an entropy loss coefficient by 

T Av 
ts = - — for turbine blades (5a) 

h02-h2 

and 
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Fig. 2 Expansion and compression processes on the h-s chart 

t,= 
T2As 

h„,-h. 
for compressor blades (5b) 

Using the fact that the slope of the constant pressure lines 
on the h-s chart is equal to the local static temperature, it 
can be shown that the difference between the energy and en
tropy loss coefficients is 

r , - r » 0.25(7 -i)M2rrs 
(5c) 

which is of order 1CT3 and so is always negligible. Throughout 
the remainder of this paper no distribution will be made be
tween energy and entropy loss coefficients. 

The entropy loss coefficients defined by Eq. (5) may be used 
directly as a measure of entropy production both in a cascade 
flow with constant stagnation temperature and also in the flow 
through the rotating blade rows of a machine where the relative 
stagnation temperature and pressure change due to change of 
radius. 

At low speeds all definitions of loss coefficient approach 
the same value. The differences between them are only sig-
nificani at relative Mach numbers greater than about 0.3. When 
deriving theoretical results for incompressible flow later in this 
paper no distinction will be made between the various defi
nitions of loss coefficient. 

2.2 Relation of Loss to Drag. In external aerodynamics 
the ultimate measure of lost performance is the drag on the 
aircraft or other object under consideration. It is not surpris
ing, therefore, that the concept of drag has been carried over 
into turbomachinery flows. However, in order to define a drag 
we must first define a direction in which it acts. The choice 
of this direction is obvious for external flows but is not at all 
obvious in turbomachinery where a force acting in the direction 
of blade motion is essential for work transfer and a force acting 
in the meridional direction is essential for pressure changes. 
For example, the skin friction force acting on a highly staggered 
compressor blade has a large component in the opposite di
rection to rotation and so contributes to the work input. It is 
not immediately clear whether or not this work input contrib
utes to the pressure rise. 

In incompressible two-dimensional cascade flow it is possible 
to relate the component of blade force in the vector mean flow 
direction to the loss of stagnation pressure and hence to the 
entropy rise. This analysis is given in most textbooks, e.g., 
Horlock (1958). However, no such simple relationship exists 
for compressible flow or for flows that are not strictly two 
dimensional. Even when the relationship is valid it does not 
help us to understand the origins of loss. For example, does 
it imply that skin friction on parts of the blade surface that 
are highly inclined to the vector mean direction do little harm 
while that on parts of the surface aligned with the vector mean 
direction do most harm? Again the answer is not apparent. 

It is the author's view that the concept of drag is of little 
use in turbomachinery and should be replaced by the concept 
of entropy generation. However, there are relationships be
tween the two that can sometimes be useful. It is shown in 

Appendix 1 that in any flow with constant stagnation enthalpy 
the rate of entropy increase along a streamline is related to the 
viscous force per unit mass Fx acting on the fluid in the direction 
of the streamline by 

„ds 
T*c~F* 

(6) 

For one-dimensional flow in a duct of cross-sectional area 
A Eq. (6) can be integrated over the duct to give the change 
in specific entropy As along a short length of the duct as 

TAs= - — 
pA 

(7) 

where AF is the streamwise component of the viscous force 
exerted by the boundaries on the fluid and may arise either 
from skin friction or from pressure drag. However, application 
of the equation in this form is difficult and may be misleading 
because it is only valid for uniform flow, i.e., with no gradients 
in the cross-stream direction. Nonuniform flow, even if there 
are no frictional forces on the walls, can cause the entropy to 
increase. For example, the mixing of two parallel streams with 
different velocities is considered in Appendix 2 and is shown 
to be irreversible even when there is no force acting. 

Turning Eq. (6) into one for the total rate of entropy creation 
in the duct we get 

-ms = -\jy-VvdVol (8) 

where V is the local flow velocity vector, F„ is the vector 
representing the local viscous force per unit volume, and the 
integral is over the volume of the duct. This relationship be
tween the viscous forces and entropy creation is always valid 
for adiabatic flow but it is not generally useful because we 
need to know the viscous force acting on every particle of 
fluid, not only the drag on the solid boundaries. It does, how
ever, show that the entropy creation rate is likely to be high 
in regions where high velocities coincide with high viscous 
forces. 

2.3 Relation of Entropy Change to Machine Effi
ciency. The relationship between entropy creation and ma
chine isentropic efficiency can be clearly seen by considering 
the expansion or compression process on an enthalpy-entropy 
diagram, Fig. 2. 

Neglecting any difference between static and stagnation con
ditions and assuming no external heat transfer, the efficiency 
is closely given by 

h\-hr 

and by 

Vt-

Vc 

hi-h2+T2(s2-Sl) 
for a turbine 

T2(s2-Si) 
•• 1 —— TT~ for a compressor 

(9a) 

(9b) 
{h2-hi) 

The approximation only arises because we have assumed that 
the static temperature is constant along the line 2-2s in Fig. 
2. This is unlikely to produce a significant error in most prac
tical cases. 

We see (Eq. (9b)) that the loss of efficiency of a compressor 
is directly proportional to the increase in specific entropy 
through the machine and also to its exit temperature. The same 
is very closely true for a turbine (Eq. (9a)) provided that the 
efficiency is high. 

When entropy is created by a fluid dynamic process, the 
magnitude of entropy creation is usually inversely proportional 
to the local temperature, e.g., TAs= f x 1/2 V2 is a common 
result. The loss coefficient f is unlikely to depend on temper
ature and so a flow process with fixed values of loss coefficient 
and flow velocity creates less entropy at a high temperature 
than does the same process taking place at a'lower temperature. 
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The enthalpy change through a stage is always proportional 
to V2 so the changes in enthalpy and entropy as fluid passes 
through a machine are related by 

Asoc^Ah/T (10) 
i.e., for constant values of loss coefficient, the magnitude of 
the slope dh/ds of the expansion or compression line on the 
h-s chart is proportional to temperature. This is reflected in 
the slopes of the compression and expansion processes illus
trated in Fig. 2. 

Since the loss of overall isentropic efficiency is proportional 
to the total entropy creation for both compressors and turbines, 
an irreversible flow process taking place at high temperatures 
produces a lower loss of overall efficiency than does the same 
process at low temperatures. This is the origin of the well-
known "reheat effect," which causes the polytropic efficiency 
of a machine to be different from the isentropic efficiency. 
The result is that irreversibilities in the flow through the high-
pressure stages of turbines and compressors tend to be less 
deleterious to the overall isentropic efficiency than those in 
the low-pressure stages. An estimate of the contribution of 
individual stage efficiencies to the overall isentropic efficiency 
may be obtained by summing the stage entropy increases, giv
ing 

1 ~ Coverall •* exit V~1 U ~ 17slage)"' islage (M\ 

Coverall o v e r a | l all stages ?̂stage ̂  2 stage 

The importance of this "reheat effect" increases with the over
all temperature ratio of the machine. It is of approximately 
equal magnitude in high-pressure-ratio steam turbines and in 
aircraft engine compressors and turbines and is negligible for 
low-speed machines. 

2.4 Mechanisms for Entropy Creation. Basic thermo
dynamics tells us that entropy creation occurs due to the fol
lowing fluid dynamic processes: 

1 Viscous friction in either boundary layers or free shear 
layers. The latter include the mixing processes in, for 
example, a leakage jet. 

2 Heat transfer across finite temperature differences, e.g., 
from the mainstream flow to a flow of coolant gas. 

3 Nonequilibrium processes such as occur in very rapid ex
pansions or in shock waves. 

The remainder of this paper will examine the entropy creation 
by each of these mechanisms in detail and will show how it 
can be quantified or approximated in practical situations. 

3 Entropy Generation in Boundary Layers 
Appendix 1 derives an expression for the rate of change of 

entropy flux in a two-dimensional boundary layer as 

Sa = j x \ {PVx(s-s&))dy=^yyxdVx (12) 

Sa may be thought of the rate of entropy production per unit 
surface area. Note that this is the total rate of entropy creation 
not the change in specific entropy. 

Locally, within the boundary layer, the rate of entropy cre
ation per unit volume is 

This may be interpreted as the viscous shear work, rdV/dy, 
being converted to heat at temperature T. 

Typical variations of shear stress with velocity through tur
bulent boundary layers with Re9=1000 are given in Fig. 3. 
These were obtained from calculations using the Cebeci and 
Carr (1978) boundary layer code. Equation (12) shows that 
the area under the T—V curve is proportional to the rate of 

Fig. 3 Variation of shear stress with velocity through boundary layers 
with Re, = 1000 

entropy creation per unit surface area. It is noteworthy that 
for most boundary layers the velocity changes most rapidly 
near the surface and so most of the entropy generation is 
concentrated in the inner part of the layer. This is especially 
the case for turbulent boundary layers where much of the 
entropy creation occurs within the laminar sublayer and the 
logarithmic region. The well-known "universal velocity pro
file" of the boundary layer shows that only the outer part of 
the layer (Y+ > 500) is greatly affected by the streamwise pres
sure gradient. Since this part generates little of the entropy, 
this result suggests that the entropy generation may be relatively 
insensitive to the detailed state of the boundary layer. Dawes 
(1990) gives a more detailed breakdown of the entropy gen
eration in a boundary layer showing that about 90 percent of 
the entropy generation occurs within the inner part of the layer. 

For practical use it is convenient to turn the entropy pro
duction rate into a dimensionless dissipation coefficient, which 
is defined by 

Cd=TSa/PVi (14) 
where Vf, is the velocity at the edge of the boundary layer. 

The exact magnitude of the dissipation coefficient cannot 
be calculated without knowing full details of the state of the 
boundary layer. However, correlation of much experimental 
work has led to some general results. These are described by 
Schlichting (1966). The most striking feature is that for tur
bulent boundary layers the dissipation coefficient is much less 
dependent on the state of the boundary layer, i.e., on the shape 
factor, than is the more familiar skin friction coefficient. 
Schlichting gives the following equation for turbulent bound
ary layers with 1.2<H<2.0 and with 103<Re9< 105: 

Cd = 0.0056 Ree"
1/6 (15) 

This equation is compared with results from the Cebeci cal
culation for three different boundary layers in Fig. 4. The 
boundary layer code gives similar results to Eq. (15) for a 
constant pressure boundary layer but the accelerated boundary 
layer has a significantly lower rate of entropy generation. The 
diffusing boundary layer represents a compressor blade suction 
surface at a Reynolds number of 5 x 10s where the boundary 
layer is near separation and the dissipation coefficient is pre
dicted to be about 45 percent greater than that suggested by 
Eq. (15). 

This comparison suggests that for Ree>500 the dissipation 
coefficient is relatively insensitive to the boundary layer thick
ness (i.e., proportional to 6~1/e). In the range 500<Res< 1000 
it is also relatively insensitive to the shape factor of the bound
ary layer. Denton and Cumpsty (1987) suggest that for many 
turbomachine blades where the average Re# is of order 1000, 
a reasonable approximation is simply to take 
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Fig. 4 Calculated dissipation coefficients for turbulent boundary layers 
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Fig. 5 Dissipation coefficient for laminar and turbulent boundary layers 

Cd = 0.002 = const (16) 

for turbulent boundary layers. Moore and Moore (1983) found 
a similar value of Cd= 0.0024 for one particular boundary 
layer. However, Eq. (15) and the results from Fig. 4 suggest 
that a value of Q = 0.0018 may be more appropriate. 

For laminar boundary layers, the dissipation coefficient is 
more dependent on boundary layer thickness. Truckenbrodt 
(1952) quotes results showing 

Q = /3Ree-' (17) 

where the value of (3 varies only slightly with shape factor, 
being about 0.17 for typical laminar boundary layers. The same 
author also quotes an analytical result giving ,6 = 0.173 for a 
laminar boundary layer with no pressure gradient. 

An analytical result can be derived for laminar boundary 
layers by integrating the well-known Pohlhausen family of 
velocity profiles (Schlichting, 1978, p. 206) to give 

Cd= Re„-' (0.1746 + 0.0029X + 0.000076X2) (18) 

where terms with higher powers of X have been neglected. X 
is the Pohlausen pressure gradient parameter whose value 
ranges from + 12 for a highly accelerated boundary layer to 
- 12 at separation. The corresponding range of j3 is 0.220 to 
0.151. Hence Eq. (18) confirms that the dissipation coefficient 
is relatively insensitive to the state of the boundary layer, the 
dissipation being slightly increased in an accelerating boundary 
layer and reduced in one near separation. Since laminar bound
ary layers are much more likely to exist on turbomachinery 
blades with favorable pressure gradients, i.e., with X positive, 
a typical value of /3 = 0.2 as suggested by Denton and Cumpsty 
is realistic. 

The variation of Cd with Res obtained from Eqs. (15) and 

(17) is shown in Fig. 5. It is noteworthy that in the Re9 range 
where either a laminar or a turbulent boundary layer could 
exist, i.e., 300<Reo<1000, the dissipation in the laminar 
boundary layer is much less (by a factor of between 2 and 5) 
than that in the turbulent one. This large difference highlights 
the importance of predicting boundary layer transition on tur-
bomachine blades. 

There are no known results for the effects of Mach number 
on the dissipation coefficient. However, over the Mach number 
range prevalent in turbomachines, 0 < M < 2 , the effects of 
Mach number on skin friction are generally considered to be 
small. The effects on entropy generation, as shown by Eq. 
(12), should be similar. However, the increase in temperature 
near the surface, where most of the entropy generation is taking 
place, implies that the surface temperature rather than the free-
stream static temperature should be used in Eq. (12). For 
adiabatic surfaces this will not be significantly different from 
the stagnation temperature of the flow. 

The entropy increase of fluid in the boundary layer may be 
used to define an entropy thickness of the boundary layer by 

PsVs r pV(s-s&)dy (19) 

When defined in this way the entropy thickness becomes iden
tical to the more familiar energy thickness 8e of the boundary 
layer at low speeds. 

Since all the entropy produced upstream of a point on the 
surface is contained in the boundary layer at that point, we 
can write an equation relating the total entropy generation to 
the local entropy thickness as 

pvfa 
•In 

vicd dx (20) 

The terms in this equation represent all of the entropy produced 
up in the boundary layer up to the point in question; in par
ticular, at the trailing edge they represent all the entropy pro
duced on the blade surface. 

4 Entropy Generation in Mixing Processes 
Entropy creation due to viscous shear occurs whenever a 

fluid is subject to a rate of shear strain. The rate of shear 
strain is not the same as the vorticity and so viscous dissipation 
is not confined to boundary layers. Even in the mainstream 
of an irrotational flow the fluid is being sheared and so entropy 
is being created (e.g., a free vortex flow will gradually change 
to a forced vortex, which has no shearing) but the rate of 
creation is usually negligible compared to that in shear layers. 

Relatively high rates of shearing occur in wakes, at the edges 
of separated regions, in vortices, and in leakage jets. Since 
these are usually associated with turbulent flow the effective 
viscosity may be large, typically over 100 times the laminar 
viscosity, and the local entropy creation rates are considerable. 
The flow processes involved are extremely complex and often 
unsteady so it is seldom possible to quantify the local entropy 
creation rates. However, in many such processes the overall 
entropy creation can be calculated from a control volume anal
ysis, which applies the equations for the conservation of mass, 
energy, and momentum between an upstream boundary, at 
which the flow is assumed known, and a far downstream 
boundary where the mixing processes are assumed to have 
restored the flow to a completely uniform condition. They key 
feature that makes such an approach possible is that we know 
that mixing will continue until the flow has become uniform, 
even although we do not know how long this will take. For 
example, the velocity deficit in a wake decays continually with 
distance downstream; we do not need to know the exact rate 
of decay to predict the overall result. As long as the mixing is 
effectively complete by the time the Flow leaves the region of 
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Fig. 6 Entropy loss coefficient for the mixing of two streams at different 
stagnation pressures and temperatures. See Fig. A2.1 for notation. 

Fig. 7 Mixing of injected flow with a mainstream flow at a different 
velocity and temperature 

interest we can calculate the total entropy created without 
knowing the details of how or where the mixing takes place. 

As an example of such a mixing process Appendix 2 gives 
the theory for the mixing of two streams of fluid, which initially 
have different stagnation temperatures and pressures, in a con
stant area duct. Results for the entropy loss coefficient are 
presented in Fig. 6 for the case when the two streams initially 
occupy equal areas, and it can be seen that the total entropy 
creation depends on the difference in both the stagnation tem
perature and the stagnation pressure of the flows. 

A great simplification of the theory is possible for the case 
when the flow rate of one of the steams is small. The theory 
for this case is presented by Shapiro (1953). For the case il
lustrated in Fig. 7 when a small flow of fluid, mass flow rate, 
mc, is injected at an angle a and with velocity Vc and stagnation 
temperature Toc into a mainstream flow, which has mass flow 
rate m,„, velocity Vm, Mach number M,„, and stagnation tem
perature Tom, the result is 

As=Cn 

m„ 
I + ^ M £ 

+ (y-\)Ml 1 
Vc cos a 

(21) 

If the two streams have the same stagnation temperature, 
this gives the rate of entropy creation as 

Tm,„ As =TS = mc(Vl- V,„ Vc cos a) (22) 

This result is for the entropy change of the main flow and 
does not include the entropy change of the injected flow. It 
will be extensively used later in this paper. Equations (21) and 
(22) are valid for both constant pressure and constant area 
mixing provided that the pressure and area changes are small. 

In practice we cannot usually say exactly where mixing takes 

place and so we may not be able to assume that the pressure 
and area changes during mixing are small. It is therefore of 
interest to see how the total entropy production depends on 
the area in which the mixing takes place. Consider the situation 
sketched in Fig. 7 where, for simplicity the angle a is chosen 
to be 90 deg, the flow is assumed incompressible, and the 
stagnation temperature and pressure of the injected fluid are 
the same as that of the mainstream. A continuity and mo
mentum balance gives the following result for the total entropy 
creation: 

AP I m ' ^ 2x 

TS= -(mm + mc)—- = 0 .5^ ,m c 2 + 3 — + 
P V mm 

(23) 

We imagine that the flow rate of the injected fluid mc is held 
constant while the height of the duct is changed with V,„ con
stant. Then m,„ changes in proportion to the area of the duct 
and Eq. (23) shows that, provided mc/m,„ is small, the total 
entropy creation does not depend greatly on mm, i.e., on the 
area in which the mixing takes place. A similar result is obtained 
if the mixing is assumed to be at constant pressure rather than 
at constant area. This helps to justify a common assumption 
that the mixing (of say a coolant or a tip leakage jet) takes 
place with the whole mainstream flow rather than just with 
the adjacent fluid. Eq. (23) shows that most of the entropy 
creation will have taken place by the time the jet has mixed 
with about 5 times its own flow rate of the mainstream (i.e., 
mc/mm = 0.2) and this will occur within a few diameters of the 
jet. The remaining entropy generation as the diluted jet mixes 
with the whole mainstream is much less significant. 

Some workers calculate the loss due to mixing of a primary 
flow with a much smaller secondary flow by simply assuming 
that all the relative kinetic energy of the secondary flow is lost. 
For the case predicted by Eq. (22) this gives 

TS = 0.5mc(V,„- F ccosa)2+ (K csina)2 (24) 

Comparing Eqs. (22) and (24) show that they give exactly the 
same result when Vm = Vc, but the first equation gives a lower 
loss when Vc> Vm. This is because the lost kinetic energy ar
gument does not account for the static pressure recovery that 
arises from the momentum of the jet. In most applications the 
two approaches will give very similar results but the mixing 
calculation, Eq. (22), is felt to be more correct. 

A further important example of a mixing process is the 
mixing out of a wake behind a trailing edge. Appendix 3 gives 
the theory for entropy creation due to the mixing out of a 
wake behind a blunt trailing edge in a constant area passage 
with (for simplicity only) incompressible flow. The analysis 
includes the boundary layers on the blade surface immediately 
upstream of the trailing edge and also the base pressure acting 
on the trailing edge. The latter is usually below the free-stream 
pressure by an amount that may be defined in terms of a base 
pressure coefficient, Cpb, by 

Cpb=(Pb-PKs)/(Q.5pVls) (25) 

where PK{ and VKf may be either the far downstream pressure 
and velocity or the values on the blade surfaces immediately 
before the trailing edge. The latter definition is used in the 
following analysis. Typical values of Cpb defined on this basis 
are in the range - 0.1 to - 0.2, although the value varies greatly 
with the state of the boundary layer, the shape of the trailing 
edge, and the ratio of trailing edge thickness to boundary layer 
thickness. 

The resulting expression for the stagnation pressure loss 
coefficient (which in incompressible flow is identical to the 
entropy loss coefficient) is derived in Appendix 3 as 

f= 0.5 pVfe' 
C, t 2d 

+ — + 
w • w 
pb' 's' + i 

(26) 
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Fig. 8 Trailing edge with a separated boundary layer 

Note how this result is independent of the details of the mixing 
process, which is likely to be unsteady with the formation of 
a Karman vortex street and with much of the entropy creation 
due to the viscous decay of the vortices. The details of this 
process cannot yet be predicted accurately by even the most 
sophisticated viscous flow calculations, but as we see the overall 
result is predictable using simple theory. 

The theory of Appendix 3 requires an assumption for the 
average pressure acting on the suction surface downstream of 
the throat (see Fig. A3.1). Equation (26) assumes that this is 
the same as the far downstream pressure, P2. A more common 
assumption, e.g., Stewart (1955), is that the pressure is the 
same as the throat pressure P\. The actual suction surface 
pressure is likely to lie somewhere between these two assump
tions. The author prefers to use the first assumption because 
it implies that the loss is not affected by the blade stagger, i.e., 
by the presence of adjacent blades. Since most of the dissi
pation takes place within a few trailing edge thicknesses this 
is felt to be realistic. The value assumed for the suction surface 
pressure has a large effect on the last term of Eq. (26) but not 
much effect on the other two terms. Fortunately the last term 
is usually comparatively small. 

The major difficulty in applying this and similar theories to 
real blade rows is knowing the value of the base pressure 
coefficient. Much early work on this subject, e.g., Stewart et 
al. (1960), neglected the base pressure completely and so greatly 
underestimated the importance of trailing edge loss. Typically 
the value of Cpb is about -0.15 and a typical turbine blade 
trailing edge blockage is 0.05 so the base pressure term con
tributes about 0.0075 to the loss coefficient while the last term 
of Eq. (26) contributes about 0.0025. For modern turbine 
blades the profile loss coefficient is of the order 0.03 and so 
the trailing edge contributes about 1/3 of the total profile loss. 
For compressor blades the trailing edge blockage is usually 
small but the boundary layers are thicker so the last term of 
Eq. (26) may be more important than the base pressure term. 

Physically it is difficult to decide if the low base pressure 
produces the dissipation in the wake or if the dissipation causes 
the low base pressure. In fact the two are directly connected 
via Eq. (26) and anything that changes one must change the 
other. For example it is well known that for isolated blunt 
trailing edges the vortex shedding can be suppressed by at
taching a splitter plate to the trailing edge; this therefore re
duces the dissipation and so increases the base pressure. 
Similarly, the use of an elliptical rather than a square or sem
icircular trailing edge delays the separation of the boundary 
layers and this increases the average base pressure and reduces 
the dissipation and loss. 
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When considering base pressure, it would be more mean
ingful to measure it relative to the average pressure around 
the trailing edge in an inviscid flow. Since the latter has no 
loss and no boundary layers, Eq. (26) shows that for incom
pressible flow this pressure, Pb0, is given by 

^S§rc<*=' /w (27) 

This is a positive base pressure, relative to the pressure P,e just 
upstream of the trailing edge, and any value of base pressure 
below this value must be associated with a loss. 

The fact that the mixed out loss depends on the momentum 
thickness of the boundary layers at the trailing edge, i.e., the 
middle term of Eq. (26), is an interesting result. The entropy 
that has been created in the boundary layers upstream of the 
trailing edge is measured by their entropy thickness, which, in 
incompressible flow, is identical to their energy thickness, so 
the entropy present just before the trailing edge would be 

TASle = 0.5pV?e5e (28) 

Hence, for a blade with zero trailing edge thickness, an amount 
of entropy given by 

TASw = 0.5pVi(26-8e) (29) 

is being created behind the trailing edge as a direct result of 
the mixing out of the boundary layers on the blade. This is 
entropy created by the viscous dissipation in the wake but is 
an inevitable consequence of the boundary layers on the blade 
surfaces. For the case of negligible trailing edge thickness the 
amount of dissipation in the wake depends on the difference 
between 26 and <5e of the boundary layers just upstream of the 
trailing edge. 

The ratio &e/8 is a type of shape factor whose value depends 
on the state of the boundary layer. For a typical turbulent 
boundary layer its value is about 1.7 (Schlichting, 1978, p. 
675) and so, for thin trailing edges, the ratio of the entropy 
present just before the trailing edge to that present far down
stream is typically 0.85, i.e., about 15 percent of the total 
entropy is created behind the trailing edge. For boundary layers 
near separation this proportion rises to about 22 percent. For 
separated boundary layers and thick trailing edges an even 
greater proportion of the entropy is generated downstream and 
in the limit for a bluff body with very thin boundary layers 
all the entropy is generated in the wake. 

The theory of Appendix 3 also applies to the case where the 
boundary layers are separated at the trailing edge, as illustrated 
in Fig. 8, provided that the static pressure just upstream of 
the trailing edge can still be assumed to be uniform. In this 
case the value of 6* is likely to be greater than the trailing edge 
thickness and Eq. (26) suggests that there will be an extra loss 
due to the separation given by 

This implies that only large separations will cause significant 
loss, e.g., for a thin trailing edge a separation causing 10 
percent blockage produces only 1 percent loss. However, this 
result makes the dubious assumption that a uniform pressure 
continues to act over the whole of the trailing edge plane. It 
is probable that in reality a low pressure extends over much 
of the separated region giving an increased contribution to the 
base pressure term in Eq. (26). Physically the separated region 
will give rise to larger vortices and so greater dissipation in the 
wake than would the trailing edge alone. On this basis it can 
be argued that the total dissipation will be roughly proportional 
to the combined thickness of the trailing edge and separation 
rather than to the square of the blockage as suggested by Eq. 
(26). A crude approximation that is compatible with this sug
gestion is to apply a low base pressure over the combined 
thickness of the trailing edge plus separation, i.e., to use {t + 5*) 
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Fig. 9 Variation of trailing edge loss with base pressure coefficient 
and Mach number for 10 percent throat blockage 
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Fig. 10 Base pressure coefficient for zero loss as a function of Mach 
number and trailing edge blockage 

instead of t in the base pressure term of Eq. (26). However, 
with this assumption the value of the base pressure that should 
be used remains very uncertain. 

From the preceding discussion it can be seen that the influ
ence of a separated boundary layer at the trailing edge remains 
a major unknown when calculating loss. It is clear from test 
data (and from Lieblein's correlation of loss versus diffusion 
factor) that separated boundary layers do give rise to high loss 
and this can only be reconciled with Eq. (26) by applying a 
low base pressure over the whole separated region. The author 
is not aware of any method of predicting this pressure. As 
discussed in section 7.2 this is likely to be especially important 
for compressor blades. 

A very similar type of calculation can be applied to the 
mixing of coolant flow injected through the blade surfaces, 
(e.g., Hartsel, 1972) and also to the mixing of a tip leakage 
jet emerging into the mainstream from the tip gap (Denton 
and Cumpsty, 1987). In these cases the uncertainty about the 
magnitude of the base pressure does not arise, and so the results 
are more directly usable to quantify loss. 

All the above theory assumes incompressible flow with mix
ing taking place at a constant area. For compressible flow the 
same equations may be solved numerically. Figure 9 shows the 
variation of trailing edge loss coefficient with downstream 
Mach number for a trailing edge with 10 percent blockage at 
various values of base pressure coefficient. For other values 
of blockage the loss may be taken as being proportional to 
blockage. Although the base pressure itself can only be found 
by experiment, the base pressure for zero loss can be found 
exactly from the conservation equations and it is interesting 

0 9 1 0 11 1 2 

AT MIXING / INITIAL VELOCITY 

Fig. 11 Effect of wake acceleration or deceleration on the mixing loss. 
Calculations for J/iv = 0.1, ft?, =0.5. 

to see how it varies with Mach number. Figure 10 shows the 
result from numerical solutions of the equations for varying 
trailing edge blockage and varying downstream Mach number 
with the assumption that Ps = Pi (Appendix 3). It is significant 
that as the Mach number is increased the base pressure for 
zero loss becomes significantly greater than the pressure on 
the blade surface immediately before the trailing edge. Since 
experiments (e.g., Sieverding et al., 1983) usually show that 
the base pressure is lower than the latter pressure, this helps 
to explain why trailing edge loss increases rapidly as the down
stream Mach number approaches unity. 

The assumption of constant area mixing, which was made 
in the preceding theory, will not always be valid. Wakes in 
turbomachines mix out in a complex environment, which will 
be unsteady if the mixing is not complete before the next blade 
row. Neglecting unsteadiness for the moment, we can illustrate 
the effects of a change of area by means of simple physical 
arguments and numerical calculations. 

Physically, when a shear layer is subjected to a favorable 
stream wise pressure gradient the transverse velocity gradient, 
dV/dy, is reduced because the slower moving fluid speeds up 
by more than the faster moving fluid. Hence the rate of shear 
strain is decreased and the rate of entropy generation, which 
is proportional to /xeff (dV/dy)2, will be reduced. From this 
argument we would expect acceleration of a wake to reduce 
the dissipation and hence the mixing loss. Conversely decel
eration should amplify the velocity gradient and increase the 
loss. A simple illustration of this is possible for two-dimen
sional incompressible flow. Using the momentum integral 
equation and the continuity equation for a wake it can be 
shown that 

where LP0 is the stagnation pressure loss that would be ob
tained from a mixing calculation at the local flow area; x is 
the distance along the wake and H is its local shape factor. 
Since H is always greater than unity Eq. (31) shows that ac
celeration will decrease the mixed out loss and deceleration 
increase it. Large values of//, such as occur close to the trailing 
edge, increase the magnitude of the effect. Only when the wake 
is nearly mixed out so that Z/-*l does a change in velocity 
cease to have any effect on the mixed out loss. 

As a numerical example of the same phenomenon, Fig. 11 
shows the mixing loss coefficient for a "square" wake that is 
(hypothetically) accelerated or decelerated isentropically to the 
mixing velocity and then allowed to mix out at constant area. 
This is a very idealized model since in reality mixing continues 
while the wake is being accelerated or decelerated, but its does 
serve to illustrate the magnitude of the effect. Deceleration is 
seen to cause a very significant increase in loss while accel
eration causes a slight reduction. 
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Fig. 12 Computed growth of stagnation pressure loss within and down
stream of a compressor cascade 

The importance of this effect in a turbomachine is difficult 
to establish since mixing is a continuous process and cannot 
be said to take place at one location or one velocity. In a wake 
mixing is initially very rapid and the velocity on the wake 
centerline may reach 90 percent of free-stream velocity within 
a few trailing edge thicknesses. However, as shown by Prato 
and Lakshimarayana (1993) mixing continues for up to one 
chord downstream of the blade row, by which time the free-
stream velocity may have changed considerably. 

An important consequence of the control volume approach 
to mixing is that numerical calculations do not have to predict 
the details of the mixing processes exactly in order to compute 
the correct loss. As long as conditions at the trailing edge are 
predicted correctly then the mixed out loss should also be 
correct. As an illustration of the ideas presented in this section, 
Fig. 12 shows results from a viscous calculation on a com
pressor cascade. The flow is just subsonic and the suction 
surface boundary layer is very nearly separated at the trailing 
edge. The change of mass-averaged stagnation pressure through 
and downstream of the cascade is plotted and shows that in 
this case about 1/3 of the total loss is generated behind the 
trailing edge. The calculation was repeated with the change of 
stream surface thickness downstream of the trailing edge varied 
by ±25 percent, while keeping the flow on the blade surface 
constant. Figure 12 shows that this has only a small effect on 
the overall loss, changing it by about ±5 percent. This is a 
consequence of most of the mixing occurring close to the trail
ing edge before the area has changed significantly. 

5 Entropy Production in Shock Waves 
It is well known that shock waves are irreversible and hence 

are sources of entropy. The entropy creation occurs due to 
heat conduction and high viscous normal stresses within the 
shock wave, which is only a few molecular free paths in thick
ness. Text books, e.g., Shapiro (1953), often derive the equa
tion for the entropy increase across aplane normal shock wave. 
Expanding this in powers of (M2 - 1), where M is the upstream 
Mach number, leads to the following approximate result for 
weak shocks: 

As=C, 
27(T-D (M2 1)3 + 0(M 2- D4 (32) 
3(7+ lY 

This shows that the entropy creation varies roughly as the cube 
of ( M 2 - l ) . 

The above result is for normal shock waves. Oblique shocks 
will always produce less entropy than a normal one with the 
same upstream Mach number. In fact Eq. (32) is equally ap
plicable to oblique shock waves provided M is interpreted as 
the component of Mach number perpendicular to the shock 
front. 

The pressure rise across a weak shock wave is also propor
tional to ( M 2 - 1) and Eq. (32) can be rewritten as 

-o- eta poly 
-*- pressure ratio 

-3 
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Fig. 13 Compression in a normal shock wave expressed as a polytropic 
efficiency 

A ^7+1/APX3
 „/APV 

AS^RI—TI — ) + 0 
127

z Pi 
(33) 

which applies to both normal and oblique shocks. 
The efficiency of a compression process in a weak shock 

may be defined by 

TAs As 
7 1 = 1 — — = 1 s 

' Ah R AP/P 

7 + 1 / A P V •-wb (34) 

For AP/P = 0.5, 7 = 1.4 (which corresponds to a normal shock 
with an upstream Mach number of about 1.2) this gives r\ ~ 0.97, 
which suggests that weak shock waves are a relatively efficient 
compression process. This is further illustrated in Fig. 13, 
which shows the polytropic efficiency of the compression proc
ess through a shock where the efficiency has been defined as 

i\p--
(y-l)ln(P2/P1) (35) 

7 l n (7yT , ) 

and has been calculated using exact theory for a gas with 
7=1.4 . 

It is clear that a shock is actually a comparatively efficient 
compression mechanism if the component of upstream Mach 
number perpendicular to the shock front is less than 1.5. This 
helps to explain the development of efficient transonic com
pressors with inlet Mach numbers typically in the range 1.5-
1.7. 

5.1 Shock Waves in Compressors. For a single shock 
wave, the entropy generation is a unique function of the static 
pressure rise. However, Eq. (34) shows that this function is 
highly nonlinear so that if the same pressure rise can be ac
complished by two shock waves instead of by a single one then 
the shock loss will be greatly reduced (by a factor of 4 if both 
shocks have the same pressure rise). On this argument it is 
hard to explain why the fans of most civil aero-engines seem 
to operate most efficiently with a single normal shock wave 
near the leading edge (e.g., Pierzga and Wood, 1985). It is 
also hard to explain the claimed reduction of shock loss by 
sweep for transonic compressor blading (Wennerstrom and 
Puterbaugh, 1984). Shock sweep will reduce the shock strength 
for a given upstream Mach number but not for a given pressure 
ratio. Possibe explanations are that a second shock is formed 
as a result of the sweep or that, since the sweep is usually 
produced by a change in radius, some of the pressure rise takes 
place by centrifugal effects, thereby reducing the pressure rise 
required from the shock and increasing its efficiency. 
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Fig. 14 Control volume used for the shock loss of transonic compressor 
blades 

A recent paper by Freeman and Cumpsty (1989) shows that 
the performance of transonic compressors can be remarkably 
well predicted by applying conservation of mass, energy, and 
momentum between the upstream flow and the flow down
stream of the shock system. The equation are applied to the 
control volume shown in Fig. 14. The flow is assumed to be 
uniform both upstream of the blade row, i.e., across AB, and 
at plane DE downstream of the leading edge shock system. As 
in the case of mixing loss the control volume formulation 
predicts the overall changes without needing to consider the 
details of the flow within the control volume. In this case the 
loss occurs through the complex shock system within the con
trol volume and so the method only applies to the loss generated 
by the leading edge shock system and not to any passage or 
trailing edge shocks. 

Only the continuity equation and the streamwise momentum 
equation are solved and the streamwise force exerted on the 
flow by the blade is approximated by assuming that the average 
pressure on the blade surfaces CD and FE, including the leading 
edge itself, is the same as the downstream pressure on DE. 
This assumption is very approximate and only gives realistic 
answers because transonic compressor blades are so thin. The 
assumption that the flow leaving the control volume through 
DE is uniform is also dubious. Despite these approximations 
the method gives remarkably good predictions of the behavior 
of transonic compressors between peak efficiency and stall 
when the shock is near the leading edge. The fact that much 
of the performance can be predicted by a control volume anal
ysis also explains why the performance of such compressors 
can be well predicted by modern three-dimensional flow cal
culations (e.g., Adamczyk et al., 1993), which do satisfy con
servation of mass, energy, and momentum even when the details 
of the shock system are not captured accurately. 

5.2 Shock Waves In Turbines. Compression is seldom a 
desirable feature of turbines, however, transonic turbines are 
commonly used to obtain high-stage pressure ratios and so 
shock waves do occur. Although local Mach numbers may be 
high, the shocks within the blade passage are usually oblique 
so that AP/P is small and they generate little direct loss (Eq. 
(33)). The most serious consequence of transonic flow in tur
bines is the shock system at the trailing edge, as illustrated in 
Fig. 15. The low base pressure formed immediately behind the 
trailing edge can generate a very large trailing edge loss. The 
flow expands around the trailing edge to this low pressure and 
is then recompressed by a strong shock wave at the point where 
the suction and pressure side flows meet. The entropy gen
eration comes from the intense viscous dissipation at the edges 

Fig. 15 Trailing edge shock system for a turbine blade, with suction 
surface coolant ejection 

of the separated region immediately behind the trailing edge 
and from the strong shock formed at the close of this region. 
For cooled turbine blades with thick trailing edges this may 
be the largest single source of loss in the machine. 

Denton and Xu (1990) apply a control volume argument 
very similar to that of Freeman and Cumpsty, to the trailing 
edge of choked turbine blades. Their model uses both of the 
momentum equations and uses the assumption that the flow 
is choked at the throat of the blade to determine the mass flow 
rate; it does not assume that the blade is thin. The method is 
therefore rigorous and based on reasonable assumptions. It 
shows that even in this case the loss can be calculated from 
conservation of mass, momentum, and energy provided the 
average pressure acting on the blade suction surface down
stream of the throat can be predicted. Low values of this 
pressure are shown to reduce the loss. In practice the suction 
surface pressure must be obtained from a separate calculation 
of the flow field. However, the predicted loss is extremely 
sensitive to the value of this pressure and it is unlikely that it 
will be known accurately enough for the method to give a 
useful prediction. 

5.3 Shock Wave-Boundary Layer Interaction. There are 
indirect sources of loss associated with shock waves in both 
compressors and turbines because of the interaction of the 
shock wave with the boundary layer. A boundary layer sep
aration bubble will usually be formed at the foot of a weak 
, shock and extra dissipation is likely to occur within and down
stream of the bubble. If the boundary layer was laminar the 
bubble will almost certainly cause transition. Strong shock 
waves, which are especially likely to arise in transonic com
pressors, may cause complete boundary layer separation. For 
a normal shock wave this is likely if the upstream Mach number 
is greater than about 1.4 (Atkin and Squire, 1992). Hence, 
increases in the boundary layer loss are likely to occur from 
shock wave-boundary layer interaction in both turbines and 
compressors. In view of the high pressure rise obtainable via 
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Fig. 16 Mixing of two flows at constant pressure 

the shock wave, these may be perfectly acceptable in transonic 
compressors even when the shock separates the boundary layer. 

6 Entropy Creation by Heat Transfer 
Heat transfer from a turbomachine to its surroundings is 

usually small and the flow is almost invariably regarded as 
being adiabatic. Small machines with a large surface area to 
volume ratio (e.g., small turbochargers) are most likely to 
violate this assumption. For a compressor the work input to 
achieve a required pressure ratio is reduced by heat loss from 
the fluid to its surroundings and it is well known that isothermal 
compressors, with interstage cooling, are preferable to adi
abatic ones for many applications. This does not apply to the 
compressors of gas turbines where any heat loss from the 
compressor has to be made up by burning extra fuel in the 
combustion chamber and results in a loss of cycle efficiency. 
For a turbine, heat loss to the environment will always decrease 
the work output and so should be avoided, e.g., by lagging 
the turbine if necessary. 

The main effect of heat transfer is felt in cooled turbines 
where a separate stream of cool fluid is used to maintain the 
blades and disks at an acceptable temperature. The coolant 
flow is subsequently mixed with the main flow and expanded 
with it through the remaining stages of the turbine. Heat trans
fer from the main flow to the coolant flow takes place in three 
stages: first from the hot gas of the main flow to the cooled 
metal, second from the metal to the coolant flow within the 
internal passages of the blade, and finally from the mainstream 
flow to the coolant flow as the two flows are mixed. As a 
result of this heat transfer the main flow will do less work than 
if it were expanded adiabatically from its supply pressure and 
temperature to the exhaust pressure whilst the coolant flow 
will do more work than if it were expanded from its supply 
conditions to the same exhaust pressure. We will examine the 
effect of the heat transfer and mixing on the turbine perform
ance. 

6.1 Thermodynamics of a Gas Turbine Cycle With Blade 
Cooling. It is difficult to consider the entropy changes due 
to coolant flows without considering the whole thermodynamic 
cycle. The problem is highlighted by Fig. 16, which shows that 
when two flows of perfect gas at the same pressure but different 
temperatures are mixed at constant pressure there is an increase 
of entropy but no loss of potential work, i.e., 

(1 - mfc)AhM + m/cAhl2 = Ah„ (36) 

where mjc is the mass fraction of cooling flow bled off at point 
2. 

Appendix 4 gives an analysis of a simple cycle. The cycle 
pressure ratio is assumed fixed and its efficiency is influenced 
by the turbine entry temperature T^, by mj-c, and by the effi
ciency of the cooled part of the turbine i),. The analysis shows 
that the change in overall cycle efficiency due to cooling can 
be written as 

A J ? 0 = 
drjc dTi 

d7\ dm </c 

drjc drjc di], 
Am <fi (37) 

dmfc drj, dnifC 

The first term on the right-hand side of this equation rep
resents the change of cycle efficiency due to a change in turbine 
entry temperature, which can be increased by increasing mfc. 
This will be a positive term and represents the main objective 
of using cooling flows to increase cycle efficiency. 

The second term represents the rate of change of cycle ef
ficiency with cooling flow for constant values of turbine entry 
temperature and turbine efficiency. This will be a negative 
term because the net cycle efficiency can be thought of as a 
weighted average of the efficiency of the main cycle and of 
the lower efficiency cycle undergone by the cooling flow. This 
term includes the loss of work due to the heat transfer from 
the mainstream flow. 

The third term will also be negative because it represents the 
change of cycle efficiency due to a change in the efficiency of 
the cooled part of the turbine. As described in Appendix 4, 
this efficiency is defined to include only viscous effects within 
the turbine which in turn are assumed to depend on the amount 
of coolant added. It is only this term that we will consider in 
detail in this paper. 

Figure A 4.1 shows an idealized cycle in which coolant is 
assumed to be added at a uniform rate along the cooled part 
of the turbine expansion. Analyzing this cycle numerically for 
an overall pressure ratio 25:1, cooled turbine pressure ratio 
4:1 and turbine entry temperature 1500 K, gives for the terms 
in Eq. (37): 

A-q0= 1.03x10" 
dT, 

dm 
-0.18 + 0.38 

'/c 

dru 
dm •fi 

Afllf, (38) 

The value of dT,/dm/c is likely to be about 104 (100°C per 1 
percent cooling flow) and the value of d-r\,/dmfC is likely to be 
about - 1 (1 percent loss of efficiency per 1 percent cooling 
flow) and so Eq. (38) shows that the rate of loss of turbine 
efficiency with cooling flow has a large effect on the overall 
efficiency. The second term is also significant and emphasizes 
the importance of making the best possible use of the cooling 
flow, i.e., by making it do useful work and avoiding pressure 
drops due to throttling in the cooling passages. 

6.2 Thermodynamics of a Cooled Turbine. The ther
modynamics of a cooled turbine are also considered in Ap
pendix 4, where it is shown that the loss of output from the 
mainstream flow is due mainly to the entropy creation by 
viscous effects rather than that caused by heat transfer. Using 
Shapiro's (1953) influence coefficients, it is shown that, for 
the situation shown in Figs. 7 and 15, when a mass flow mc 

of coolant is injected at velocity Vc and angle a to a main flow 
with Mach number M and velocity Vm the change of effective 
turbine efficiency is 

Arj ,= -^'-""•-^S « 
From this it is clear that coolant addition to a mainstream flow 
at high Mach number is much more harmful than at low Mach 
numbers and also that coolant should be injected as nearly 
parallel to the main flow as is possible. If the coolant has a 
higher stagnation pressure than the main flow, so that Vc> Vn„ 
arid is injected almost parallel to it, then the stagnation pressure 
of the main flow and the efficiency of the turbine (which is 
defined in terms of the mainstream flow properties) may even 
be increased by the mixing. Interestingly, if the coolant is 
injected perpendicular to the main stream (a = 90 deg) then its 
temperature and pressure, which determine Vc, have no effect 
on the turbine efficiency, which depends only on the mass 
fraction of coolant injected. 

The entropy creation by irreversible mixing of cooling flows 
can also be calculated by applying conservation of mass, mo-
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Fig. 17 Entropy loss coefficient as a function of temperature ratio and 
pressure ratio for 1 percent of coolant flow injected at 45 deg to a main 
flow with Mach number = 0.8 

mentum, and energy in a very similar way to the method of 
Appendix 2. Such a method is described by Hartsel (1972). 
The analysis is complicated by the need to assume compressible 
flow, even at low Mach numbers, because of the large changes 
in temperature. Appendix 4 shows that only the entropy cre
ation due to viscous effects, not that due to heat transfer, 
should be considered as a loss of turbine efficiency. 

Results from a numerical calculation applied to cooling flow 
ejected through a slot with a velocity inclined at 45 deg to the 
mainstream direction (a = 45 deg) are illustrated in Fig. 17 
where the loss is presented as the loss coefficient of the main
stream flow per percent of coolant addition. Appendix 4 shows 
that only the entropy change due to viscous dissipation, and 
not that due to heat transfer, influences the turbine efficiency. 
Hence the loss coefficient plotted in Fig. 17 is defined using 

L=Ton 5 0 5 V2-
\J-Jr mix 

(40) 

where the heat dq removed from the mainstream flow is as
sumed to have been transferred at a temperature T'avg = 0.5 
{T\ + Tmix). This definition is consistent with Eq. (A4.9) of 
Appendix 4. 

Figure 17 shows that the aerodynamic loss on mixing is 
almost equally influenced by the stagnation pressure and the 
stagnation temperature of the coolant. Low coolant temper
atures and pressures cause a high loss because they produce a 
low value of Vc in Eq. (39). Numerical calculations show that 
the loss coefficient as defined by Eq. (40) is not greatly affected 
by the value of free-stream Mach number. 

The addition of coolant flow may cause other losses by 
disturbing the boundary layers on the blade or endwall sur
faces, as shown in Fig. 15. These are not considered in the 
above analysis. 

7 Two-Dimensional Losses in Turbomachinery 

7.1 Blade Boundary Layer Loss. Application of the ideas 
presented above to real turbomachinery is complicated by the 
complexity of the geometry and flow. In particular the real 
flow is usually three-dimensional so that simplified one-di
mensional and two-dimensional results should be used as 
guidelines and as an aid to understanding the physics of the 
flow rather than to obtain quantitative results. 

Using Eq. (20), the total entropy generation in the blade 
boundary layers can be evaluated from 

s=Ec* 
1 cdP vl d(x/Cs) (41) 

V +AV 

Fig. 18 Idealized blade surface velocity distribution 

where the summation is for both blade surfaces, xis the surface 
distance, and Cs is the total length of the surface. To turn this 
into an entropy loss coefficient for the blade we must divide 
the total entropy produced by the mass flow rate and by a 
reference dynamic head, which would usually be based on V\ 
for a compressor blade and on V2 for a turbine blade, e.g., 

L = ~ 
TS 

m0.5 Vr
z
c! 

Combining these two equations gives, for low-speed flow 

a r' / v, 

(42) 

^ = 2 S p cos aref J0 

( Q d(x/Cs) (43) 

If the blade surface velocity distribution and the variation of 
Cd are known this equation can be used to estimate the loss 
coefficient. The occurrence of the blade surface velocity in the 
form (V/VK!f is very important. It shows that the suction 
surface is dominant in producing loss and that regions of high 
surface velocity contribute proportionally much higher amounts 
of loss. 

The value of loss coefficient obtained from Eq. (43) is dom
inated by the location of the transition point where Cd under
goes a rapid change, as shown in Fig. 5. In order to minimize 
the loss the boundary layers should be kept laminar for as long 
as possible. The extent of the laminar boundary layer will 
depend mainly on the Reynolds number, turbulence level, and 
on the detailed surface velocity distribution. At the high tur
bulence levels prevalent in turbomachines transition is likely 
to occur in the Re9 range 200-500 while Ree at the trailing edge 
is usually in the range 500-2000 (although it will be greater 
than this for large high-pressure steam turbines and large hy
draulic turbines). Figure 4 shows that over much of this range 
the dissipation coefficient is of the order of 0.002, as suggested 
by Denton and Cumpsty. Although one cannot expect this 
crude approximation to give accurate results for any one blade 
it can be used to predict systematic trends for the variation of 
loss with blade and stage design. 

These equations also show clearly why for any specified 
combination of inlet and outlet flow angles there is an optimum 
pitch to chord ratio (p/c). We assume a rectangular velocity 
distribution as illustrated in Fig. 18, and that Cd is constant. 

Equation (41) gives 

S = CdpC(2V3 + 6VAV2) (44) 

Using the definition of blade circulation to obtain Vx we get 

2CAVp 
m = p Vxp = (45) 

( t ano^- tanaO 
and so the loss coefficient, based on mean velocity, becomes 

fc 0.5mV 
r:TVJ — Cd 

V AV\ 
2 ^ + 6 ^ ) (tan a 2 - t a n a,) (46) 

which has a minimum value^ corresponding to an optimum 
pitch-chord ratio, when AV/V= 1/V3. If Q i s taken as 0.002 
this simple method gives quite realistic loss coefficients. 

If Cd is assumed constant the value of loss obtained from 

Journal of Turbomachinery OCTOBER 1993, Vol. 115 / 633 

Downloaded 05 Dec 2012 to 132.236.27.111. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///J-Jr


Fig. 19 Predicted optimum pitch-chord ratio of turbine blades 

Fig. 20 Predicted profile loss coefficient (percent) of turbine blades at 
their optimum pitch-chord ratio 

STAGE FLOW COEFFICIENT ([) 

Fig. 22 Loss of efficiency (percent) due to profile loss alone for turbines 
with zero interstage swirl angle 

For compressor blades the predictions, using exactly the 
same method, are not realistic. The calculated value of opti
mum pitch-chord ratio is too high, giving a diffusion factor 
well over 0.6. Consequently the predicted minimum loss is too 
low. The reason is that the method takes no account of bound
ary layer separation and one must conclude that this is a dom
inant feature in the design of compressor blades. The minimum 
loss will occur when the boundary layer is on the verge of 
separation; this can be simulated in the method by causing the 
predicted loss to rise very rapidly with diffusion factor when 
this is greater than about 0.55. The optimum pitch-chord ratio 
then occurs just above that which gives a diffusion factor of 
0.55. The results from such a prediction are shown in Fig. 21. 

When considering the design of a complete stage the entropy 
creation should be considered relative to the stage enthalpy 
change. If we define an isentropic velocity C0, based on the 
stage isentropic enthalpy change, by 

A/?/s = 0.5Co
2 (47) 

then the overall increase in specific entropy due to the blade 
surface boundary layers on both rows may be estimated from 

-30 -20 -10. 0. 10. 20 30 40. 50 O<^60 

Fig. 21 Profile loss coefficient of compressor blades (percent) pre
dicted by Eq. (43) 

Eq. (43) is not greatly dependent on the surface velocity dis
tribution and this permits a simple method of estimating the 
loss coefficients. If the inlet and outlet flow angles are specified 
and a plausible surface velocity distribution, more realistic than 
that of Fig. 18, is guessed then the pitch to chord ratio can be 
calculated from the tangential momentum change and an es
timate of loss can be obtained from Eq. (43). By systematically 
varying the guessed velocity distribution one can then estimate 
the optimum p/c ratio and minimum loss. Figure 19 shows 
the resulting optimum p/c ratio and Fig. 20 the minimum loss 
calculated in this way for turbine blades. The results agree well 
with the predictions of Zweifel's rule for optimum p/c ratio 
and with cascade measurements of loss coefficient. 

where the summation is over all the blade surfaces. This result 
is easily converted into the stage efficiency via Eq. (9) and 
shows that it is the blade surface velocity relative to the is
entropic velocity C0 that is most important as regards stage 
efficiency. For high reaction stages V/C0 will be greater in the 
rotor, which is then likely to contribute most to the loss of 
efficiency and conversely for low reaction stages. Again, by 
guessing likely surface velocity distributions, assuming that Cd 
is constant, and calculating the optimum p/c ratio for each 
blade row the integrals and summations of Eq. (48) can be 
performed and the stage efficiency estimated for any specified 
stage velocity triangles. Figure 22 shows the result for axial 
turbine stages with zero interstage swirl angle. It must be em
phasized that this gives the loss of efficiency due to blade 
boundary layer losses alone. Given that a typical turbine stage 
efficiency is about 90 percent we can conclude that these are 
only responsible for about 1 /3 of the total loss in most turbines. 

The blade surface boundary layer loss varies significantly 
with Reynolds number and surface roughness. The variation 
with Re is as suggested by Fig. 5 with the loss increasing rapidly 
at very low Re (Re < 105) due to the high dissipation in laminar 
boundary layers and possibly to laminar separation of the 
boundary layer. Within the transition region, 2x l0 5 

<Re<6x 10 ; the variation is complex and depends on the 
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Fig. 23 Variation of profile loss with Reynolds number and surface 
roughness 

details of the surface velocity distribution. The net result is a 
combination of the general decrease in loss with increasing Re 
and an increase in loss as the transition point moves upstream. 
At Re > 6 x 105 the loss varies approximately as Re"1/6 for very 
smooth blades. However, in this regime the turbulent boundary 
layer is significantly influenced by the surface roughness so 
that for machines that operate at very high Re the surface 
finish of the blades is very important. Curves for the variation 
of profile loss with Re and with roughness have been given by 
Koch and Smith (1976) for compressors and by Denton and 
Hoadley (1972) for turbines. Both sets of curves show similar 
trends although the latter, reproduced in Fig. 23, predicts an 
increase of loss with Re in the transition region at high values 
of roughness. 

All the preceding analysis assumes two-dimensional flow in 
the blade surface boundary layers. The same approach can be 
applied to three-dimensional boundary layers where the con
vergence or divergence of the surface streamlines may thicken 
or thin the layer. Although this can have a considerable effect 
on the boundary layer thickness, it should not have a great 
effect on the entropy creation per unit surface area, unless 
convergence of the surface streamlines causes the boundary 
layer to separate. Hence it is suggested that Eq. (41) can be 
modified to estimate the entropy production over the whole 
blade surface, even in three-dimensional flow. 

7.2 Trailing Edge Loss. The other major contribution to 
two-dimensional blade loss comes from the trailing edge. The 
magnitude of trailing edge loss has been seriously underesti
mated in the past, especially for turbine blades, due to the 
neglect of the base pressure term in Eq. (26). Figure 24 from 
Mee et al. (1992) shows that for a blade with a trailing edge 
blockage of 6.3 percent about 1/3 of the total two-dimensional 
loss is mixing loss behind the trailing edge in subsonic flow. 
The same figure shows that in supersonic flow this proportion 
rises to about 50 percent. Figure 25 (Roberts, 1992) shows the 
measured velocity profiles before and after the trailing edge 
of a simulated low-speed turbine blade with representative 
boundary layer to trailing edge thickness ratios, again about 
1/3 of the total loss was found to be generated behind the 
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Fig. 24 Variation of the two-dimensional components with Mach num
ber for a turbine cascade (from Mee et al., 1992) 

10 DIAMETERS DOWNSTREAM 

Fig. 25 Velocity profiles at and downstream of a simulated turbine 
blade trailing edge 

trailing edge. Figure 25 serves to illustrate how thin the bound
ary layers are relative to the trailing edge and it is not surprising 
that the trailing edge itself can cause such a large proportion 
of the loss. 

As explained previously the entropy can be expected to in
crease by about 18 percent behind a thin trailing edge due to 
the mixing out of the surface boundary layers. In the two cases 
just quoted it increases by about 50 percent so the loss attrib
utable to trailing edge thickness is about 32 percent of the 
boundary layer loss or 21 percent of the total loss. The value 
of base pressure coefficient necessary to explain this increase 
is about - 0.075, which is typical of the values found by Sutton 
(1990) for a wide range of trailing edge shapes. 

An alternative means of estimating the base pressure coef
ficient is to compare measured losses with losses calculated 
from boundary layer loss alone and to attribute the difference 

' to trailing edge loss. This has been done by Hart et al. (1991) 
for a total of 180 turbine cascade measurements. Hart used 
an inviscid calculation to find the base pressure for no loss 
and a boundary layer calculation to obtain the boundary layer 
parameters at the trailing edge. He then correlated his results 
to find the average value of Cpb necessary to make the cal
culations agree with the measured loss. He found the average 
value of Cpb to be -0.13 and that it did not correlate with 
either trailing edge thickness or boundary layer thickness. It 
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Fig. 26 The variation of loss with Mach number for turbine blades with 
varying trailing edge thickness, from Xu and Denton (1988) 
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is suggested that this value should be used in Eq. (26) to cal
culate the mixed out loss of subsonic two-dimensional cas
cades. 

7.3 Effect of Mach Number on the Two-Dlmensional Loss. 
The loss of both turbine and compressor blades increases rap
idly as sonic conditions are approached. Figure 26 from Xu 
and Denton (1988), shows typical results for a family of turbine 
cascades with different trailing edge thicknesses. This figure 
shows the difference between the overall two-dimensional loss 
and the measured boundary layer loss, illustrating how much 
of the loss is arising from the trailing edge. Figure 24 showed 
a similar result. 

For turbine cascades most of the increase can be attributed 
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Fig. 28 Profile loss versus inlet Mach number for compressor blades 
(from Hobbs and Weingold, 1983) 

to the trailing edge loss. Figure 10 shows that the base pressure 
required for zero loss increases rapidly as the exit Mach number 
approaches unity. The actual base pressure is even more dif
ficult to predict accurately at high exit Mach numbers than it 
is in subsonic flow but the most widely used method is the 
correlation by Sieverding et al. (1983), which is shown in Fig. 
27. The correlation predicts the base pressure as a function of 
the far downstream pressure, Ps2, the change in suction surface 
slope downstream of the throat 6 and the trailing edge wedge 
angle e. Surprisingly it does not include any measure of trailing 
edge blockage. The correlation shows that the base pressure 
falls below the downstream pressure as the Mach number is 
increased. The loss will be proportional to the difference be
tween the actual base pressure and the base pressure for zero 
loss illustrated in Fig. 10. 

Chen (1987) presents a correlation for the variation of tur
bine profile loss with Mach number. This shows the loss rising 
rapidly as M2 approaches unity but decreasing between M2 = 1.0 
and 1.2 before increasing again at higher Mach numbers 
(M2>1.2). Surprisingly the correlation does not include any 
measure of trailing edge thickness and so it must be assumed 
to be for blades with thin trailing edges. There is little published 
experimental evidence for the decrease of loss at high Mach 
numbers although Denton and Xu (1990) predict the result 
theoretically and explain it as being due to the expansion from 
sonic conditions at the throat to the supersonic far downstream 
flow being matched to the increase in flow area at the trailing 
edge. A similar result is obtained for blades with converging-
diverging passages, which only work well at high supersonic 
exit Mach numbers. 

Figure 28, from Hobbs and Weingold (1984) shows the var
iation of loss with inlet Mach number for a compressor cascade. 
The increase of loss in this case is due to a completely different 
mechanism to that for turbine blades. For conventional com
pressor blades the peak suction surface velocity is well above 
the inlet velocity and will reach sonic conditions when M] is 
about 0.7. Further increase of M! causes the peak Mach number 
and hence the ratio VmaK/Vx to rise extremely rapidly. In general 
the sonic region is terminated by a normal shock. Thus the 
increase in M! causes shock loss, high suction surface entropy 
generation (Eq. (41)), and possibly boundary layer separation, 
all of which contribute to the rapid rise in loss. 

Compressor blades specially designed for supersonic inflow 
delay this loss increase by being very thin and having low or 
reverse suction surface camber so that the peak suction surface 
Mach number is not much greater than the inlet Mach number. 
The lift is obtained from a low velocity on the pressure surface 
rather than a high one on the suction surface so the boundary 
layer loss is comparatively low. This, coupled with the high 
blade loading, means that the shock loss, illustrated in Fig. 
13, can be tolerated at least up to the point at which the shock 
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separates the suction surface boundary layer. This is likely 
when M, is greater than about 1.4 (Atkin and Squire, 1992). 

There has been much discussion about the relative impor
tance of shock loss and boundary layer loss in supersonic 
compressor blading and it is sometimes claimed that the shock 
loss is small relative to the loss in the shock-induced boundary 
layer thickening and possibly separation. The author's view, 
based mainly on numerical predictions, is that the magnitudes 
of the two components are comparable at inlet Mach numbers 
around 1.4, but that the shock loss becomes dominant at higher 
Mach numbers. The success of Freeman and Cumpsty's method 
also supports the idea that the shock loss is dominant. Al
though, in principle, the shock loss could be greatly reduced 
by splitting the pressure rise between two shocks (section 5), 
this does not seem to occur in practical compressor blades. 

8 Tip Leakage Losses 

8.1 Effect on Blade Lift and Work. The loss of perform
ance due to leakage of flow over blade tips has been intensively 
studied for many years. Early methods tended to work in terms 
of the induced drag on the blades, analogous to the induced 
drag on an aircraft wing. However, this drag is an inviscid 
effect. In the case of the wing it produces extra kinetic energy 
of the surrounding atmosphere but it does not create entropy. 
Hence, from the point of view of a turbomachine it does not 
cause loss. More recent studies have concentrated on measuring 
the tip leakage flow in great detail, e.g., Bindon (1989) for 
turbines and Storer (1991) for compressors. As a result the 
flow and loss mechanisms are now well understood for un-
shrouded blades. Much less work has been done on leakage 
flow over shrouded blades. 

The most obvious effect of flow leakage over the tips of 
both shrouded and unshrouded blades is a change in the mass 
flow through the blade passage. At first sight this would seem 
to lead to a reduction in work for both turbines and com
pressors. However, considering shrouded blades first because 
they are simpler, flow will leak upstream over the shroud of 
a compressor blade. Hence, for a fixed overall flow rate, the 
mass flow through the blade itself will be increased by the 
leakage, which will tend to increase the work input but reduce 
the pressure rise. There will be other factors affecting this, 
such as a change in deviation caused by the disturbance to the 
inlet flow when the leakage flow mixes with the mainstream, 
but the main effect is likely to be an increase in blade work 
proportional to the leakage flow. For shrouded turbine blades 
the leakage will be from upstream to downstream of the blade 
row and so, for a fixed total throughflow, both the blade work 
and the pressure drop will be reduced. These changes of blade 
work and pressure difference are independent of any entropy 
generation or change of efficiency. They would occur in a 
complete inviscid flow where they would manifest themselves 
as changes in the mass flow-pressure ratio characteristic of 
the machine rather than as changes in efficiency. 

The situation for unshrouded blades is qualitatively the same, 
although the interaction between the leakage flow and the 
mainstream flow is much stronger. In a compressor blade the 
meridional velocity of the flow leaking over the tips is certain 
to be less than that of the mainstream flow and may even be 
directed upstream. Hence, the mass flow through the remain
der of the blade must be increased. In a turbine the leakage 
flow has an increased meridional velocity and forms a strong 
leakage jet, so the flow through the remainder of the blade 
must be decreased. 

The change in blade work must be reflected in a change of 
lift, which occurs partly in the immediate vicinity of the tip 
gap and partly over the whole span of the blade. For un
shrouded blades there is always a loss of lift at the blade tip, 
which occurs both because the blade length is reduced and 
because the blade loading drops off toward the tip. Both ex-
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periments and calculations show that the latter is confined to 
a very small region not much greater than the tip gap. In fact 
simple theory, treating the leakage flow as flow through a two-
dimensional orifice, shows that the total loss of lift at the tip, 
relative to a blade with no clearance, is given by 

where Cc is the tip jet contraction coefficient, g is the tip gap, 
and L2d is the two-dimensional lift per unit span. 

The change of lift due to the changed mass flow is, however, 
not confined to the tip region and numerical calculations show 
that it affects most of the span. For a turbine blade both these 
effects contribute to a loss of lift while for a compressor blade 
the increase in lift over the span is likely to outweigh the loss 
of lift near the tip. Again it should be emphasized that these 
changes in lift and work are primarily inviscid and are not 
necessarily associated with a loss of efficiency. 

8.2 Leakage Loss of Shrouded Blades. Entropy creation 
due to tip leakage flows is primarily associated with the mixing 
processes that take place between the leakage flow and the 
mainstream. Considering first shrouded blades, the flow over 
the shrouded turbine blade with a single tip seal is illustrated 
in Fig. 29. The leaking flow contracts to a jet as it passes 
through the seal with the area of the jet being lower than the 
seal clearance by a contraction coefficient whose value is typ
ically about 0.6. If there is no significant restriction upstream 
of the seal the flow up to the throat of the jet can be considered 
to be isentropic and so the amount of leakage flow is deter
mined by the seal clearance, the contraction coefficient, the 
upstream stagnation pressure based on meridional velocity and 
by the static pressure in the jet. The latter will be influenced 
to some extent by the method of injecting the leakage flow 
back into the main flow; however, if there is no further re
striction downstream of the seal, this pressure is not likely to 
be greatly different from the static pressure downstream of 
the blade row. 

The jet mixes out in the clearance space and this mixing 
process is irreversible, creating entropy. In most practical cases 
the height of the clearance space is much larger than the leakage 
jet and so virtually all the kinetic energy associated with the 
meridional velocity of the jet is dissipated. However, meas
urements by Denton and Johnson (1976) show that the swirl 
velocity of the leakage flow is not greatly changed during this 
process and remains roughly the same as that of the flow 
approaching the blade row. 

The leakage flow must now be re-injected into the main flow 
where the differences in both the meridional velocity and the 
swirl velocity of the two flows will generate further mixing 
loss. It can be verified by performing mixing calculations for 
a flow injected into a vortex that the theory of Appendix 4 
for the mixing of a coolant jet can be applied independently 
to the meridional and swirl components of velocity. Equation 
(22) shows that the result depends on the angle at which the 
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divided between the seals (provided that they have the same
clearance) and so, for incompressible flow, the resultant leak
age and loss should vary inversely as the square root of the
number of seals. Came quotes unpublished data suggesting
that the loss varies as the number of seals to the power - 0.42.

There is no known work on the detailed flow processes over
shrouded compressor blades. The flow through the seal and
clearance space can be assumed to be similar to that described
above but the disturbance caused when the leakage flow re
enters the main flow upstream of the blade row through which
it is leaking is likely to be much more important. This flow
will have substantial negative incidence relative to the blade
inlet angle and this could cause increased losses in the flow
through the blade tip region. However, the disturbance to the
flow entering the next downstream blade row should be reduced
by the bleeding off endwall fluid to leak upstream over the
shroud.

8.3 Tip Leakage Loss of Unshrouded Blades. The leak
age flow over unshrouded blades has been much more inten
sively studied than that over shrouded blades. For turbine
blades detailed measurements are reported by Bindon (1989),
Moore and Tilton (1988), Heyes and Hodson (1993), and Yaras
and Sjolander (1992). Bindon's smoke visualization of the flow
over the tip using smoke is shown in Fig. 30 and the flow in
the tip gap is sketched in more detail in Fig. 31. The flow
entering the tip gap from the pressure side of the blade separates
from the blade tip and contracts to a jet,· with a contraction
coefficient of about 0.6. The exact value of the contraction
coefficient depends on the radius of the pressure surface cor
ner. The flow up to the throat of the jet is almost isentropic
and is not greatly influenced by the component of velocity
along the chord of the blade, i.e., out of the paper in Fig. 31.
This chordwise velocity may be significant within the sepa
r~tion bubble and convects low-energy fluid to the point of
minimum pressure above the tip. However, because the area
of the bubble is so small, the mass flow involved is unlikely
to be significant.

If the blade thickness is more than about four times the tip
gap (Fig. 31a), as is usually the case for turbines, the jet mixes
out above the blade tip with a consequent increase in static
pressure and in entropy. The chordwise component of velocity
is substantially conserved during this mixing. The static pres
sure after the mixing is usually assutned to be the same as that

A) Smoke introduced through the blade tip showing reversed flow in the
separation bubble

leakage flow is injected into the mainstream and that the dif
ference in meridional velocity of the mainstream and the in
jected flow should be as small as possible. However, in most
cases the difference in swirl velocity of the two flows is likely
to be dominant and this does not depend on the angle of
injection. If the leakage flow suffers no change in swirl velocity
in the clearance space the difference in swirl velocity will be
the same as the change in swirl velocity across the blade row.

A theory for the leakage flow and loss of a shrouded turbine
blade, based on the above model, is presented in Appendix 5.
The analysis is for incompressible flow but is easily extended
to compressible flow by numerical calculations. This theory is
based on simplification of an extremely complex flow; how
ever, its predictions have been reasonably well verified by meas
urements of the flow over a model of a turbine shroud by
Denton and Johnson (1976). The predicted rate of change of
stage efficiency with tip clearance is also realistic with dYJ/d(g/
h) in the range 1.5-2.5, increasing with stage loading and with
reaction. It is interesting to note that the theory predicts that
any loss of swirl velocity of the leaking flow before it mixes
with the mainstream flow, e.g., by friction on the casing, acts
to reduce the overall loss. It is also interesting that the overall
entropy rise per percent of leakage flow is determined almost
entirely by the mixing process downstream of the blade row
while the flow processes over the shroud mainly affect the
leakage flow rate.

There are few other methods available for estimating the
loss of shrouded turbine blades. Came (1969) suggests using
the same formula as he recommends for unshrouded blades
(a modified form of Ainley and Mathieson's method) but mul
tiplying the result by about 0.9. For shrouded blades with
multiple seals the blade pressure drop should be roughly equally

B) Smoke introduced on the pressure surface and passing over the blade
tip to form the lip leakage vortex

Fig. 30 Smoke visualization 01 the flow in the tip gap of a turbine
cascade
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Fig. 32 The growth of tip leakage loss through a turbine blade passage, 
from Bindon (1988) 

on the suction surface of the blade. However, some measure
ments (e.g., Bindon, 1989; Yaras and Sjolander, 1992) show 
this is significantly lower than the two-dimensional pressure 
because of the blockage effect of the tip leakage vortex. If the 
pressure after mixing is known the leakage flow rate and the 
entropy generation in the tip gap can be obtained by treating 
the flow as a two-dimensional orifice with a known contraction 
coefficient (Moore and Tilton, 1988). 

The mixing of the leakage flow and the mainstream flow 
on the suction surface side of the tip gap is another example 
of the type of mixing process described in section 4 of this 
paper in which the overall loss can be obtained by applying 
the global conservation equations. Since the two flows have 
different velocities, in both magnitude and direction, there is 
a vortex sheet at their interface, Fig. 30, and this rolls up into 
a concentrated vortex as the leakage flow moves downstream 
along the suction surface-endwall corner. However, the overall 
entropy production in the mixing process is not dependent on 
the details of this vortex. Equation (22), for the mixing of a 
jet with a mainstream, can be applied directly and shows that 
the entropy generation is proportional to the difference in the 
streamwise velocity of the two flows. If the jet mixes out close 
to the suction surface, this is effectively the same as the dif
ference between the surface velocities on the suction side and 
pressure sides of the blade. Figure 32, from Bindon (1989), 

shows stagnation pressure contours and loss growth through 
a turbine cascade with tip clearance and illustrates that most 
of the mixing takes place near the suction surface but that it 
is not complete at the trailing edge. In a machine mixing will 
continue through the next blade row and this makes it difficult 
to make accurate predictions of the overall loss. 

The leakage flow over unshrouded compressor blades is not 
different in principle from that described above for turbines. 
The main difference arises because the thickness of the blades 
relative to the tip gap is likely to be much less than for turbines. 
As a result the leakage jet is unlikely to reattach to the blade 
tip within the gap, as shown in Fig. 31 (b). Storer (1991) finds 
that the jet does not reattach within the gap if the latter is 
more than about 40 percent of the blade thickness. This means 
that there is no pressure recovery in the clearance gap and so 
the discharge coefficient relating the leakage flow rate to the 
tip gap and pressure difference will be less than for a turbine. 
Storer finds a typical value of 0.8 for this discharge coefficient. 

Equation (22) shows that the total entropy production in 
the mixing process depends on the leakage flow rate and on 
the difference in the streamwise velocity of the mainstream 
(suction side) flow and the leakage flow. This velocity differ
ence will be closely the same as the difference in blade surface 
velocities and so it can be argued that it is not affected by 
whether the mixing takes place above the blade tip or with the 
mainstream near the suction surface. Much of the mixing takes 
place near the suction surface of the blade and for compressor 
blades this will be a region of decelerating flow, hence the 
entropy production will be greater than that calculated for 
mixing at constant area. However, Storer finds that most of 
the entropy generation takes place near the point of leakage 
and so this effect may not be dominant. 

A simple theory for the tip leakage loss of unshrouded blades 
based upon the above model is reproduced in Appendix 6. The 
model is equally applicable to compressors and turbines. It is 
developed for incompressible flow but is easily extended to 
compressible flow. The method assumes that the surface pres
sure distribution is known but for cases where it is not simple 
approximations to estimate the pressure distribution in terms 
of the inlet and outlet flow angles and blade solidity are sug
gested. These approximations take no account of the lowering 
of the suction surface pressure near the tip by the blockage 
effect of the leakage vortex. 

The only empiricism contained in the theory is a value (usu
ally 0.6) for the contraction coefficient of the leakage jet. 
Despite this it gives realistic predictions of the rate of change 
of efficiency with tip clearance. For both turbines and com
pressors the value of di)/d(g/h) is predicted to lie in the range 
2.0-3.0, increasing with increased stage loading and with re
duced flow coefficient. This is typical of the values quoted by 
Roelke (1973) for turbines and by Moyle (1988) for compres
sors. 

8.4 Effect of Relative Motion Between the Blade Tip and 
Casing. All known theories for leakage loss neglect the rel
ative motion between the blade tip and the endwall. In a com
pressor this relative motion is such as to increase the leakage 
flow and in a turbine it acts to reduce it. The motion may also 
affect the pressure difference across the blade tip by forming 
a scraping vortex on the leading surface of the blade. The 
importance of the relative motion has been investigated by 
Morphis and Bindon (1988) and by Yaras and Sjolander (1992) 
all of whom worked on turbine blades. Both found that the 
general flow pattern over the tip was not greatly affected by 
the relative motion and that the relative motion increases the 
pressure on the suction side of the clearance gap. The latter 
effect acts to reduce the leakage and loss. Yaras and Sjolander 
found that the discharge coefficient was approximately halved 
by this effect at full tip speed. This, reduction in leakage flow 
appeared to be caused by the change in the tip pressure dif-
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Fig. 33 The tip leakage loss coefficient of shrouded blades: contours 
in percent exit dynamic head per 1 percent clearance/height 

Fig. 34 The tip leakage loss coefficient of unshrouded blades: contours 
in percent exist dynamic head per 1 percent clearance/height 

ference rather than a change in the velocity profile within the 
tip gap. In particular the boundary layer on the endwall within 
the gap appeared to be extremely thin. This implies that theories 
such as that of Appendix 6 can still be used either with a 
modified surface pressure distribution or with an empirical 
modification to the discharge coefficient. 

The main weakness of all these methods is the assumption 
that the mixing between the main flow and the leakage flow 
takes place immediately after they meet. Equation (23) suggests 
that most of the mixing takes place very quickly and this is 
supported by Storer's findings for compressor blades. How
ever, Bindon's results for turbine blades, Fig. 32, show that 
some of the mixing continues well downstream of the point 
of leakage. Hence, in practice diffusion during mixing may 
increase the mixing loss, for both compressors and turbines. 

8.5 Comparison of Shrouded and Unshrouded Blades. It 
is of interest to compare the tip leakage loss of shrouded and 
unshrouded blades. Results from the theories of Appendices 
5 and 6 are presented in Figs. 33 and 34. The loss coefficients 
plotted are those obtained at a tip clearance of 1 percent of 
blade height and are defined in terms of the blade exit dynamic 
head, even when the blade represents a compressor. Figure 34 
for unshrouded blades is applicable to both turbines and com
pressors, but Fig. 33 is only really applicable to shrouded 
turbines. For unshrouded blades the pressure difference driving 
the leakage flow is that between the pressure and suction sur
faces of the blades, while for shrouded blades it is the overall 
pressure change over the blade tip. For most blade rows these 
two pressure differences are similar and so, for the same tip, 
clearance, the leakage flow rates will be similar for shrouded 
and unshrouded blades. However, for low-reaction rotor 
blades, the pressure drop over the blade row becomes much 
less than that between the blade surfaces and so shrouded 
blades will have a lower leakage flow rate. 

The leakage flow coefficient depends both on the propor
tional leakage flow and on the magnitude of the velocity dif
ference between the leaking flow and the mainstream flow with 
which it mixes. This is the suction side to pressure surface 

velocity difference for unshrouded blades and the change in 
swirl velocity across the whole row for shrouded blades. Again 
these two velocity differences will be comparable for most 
blade rows but for low-reaction shrouded- blades, which have 
high turning, the overall change in swirl velocity will be larger 
than the suction to pressure side surface velocity difference. 

Hence we may conclude that for most blade rows there is 
little to choose between unshrouded blades and shrouded blades 
with a single tip seal. For low-reaction blades the situation is 
less clear since shrouded blades will have a lower leakage flow 
rate but a greater loss per unit leakage. Only for impulse blades, 
where the leakage flow drops to zero, do shrouded blades have 
a decided advantage. This is confirmed by Figs. 33 and 34, 
which predict that shrouded blades have a slightly lower loss 
coefficient for most combinations of flow angle but a signif
icantly lower one for near impulse conditions. For most blade 
rows the real advantage of using shrouded blades comes from 
the ability to use more than one tip seal. 

9 Endwall Loss 
The term "endwall loss" will be used in preference to "sec

ondary loss" to describe all the loss arising on the annulus 
walls both within and outside of the blade passage. This is the 
most difficult loss component to understand and to predict 
and virtually all prediction methods are still based on corre
lations of empirical data, often with very little underlying phys
ics. The flow patterns near the endwalls are determined by the 
secondary flow whose strength depends mainly on the thickness 
of the upstream boundary layer and on the amount of turning 
in the blade row. They can be predicted approximately by 
classical secondary flow theory, or nowadays, more accurately, 
by numerical calculations. It is important to realize that the 
secondary flow is an inviscid phenomenon that does not by 
itself give rise to any entropy generation. Conversely, second
ary flow is caused by stream wise vorticity, which is itself a 
direct result of viscous shear on the endwalls. 

For turbines, endwall loss is a major source of lost efficiency, 
contributing typically 1/3 of the total loss. It is generally ac
cepted that in order to explain observed turbine efficiencies 
the entropy generation per unit surface area of the endwall 
must be considerably greater than that on the blade surfaces. 

For compressors it is more difficult to separate endwall loss 
from tip leakage loss and from losses due to flow separation, 
and some prediction methods make no distinction between the 
two. The reduced turning of compressor blades tends to reduce 
the strength of the secondary flows but the thicker endwall 
boundary layers increase the amount of fluid involved. The 
fact that the flow is being decelerated makes fluid near the 
endwalls of compressors prone to separate with consequent 
major effects on the blockage factor and the stalling point of 
the blade rows. Overall, the effects of endwall flow and losses 
in compressors are probably even more important than in 
turbines. Because of the major differences between them the 
endwall loss of turbines and compressors will be considered 
separately. 

9.1 Endwall Loss in Turbines. Dunham (1970) reviewed 
the available correlations for turbines and compared them with 
cascade data. He found very large discrepancies both between 
the correlations themselves and between the correlations and 
the data. Based on this survey Dunham and Came (1970) sug
gested an improved correlation for use in turbines where, in 
order to predict the correct overall efficiency, they found that 
it was necessary to use an endwall loss several times greater 
than measured in cascades. This correlation is still widely used; 
however, it contains little physics and in fact predicts that the 
loss is independent of blade solidity while simple physical ar
guments would suggest that this is one of the most important 
factors influencing endwall loss. More recent correlations have 
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Fig. 35 Flow visualization on the endwall and suction surface of a 
turbine cascade from Hodson and Dominy (1985) 

been produced by Sharma and Butler (1987) and by Gregory-
Smith (1982). Both of these include some simple physical mod
eling of the flow processes and both base their loss predictions 
partly on simplified endwall boundary layer calculations. 
Sharma and Butler suggest that the skin friction on the endwall 
needs to be increased considerably above two-dimensional val
ues (in fact by a factor of about 5) to explain the observed 
loss, while Gregory-Smith uses a conventional two-dimensional 
turbulent boundary layer calculation, with no increase in skin 
friction, and includes an estimate of the secondary kinetic 
energy as a loss. 

The flow processes near the endwall of turbine cascades have 
been intensively studied and there is an enormous literature 
on the subject. The first detailed measurements of the sec
ondary flow processes in a turbine cascade were given by 
Langston et al. (1977) and more recently Sieverding (1985) 
presented a comprehensive review of the flow processes in 
cascades. Very detailed measurements of the endwall flow 
within turbine cascade passages have recently been published 
by Walsh and Gregory-Smith (1990) and by Harrison (1989). 
As a result of this and much other work the flow processes 
near the endwalls of turbine cascades are well understood. 
Figure 35, from Hodson and Dominy (1987) illustrates some 
aspects of this complex flow and a brief description of it is 
necessary if we are to consider the loss-producing mechanisms. 

The endwall boundary layer undergoes a three-dimensional 
separation as it approaches the leading edge stagnation point, 
giving rise to the well-known horseshoe vortex. The boundary 
layer fluid is funneled between the two lift-off lines of this 
separation (e.g., lines Sl,s and Sl,p in Fig. 35) and is driven 
toward the suction surface of the blade by the cross-passage 
pressure gradient. The greater the blade turning and loading 
the sooner the endwall boundary layer fluid moves onto the 
suction surface. Once on the suction surface this fluid is driven 
up it (between lines S2,s and S4) by the secondary flow and 
convected along it by the mainstream flow so that at the trailing 
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Fig. 36 Loss coefficient and vorticity contours and secondary velocity 
vectors downstream of the cascade of Fig. 35 

edge it appears as a region of high-entropy fluid above the 
suction surface-endwall corner. 

A new endwall boundary layer must grow downstream of 
the separation lines. Initially this is extremely thin and probably 
laminar. It is subject to a strong cross-stream pressure gradient 
and to the "scouring effect" of the secondary flow, both of 
which make the boundary layer highly three dimensional and 
try to sweep it toward the suction surface. As a result fluid is 
continually being removed from this boundary layer and swept 
onto the suction surface so that the new endwall boundary 
layer itself stays thin. Harrison (1989) gives detailed measure
ments of the development of this boundary layer and finds 
that it remains laminar over much of the endwall. The strong 
crossflow in the new boundary layer induces a small corner 
vortex, rotating in the opposite sense to the main passage 
vortex, in the endwall-suction surface corner. Figure 3(5 shows 
results from traverses behind the cascade of Fig. 35 illustrating 
the loss concentration and the secondary flow vortex. 

Downstream of the trailing edge the high-entropy fluid from 
the upstream boundary layer and the blade wake are both 
distorted and convected by the passage vortex and gradually 
mix out with the mainstream flow. In a turbine this mixing is 
unlikely to be complete before the next blade row. The endwall 
boundary layer is still very thin at the trailing edge. In a cascade, 
it continues to grow relatively undisturbed downstream of the 
blade row and becomes more two dimensional as the passage 
vortex and the cross stream pressure gradient decay. In a tur-
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bine the boundary layer will have to cross the gap separating 
the stationary and rotating parts of the endwall and will then 
find itself adjacent to a surface moving with a different velocity 
before it enters the next blade row. As a result of this change 
of frame of reference the endwall boundary layers entering all 
except the first blade row in a turbine will be skewed relative 
to the mainstream flow. Hence cascade tests, which usually 
have a comparatively thick collateral endwall boundary layer, 
may not be representative of conditions in a turbine. 

The direction of the boundary layer skew in a turbine is such 
as to induce negative incidence onto the blade row and so the 
direction of the relative inlet flow in the boundary layer rein
forces the secondary flow. This can also be thought of as being 
due to the increased streamwise vorticity resulting from the 
skew. Unless the inlet boundary layer is very thick, the effects 
of the skew on blade loading are not large and so the local 
negative incidence does not significantly reduce the cross-pas
sage pressure gradient driving the secondary flow. 

The effects of skewing of the inlet boundary layer on the 
flow and loss have been examined by Bindon (1979), Boletis 
et al. (1983), and by Walsh and Gregory-Smith (1990). All of 
them used cascades with moving endwalls and found that the 
skewing had a large effect on the secondary flow and loss. 
The latter in particular found that skewing in the direction 
found in a turbine greatly increased the magnitude of the 
secondary flow and increased the loss by about 50 percent 
while skewing in the opposite sense reduced both. The effects 
of skew clearly need to be included in a realistic turbine pre
diction method but this is seldom done. 

We can now consider the effects of this complex flow on 
the entropy generation in turbines. The first question that 
comes to mind is whether the entropy generation per unit 
surface area of the endwalls can be estimated in the same way 
as that on the blade surfaces by using a simple approximation 
to the dissipation factor, C</. As far as is known there are no 
published results for the dissipation in a boundary layer with 
strong crossflow. Equation (A1.6) includes the dissipation due 
to crossflow but it cannot be integrated until the variation of 
the transverse shear stress through the boundary layer is known. 
Harrison (1989) makes an estimate of the effects of skew on 
the dissipation. By using his measured velocity profiles, which 
have up to 50 deg of skew, and assuming that the distribution 
of turbulent viscosity is unchanged, he concludes that the skew 
changes the dissipation by at most 10 percent. This is only a 
tentative conclusion, but it suggests that the dissipation rate 
on the endwalls is unlikely to be greatly different from that in 
a collateral boundary layer with the same Rej. However, the 
state of the endwall boundary layer is a major unknown and 
will have a very large effect on the dissipation coefficient. The 
boundary layer entering the blade row is almost certain to be 
turbulent but that after the separation line is likely to be laminar 
with a very low value of Res. Harrison found that it remained 
laminar over most of the region near the pressure surface but 
became turbulent in the higher velocity region near to the 
suction surface. 

If we make the gross assumption that the dissipation coef
ficient is constant over the whole endwall and obtain the rel
ative velocity from blade to blade calculations, we can integrate 
Eq. (39) to calculate the entropy production rate. Harrison 
obtained an average dissipation coefficient of 0.0014 on the 
endwall of his cascade in this way, i.e., rather less than the 
value of 0.002 suggested in section 3 for use on the blade 
surfaces. This is to be expected given that the boundary layer 
was partly laminar. 

A rough idea of the magnitude of the dissipation on the 
endwalls can be obtained by assuming that the relative velocity 
varies linearly across the pitch from the suction surface to the 
pressure surface. If the endwall is not moving relative to the 
blades the entropy production rate can then be integrated across 
the pitch to give 

where x is the axial distance and w is the local suction to 
pressure surface gap. 

Denton (1990) gives estimates of this integral obtained in a 
similar manner to the estimates of blade surface loss presented 
in Fig. 20. However, comparison of Eqs. (50) and (41) shows 
that for the same value of Cd the average loss per unit surface 
area on the endwall is predicted to be only about one quarter 
of that on the blade surfaces. This is because the dissipation 
varies as the cube of the velocity and only a small area of the 
endwalls, adjacent to the suction surface, is subject to high 
velocity levels similar to those on the suction surface. The ratio 
of the surface area of both endwalls to that of the blade suction 
surface is approximately 

A wall 2 Cx p 

^Isuct Ar C C 

where Ar is the blade aspect ratio based on the true chord, 
both Cx/C and p/C are likely to be about 0.75 and so the ratio 
of areas is of the same order as the reciprocal of the aspect 
ratio. Hence Eqs. (41) and (50) predict that at an aspect ratio 
of unity the entropy generation on the endwalls within the 
blade row would be only about 1/4 of that on the blade sur
faces. In fact at this aspect ratio the total endwall loss is usually 
considered to be comparable to the blade surface loss. Hence, 
even allowing for a slightly increased value of Cd due to the 
skewing and low Re# it seems unlikely that entropy generation 
in the boundary layer within the blade row can explain the 
observed magnitude of turbine endwall loss. 

The endwalls downstream of a turbine blade are subject to 
the full blade exit velocity and so their entropy generation rate 
per unit area will be comparable to the maximum value on the 
suction surface. In a turbine these downstream endwalls typ
ically extend about 1/4 of an axial chord behind the blades 
before the relative velocity between the flow and the wall is 
reduced by the change from stationary to rotating walls, or 
vice versa. Thus the entropy generation in this region is com
parable to that on the endwall within the blade row. This is a 
significant loss component, which can only be reduced by 
minimizing the area of endwall exposed to the full blade exit 
flow velocity. 

The endwalls upstream of a turbine blade are subject to the 
relative inlet velocity, which is usually significant less than the 
exit velocity. The axial extent of these walls is unlikely to be 
more than about 1/4 of an axial chord and so the entropy 
generated in the inlet boundary layers is usually much less than 
that on the downstream endwalls. Hence it seems that the total 
entropy generation in the endwall boundary layers, upstream 
of, within, and downstream of the blade row can only explain 
about 2/3 of the observed endwall loss. 

There is a good deal of evidence, summarized by Sharma 
and Butler (1987), that the endwall loss generated within the 
blade row, i.e., the total loss minus the loss present in the inlet 
boundary layer, remains almost constant as the thickness of 
the inlet boundary layer is changed. This implies that the loss 
generated by the mixing out of the inlet boundary layer within 
the blade row is small. On a one-dimensional basis this mixing 
takes place in an accelerating flow so the mixing loss should 
be reduced. However, secondary flow and inlet skew produce 
streamwise vorticity and streamwise acceleration amplifies this 
and increases the kinetic energy associated with it. This is often 
called secondary kinetic energy (s.k.e.). 

Kinetic energy is a relative quantity and so care is needed 
in defining exactly what is meant by s.k.e. It is usually taken 
to be the kinetic energy associated with the velocity component 
perpendicular to some primary flow direction, but exactly how 
this direction is defined is arbitrary. The production of s.k.e. 
by secondary flow is an inviscid process and so is not initially 
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a loss. Classical secondary flow theory (Hawthorne, 1955) 
predicts that there is a value of the ratio of inlet boundary 
layer thickness to blade pitch that maximizes the s.k.e., but it 
is not known how well this applies to real flows with large 
disturbances. The s.k.e. also increases with blade turning and 
with inlet boundary layer skew. Some of the s.k.e. arises from 
the inviscid secondary flow induced.by the.inlet boundary layer 
and some of it comes from the secondary flow induced by the 
new endwall boundary layer. Comparison of results from vis
cous and inviscid calculations suggests that most of the sec
ondary flow is generated ,by the inlet boundary layer and in 
fact viscous effects within the blade row appear to reduce its 
strength slightly. 

When the mean flow is accelerated, the s.k.e. of a stream wise 
vortex increases and it can be shown that in inviscid flow the 
s.k.e. is proportional to the square of the length of the vortex. 
It is known that dissipation within a vortex core is very high 
and so the subsequent decay of this s.k.e. leads to an increase 
in entropy. Hence vortex stretching provides a mechanism for 
the generation of high endwall losses in highly accelerating 
blade rows. Some of the dissipation within the vortex core 
occurs within the blade row and will be measured as a loss at 
the trailing edge. However, the dissipation continues down
stream of the blade row and it is often assumed that all the 
s.k.e. of the vortex at the trailing edge is lost. Gregory-Smith's 
method of estimating the loss assumes this. The magnitude of 
the s.k.e. in cascades has been measured by many workers. 
Its value is typically in the range 0.2-0.50 of the endwall loss 
present at the trailing edge. 

The flow downstream of a trailing edge has been studied in 
detail by Moore and Adhye (1985) who found that the decay 
of s.k.e. as the flow progressed downstream from the trailing 
edge closely matched the increase in entropy. The mixing loss 
downstream of a trailing edge can of course be calculated by 
applying the conservation equations between the trailing edge 
flow and a completely uniform mixed out downstream flow. 
This is often done in presenting cascade results. However, a 
completely uniform mixed out flow is not representative of 
what happens in a machine where spanwise variations in the 
circumferentially averaged flow decay slowly and will certainly 
remain at entry to the next blade row. They will be seen by 
this row as a spanwise variation in average inlet angle, which 
will be reflected in the blade work. Hence they are not a loss, 
and cascade measurements based on a completely uniform 
mixed out downstream flow will overestimate the endwall loss. 
The pitchwise variations in flow decay more rapidly than the 
spanwise variations (as found by Moore and Adhye) and it is 
not obvious whether they can be used by a following blade 
row. 

The interaction between a secondary flow vortex (or a tip 
leakage vortex) and a downstream blade row is an extremely 
difficult problem that has not been widely researched. Some 
results are available from Sharma et al. (1992) and from Binder 
(1985). These illustrate the complexity of the unsteady flow 
but they tell us little about loss. The possibility of the highly 
dissipative process known as vortex breakdown occurring in 
turbomachines deserves investigation. 

To summarize the loss-producing mechanisms associated 
with a turbine endwall we may say that the total loss is a 
combination of many factors. About 2/3 of it comes from 
entropy generation in the annulus wall boundary layers within, 
upstream of, and downstream of the blade row. When turned 
into a loss coefficient, this will vary inversely with aspect ratio 
as illustrated by Eq. (51). A further part comes from mixing 
loss of the inlet boundary layer, which is amplified by the 
secondary flow and will give a loss coefficient proportional to 
the ratio of inlet boundary layer thickness to span but which 
is an unknown function of blade load and turning. A third 
component is the loss associated with the s.k.e., which is of 
the order of 1/4 of the total endwall loss. This proportion will 

depend on inlet boundary layer thickness and skew and on 
blade turning and blade loading but there are no simple theories 
relating the loss to any of these factors. The proportion of the 
s.k.e. that is lost is also not yet predictable-. Other contributions 
to endwall loss may come from local flow separations and 
from thickening and premature transition of the blade surface 
boundary layers as a result of the secondary flow. In all the 
situation is too complex and too dependent on details of the 
flow and geometry for simple quantitative predictions to be 
made. The main hope in the near future is that the loss can 
be quantified by three-dimensional Navier-Stokes solutions, 
which already give good qualitative predictions of the flow. 

9.2 Endwall Loss in Compressors. The endwall flow in 
a compressor cascade has been less intensively studied than 
that in a turbine, possibly because the flow in a cascade is less 
relevant to that in a real machine than is the case for a turbine. 
The major differences between the endwall flows in compres
sors and turbines are that the blade turning is much less, the 
endwall boundary layers are much thicker relative to the blade 
chord, and the boundary layers are being decelerated. The first 
two of these factors tend to make the secondary flow less 
intense but the last tends to amplify it. The endwall losses are, 
if anything, more important in compressors than in turbines 
and Howell's (1945) well-known graph of the breakdown of 
losses in a typical axial compressor shows about 2/3 of the 
loss due to "annulus loss" and "secondary loss" at design 
conditions. 

Cumpsty (1989) points out clearly that the endwall boundary 
layers cannot be considered as conventional boundary layers 
during their interaction with a blade row. The overall thickness 
of the endwall boundary layer in a multistage compressor is 
typically half the blade chord, hence the pressure changes take 
place in a few boundary layer thicknesses, which is very much 
more rapid than those considered by conventional boundary 
layer theory. This means that viscous forces play relatively 
little part in the flow behavior, which is likely to be more like 
that of an mviscid shear layer than a boundary layer. If we 
assume that a compressor blade has a collateral endwall bound
ary layer with a free-stream inlet velocity V\ and an exit velocity 
V2, then on a one-dimensional, incompressible and inviscid 
basis, all the fluid in the inlet boundary layer with a velocity 
less than 

J/
Sep=K1Vl~(K2/K1)2 (52) 

must separate within the blade row. At a typical value of 
F2 = 0.7 V\ this implies that all fluid with velocity less than 
about 30 percent of the inlet free-stream velocity would sep
arate. In practice this fluid does not separate in the conven
tional two-dimensional sense. As it decelerates, it becomes 
more susceptible to the cross-passage pressure gradient, which 
is driving the secondary flow, so that before its meridional 
velocity becomes zero it has acquired a component of velocity 
toward the suction surface. On reaching the suction surface-
endwall corner this high entropy fluid accumulates and is fur
ther decelerated by the overall pressure rise to form the large 
corner separation that is almost invariably seen in compressor 
cascades. This separation is responsible for much of the block
age observed in compressor blade rows. Its effects may not be 
localized and it can interact with the suction surface boundary 
layers to cause separation over much of the blade span. Figure 
37 (zero tip clearance case) shows an example of such a sep
aration in a compressor cascade. 

The above behavior applies directly to cascade flows with 
collateral inlet boundary layers; however, in an actual com
pressor the picture is altered by the effects of skewing and tip 
leakage. In a compressor the lower meridional velocity in the 
annulus boundary layer causes positive incidence onto the 
blades and so directs the relative velocity of the boundary layer 
fluid toward the pressure surface; In unshrouded blade rows 
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the relative motion of the endwall within the blade passage 
enhances this effect. The increase in relative tangential velocity 
within the skewed boundary layer may be greater than the 
deficit in meridional velocity so that the endwall fluid can have 
higher relative stagnation pressure than the mainstream flow. 
Both these factors act to oppose the conventional secondary 
flow. For rotor tip sections, where the blade turning is low, 
the effect of skewing is likely to dominate and drive the endwall 
fluid toward the blade pressure surface. Here it will enter a 
region of favorable pressure gradient and so may cause less 
harm than if there were no skew. For rotor hub and stator tip 
sections the blade turning is greater and so the effects of sec
ondary flow usually dominate those of skew and the endwall 
boundary layer fluid ends up on the suction surface-endwall 
corner where it is likely to cause separation. 

The interaction between tip clearance and the endwall flow 
can have a dominant influence in compressors with unshrouded 
blade tips. The tip leakage flow directs a jet of high-velocity 
fluid from the pressure surface into the suction surface-endwall 
corner where the high-entropy inlet boundary layer fluid tends 
to concentrate. This may succeed in re-energizing the boundary 
layer fluid sufficiently to prevent the corner separation with a 
consequent reduction of loss. This interaction accounts for the 
observation that in some compressors there is an optimum tip 
clearance that gives higher efficiency than either zero clearance 
or larger clearances. This corresponds to the leakage flow being 
just sufficient to prevent the corner separation but not suffi
cient to generate a large tip leakage loss. This phenomenon 
has been studied in detail in cascade by Storer (1991), some 
of whose results are shown in Fig. 37. 

If compressor endwall boundary layers remain attached the 
entropy generation per unit surface area of the endwalls can 
be estimated from Eq. (50). In fact, because the Ree of the 
endwall boundary layer is so large it is possible that the dis
sipation per unit surface area may be somewhat less than on 
the blades. Storer measured an endwall loss of about the same 
magnitude as the profile loss on his compressor cascade with 
no tip clearance and infers a similar level when tip clearance 
is present. However, if this were always the case compressors 
would be much more efficient than they are in practice. 

The effects of endwall flow on the loss of compressor blades 
are believed to be dominated by mixing and by the promotion 
or suppression of separations. The mixing loss in the endwall 
boundary layer will be increased because of the diffusing flow 
and the very large increases of mixing loss, shown by Fig. 11 
at typical levels of compressor blade diffusion, would corre
spond to the endwall boundary layer separating. As described 
above this separation will be highly three-dimensional and so 
cannot be predicted by the usual diffusion factor arguments. 
Once a separation occurs it will mix out partly within the blade 
passage and partly downstream. Storer's results, Fig. 37, show 
that the mixing is far from complete half a blade chord behind 
his cascade. 

The interblade row gap is so small in most axial compressors 
that it is likely that much of the mixing takes place in the 
unsteady environment of the downstream blade row. Even for 
mixing within and immediately downstream of the blade row 
there is no satisfactory theory to calculate the entropy gen
erated by the mixing out of a separation. When mixing occurs 
in the downstream blade row the situation is even less pre
dictable. 

There are comparatively few published methods for pre
dicting endwall losses in axial compressors. Howell (1945) dis
tinguished between annulus loss and secondary loss and 
predicted each of them in terms of a drag coefficient. However, 
the expression for annulus loss does not include the surface 
area of the annulus and the secondary loss is based on the 
induced drag of a wing tip vortex, which, as previously noted, 
is an inviscid phenomenon. Hence, although Howell's method 
has been widely used for many years, it cannot be said to be 
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Fig. 37 Loss contours near the endwall of a compressor cascade with 
and without tip clearance 

related to the physics of the flow. Koch and Smith (1976) use 
a method that is described in more detail by Smith (1970). 
Their method is based on the concept of a repeating stage for 
which one can use the definition of efficiency in the form 

^ = ̂ _ ^ ( 53 ) 

y m Tq 
where Tq is the blade row torque, to relate changes of ef ficiency 
relative to a stage with no endwall loss to changes of mass 
flow and to changes of blade tangential force. The change of 
flow is found from the endwall boundary layer displacement 
thickness, which is correlated against the ratio of tip clearance 
to staggered gap, and the pressure rise as a fraction of max
imum pressure rise. The change of torque is found from the 
tangential force defect in the tip region, which is correlated as 
a function of the displacement thickness and pressure rise. 
Equation (53) is thereby effectively a vehicle for correlating 
the annulus boundary layer displacement thickness and tan
gential force deficit thickness. The method is useful in including 
the effects of tip clearance, endwall loss, and blockage in a 
single method and it includes some of the physics of the endwall 
flow. However, it cannot pretend to allow for the complexities 
of the real flow and so can only be used reliably when exper
imental data on similar designs are available. 

Several methods that calculate the annulus boundary layer 
displacement thickness via a two-dimensional boundary layer 
calculation along the whole endwall of a compressor have been 
published (e.g., de Ruyck and Hirsch, 1983). These use con
ventional boundary layer theory and in view of what has been 
said about endwall boundary layer behavior in compressors 
this must be regarded as dubious. However, they also include 
considerable empiricism, including correlations for the tan
gential force defect, and so are able to give reasonable pre
dictions. 

Despite these criticisms of current compressor endwall loss 
prediction methods the author cannot offer any alternatives 
that will be generally valid. The flows are so complex and 
depend so much on the details of the geometry and of the 
incoming boundary layers that it is hard to believe that anything 
other than three-dimensional Navier-Stokes calculations can 
give general results. It is hoped that an understanding of the 
loss mechanisms will bring about improvements in design but 
at present these can only be quantified by experiment. 

10 Application to Radial Flow Machines 
Most of discussion so far has been in the context of axial 

flow turbomachines. Many of the ideas presented are directly 
applicable to radial flow turbines and compressors but there 
are significant differences in the relative importance of the 
various loss mechanisms. These will be discussed in this section. 

Both radial inflow turbines and centrifugal compressors typ
ically have a stage loading coefficient, Ah0/Uip around unity, 
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where Ut[P is the maximum blade speed. This means that for 
both types of machine the change in Ve is comparable to Utw. 
The major difference from axial flow machines arises because 
the blade speed U varies considerably through the rotor. This 
causes the change of relative velocity through the rotor to be 
less than that in an axial flow machine with the same £/tiP and 
Ah0. Hence, in a centrifugal compressor we can produce the 
same enthalpy rise with less diffusion of the relative flow in 
the rotor, and in a radial inflow turbine we can produce the 
same enthalpy drop with less acceleration, than in a comparable 
axial machine. However, in both cases the change in absolute 
velocity through the stators is comparable to that in an axial 
flow machine with the same enthalpy change. 

The lower change in relative velocity through the rotor is 
particularly advantageous for compressors since it is the dif
fusion of the relative velocity that brings about boundary layer 
growth and separation. Hence centrifugal compressors can 
obtain much higher pressure ratios for the same rotor diffusion 
factor than can axial compressors. In effect most of the pres
sure rise is being balanced by the centrifugal force field rather 
than by deceleration of the relative velocity. In radial inflow 
turbines the reduced change in relative velocity means that 
higher pressure ratios can be obtained before choking, and 
without the losses associated with transonic flow, than is pos
sible in axial turbines. 

As regards entropy generation: In both types of machine, 
the average relative velocity through the rotor will be less than 
that in an axial flow machine with the same £/lip and Ah0 while 
that through the stator will be comparable to that in the axial 
flow machine. On this basis one would expect radial flow 
machines to be more efficient than comparable axial flow 
machines while in practice they are generally accepted to be 
slightly less efficient. The discrepancy is probably due to the 
more complex geometry inherent in the change of flow direc
tion from axial to radial and vice versa. This involves a 90 deg 
bend, which causes stronger secondary flows than in most axial 
machines and also a decrease of blade span with radius, which 
means that radial flow machines are usually of relatively low 
effective aspect ratio. In comparing them with axial machines 
we should choose machines of comparable aspect ratio (or 
specific speed) and on this basis their efficiency is not obviously 
lower. 

10.1 Radial Inflow Turbines. Radial inflow turbines usu
ally have stator blades located in a flow where the meridional 
velocity is radially inward, although in small turbochargers a 
vaneless volute may be used to accelerate the flow. The flow 
through the stator blades is highly accelerating and, because 
of the decrease in radius the blade throat is close to, or even 
behind, the trailing edge. Hence blades can be designed with 
little or no suction surface diffusion. This means that the 
boundary layers on the stator may be largely, or even com
pletely, laminar and so very low levels of loss can be achieved. 
In fact most of the two-dimensional loss may arise from the 
trailing edge, which should therefore be kept thin relative to 
the blade throat. The endwall loss per unit surface area should 
also be small but the aspect ratio is usually low and so the 
total endwall loss may be significant. Huntsman (1993) meas
ured a profile loss coefficient of 1.2 percent and an overall 
loss coefficient of 3.3 percent for his stator blade. Both of 
these are very low relative to comparable values for an axial 
flow turbine. 

The annulus boundaries in the gap between stator and rotor 
are subject to the highest relative velocity in the machine and 
so this gap should be kept as small as is possible, subject to 
mechanical constraints. The velocity relative to the rotor is 
low at entry, but if the rotor is unshrouded, that relative to 
the casing continues to be high until well into the rotor passage. 
This will generate large amounts of entropy on the casing, 
which will be transported toward the casing-suction surface 

ACCUMULATION OF LOW ENERGY FLUID IN 
TIP LEAKAGE AND SCRAPtNG VORTEX 

ACCUMULATION OF LOW ENERGY FLUID 
SECONDARY FLOW VORTEX 

Fig. 38 Contours of relative stagnation pressure at exit from a radial 
inflow turbine (from Huntsman, 1993) 

corner by both the relative motion of the casing and by the 
secondary flow. Shrouded rotors should generate less loss in 
this region. Farther into the blade passage the curvature of the 
radial-axial bend generates low pressures on the casing that 
drive the blade surface boundary layers toward the casing. 
Hence most of the high-entropy fluid ends up in the suction 
surface-casing (or shroud) corner where, in unshrouded rotors, 
it mixes with the tip leakage flow. 

The entropy generation on the blade surfaces will increase 
rapidly as the relative velocity increases toward the blade exit. 
For a shrouded blade the loss on the shroud will increase 
similarly but for an unshrouded blade the casing loss will 
decrease as the velocity of the flow relative to the casing re
duces. Hence, from the point of view of efficiency, it would 
be most beneficial to have a partly shrouded blade with a 
shroud only over the upstream part of the bladed passage. 

For unshrouded blades tip leakage loss is likely to be more 
important than in an comparable axial flow machine because 
the low aspect ratio means that the ratio of leakage flow area 
to blade throat area is large. However, the relative motion of 
the thick casing boundary layer and blade tip will generate a 
scraping effect that will oppose the leakage. For shrouded 
blades the leakage should be very small because of the radial 
pressure gradient set up in the swirling leakage flow. In this 
case the windage loss of the shroud may be more significant 
than the loss due to tip leakage. 

Trailing edge loss will be significant for many radial flow 
turbines, which, because of stressing problems, tend to have 
very thick trailing edges, especially near the hub where the 
blockage may approach 50 percent. Thus, although the rotor 
relative exit velocity is lower than in a comparable axial ma-

. chine, the trailing edge loss may be greater. The spanwise 
pressure gradient resulting from the meridional curvature of 
the streamlines at the trailing edge is likely to produce con
siderable spanwise flow in the base region. The effect of this 
on the base pressure and trailing edge loss is not known. 

Figure 38 shows contours of relative stagnation pressure 
measured downstream of the rotor of Huntsman's unshrouded 
radial inflow turbine. The accumulation of high-entropy (low-
energy) fluid on the blade suction surface toward the tip can 
be seen, as can that in the tip leakage/scraping vortex. This 
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turbine, which was designed using three-dimensional calcu
lation methods, has an efficiency of about 93 percent, com
parable to that of a good axial flow machine. 

10.2 Centrifugal Compressors. Centrifugal compressors 
usually have axial inlet flow and radial outflow. The velocity 
of flow relative to the rotor is greatest near the tip at inlet, 
where it may be supersonic for high-pressure-ratio machines. 
Because the blade turning is much larger than in transonic axial 
compressors supersonic inflow can lead to very high Mach 
numbers and strong shocks within the inducer if it is not de
signed very carefully. The relative velocity decreases through 
the rotor and is usually comparatively modest at rotor exit. 
High-pressure-ratio compressors produce a large increase in 
density within the impeller so the meridional flow area must 
decrease, and the blade height decrease even more, to accom
modate this. The effective aspect ratio, i.e., the mean blade 
height divided by the meridional chord, is of order 1/3 for 
many centrifugal impellers, this is much lower than in most 
axial flow compressors, and this should be borne in mind when 
comparing the two. 

The flow within the impeller is now well understood, and 
is always highly three dimensional. The axial to radial bend 
induces strong secondary flows convecting the blade surface 
boundary layers toward the casing. Similarly the blade loading 
induces secondary flows convecting the hub and casing bound
ary layers toward the suction surface. In unshrouded impellers 
the latter is opposed by the relative motion of the casing. The 
net result is usually that a large concentration of high-entropy 
fluid collects in the vicinity of the casing-suction surface corner 
and it is this that forms the well-known jet-wake structure at 
the exit of the impeller. Figure 39 shows results from a nu
merical calculation predicting the growth of this wake through 
a shrouded impeller. 

In unshrouded impellers the velocity of the flow relative to 
the casing is comparatively low at inlet and increases toward 
impeller exit where it becomes larger than the maximum blade 
surface relative velocity. Consequently the entropy generation 
on the casing of unshrouded blades is large while that on the 
rotating hub is much less. For shrouded blades the velocity 
relative to the shroud is always comparable to that relative to 
the blade surfaces and so decreases toward impeller exit. Hence, 
from the point of view of efficiency it would be preferable to 
have a shroud over the rear part of the impeller but to leave 
it unshrouded at inlet. 

Despite these regions of high loss, the efficiency of the im
peller alone is usually very high because the relative velocities 
are low compared to the enthalpy rise. Moore and Moore (1980) 
quote an impeller efficiency of 95.4 percent for Eckardt's low-
pressure-ratio centrifugal impeller. The overall machine effi
ciency is much less than this because most of the entropy 
increase takes place downstream of the impeller. 

Immediately downstream of the impeller there is usually a 
short vaneless space. The wake from the impeller starts to mix 
out in this space and the associated mixing loss can be cal
culated by applying the conservation equations, provided that 
the size and depth of the wake at the impeller exit are known. 
These may be obtained from either correlations or from nu
merical calculations. The methods available for this mixing 
calculation are reviewed by Cumpsty (1989) who concludes 
that the effect of the mixing loss on the overall efficiency is 
usually small. Since the swirl component of velocity leaving 
the impeller is much greater than the radial component most 
of the mixing loss arises from the difference in swirl velocity 
between the wake and the main flow. In practice it is unlikely 
that the mixing is complete before the flow enters the diffuser 
blades thus making the flow into them highly unsteady. 

The flow leaving the impeller has a high velocity relative to 
both the hub and the casing; in fact this is the highest relative 
velocity anywhere in the machine and entropy generation on 
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Fig. 39 Growth of the wake through the impeller of a centrifugal com
pressor; contours of entropy 

the walls of the vaneless space will be extremely high. Moore 
and Moore (1980) found that more than half the entropy rise 
in Eckardt's compressor occurred in the vaneless diffuser. Fig
ure 40 shows numerical predictions of entropy growth on and 
downstream of a shrouded impeller illustrating the high loss 
on the shroud at rotor inlet and especially on the walls of the 
vaneless space. This result implies that for machines with vaned 
diffusers the length of the vaneless space should be kept as 
short as possible and there is a strong case for having rotating 
walls in this region if practicable. 

There is a large radial pressure gradient in the vaneless space 
that arises mainly from the centripetal acceleration of the highly 
swirling flow. Because the meridional velocity is much less 
than the swirl velocity (the swirl angle is typically 70 deg), this 
pressure gradient has a disproportional effect on the radial 
velocity, tending to make it reverse near the endwalls. Nu
merical calculations predict this separation to be very prevalent 
(e.g., Krain and Hoffman, 1989) but although it has been 
measured (Inoue and Cumpsty, 1984) the effect does not seem 
to be as common as predicted. This must be because the mixing 
processes are more intense than are predicted by numerical 
solutions, which implies enhanced dissipation in the vaneless 
space. This effect is especially important for machines with 
vaneless diffusers. 

The concept of entropy generation per unit surface area 
provides a particularly simple method for estimating the losses 
in the vaneless space. Simple analysis gives a loss coefficient, 
based on local velocity, of 

f = ^ (54) 
rtcosa 

where h is the passage height, Ar is the radius change, and a 
is the swirl angle. This is the same result as obtained from the 
conventional analysis using skin'friction if Cd = 0.5 Cf. Equa-
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Fig. 40 Calculated loss generation in a centrifugal compressor; con
tours ot pitchwise-averaged entropy 

tion (54) explains why the loss increases with the swirl angle 
as observed in practice. They value of Cd must be found ex
perimentally and is likely to be larger than is usual in two-
dimensional boundary layers because of the highly three-di
mensional nature of the flow. 

The stator or diffuser blades have the most difficult task in 
a centrifugal compressor. The pressure rise in the impeller can 
be produced without excessive diffusion but the diffuser blades 
must produce a comparable pressure rise by diffusion alone. 
This is made more difficult by the fact that the flow entering 
them is nonuniform, unsteady, and possibly transonic. Some 
of the pressure rise occurs in the semivaneless space before the 
throat of the diffuser and the entropy generation here must 
be a continuation of the high level in the vaneless space itself. 

The leading edge of the diffuser blades is invariably thin 
and this makes the effects of incidence very important. The 
velocity at the throat of the diffuser can be estimated from 
the mass flow rate and the stagnation conditions at its entry. 
At low flow rates this velocity will be much less than the flow 
velocity approaching the diffuser; the flow must then separate 
at the leading edge so that the resulting separation partly blocks 
the throat and increases the throat velocity. This is a separation 
in a relatively high-speed part of the flow and will create a 
large mixing loss. In transonic flow there will also be shock 
losses in this region. Morishita (1982) found that intense tur
bulent viscous dissipation occurred in the vicinity of his sub
sonic leading edge but that once inside the diffuser passage 
the flow was comparatively well ordered. He estimated that, 
even at design conditions, the entropy generation around the 
diffuser leading edge was the major cause of lost efficiency in 
the whole machine. Conversely, at high flow rates the flow 
must accelerate into the diffuser throat, possibly causing chok
ing but certainly increasing the losses in the diffusion down
stream of the throat. 

The flow downstream of the diffuser throat is like that in 
a conventional two-dimensional diffuser with entropy gener
ation in the boundary layers being greatest in the high-velocity 

Fig. 41 (a) The wake as a vortex sheet; (b) the convection of a wake 
through a blade row; contours of entropy 

region near the throat. However, the major source of entropy 
is likely to come from separation and the subsequent mixing 
of the boundary layers toward the exit of the diffuser. If the 
separation does not have time to mix out within the diffuser 
passage it will increase the kinetic energy of the flow leaving 
the diffuser. This kinetic energy may be either dissipated by 
discharging directly into a plenum or it may be partly recovered 
in a volute. 

11 Other Sources of Loss 
There are numerous other sources of loss in turbomachines; 

most of them are small in most applications but can become 
significant in special cases. The most important of these will 
be discussed briefly in this section. More details of all but those 
due to unsteady effects can be found in Chap. 8 of Glassman 
(1973). 

11.1 Loss Due to Unsteady Flow. The fact that wakes, 
vortices, and separations from one blade row often mix out 
in the downstream blade row has been mentioned several times 
in this paper. As they convect through the downstream row 
their pressure and velocity change continually so that they mix 
in an unsteady environment, quite different from that modeled 
in cascade tests. For a wake the effect of this on the dissipation 
can be thought of qualitatively in terms of the effect on the 
velocity difference between the center of the wake and the 
mainstream. 

A two-dimensional wake can be thought of as being con
tained between two vortex sheets (Smith, 1966); this is illus
trated in Fig. 41(a). The velocity difference between the center 
of the wake and the mainstream determines the strength of 
the sheets. Neglecting viscosity, as the wake convects the cir
culation in the vortex sheets bounding a fixed quantity of fluid 
must remain constant (by Kelvin's theorem) and so if the wake 
is stretched the velocity difference between its centerline and 
the mainstream is decreased. Conversely, the velocity differ
ence is amplified if the wake is compressed. This is compatible 
with the results presented in section 4 for the effect of accel
eration and deceleration on wake mixing loss. The convection 
of a wake through a blade row can now be calculated and 
typical results are shown in Fig. 41(6) (He, 1992). These show 
that the wake becomes highly distorted and stretched because 
the part adjacent to the suction surface convects more rapidly 
than that adjacent to the pressure surface. The velocity deficit 
of the center of the wake is reduced by this inviscid effect as 
it also is by viscous effects. The implication is that the dissi
pation in the wake will be reduced by mixing in a downstream 
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blade row relative to that when mixing in a uniform flow. Since 
the mixing loss of a wake is comparatively small and most of 
the mixing takes place very close to the trailing edge this is 
probably not a very important effect. The same argument can 
be applied to a flow separation, which is in effect only a large 
wake; however, the mixing loss of a separation can be large 
and so any reduction may be significant.. 

A vortex from one blade row will be convected through a 
downstream blade row very much like a wake but the impli
cations for loss are very different. Kelvin's theorem tells us 
that the circulation around a stream tube remains constant 
and so if the diameter of the tube is reduced by stretching the 
stream wise vorticity is amplified. When a vortex is stretched 
or compressed longitudinally it can be shown that its secondary 
kinetic energy will vary as the square of its length. Hence 
stretching a vortex will greatly amplify its secondary kinetic 
energy and when this is subsequently dissipated by viscous 
effects it will increase the loss. The magnitude of this effect 
is not known but if, as discussed in section 9.1, the kinetic 
energy of secondary flow vortices is significant, it could have 
important implications. Tip leakage vortices will be similarly 
affected. 

Because the entropy increase in a shock wave is such a 
nonlinear function of the preshock Mach number, Eq. (31), 
any periodic motion of the shock will generate increased loss. 
Effectively the increase in entropy generation when the shock 
is moving forward will be greater than the reduction when it 
is moving backward. Ng and Epstein (1984) found evidence 
of high-frequency fluctuations in the loss of two transonic 
compressors and attributed it to oscillation of the shock po
sition. They found that only a very small motion of the shock 
(0.3 mm) was needed to explain their results but the resulting 
loss of compressor efficiency was only 0.15 percent. It is not 
known how general this result is, but larger shock amplitudes 
with consequently larger increases in loss appear quite plau
sible. Similar mechanisms certainly occur in turbines when the 
trailing edge shock system from a stator interacts with the 
downstream rotor but no estimates of their magnitude are 
known. 

Other means in which unsteady flow can affect entropy 
generation are through dissipation of the spanwise vorticity 
shed from a trailing edge as a result of changes in blade cir
culation, i.e., changing lift, and the presence of unsteady ve
locity profiles in the boundary layer due to wake passage. Both 
of these mechanisms have been examined by Fritsch and Giles 
(1992) who found that both have only a small effect on loss. 
The former was estimated to give at most 0.3 percent loss of 
efficiency for a turbine stage while the latter caused only a 
0.09 percent loss. 

The effects of unsteady boundary layer transition on the 
loss can be important, especially if the Reynolds number is in 
the transitional range. The large body of work on this topic 
is discussed by Mayle (1992). 

11.2 Partial Admission Loss. Partial admission is used 
mainly in steam turbines as a means of varying the mass flow 
and hence the power output. Flow is only admitted to a segment 
of the first stator blades and leaves them as a jet occupying 
only part of the annulus. However, the full annulus area is 
available to the flow through the following rotor. Traditionally 
the first stage is of impulse design so that there is little cir
cumferential pressure gradient after the stators and so little 
tendency for the jet leaving them to expand in the circumfer
ential direction. The rotor blade passages well within this jet 
should behave as in a full annulus but the passages entering 
and leaving the jet are in an unsteady flow and will suffer 
additional losses. In both cases this may be regarded as a mixing 
loss between the jet and the surrounding stagnant fluid, similar 
to the mixing of a wake discussed in the previous section. 
However, in this case the "wake" is no longer small and will 

have a considerable effect on the blade loading and hence on 
the distortion of the interface between the jet and the nearly 
stagnant fluid. The flow pattern and losses can only really be 
predicted by an unsteady viscous calculation. What little is 
known about the magnitude of this effect is reviewed by Roelke 
(1973). 

If the partial admission stage is followed by other full ad
mission stages there must be a rapid circumferential redistri
bution of flow as its enters the second stator row. This is 
because there is a substantial pressure drop across stator pas
sages that pass the full flow but little pressure drop across 
passages with low flow. Hence, if the static pressure is uniform 
at the second stator exit, there must be a strong circumferential 
pressure gradient at its entry. This can only be produced by a 
large curvature of the jet boundary in the blade to blade plane. 
The changes in flow direction near the jet boundary will lead 
to large circumferential variations of incidence onto the second 
stator and so will certainly induce additional losses. The author 
knows of no published information on this effect nor on how 
many such stages are needed for the flow to become circum-
ferentially uniform. 

In addition to the mixing loss at the boundaries of the jet 
there will be extra windage loss as the rotor blades move through 
the region with no throughflow. Here they will behave rather 
like the blades of a centrifugal compressor and will set up a 
complex recirculating flow, which will certainly generate sig
nificant amounts of entropy and will directly reduce the shaft 
torque. Results quoted by Roelke suggest that this pumping 
loss exceeds the mixing loss at small arcs of admission. 

11.3 Windage Loss and Disk Cooling Flows. This is the 
loss due to viscous friction on all parts of the machine other 
than the blade and annulus boundaries, where it has already 
been accounted for. It is usually considered only in terms of 
the viscous torque on rotating disks and hence is often called 
disk friction loss. However, the idea of entropy creation shows 
that entropy is produced wherever fluid is moving relative to 
a solid boundary and this entropy must find its way into the 
flow and be present at machine exit. The views of the effect 
of windage in terms of lost torque and of entropy creation are 
entirely compatible since the lost power due to frictional torque 
is given by 

AW=Q\rrdA (55) 

where the integral is over all rotating surfaces. 
The total entropy creation is 

• f TAV S = J — < & 4 (56) 

where A Vis. the velocity difference across which the shear stress 
T acts. In the case of the gap between stationary and rotating 
faces AV= Qr and so the two expressions predict the same loss 
of output. However, the entropy creation concept shows that 
loss does not only occur on rotating surfaces but on any surface 
exposed to the flow. It also shows that there is some reheat 
effect on the windage loss since the loss of machine output is 
given by 

AW=TmtS=Toat\ZJ¥dA (57) 

so that the lost work is reduced if the windage takes place at 
high temperatures. Physically this can be thought of as the 
frictional effects generating heat, which re-enters the flow and 
so increases the work output or input of any downstream 
stages. The view of windage loss in terms of lost torque does 
not account for this reheat effect. 

Formulae for estimating the windage loss are given by Roelke 
(1973). These are effectively obtained by applying a skin fric
tion factor to all rotating surfaces with the coefficient being 
a function of Reynolds number as shown in Fig. 42. The 
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Reynolds number, R 

Fig. 42 Moment coefficient for frictional torque on rotating disks from 
Roelke(1973) 

coefficient plotted in Fig. 42 is the moment coefficient C,„, 
which is related to the skin friction factor Cy-by Cf= 0.398 C,„. 
However, these friction factors were generally obtained from 
tests on smooth disks rotating in smooth chambers. They can 
be considerably increased by surface protuberances such as 
bolts or webs. The entropy generation concept shows that these 
are equally undesirable on stationary and rotating surfaces. 

A simple estimate of the ratio of the power lost by windage 
to useful power, assuming an axial flow machine with a two-
sided disk, is given by 

W ' W hb 1 + 4hb/Dd 
(58) 

where C/is the skin friction factor, Dd is the hub diameter of 
the disk, hb is the height of the blades, and <j> and \p are the 
stage flow and loading coefficients based on the mean blade 
speed. Figure 42 shows that the value of Cf ( = 0.398 C,„) is 
of order 0.002. Hence Eq. (58) shows that the fraction of lost 
power is very small for most machines, being most significant 
for those with short blades and low flow and loading coeffi
cients. It should be emphasized that this is a minimum estimate 
and the loss can be much greater if the disks are not smooth. 

In some gas turbines cooling flows are introduced into the 
disk cavity to cool the disk. These flows subsequently enter 
the mainstream through the slot in the hub separating stator 
and rotor. Roelke states that such cooling flows enter the 
mainstream with a swirl velocity about 0.45 times the rotational 
speed of the hub and suggests that the extra torque needed to 
provide this angular momentum is simply added to the windage 
torque with no flow. This simple approach assumes that the 
cooling flow only affects the shear stress and entropy gener
ation within the cavity sufficiently to provide its own change 
of angular momentum. This seems unlikely to be true; with 
no flow the shear stress must extend across the whole gap while 
a cooling flow is likely to make the shear layers behave more 
like boundary layers, which will be thinner and have higher 
rates of entropy generation. Chew and Vaughan (1988) present 
numerical predictions of the effect of cooling flows on the 
windage torque, which show agreement with Roelke's ap
proach at low flow rates but show the torque becoming con
stant at about 1.7 times the zero flow value at high cooling 
flow rates. 

The above discussion considers the effect of disk cooling 

flows on loss solely in terms of the entropy generation within 
the disk cavity. However, extra loss will occur when the cooling 
flow is injected into the main stream. Here the mixing process 
will be exactly like that of the leakage flow over a shroud, as 
discussed in section 8 and in Appendix 5. Most of the entropy 
generation will be due to the difference in swirl velocity between 
the flow leaving the cavity and the main flow. This velocity 
difference should be minimized by preswirling the cooling flow 
when possible. 

11.4 Lacing"Wires and Part-Span Shrouds. These are used 
in both turbines and compressors to control the vibration of 
long blades. In their simplest form they consist of a circular 
rod (a lacing wire) joining adjacent blades while more so
phisticated versions replace the rod by an aerofoil section, 
which may be aligned to the local meridional flow direction. 
For convenience both types will be referred to as struts. 

The flow over such a strut is complex. Because of the blade 
loading there will be a gradient of static pressure along its span 
and this will generate secondary flows on the strut very much 
like those on the endwalls. Traverses behind such struts show 
secondary vortices and loss concentrations near the intersection 
with the blade suction surface. If the strut has a blunt trailing 
edge, like a lacing wire, then the separated flow in its wake is 
also subject to this pressure gradient and the low-energy fluid 
in the wake will move onto the blade suction surface where it 
will merge with the loss in the secondary vortex. Hence, the 
drag and entropy generation will not be the same as for the 
same cross section of strut in a uniform flow. In fact the 
entropy generation is likely to be increased in the same way 
as that on endwalls was found to be greater than on blade 
surfaces. 

The loss of such struts is usually obtained in terms of their 
drag, which, in a uniform flow, can be turned into an entropy 
rise by using Eq. (7) in the form 

TAs 
D 

(59) 

where D is the total drag force acting in the direction of the 
streamlines and A} is the total flow area projected in that 
direction. However, the actual strut is not in a uniform flow, 
the local velocity varies considerably from suction surface to 
pressure surface and from its leading edge to trailing edge. 
There will also generally be a pitchwise component of velocity 
making the strut analogous to a swept wing. Hence neither 
estimation of the drag nor application of Eq. (59) is straight
forward. 

If Cd is the drag coefficient of the strut based on its frontal 
area As projected in the relative flow direction and on an 
average relative flow velocity Favg, then the loss coefficient 
based on K,v„ is 

r= 
TAs CdAs CdA„ 

0.5 Vi A, 
(60) 

avg **f -™mf 

where Ams and A,„f are the meridional projections of the areas. 
Given that Cd is of order unity for circular wires and of order 
0.1 for aerofoils, the advantage of using streamlined struts is 
apparent. 

Koch and Smith (1976) present a method for compressor 
blades based on this concept. The drag of the strut is estimated 
by treating it as a swept airfoil at the average relative Mach 
number and by also including a term for the interference drag 
generated at the junction of the strut and the blade surfaces. 
They find that the drag must be increased by a factor of 1.8 
above the value calculated for an aerofoil to obtain agreement 
with the measured loss of struts on compressor blades. 

The entropy generation concept provides an alternative 
method of estimating the loss due to the boundary layers on 
streamlined struts. The strut surface velocity distribution can 
only be obtained accurately from a three-dimensional calcu
lation but it may be estimated from the blade surface velocity 
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distribution and used in Eq. (41) to estimate the total entropy 
generation. This approach shows the importance of locating 
the strut in a region where its relative velocity is as low as 
possible, i.e., toward the trailing edge of compressor blades 
or toward the leading edge of turbine blades. If the strut is 
not streamlined and so has a large separated region behind the 
trailing edge, then the base pressure term in Eq. (26) is likely 
to be the dominant source of entropy. The base pressure coef
ficient will be particularly difficult to estimate because of the 
nonuniform flow. 

12 Conclusions 
It must be clear be now that there are many details of loss 

generation in turbomachines where our understanding is still 
very weak. The author believes that our understanding will be 
improved by thinking the loss in terms of entropy generation 
and one of the objectives of this paper has been to encourage 
this way of thinking. 

There are a few sources of loss where we can say that we 
understand the mechanism clearly and can accurately quantify 
the rate of entropy generation. Flow is attached, two-dimen
sional, fully turbulent or fully laminar boundary layers, where 
numerical calculation methods should be very accurate, is an 
example of this. However, even for the straightforward prob
lem of calculating the loss of a two-dimensional cascade the 
author maintains that an a priori prediction, using the best 
available methods, is unlikely to be accurate to better than 
about ±20 percent. Twenty years ago (Denton, 1973) he gave 
an estimate of ±10 percent! This is because he now realizes 
the difficulty of predicting boundary layer transition, sepa
ration bubbles, and base pressure coefficients. 

For other sources of loss we understand the mechanism but 
cannot accurately quantify the entropy production without 
making considerable use of empirical data. Tip leakage loss, 
subsonic trailing edge loss, and loss due to blade surface sep
arations all fall into this category. In such cases we may be 
able to identify good and bad features of the flow and modify 
our designs accordingly even though we cannot quantify the 
improvement before testing them. In this situation the ability 
to test modifications quickly and cheaply, and to relate the 
results to the physics of the flow, is very important. 

There are still some major loss sources for which we do not 
yet fully understand the mechanisms. Endwall loss, transonic 
trailing edge loss, and loss due to mixing in a downstream 
blade row all fall into this category. In such cases predictions 
must use empirical correlations, which may not even be based 
on the correct physics. It is important that when using these 
correlations we recognize their limitations and do not develop 
a false sense of security if they happen to give the correct 
answer. This is especially dangerous when correlations are 
"verified" against the same data that were used to generate 
their empirical constants. For this type of loss we must strive 
to obtain a better understanding of the mechanism involved 
so that we can at least make qualitative improvements to our 
designs. 

In computing flows through turbomachines the author has 
continually been struck by the ability of soundly based but 
grossly oversimplified models to give realistic predictions of 
the flow pattern and loss. The reason for this is that many 
flows are dominated by the conservation of mass, energy, and 
momentum and not by detailed viscous effects. The power of 
the conservation equations should never be underestimated and 
flow models that do not satisfy these equations are doomed 
to failure. 

Finally, we should never be afraid to admit our lack of 
understanding of complex entropy generating mechanisms or 
to address fundamental questions. We are most likely to make 
progress when we know our limitations and continually strive 
to reduce them. 
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A P P E N D I X 1 

Entropy Production in a Boundary Layer 

Consider the flow along a stream tube in the boundary layer 
with the x direction aligned with the stream tube and the y 
direction being perpendicular to it. Hence Vy and Vz are both 
zero at the location considered. 

For thin boundary layers the stream tube can be assumed 
to be very closely aligned with the surface so the x and y 
directions are effectively perpendicular and parallel to the sur
face respectively. 

The second law applied along the stream tube gives 

ds 
dx 

dh 
dx 

1 dP dh0_ dVx 1 dP 
p dx dx x dx p dx 

Let Fx be the viscous force acting per unit mass of fluid in the 
x direction. The momentum equation in the x direction is then 

dK 
dx 

Combining (A 1.1) and (A 1.2) gives 

,ds dh0 

1 X i ' X 

p dx 

(Al.l) 

(A1.2) 

T—= 
dx dx 

(A1.3) 

This is a well-known result, which shows that if h0 is constant, 
as it often is in adiabatic flow, entropy is created by any 
frictional force acting along the streamline in the direction 
opposing the flow. 

Now consider unit mass of fluid moving along the streamline 
from a Lagrangian point of view. The energy equation for the 
unit mass is: 
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(A1.4) 

where e is the specific internal energy (e = CVT), q is the heat 
flow per unit area in the y direction and ryx and ryz are the 
viscous shear stresses. Viscous normal stresses and heat flow 
in the x and z direction are ignored. 

For steady flow 

Dt xdx 

and so Eq. (A 1.4) becomes 

r x ,. * Y' x> \ 'yx *. ~ 'yx * 
]_dq 

p dy 
(A1.5) 

dx p' 

Combining Eqs. (A1.3) and (A1.5) to eliminate h0 leads to 

' dy ndy) pdy 

If AA is the cross-sectional area of the stream tube 
pVxAA = constant along it, so 

ds 1 
VxT— = -

dx p 

T—(pVxsAA)=AA\T 
dVx dV7 

yx dy +Tyz dy 

dq 

dy 

If we consider unit depth in the z direction, AA = dy and so 
integrating through the boundary layer, thickness 5, gives 

, dx 
(pVxs)dy~-

Jo 
(TyxdVx+TyZdVz-dq) 

If we now assume an adiabatic surface q = 0 both at the surface 
and at the edge of the boundary layer, where the entropy is 
ss, we end up with 

J ^ j (pVx(s-ss)dy)=^(TyxdVx+TyZdVz) (A1.6) 

for the rate of change of entropy flux of the flow per unit 
depth in the z direction. 

For a two-dimensional boundary layer ryz is zero (no skew) 
and so the result simplifies to 

d [s I"51 
-r\ (pVx(s-s6))dy) = \-TdV (A1.7) 
dxJ0 J0 T 

The left-hand side of this equation is the rate of change of 
entropy flux per unit depth of the flow and so the right-hand 
side may be thought of as giving the rate of entropy creation 
per unit surface area by viscous effects within the boundary 
layer. 

A P P E N D I X 2 

Entropy Production Due to Mixing of Two Streams 

Consider two streams of perfect gas mixing in a constant 
area duct as sketched in Fig. A2.1. The inlet stagnation pressure 
and stagnation temperature of both streams is supposed to be 
specified as are the areas Ax and A2 of the supply ducts. It is 

I S A - W V S . \ . \ \ \ \ V \ \ \ \ \ \ \ \ \ \ \ \ \ ' S \ \ \ \ \ \ N | 

AI 

Pol. Tol 
i i. \ < i-T—, 

A2 

Po2, To2 

uniform 

' C ' m 

Fig. A2.1 Mixing of two streams in a constant area duct 

assumed that the two streams meet at plane C where they both 
have a common and uniform static pressure Pc. This assump
tion is almost universally made but is not exactly true because 
the mixing downstream of plane C can induce streamline cur
vatures and hence cross-stream pressure gradients at plane C. 
The pressure Pc may be varied at will by opening or closing a 
downstream throttle and so we can assume that it is specified 
and known. Downstream of plane C the two streams mix with 
turbulence and probably unsteadiness, but with no friction on 
the walls, until at a downstream plane m the flow has become 
completely uniform. The "no friction" assumption may be 
realized in practice by considering a periodic flow rather than 
one bounded by solid surfaces. 

Knowing PoU Po2, and Pc, the Mach number of streams 1 
and 2 at C may be calculated from standard compressible flow 
relationships: 

D / 1 \ <Y / ( I -T ) ) 

1+- -Mf (A2.1) 

Hence the mass flow rates m\ and mi can be calculated as can 
the velocities Vx and V2. We can now evaluate the total mo
mentum flux of the two streams at C as 

Ic = Pc(A1+A2) + mlVl + m2Vl (A2.2) 

Since the mixing takes place at constant area and we neglect 
wall friction this must equal the total momentum flux Im of 
the mixed out flow at m. 

The energy equation applied between C and m, assuming 
adiabatic flow, gives 

(mlTol + m2To2) 
T =-

{m\+m2) 
Hence we can evaluate the impulse function 

(A2.3) 

(A2.4) 
(mx + m2)\ICpTom 

at plane in. This is a function of Mach number and y, given 
by 

V T 1 7 ! (1 + 7M?,,) 
F,„ = -

YM„ 
(A2.5) 

l + ^ M * 

and so knowing F„, we can find the Mach number Mm of the 
mixed out flow. From the Mach number, stagnation temper
ature and area all the other properties of the downstream flow 
can easily be evaluated using standard compressible flow func
tions. In particular the increase in mass-weighted specific en
tropy can be calculated and turned into an entropy loss 
coefficient for the process. 

We have obtained this loss coefficient without knowing any 
details of the mixing process, even whether it is laminar or 
turbulent, steady or unsteady. This illustrates the power of the 
control volume analysis, i.e., the ability to use the global con
servation equations to obtain overall results without having to 
solve the Navier-Stokes equations. It is the author's view that 
this ability accounts for much of the success of Computational 
Fluid Dynamics applied to turbornachinery flows. In many 
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applications the overall result will be correct even when the 
turbulence model is grossly inadequate. 

There are always two possible values of Mach number sat
isfying Eq. (A2.5), one subsonic and the other supersonic. If 
both the entering flows are subsonic then only the subsonic 
solution is possible since the supersonic solution would involve 
a decrease of mass averaged entropy. If one or both of the 
entering flows are supersonic then both subsonic and super
sonic solutions may be physically possible. 

Figure 6 shows the computed entropy loss coefficient for 
two flows, which initially occupy equal areas and mix at con
stant area as shown in Fig.' A2.1. The static pressure at plane 
C is held constant at a value that would produce a Mach number 
of 0.5 when both flows have the same stagnation pressure Poavg 
and stagnation temperature Tom%. The stagnation pressure of 
one flow is set at Poavg + AP and that of the other is Poavg - AP, 
while the stagnation temperatures are similarly Tomg + AT and 
roavg-AT. AP and AT are systematically varied and a loss 
coefficient defined as f = To:ivgAs/0.5 Ka

2
vg is calculated for the 

mixing process. 
It can be seen that the loss coefficient contours are almost 

symmetric about both axes and this shows that the increase of 
entropy due to differences in stagnation pressure is almost 
independent of the difference in stagnation temperature and 
vice versa. The relation of this entropy increase to turbine 
performance is discussed in section 6 and in Appendix 4. 

Further examples of the application of the global conser
vation equations to mixing problems are given in Appendices 
3 and 4. 

A P P E N D I X 3 

Entropy Production Due to the Mixing Out of a Wake 
Behind a Trailing Edge 

Consider the idealized model sketched below, which rep
resents a trailing edge of thickness t on a blade row with stagger 
angle a and pitch (w/cosa). The flow is assumed uniform 
across the throat AB and also far downstream of the trailing 
edge on ED. The displacement and momentum thickness of 
the combined boundary layers on the blade surface at AB are 
5* and 6. The average pressure acting on the base of the trailing 
edge, AF, is Pb and that on the suction surface from B to C 
is Ps. For simplicity we assume incompressible flow but this 
restriction is easily removed in numerical solutions. 

We will apply the equations for the conservation of mass 
and momentum to the dashed control volume ABCDEF. At 
inlet the mass flow rate is m = pVx{w-1 - 5*) so the continuity 
equation is 
m = pV,(w-t-5*) 

= pV2wcos(a-b)/cos a=*pV2w(\+5 tan a) (A3.1) 
where the last term assumes that 5 is small. 

The deviation angle 8 can be found from the momentum 
equation in the y direction, which is 

{Ps-P2)w tan a = PVl(w-t-5*)V2 sin 6 (A3.2) 
Combining this with the continuity equation and assuming that 
8 is small gives 

8 = 
(P s-P2)w2 tana 

(A3.3) pV\(w-t-b*f 
The value of the deviation angle 8 is therefore largely deter
mined by the value of the pressure coefficient {Ps - P2)/ 
pV\. This must be input to the calculation. 

The momentum equation in the x direction gives 
(w- t)Px + tPb + m Vi - p, V]d = wP2 + m V2 cos 8 (A3.4) 

Assuming that 8 is small, this becomes 
pV2i(w-t-S*-d)-pV2

2w(l+ 8 tan a) = (Pl~Pb)t+(P2-Pl)w 

f 
^ 

\w/cos 

\ 
Turbulent 
Mixing 

V1 
Q I w tan a ^ 

Fig. A3.1 • Control volume model for a thick trailing edge 

(P,-P2)=-pKf 1 L ^L 
w w w 

+ pF2
!(l+Stana) + ( P 1 - P 6 ) - (A3.5) 

Rearranging this gives 

(Pm-Poi) =0.5 pV\{2b tan a+ 1) 

so 

.0 .5pKMl+2f^)W<P.-™i 

-^ i = - t (2 8 t ana+ l ) - l 
o.5 p vi vi 

+2(^L^)^CpbL (A3.6) 
W I W 

This may be solved by using the continuity equation to elim
inate V2/V\ but the algebra becomes complex unless we make 
the assumption that the deviation angle 8 is zero. This as
sumption is discussed in section 4 where it is justified on the 
grounds that it makes the total entropy creation behind a 
trailing edge almost independent of the blade stagger. The 
trailing edge loss coefficient then becomes 

Cpbt ^ IB | 8* + t 
w w \ w 

(A3.7) 

An alternative common assumption (e.g., Stewart, 1955) is 
that PS = P\ in which case the deviation is negative and the 
algebra becomes much more complex. In practice the suction 
surface pressure is likely to lie somewhere between these two 
assumptions. 

The first term on the right-hand side of Eq. (A3.7) is the 
loss due to the low base pressure acting on the trailing edge; 
in general this must be obtained from empirical data. The 
second term is the mixed out loss of the boundary layers on 
the blade surface just before the trailing edge and the third 
term arises from the combined blockage of the trailing edge 
and the boundary layers. 

A P P E N D I X 4 

Thermodynamics of a Cooled Turbine 

(a) Cycle Analysis. Figure A4.1 shows an idealized cooled 
gas turbine cycle. Coolant flow mc is assumed to be bled off 
at compressor delivery conditions and is gradually mixed with 
the turbine flow along the expansion from 3 to 4. Once added 
to the main flow the coolant flow subsequently expands with 
it and does useful work from its injection point to point 5. 
The efficiency of the cooled part of the turbine, 3-4, is assumed 
to be influenced by the mass flow rate of coolant while the 
efficiency of the uncooled part of the turbine from 4 to 5 is 
constant. 

In a design situation we may imagine that the pressure ratio 
of the cycle and of the cooled turbine has been fixed and that 
the maximum temperature T} is being optimized by varying 
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mixing of coolant 
and main flow 

Fig. A4.1 Cycle for a cooled gas turbine 

the proportion of cooling flow mfc, where mfc is the ratio of 
coolant flow rate to compressor flow rate. The compressor 
efficiency is also considered fixed as is the efficiency of the 
uncooled part of the turbine 4-5. The efficiency of the cooled 
part of the turbine is j],, which is a function of mjc. The cycle 
efficiency will then be a function of T3, r;,, and mfc, so we can 
write 

A,c = ̂ A r 3 + ^ A , K / c + ^ A r , , 

or, regarding mfc as the independent variable, 

(A4.1) 

Ar;c 
dr]c dT3 

dTj. dm 'fc 

dVc , dVc dvi 
drrifc d-q, dmfc 

Amfc (A4.2) 

It is only the last term that we will be concerned with in detail, 
i.e., the effect of coolant addition on the efficiency of the 
cooled part of the turbine. This efficiency is defined in terms 
of the change in properties of the main flow alone as will be 
described in section (b) of this appendix. The other terms in 
Eq. (A4.2) are equally important as regards cycle efficiency 
but cannot be considered as being the result of loss generation 
in the mainstream flow. 

The values of the coefficients in Eq. (A4.2) can easily be 
calculated numerically for any specified cycle. For a typical 
civil aircraft engine cycle with overall pressure ratio 25, turbine 
entry temperature 1500 K and cooled turbine pressure ratio 4 
we get 

| £ = 1-035 10-4 . 
oh 

^ = - 0 . 1 8 2 . ^ = 0.378. 

(b) Turbine Analysis. Figure A4.2 illustrates the expansion 
through the cooled turbine where the expansion line 3-4 rep
resents the state of main flow plus any cooling flow already 
added to it. We consider the main flow, flow rate m„„ which 
entered the turbine at 3 and the added coolant flow as two 
separate streams, which at any point in the turbine have iden
tical properties. A total amount of heat Q is transferred from 
the mainstream to the coolant stream. We consider the work 
done by the main flow only. The total work output from this 
flow is 

W=mm(h3-h4)-Q (A4.3) 

The isentropic work is 

Wls = mm(h3-h4+T4As) = W+Q + mmT4As (A4.4) 

and 
m,„As = - \ dQ/T+ mmAsimv (A4.5) 

where T is the temperature at which the heat transfer dQ takes 
place and Asirrev is the increase in specific entropy due to ir
reversibility in the flow. This is the entropy created by viscous 
effects arising from the differences in velocity between the 
mainstream and the coolant. 

Turbine 
expansion line 

P4 

Fig. A4.2 The expansion through a cooled turbine 

Hence, 

W= Wis- (1 - T4/T)dQ-m,„T4Asir (A4.6) 

The middle term of this equation represents the reduction in 
isentropic work because the heat removal from the mainstream 
flow causes the expansion to move to the left on the h~s 
diagram, as shown in Fig. A4.2. This is a thermodynamic 
effect, which is not related to any irreversibility in the flow, 
and so it does not contribute to the last term of Eq. (A4.2). 
Its magnitude depends on where the heat transfer takes place 
and it will be greatest if all the heat removal takes place at the 
start of the expansion and zero if all heat removal is at the 
end. Numerical evaluation of the term for the case where the 
coolant is added continuously gives a value equal to about 
0.14 mfcW for a typical cycle. Let the magnitude of this term 
be A7iqWiS, then the overall isentropic efficiency of the expan
sion is 

-i 4^^ irrev » A / K A ~I\ 
Vt = ' ^ r l s V o - AVq 77, = Vo - &Vq - Asirrev (A4.7) 

W„ wis 
where rj0 is the efficiency of the uncooled turbine and A7jjrrev 

is the loss of efficiency due to irreversible mixing of the coolant 
flow and mainstream flow. It is only this term that we are 
concerned with in this paper. 

The losses undergone by the coolant flow due to throttling 
within its supply ducts and passages affect the middle term of 
Eq. (A4.2). They depend mainly on the difference between the 
coolant supply pressure and the pressure at which it mixes with 
the mainstream flow. The value of drjc/dmfC quoted above 
assumes that coolant is added continuously along the expansion 
with the amount added being proportional to the temperature 
change. 

The last term Ar7jrrev in Eq. (A4.7), is the only one that 
contributes to the last term in Eq. (A4.2). It is exactly the same 
as the expression for the efficiency of an uncooled turbine but 
in the case of a cooled turbine some of the entropy creation 
occurs as a result of the addition of the cooling flow. This 
may be evaluated as follows. 

Shapiro (1953) shows that the effects of small amounts of 
heat transfer and mass addition on the specific entropy of a 
perfect gas can be calculated from 

+ C , , < 7 - 1 ) M Y I - - B ^ W (A4.8) 

where AT0 is the change of stagnation temperature due to heat 
transfer and the coolant is injected with velocity Vc at an angle 
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a to the main flow, which has velocity V„, and Mach number 
M. 

The first term can be written as AQ/T and so represents the 
entropy change due to heat transfer alone. The second term 
must therefore represent the entropy creation due to irrever
sibility. Using Eq. (3) to express As in terms of AT0/T0 and 
AP0/P0 gives 

Asimv = Cp(y-lW 
Vc cos a\ 

1 \mfc 

-* o ^ T0 

(A4.9) 

This equation shows that the irreversibility depends not only 
on the loss of stagnation pressure but also on the change of 
stagnation temperature. The last term is a result of the well-
known effect of heat transfer on the stagnation pressure of a 
high-speed flow. Any heat removal from the mainstream flow 
will tend to increase its stagnation pressure while viscous dis
sipation due to the difference in velocity between the main
stream and the injected flow will always tend to decrease it. 
Hence, when heat is being removed from a flow, the net loss 
of stagnation pressure is always less than that due to viscous 
dissipation. 

Substituting the above expression for Asirrev into Eq. (A4.7) 
gives for the change of cooled turbine efficiency 

l 4 ^ i 5 j r r e v 

A i j , = • 
CpAToi AT, 

(7 - l )M' [ ( 1 )mfc 

(A4.10) 

where ATgis is the isentropic temperature drop from 3 to 4. 
It is significant that the loss of turbine efficiency does not 

explicitly involve the coolant temperature. This is because Asjrrev 

is due solely to viscous effects, which depend on gradients of 
velocity and not on differences of temperature. It implies that 
experiments to determine the loss of efficiency due to cooling 
can be conducted without cooling the injected gas as long as 
the ratio of the velocity of injection to the main flow velocity 
is correct. 

These results are for coolant addition through holes or slots 
in the blade or endwall surface and do not apply to coolant 
ejection through the trailing edge where the change of flow 
area and base pressure must also be included in the analysis. 
In fact coolant ejection through the trailing edge can increase 
the base pressure and so may be beneficial (see Denton and 
Xu, 1990). 

A P P E N D I X 5 

A Simple Theory for Tip Leakage Loss of Shrouded 
Blades 

We consider the flow over a single tip seal as illustrated in 
Fig. (A5.1). We assume that the leakage flow suffers no loss 
before it reaches the throat of the leakage jet and that no 
tangential force acts on it so that it suffers no change of swirl 
velocity before it mixes with the main flow. It is also assumed 
that there is no significant restriction to the flow anywhere 
except at the seal and so the static pressure in the clearance 
space downstream of the seal is the same as the static pressure 
at exit from the blade row. The flow is viewed in a frame 
moving with the blade row and all quantities are measured 
relative to the row. If there is negligible change of radius the 
relative stagnation enthalpy of leakage flow and main flow is 
the same and remains constant. 

For simplicity we will calculate the leakage flow rate assum
ing incompressible flow but this restriction can easily be relaxed 
at the expense of extra algebra. 

At the throat of the leakage jet 

Fig. A5.1 Flow over a shrouded turbine tip seal 

Pn = Pn •-Pj + 0.5pVf + 0.5pVii- P2 + 0.5pVl (A5.1) 

where Vj is the axial velocity of the leakage jet. 
But we assume that Pj = P2 so 

V, =>A? 'j- v '1 

The leakage mass flow is therefore 
vl 

mL 
--PgCcSjV: Vl 

(A5.2) 

(A5.3) 

where Cc is the jet contraction coefficient. The fractional leak
age is therefore 

.S£cj_ vl- Vl (A5.4) 
mm hV2cosa2 

where h is the blade span. 
If Vx is constant through the blade row this can be written 

in terms of the flow angles as 

mL _gC£ 

h V s e c ^ - t a n 2 ^ (A5.5) 

Entropy increase of the mainstream flow only occurs when 
it mixes with the leakage flow. If the leakage flow re-enters 
the main flow with axial velocity VXL and swirl velocity VL it 
can be shown by applying the conservation equations to a 
swirling jet entering a vortex that Eq. (20) can be applied 
independently to the axial and tangential flow leading to 

TAs = vh v„ + vl2 1 - -
vr 

(A5.6) 

which is valid for compressible flow. 
VXL cannot be calculated without knowing the geometry of 

the re-entry slot but in most cases it is likely to be negligible 
both because the slot is comparatively wide and because the 
leakage flow is directed almost radially inward. Hence, ne
glecting VxL we get 

TLsJ^Vl ^ a 2 (A5.7) 

By assuming constant axial velocity through the blade row this 
can be further simplified to 

TAs 

0.5 Vl *mm 
1 -

tancq 

tan 0:2 
sin a2 (A5.8) 

This result is valid for compressible flow if mL/mm has been 
calculated appropriately. Predictions from this theory are 
shown in Fig. 34. 

A P P E N D I X 6 

A Simple Theory for Tip Leakage Loss of Unshrouded 
Blades 

We consider a model of tip leakage flow as illustrated in 
Figs. 31 and A6.1. The leakage flow passes over the blade tip 
with no change in its chordwise velocity component, which 
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Fig. A6.1 Tip leakage viewed as a jet in a crossflow 

remains equal to the surface velocity on the pressure side of 
the blade, Vp. The local rate of leakage flow is determined by 
the static pressure difference across the blade tip and by a 
discharge coefficient Cd, which may be either calculated the
oretically assuming two-dimensional flow (Moore and Tilton, 
1988) or determined empirically. The leakage flow therefore 
arrives at the suction side of the blade with a velocity com
ponent Vp in the stream wise direction. It is then assumed to 
mix immediately with the surrounding flow, which has velocity 
Vs. The mixing may be treated by exactly the same theory as 
was used for a coolant jet in Appendix 4 but without any 
stagnation temperature difference. 

Applying Eq. (A4.9) to the leakage over a small part of the 
blade chord gives 

Asirrev = C p ( 7 - l ) M 2 ( l - - ^ ) — (A6.1) 
\ ' sj Win 

where dm is the mass flow rate of the leakage flow and mm is 
that of the mainstream. The Mach number at which the mixing 
takes place is taken as that of the mainstream flow on the 
suction surface and so we can rewrite this as 

TAsimv=V?(l-^)^ (A6.2) 

To obtain the total entropy created we must integrate Eq. 
(A6.2) along the chord of the blade, giving 

TAstot = — f V} (1 - - £ ) dm (A6.3) 
mmi \ Vsj 

which is valid for compressible flow provided that temperature 
changes are small. 

The local leakage flow rate dm can be calculated by assuming 
two-dimensional flow and applying the momentum equation 
in the direction perpendicular to the blade chord. This is most 
easily done for incompressible flow but the theory can be 
extended to compressible flow in numerical calculations. For 
incompressible flow the leakage over a length dz along the 
chord of the blade is given by 

dm = Cdg V2APp dz (A6.4) 

where g is the tip clearance, Cd is the discharge coefficient and 
AP is the pressure difference between the suction and pressure 
sides of the blade. A typical value of Cd would be about 0.7-
0.8. Substituting this into Eq. (A6.3) gives 

TAsM = ̂ ^ \ l V}(l-^)^2ATP^ (A6.5) 
m,„ J0 \ Vs) C 

Since we have now assumed incompressible flow LP can also 
be related to the blade surface velocities 

AP = 0.5p(V?-VP
l) 

and the total mass flow through one blade passage can be 
written as 

mm = p V2hp cos a2 

where h is the blade span and p is the blade pitch. 
Hence, Eq. (A6.5) becomes 

TAsm=v
 C

h
dgC

 ( W I - ^ ) V 7 K P ^ (A6.6) 
V2hp cos a2J0 \ VSJ C 

Turning the overall entropy increase into a loss coefficient 
based on 0.5 V2 gives 

The terms in the integral can be evaluated when the blade 
surface velocity is known. Since for turbine blades the average 
value of Vs/V2 is about unity and Vp/V2 is about 0.3, the 
magnitude of the integral will be of the order 0.65. Hence, 
taking Cd to be about 0.8, the loss coefficient is of the same 
order as the ratio of leakage area, gC, to blade throat area, 
hp cos a2. This ratio is sometimes used as a measure of tip 
leakage loss. 

It is interesting to note the occurrence of the term ( Vs/V2)
3 

in the expression for the loss coefficient. This means that, 
exactly as was the case for boundary layer loss, highly loaded 
blades with high suction surface velocities will have a large tip 
leakage loss. 

The above theory applies equally to compressor blades and 
to turbine blades. Equation (A6.7) can be used for compressor 
blades if subscript 2 is replaced by subscript 1. We then obtain 
the loss coefficient based on inlet dynamic head. This will now 
be of order of the ratio of leakage area to inlet flow area and 
again it will increase rapidly for highly loaded blades. 

In cases where the blade surface velocity distributions are 
not known we can estimate the average values of Vs and Vp 

very approximately by assuming the blade loading to be uni
form. This gives from the blade circulation 

^ - ( ^ ^ ( t a n a j - t a n a , ) (A6.8) 

and from continuity, assuming that the blade thickness is small 

Vs+ Vp~^. (A6.9) 
cos a 

The local value of cos a may be reasonably estimated by as
suming that tan a varies linearly with x. 

Equations (A6.8) to (A6.9) enable Eq. (A6.7) to be integrated 
numerically and so provide a general means of estimating the 
tip leakage loss coefficients of turbine and compressor blades. 
Results from this method are plotted in Fig. 33. 
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