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Consegna

L’esercitazione riportata in questa dispensa è da considerarsi parte inte-
grante dell’esame di fluidodinamica delle macchine (AA 2016-2017). Rap-
presenta la condizione necessaria (ma non sufficiente) per il superamento
dell’esame per cui andrà inviata due giorni prima del sostenimento dell’esame
scritto.

L’esercitazione andrà inviata a nicola.casari@unife.it mettendo in copia
il docente (pier.ruggero.spina@unife.it). Se l’esame non viene superato la
prima volta non è necessario re-inviare il report per le volte successive: verrà
tenuta buona la relazione inviata la prima volta.

Vi si chiede di inviare una relazione in cui sono riportate, per ciascuno
dei due casi affrontati,

• Equazioni implementate

• Risultati

• Codice

Inoltre andrà riportato lo schema numerico implementato nei suoi pas-
saggi principali come visto in classe. Vi chiedo di inviarmi anche i codici a
parte: 2 file .m o eseguibili (se lo programmate in fortran o C++) o script
python.

Il report deve obbligatoriamente contenere la validazione del caso, con-
frontando graficamente il risultato con i grafici riportati in questa dispensa
(sovrapporre il vostro risultato ai grafici proposti è una buona idea). Inoltre,
ogni elaborato deve affrontare i seguenti punti (commentati e documentati
opportunamente):

• Prove di sensibilità alla griglia

• Variazione della condizione al contorno nel caso con shock: la con-
dizione da imporre è:

pNx = 0.6784− (#matricola/106)

Se il numero risultante è minore di 0.4 usate pNx = 0.5



• Variazione della viscosità artificiale

• Sensibilità al numero di Courant (provate il Courant massimo a cui il
codice rimane stabile, dovrebbe essere attorno a 1.1)

Per qualsiasi dubbio contattatemi liberamente (allegate il pdf della re-
lazione se avete bisogno di mostrarmi qualcosa).



Chapter 1

Introduction

One of the most fascinating example of the harnessing of nature by engineers
is shown in Fig. 1.1a, which is a photograph of the main rocket engine for
the space shuttle. This engine produces over 1.5 MN of thrust. Note the
large bell-like divergent nozzle of the rocket engine. Why this shape instead
of some convergent shape? In reality, in Figure 1.1a, we are seeing only
part of the rocket nozzle; hidden behind all the plumbing to the left of the
divergent duct in is a combustion chamber that feeds the hot, high-pressure
gas into a convergent duct that transitions to the divergent part, as sketched
in Fig. 1.1b.

(a) Space shuttle main rocket engine
(NASA)

(b) Shuttle engine sketch

Figure 1.1: Typical converging diverging nozzle problem

In the first part of the notes we will deal with the isentropic steady-state
flow through the converging-diverging nozzle reported in Fig. 2.1. Later on
we will present the case of shock wave and the numerical techniques able to
capture the discontinuities.
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Chapter 2

Problem statement -
isentropic flow

Assuming that the air is flowing according to the positive x-axis, at the
inlet we consider the flow coming from a reservoir. Here the pressure and
temperature are p0 and T0. These quantities can be considered as stagnation
value, since the area is theoretically A −→∞ .

Figure 2.1: Sketch of the nozzle under investigation

An additional assumption is to consider the problem as one-dimensional.
This hypothesis actually does not reflect the reality since during both the
converging as well as the diverging part of the duct the flow will have motion
even along the y-axis. By considering the properties as uniform across any
cross section we are dealing with a quasi-one-dimensional flow.
The problem under investigation has an analytic solution, that states that
the Mach number variation along the duct depends only on the area ratio
A/A∗. With the notation of Fig. 2.1, where the ∗ denotes the sonic section,
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we have that the mass flow rate that flows through the duct is the same
whatever section we consider. Thus:

ρ∗A∗V ∗ = ρAV (2.1)

Since V ∗ = a∗, we can express the area variation with respect to the sonic
throat in the following fashion:

A

A∗
=
ρ∗V ∗

ρV
=
ρ∗

ρ0

ρ0

ρ

a∗

V
(2.2)

Where the subscript 0 denotes the stagnation quantities (equal to the value
in the reservoir, since the flow is isentropic). Having this fact in mind, from
the definition of the stagnation quantities one has

ρ0

ρ
=

(
1 +

γ − 1

2
M2

) 1
γ−1

(2.3)

ρ∗

ρ0
=

(
2

γ + 1

) 1
γ−1

(2.4)

From the conservation of the total enthalpy one can derive the following
formulation for the Mach number

V

a∗
= M∗2 =

[(γ + 1)]M2

2 + [(γ − 1)]M2
(2.5)

Substituting equations (2.3) to (2.5) into Eqn. (2.2), we obtain(
A

A∗

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] γ+1
γ−1

(2.6)

Equation (2.6) is called the area–Mach number relation. It states that M =
f(A/A∗) that is, the Mach number at any location in the duct is a function
of the ratio of the local duct area to the sonic throat area.

In this assignment we will derive the approximated solution through the
numerical study of the problem.

2.1 Governing Euler Equations

In the following we will consider the reservoir as containing an inviscid fluid
and so the Euler equations are the governing system of partial differential
equations (PDEs). Since we are doing such a strong assumption, that is to
consider the properties of the flow uniform over the area, the physics of the
problem is different from the real physics of the flow. Under such a perspec-
tive it is compulsory to ensure that the conservation of mass, momentum
and energy is satisfied. Let’s derive the corresponding relations for the case
of quasi-one dimensional fluid.
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Continuity equation

Recalling the integral form of the continuity equation

∂

∂t

∫ ∫ ∫
Ω
ρdΩ +

∫ ∫
S
ρV · dS = 0 (2.7)

Equation (2.7) is applied to the control volume shaded in Fig. 2.2. If
we consider the volume as vanishing (dx→ 0), the volume integral of Eqn.
(2.8) can be approximated by:

∂

∂t

∫ ∫ ∫
Ω
ρdΩ =

∂(ρAdx)

∂t
(2.8)

Figure 2.2: Control Volume for the derivation of the governing equations of
the quasi-one-dimensional case

Equation (2.8) can be written because The control volume Ω ' Adx for
dx→ 0. On the other hand the case of surface integral of Eqn. (2.7) can be
written as:∫ ∫

S
ρV · dS = −ρAV + (ρ+ dρ) (A+ dA) (V + dV ) (2.9)

OSS: The minus sign before the first term on the right hand side of
equation (2.9) is due to the fact that S and V point in opposite di-
rections since the surface normal vector points outward the volume by
convention.

Expanding the triple product a series of term involving the product of
differentials (e.g. ρ dV dA or A dρ dV ) appears. Such terms go to zero faster
than the terms which have only one differential an thus can be neglected.
In the limit dx tends to zero, equation (2.7) becomes Eqn. (2.10):

∂(ρA dx)

∂t
+ d(ρAV ) = 0 (2.10)
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Dividing by dx and keeping in mind that d(ρAV )/dx is the partial deriva-
tive with respect to x when dx vanishes, one has:

∂ρA

∂t
+
∂ρAV

∂x
= 0 (2.11)

that represents the continuity equation for an unsteady quasi-one-dimensional
flow.

Momentum equation

For what concerns the x-component of the momentum equation, for an in-
viscid flow and without body forces one has:

∂

∂t

∫ ∫ ∫
Ω

(ρu)dΩ +

∫ ∫
S

(ρuV) · dS = −
∫ ∫

S
(p dS)x (2.12)

A treatise analogous to the one done for the derivation of Eqns. (2.8)
and (2.10) can be done here, obtaining :

∂

∂t

∫ ∫ ∫
Ω
ρudΩ =

∂ρV Adx

∂t
(2.13)

and: ∫ ∫
S

(ρuV) · dS = −ρAV 2 + (ρ+ dρ) (A+ dA) (V + dV )2 (2.14)

For what concerns the term on the right hand side of Eqn. (2.12), namely
the pressure force in x direction, the reader is referred to Fig. 2.3. The
balance leads to Eqn.

∫ ∫
S

(p dS)x = −pA+ (p+ dp) (A+ dA)− 2p

(
dA

2

)
(2.15)

Substituting Eqs. (2.14), (2.13) and (2.15), doing the operations on
the right hand side of equation (2.15) and ignoring the terms involving the
product of differentials, one finds:

∂(ρV A dx)

∂t
+ d(ρAV 2) = −A dp (2.16)

Again, as done for equation (2.11), we get the conservation form of the
momentum equation for a quasi-one-dimensional nozzle:

∂(ρV A)

∂t
+
∂(ρAV 2)

∂x
= −∂(pA)

∂x
(2.17)

5



Figure 2.3: Control Volume for the derivation of the governing equations of
the quasi-one-dimensional case

Equation (2.17) could be used as is for our purposes. Nonetheless, the
numerical scheme we are setting up is based on the nonconservative form
of the governing equations. Thus, to obtain that form of the momentum
equation, we have to multiply the continuity equation (2.11) by V and sub-
tract the so-obtained equation from (2.17). Expanding the derivatives and
cancelling the equal terms and dividing by A we get the final form of the
momentum equation in the nonconservative form, as we were seeking:

ρ
∂V

∂t
+ ρV

∂V

∂x
= −∂p

∂x
(2.18)

Energy equation

If we neglect the body forces and considering an adiabatic flow (q̇ = 0), the
general Euler equation is:

∂

∂t

∫ ∫ ∫
Ω
ρ

(
e+

V 2

2

)
dΩ +

∫ ∫
S
ρ

(
e+

V 2

2

)
V · dS = −

∫ ∫
S

(pV) · dS

(2.19)
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Again, referring to Fig. 2.2, one can write:

∂

∂t

[
ρ

(
e+

V 2

2

)
Adx

]
− ρ

(
e+

V 2

2

)
V A

+ (p+ dp)

[
e+ de+

(V + dV )2

2

]
(V + dV )(A+ dA)

= −
[
−pV A+ (p+ dp)(V + dV )(A+ dA)− 2

(
pV

dA

2

)]
(2.20)

Expanding the products and neglecting the products of differentials we
derive:

∂

∂t

[
ρ

(
e+

V 2

2

)
Adx

]
+ d(ρeV A) +

d(ρV 3A)

2
= −d(pV A) (2.21)

or, equivalently, as dx approaches zero:

∂

∂t

[
ρ

(
e+

V 2

2

)
A

]
+

∂

∂x

[
ρ

(
e+

V 2

2

)
V A

]
= −∂(pV A)

∂x
(2.22)

Which is the conservation form of the energy equation in its conservative
form expressed in terms of total energy (e+ V 2/2). To obtain the non con-
servative form in terms of internal energy e, let us multiply the conservation
form of the momentum equation (2.17) by V , and subtract it from (2.22)
obtaining:

∂ (ρeA)

∂t
+
∂ (ρeV A)

∂x
= −p∂(AV )

∂x
(2.23)

As you can easily see the form of Eqn. (2.23) is exactly the same of
(2.22), but the transported variable is e instead of (e + V 2/2). To obtain
the non conservative form of the sought equation, we have to multiply the
continuity equation (2.11) by e and subtract it from (2.23), expanding the
right hand side and dividing by A, it yelds to:

ρ
∂e

∂t
+ ρV

∂e

∂x
= −p∂V

∂x
− pV

A

∂(A)

∂x
(2.24)

or, noticing that on the right hand side the last term is actually the derivative
of a logarithm,

ρ
∂e

∂t
+ ρV

∂e

∂x
= −p∂V

∂x
− pV ∂ln(A)

∂x
(2.25)

Which is the nonconservation form of the energy equation for a quasi-one-
dimensional flow. All the effort put in deriving such equation is due to the
fact that from Eqn.(2.25) is straightforward to obtain a relation where the
primitive variable T appears as is. To deal with the primary dependent
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variable is thus sufficient recalling the relation valid for a calorically perfect
gas (cv constant with respect to the temperature):

e = cvT (2.26)

And thus Eqn. (2.25), becomes:

ρcv
∂T

∂t
+ ρV cv

∂T

∂x
= −p∂V

∂x
− pV ∂ln(A)

∂x
(2.27)

Which ends the system of equations that rule the problem. If you take
a deeper look into Eqs. (2.11), (2.18) and (2.27), you might note that we
have three equations in four variables : ρ, V , p and T . We can call a fourth
equation to get help in order to reduce the number of unknowns. That is
the equation of state for a perfect gas:

p = ρRT (2.28)

which, along with its derivative with respect to the spatial coordinate,

∂p

∂x
= R

(
ρ
∂T

∂x
+ T

∂ρ

∂x

)
(2.29)

allows us to rewrite the governing set of Euler equations in the case of
quasi-one-dimensional nozzle flow in the following fashion (expanding the
derivatives):

∂ρA

∂t
+ ρA

∂V

∂x
+ ρV

∂A

∂x
+AV

∂ρ

∂x
= 0 (2.30)

ρ
∂V

∂t
+ ρV

∂V

∂x
= −R

(
ρ
∂T

∂x
+ T

∂ρ

∂x

)
(2.31)

ρcv
∂T

∂t
+ ρV cv

∂T

∂x
= −ρRT

[
∂V

∂x
+ V

∂ln(A)

∂x

]
(2.32)
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Chapter 3

Finite Difference Method -
Implementation Remarks

Both the numerical methods presented in this notes are explicit in time.
This means that a stability criterion is required. To have a clearer view of
the meaning of this sentence, the following section presents a few remarks
and analysis are carried out. The treatise is carried out with an upwind
scheme in order to better focus on the idea behind the numerical method
rather on the method itself.

This paragraph is reported for giving a general idea of the meaning of the
Courant number and the CFL condition. This condition is very important in
the solution of CFD problems and allow to discern between stable schemes
(e.g. Forward-Backward, Lax-Friedrich) and unstable ones (e.g. Forward-
Forward). Nonetheless this paragraph is NOT part of the assignment. Since
the focus is on the physical meaning, the treatise is not rigorous.

3.1 Upwind Scheme - General Features

Let us consider a linear convection equation: a typical first-order hyperbolic
equation.

∂u

∂t
+ a

∂u

∂x
= 0 (3.1)

This equations, represent the transport of the unknown property u = u(x, t)
by the convection with a speed a. Two partial derivatives appears in Eqn.
(3.1), with respect to the time an to the space. The choice of the discreti-
sation must keep into account both the derivatives at the same time. So,
for having an explicit scheme, we must evaluate the spatial derivative terms
at the time n and not n + 1, which would lead to an implicit scheme. The
choice of such an approach would lead to a more accurate and stable so-
lution, but the implementation of such a technique is more complicate and
involves the solution of the system of equations using the properties of the
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linear systems. This approach is used in the more complicate CFD codes,
where the problem of inhomogeneous distribution of the nodes usually leads
to too much small time steps for stability reason. By the moment, let’s stay
with a simpler code.
In such a scenario the space derivative can be approximated by the central,
forward or backward (rearward) difference and according to the choice the
order of the approximation (i.e. the truncation error) would respectively the
2nd or 1st. For instance, if we choose the forward difference, the equation
(3.1) is discretised in the following fashion:

un+1
i − uni

∆t
= −a

uni+1 − uni
∆x

(3.2)

Such a discretisation lead to a fist order approximate equation both in space
and time. The order of the approximation can be increased by simply con-
sider a central difference approximation on the left hand side of equation
(3.2).
The name upwind derives from the fact that actually the choice of backward
rather than forward difference is not arbitrary. In this case, it is natural to
select the points in the solution at the time-level n that are upwind of the
solution at the position i and at the time-level n+ 1, as these are the ones
causally connected with un+1

i . Depending then on the direction in which
the solution is translated, and thus on the sign of the velocity a, equation
(3.2) can be written in two different way


un+1
i − uni

∆t
= −a

uni+1 − uni
∆x

if a < 0 (3.3)

un+1
i − uni

∆t
= −a

uni − uni−1

∆x
if a > 0 (3.4)

Stability analysis

The upwind scheme is a stable one in the sense that the solution will not have
exponentially growing modes. This can be seen through a von Neumann
stability analysis, a useful tool which allows a first simple validation of a
given numerical scheme. It is important to underline that the von Neumann
stability analysis is local in the sense that: a) it does not take into account
boundary effects; b) it assumes that the coefficients of the finite difference
equations are sufficiently slowly varying to be considered constant in time
and space (this is a reasonable assumptions if the equations are linear).
Under these assumptions, the solution can be seen as a sum of eigenmodes
which at each grid point have the form:

uni = ξneikx (3.5)
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where k is the spatial wave number and ξ = ξ(k) is a complex number. If
one consider the symbolic representation of the finite difference equation for
the next time step as:

un+1
i = G(∆tp,∆xq)uni (3.6)

Where G(∆tp,∆x1) is the evolution operator of order p in time and q in
space. It can be seen that the time evolution of a single eigenmode is nothing
but a succession of integer powers of the complex number ξ which is therefore
named amplification factor. This naturally leads to a criterion of stability
as the one for which the modulus of the amplfication factor is always less
than 1 and so:

|ξ|2 = ξξ∗ ≤ 1 (3.7)

Applying Eqn. (3.5) to Eqs. (3.3)(3.4) the amplification factor is:

ξ = 1− |α|(1− cos(k∆x))− iαsin(k∆x)) (3.8)

Where

α ≡ a∆t

∆x
(3.9)

and therefore |ξ|2:

|ξ|2 = 1− 2|α|(1− |α|)(1− cos(k∆x)) (3.10)

and the stability criterion (3.6) is satisfied as long as we chose

|α| ≤ 1 (3.11)

Equation (3.11) is usually referred to as Courant condition or CFL (form
Courant-Friedrichs-Loewy condition). Equation (3.11) is translated in a
maximum value for the time step ∆t since ∆x is known from the discretiza-
tion and a is known from the former time step:

∆t = C
∆x

|a|
(3.12)

With C is the CFL number. From Eqn.(3.12) and Fig. 3.1, on can observe
that:

• From a mathematical standpoint, the stability is ensured if the numer-
ical domain of dependence of the solution is larger than the physical
one.

• From a physical standpoint, the respecting of the CFL condition en-
sures that the propagation speed of any physical perturbation (in the
cases of our interest is the speed of sound) is smaller of a grid cell.
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Figure 3.1: Mathematical meaning of Courant stable and unstable condi-
tions: the dashed lines represent the numerical domain of dependence of the
solution at xni , if the central difference scheme for the spatial derivative is
chosen. The shaded area is the physical domain of dependence. Stability is
ensured if the numerical area of dependence includes the physical one

OSS: For the present application, the CFL number criterion does not
hold exactly (a stable solution is achievable even with a Courant num-
ber of 1.1). In this case in fact we are dealing with a nonlinear hyper-
bolic partial differential equation and the CFL criterion is formulated
for a linear one. In spite of this, the CFL still stands as a good crite-
rion for a reliable estimation of the ∆t.
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Chapter 4

Finite Difference Methods -
Implementation

4.1 Adimensionalisation of the Governing Equa-
tions

Although the set of equations (2.30) to (2.32) could directly be implemented
in a CFD code, when dealing with nozzle flows it is common practice to
make use of nondimensional variables. In this section we will transform the
set of Euler equation for having the physical quantities adimensionalised
with respect to the reservoir values. In the following the prime represent a
nondimensional quantity. Thus, we have:

T ′ =
T

T0
ρ′ =

ρ

ρ0
x′ =

x

L
and V ′ =

V

a0
, where a0 =

√
γRT0

Where L is the length of the duct. Noticing that L/a0 has the dimensions of
the time, we can write the dimensionless time as t′ = t/(L/a0). Eventually,
the reference area for the adimensionalisation is the sonic throat area A∗

and thus A′ = A/A∗.
These relations given, we can proceed in order to obtain the equivalent of
Eqs. (2.30), (2.31) and (2.32) in terms of prime quantities. Starting from
the continuity equation, one has:

∂ρ′A′

∂t′

(
ρ0A

∗

L/a0

)
+ ρ′A′

∂V ′

∂x′

(
ρ0A

∗a0

L

)
+ ρ′V ′

∂A′

∂x′

(
ρ0A

∗a0

L

)
+A′V ′

∂ρ′

∂x′

(
ρ0A

∗a0

L

)
= 0 (4.1)

Noticing that A′ is constant (does not depend on time but only on the
space), and all the terms between brackets are equal, the very final form of
the continuity equation that will be used is:
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∂ρ′

∂t′
= −ρ′∂V

′

∂x′
− ρ′V ′∂ln(A)

∂x′
− V ′ ∂ρ

′

∂x′
(4.2)

For what concerns the momentum equation, from (2.31), we have

ρ′
∂V ′

∂t′

(
ρ0a0

L/a0

)
+ ρ′V ′

∂V ′

∂x′

(
ρ0a

2
0

L

)
=

−R
(
ρ′
∂T ′

∂x′
+ T ′

∂ρ′

∂x′

)(
ρ0T0

L

)
Carrying out the proper algebra and noticing that:

RT0

a2
0

=
γRT0

γa2
0

=
a2

0

γa2
0

=
1

γ

One has:
∂V ′

∂t′
= −V ′∂V

′

∂x′
− 1

γ

(
∂T ′

∂x′
+
T ′

ρ′
∂ρ′

∂x′

)
(4.3)

Lastly, recalling Eqn. (2.32) and introducing the adimensionalisations
we have:

ρ′cv
∂T ′

∂t′

(
ρ0T0

L/a0

)
+ ρ′V ′cv

∂T ′

∂x′

(
ρ0a0T0

L

)
=

ρ′RT ′
[
∂V ′

∂x′
+ V ′

∂ln(A′)

∂x′

](
ρ0a0T0

L

)
Keeping in mind the relation

R

cv
=

R

R/(γ − 1)
= γ − 1

We have the last equation needed for the numerical resolution of the
problem:

∂T ′

∂t′
= −V ′∂T

′

∂x′
− (γ − 1)T ′

[
∂V ′

∂x′
+ V ′

∂ln(A′)

∂x′

]
(4.4)

For clearness sake, from now on we will deal only with nondimensional
quantities and the prime will be omitted.
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Before starting with the implementation of the numerical method, the
geometry and the boundary condition are presented.

4.1.1 Geometry of the nozzle

No matter what scheme is to be implemented, one first needs to create the
computational grid. To keep the things easy, let’s implement a parabolic
nozzle. The specified shape is held fixed in time and it is given by the
relation:

A = 1 + 2.2(x− 1.5)2 0 ≤ x ≤ 3 (4.5)

In this way the first part of the duct up to x = 1.5 is convergent and than
is divergent. The throat section is in x = 1.5. With the topology reported
in Fig. 2.1, the inlet (reservoir) is on the left and the outlet on the right.

4.1.2 Boundary and initial conditions for isentropic flow

In this section we will formulate the boundary conditions for a subsonic-
supersonic isentropic solution, where the flow inside the duct is free of de-
veloping without constraints (i.e. no back pressure imposed). For what con-
cerns the boundary condition, on a physical basis we know that the mass
flow through the nozzle must be allowed to adjust to the proper steady state.
Thus a variable must be let free to float: the choice of V1 makes the most
sense as part of this adjustment. In light of this the following conditions are
imposed at the inlet:

• ρ1=1

• T1=1

• V1 Neumann condition (null velocity gradient)

For what concerns the outlet, from the method of the characteristics all
the variable must be let free to float. Thus a Neumann condition must be
applied to all the quantities ρ2, T2 and V2.

To start the time-marching procedure, the variables must be set up with
values for every x at the time t = 0. Theoretically the conditions could be
purely as you wish. Practically, you must be aware that:

• The closer you are to the expected final solution, the faster your sim-
ulation will converge

• If you are too far from the final conditions, the timewise gradient can
be too big and the program can go unstable

Intelligent choice of the initial conditions is given from any knowledge you
have of the problem. Since density and temperature must decrease passing
through the nozzle and the velocity, on the other hand, increases. Thus a
clever guess for the initial state is
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• ρ = 1− 0.3146x

• T = 1− 0.2314x

• V = (0.1 + 1.09x)T 1/2

4.1.3 MacCormack’s technique

MacCormack’s technique is a variant of the Lax-Wendroff method, but easier
to be implemented. Such a method is second - order - accurate both in time
and space. This method is based on a predictor - corrector approach. With
regards to the continuity equation, the density in the node i at the next
time step is derived from the actual one in the following fashion:

ρn+1
i = ρni +

(
∂ρ

∂t

)
ave

∆t (4.6)

where (∂ρ/∂t)ave is a representative ”mean” value for (∂ρ/∂t) between times
n and n+ 1. This expedient allow us to avoid the computation of (∂2ρ/∂t2)
which is not difficult but is very time consuming. The way (∂ρ/∂t)ave is
calculated is so to preserve the second order accuracy. The procedure for
the evaluation of this term, in the case of quasi-one-dimensional nozzle flow,
is reported in the following.
The first step of the calculation is named predictor step and deals with the
idea of predict the properties in the next time step according to the values
of the quantities at the current time step. In other words, expanding the
time derivative with the second order truncated Taylor series:

ρn+1
i = ρni +

(
∂ρ

∂t

)n
i

∆t (4.7)

Where the barred quantities stands for the predicted values. You can eas-
ily see that ρn+1

i from Eqn. (4.7) is only first - order accurate since in
its definition only the first - order terms in the Taylor series appear. For
the calculation of the term (∂ρ/∂t)ni , the discretized form of the continuity
equation (4.2) is used and, with the recommendation of using the forward
differences in the spatial derivative, equation (4.8) is derived.

(
∂ρ

∂t

)n
i

= ρni
V n
i+1 − V n

i

∆x
+ ρni V

n
i

ln(Ai+1)− ln(Ai)

∆x
+ V n

i

ρni+1 − ρni
∆x

(4.8)

Computed (∂ρ/∂t)ti and thus ρn+1
i from Eqn.(4.8) and (4.7) respectively, we

can move to the corrector step. The idea is obtaining a predicted value of the
time derivative at time n+ 1 (denoting it with the bar sign) by substituting
the predicted values of the flow quantities, as shown in Eqn. (4.9)
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(
∂ρ

∂t

)n+1

i

= ρn+1
i +

V
n+1
i − V n+1

i−1

∆x
+ ρn+1

i V
n+1
i

ln(Ai)− ln(Ai−1)

∆x

+ V
n+1
i

ρn+1
i − ρn+1

i−1

∆x
(4.9)

The recommendation is here to use the backward differences in the spatial
derivative. Now the term (∂ρ/∂t)ave is easily computed, calling the first
term of (4.10) from Eqn. (4.8) and the second one from Eqn. (4.9)(

∂ρ

∂t

)
ave

=
1

2

[(
∂ρ

∂t

)n
i

+

(
∂ρ

∂t

)n+1

i

]
(4.10)

The quantities at the next time step can be finally computed through (4.6).
The predictor-corrector sequence described above, because a two-step

difference is used with forward differences on the predictor and backward
differences on the corrector, is a second - order - accurate method. The
order presented is not compulsory though.

1 % MacCormak ’ s e x p l i c i t technique f o r the r e s o l u t i o n
2 % of 1d eu l e r equat ion
3
4 %Impos i t ion o f i n i t i a l cond i t i on
5 rho = 1−0.3146∗X;
6
7 %Time marching technique
8
9 endTime =100;

10
11 whi le ( t<endTime )
12
13 %Loop over the i n t e r n a l nodes
14
15 rhobartdt (1) =1;
16
17 f o r i =2:Nx−1
18
19 %% Pred i c to r s tep
20
21 %forward d i f f e r e n c i n g in space at time t
22 rhoPred ( i ) = ( rhot ( i +1)−rhot ( i ) ) /dx ;
23
24 %computation o f the time d e r i v a t i v e at time t
25 drhodt ( i ) = −rhot ( i )∗uPred ( i )−rhot ( i )∗ut ( i )∗ sPred ( i )−ut ( i )∗ rhoPred ( i ) ;
26
27 %pred i c t ed value f o r rho
28 rhobartdt ( i )= rhot ( i )+ drhodt ( i )∗dt ;
29
30 %compute the next time step
31 rho ( i )= rho ( i ) + drhodt ( i )∗dt ;
32
33 %% Corrector s tep
34 % backward d i f f e r e n c i n g o f bar quan t i t i e s at time t+dt
35 rhoCorr ( i )= ( rhobartdt ( i )−rhobartdt ( i −1) ) /dx ;
36
37 %computation o f the time d e r i v a t i v e at time t+dt
38 drhobartdtdt ( i ) = −rhobartdt ( i )∗uCorr ( i )−rhobartdt ( i )∗ubartdt ( i )∗ sCorr ( i )

−ubartdt ( i )∗ rhoCorr ( i ) ;
39
40
41 %% Rho value at next time step
42
43 %MacCormack average
44 drhodtav ( i ) = 0 .5∗ ( drhodt ( i )+drhobartdtdt ( i ) ) ;
45
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46 rhotdt ( i )= rhot ( i )+drhodtav ( i )∗dt ;
47
48 %Calcu la t i on o f adimens ional sound speed and dt
49 atdt ( i )=sq r t ( Ttdt ( i ) ) ;
50
51 d t l o c a l ( i ) =0.9∗dx/( atdt ( i )+utdt ( i ) ) ;
52 end
53
54 %Res idual monitor ing
55 %re f r e shda ta
56 a=a+1;
57 i f (mod(a , 5 )==0)
58 r e s i d u a l (n , : )=drhodtav ( : ) ;
59 y (n)=sum( abs ( r e s i d u a l (n , : ) ) ) ;
60 a=0;
61 semi logy ( time , y )
62 drawnow
63 end
64
65
66 %impose boundary cond i t i on s
67 rhotdt (1) = 1 ;
68 atdt (1 )=sq r t ( Ttdt (1) ) ;
69 d t l o c a l (1 ) =0.9∗dx/( atdt (1)+ut (1) ) ;
70
71 rhotdt (Nx)= 2∗ rhotdt (Nx−1)−rhotdt (Nx−2) ;
72 atdt (Nx) = sq r t ( Ttdt (Nx) ) ;
73 d t l o c a l (Nx)=0.9∗dx/( atdt (Nx)+utdt (Nx) ) ;
74
75 dt=min ( dtLocal ) ;
76
77 t=t+dt ;
78
79 end

Results

To validate your code, compare the outcome of your simulation with the
Fig. 4.1.
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Figure 4.1: Analitical result for the comparison with the outcome of the
numerical simulation
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4.2 Conservative Euler equations

In flow fields involving shock waves, there are sharp, discontinuous change
in the primitive flow-field variables (ρ, p, V, T ) across the shocks. In the
following we will deal with a shock–capturing technique (opposite to the
shock–fitting approach). In this framework, the scheme let the shock wave
to appear naturally within the computation space as a direct result of the
overall flow solution. If the nonconservation form of the governing equation
is used in case of shock–capturing technique, the computed flow field results
shows oscillation (wiggles) upstream and downstream of the shock wave that
may appear in the wrong location. The solution can even become unstable.
For this reason the first part of this section is devoted to the derivation of
adimensional–conservation equations.

4.2.1 Derivation of adimensional equation

From (2.11), one can see that the equation is already in its conservation
form. Thus for the adimensionalisation, the following form is obtained

∂
(
ρ
ρ0

A
A∗

)
∂
(

t
L/a0

) (ρ0A
∗a0

L

)
+
∂
(
ρ
ρ0

A
A∗

V
a0

)
∂
(
x
L

) (
ρ0A

∗a0

L

)
= 0 (4.11)

And thus in term of prime quantities,

∂ρ′A′

∂t′
+
∂ρ′A′V ′

∂x′
= 0 (4.12)

For what concerns the momentum equation (2.17), adding it to Eqn.
(4.12), we have:

∂(ρV A)

∂t
+
∂(ρAV 2 + pA)

∂x
= −p∂A

∂x
(4.13)

The nondimensionalisation leads to:

∂
(
ρ
ρ0

A
A∗

V
a0

)
∂
(

t
L/a0

) (
ρ0A

∗a2
0

L

)
+
∂
[
ρ
ρ0

A
A∗

V 2

a20

(
ρ0A

∗a2
0

)
+ p

p0
A
A∗ (p0A

∗)
]

∂
(
x
L

)
L

=
p

p0

∂(A/A∗)

∂(x/L)

(
p0A

∗

L

)
(4.14)

or, in prime terms,

∂(ρ′V ′A′)

∂t′
+
∂[ρ′A′V ′2 + p′A′(p0/ρ0a

2
0)]

∂x′
= p′

∂A′

∂x′

(
p0

ρ0a2
0

)
(4.15)

20



And keeping in mind that

p0

ρ0a2
0)

=
ρ0RT0

ρ0a2
0)

=
ρ0RT0

ρ0γRT0
=

1

γ
(4.16)

And thus:

∂(ρ′V ′A′)

∂t′
+
∂[ρ′A′V ′2 + (1/γ)p′A′]

∂x′
=

1

γ
p′
∂A′

∂x′
(4.17)

For what concerns energy equation in its conservation form (2.22), combining
the x derivatives we have

∂

∂t

[
ρ

(
e+

V 2

2

)
A

]
+

∂

∂x

[
ρ

(
e+

V 2

2

)
V A+ pV A

]
= 0 (4.18)

Defining the nondimensional internal energy as

e′ = e/e0 e0 = cvT0 =
RT0

γ − 1

Proceeding with the adimensionalisation, we have

∂
{
ρ
ρ0

[
e
e0
e0 + V 2

2a20
a2

0

]
A
A∗

}
∂
(

x
L/a0

)
+
∂
{
ρ
ρ0

[
e
e0
e0 + V 2

2a20
a2

0

]
A
A∗

V
a0

(ρ0a0A
∗) +

(
p
p0

A
A∗

V
a0

)
(ρ0a0A

∗)
}

∂
(

x
L/a0

) = 0 (4.19)

Adding the fact that e0 = RT0/(γ − 1), equation (4.19) becomes:

∂
[
ρ′
(

e′

γ−1 + γ
2V
′2
)
A′
]

∂t′

(
ρ0A

∗a0RT0

L

)

+
∂
[
ρ′
(

e′

γ−1 + γ
2V
′2
)
A′V ′

(
ρ0A∗a0RT0

L

)
+ (p′A′V ′)

(
p0A∗a0
L

)]
∂x′

= 0 (4.20)

Adding the fact that p0/(γRT0) = 1 for a perfect gas and dividing by
ρ0A

∗a0RT0/L we obtain:

∂
[
ρ′
(

e′

γ−1 + γ
2V
′2
)
A′
]

∂t′
+
∂
[
ρ′
(

e
γ−1 + γ

2V
′2
)
A′V ′ + p′A′V ′

]
∂x′

= 0 (4.21)
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The boxed equations are the governing equations in conservation form
for a quasi–one–dimensional nozzle flow. Writing down the system in the
usual fashion with column vectors as follow:

∂U

∂t
+
∂F

∂x
= J (4.22)

we shall define the components of the solutions vectors U, the flux vec-
tor F and source terms vector J (the prime is omitted, all the terms are
nondimensional)

U1 = ρA

U2 = ρAV

U3 = ρ

(
e

γ − 1
+
γ

2
V 2

)
A

F1 = ρAV (4.23)

F2 = ρAV 2 +
1

2
pA

F3 = ρ

(
e

γ − 1
+
γ

2
V 2

)
V A+ pAV

J2 =
1

γ
p
∂A

∂x

The governing equations take the form:

∂U1

∂t
= −∂F1

∂x
(4.24)

∂U2

∂t
= −∂F2

∂x
+ J2 (4.25)

∂U3

∂t
= −∂F3

∂x
(4.26)

The primitive variables can be easily derived

ρ =
U1

A
(4.27)

V =
U2

U1
(4.28)

T = e = (γ − 1)

(
U3

U1
− γ

2
V 2

)
remember e′ ≡ e

e0
=

cvT

cvT0
= T ′ (4.29)

p = ρT (4.30)

The implementation of the former equations in a code, pass usually
through the expression of the fluxes presented in (4.24) in the way F=F(U).
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If it weren’t done, the code would have some numerical issues. This is ba-
sically due to the fact that the dependent variables that appear in Eqn.
(4.26), are the conservative and not the primitive variables. The mixing of
the two would lead to instabilities and potentially failure in the computa-
tion. Therefore a consistent formulation in terms of conservative variables
is required. Thus to express the desired formulation of the adimensional
conservative equation, a few passages are required.

4.2.2 Governing equations in terms of F=F(U)

F1

From Eqs. (4.24), F1 = ρAV . Thus, using (4.27) and (4.28), one obtain:

F1 = U2 (4.31)

F2

From Eqs. (4.24), F2 = ρAV 2 + (1/γ)pA. Thus, using Eqs. (4.30) (4.27)
and (4.29), one obtain:

F2 =
U2

2

U1
+

1

γ
U1 (γ − 1)

[
U3

U1
− γ

2

(
U2

U1

)2
]

(4.32)

and eventually:

F2 =
U2

2

U1
+
γ − 1

γ

(
U3 −

γ

2

U2
2

U1

)
(4.33)

F3

From Eqs. (4.24),

F3 = ρ

(
e

γ − 1
+
γ

2
V 2

)
V A+ pAV (4.34)

Recalling Eqs. (4.27) to (4.30), it is straightforward to obtain:

F3 = U2

(
U3

U1
− γ

2
V 2 +

γ

2
V 2

)
V A+ U2T

=
U2U3

U1
+ (γ − 1)U2

[
U3

U1
− γ

2

(
U3

U1

)2
]

(4.35)

And thus

F3 = γ
U2U3

U1
− γ(γ − 1)

2

U2
3

U2
1 )
V 2 (4.36)
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J2

For what concerns the source term,

J2 =
1

γ
p
∂A

∂x
(4.37)

Using Eqs. (4.30), (4.27) and (4.29), one has:

J2 =
1

γ

U1

A
(γ − 1)

[
U3

U1
− γ

2

(
U2

U1

)2
]
∂A

∂x
(4.38)

And finally:

J2 =
γ − 1

γ

(
U3 −

γ

2

U2
2

U1

)
∂ln(A)

∂x
(4.39)

4.2.3 Boundary and initial conditions for the shock captur-
ing case

On the contrary with the subject of section 4.1.2, here the back pressure is
kept under control. If we lower the pressure pe (with the notation of Fig.
2.1), the following scenarios can occur.

• If pe/p0 is greater than the critical ratio (pe)c/p0 (i.e. the ratio by
which the Mach number in the throat section equals one), there are
an infinite number of possible isentropic solution each one correspond-
ing to a specific pressure ratio. The flow is totally subsonic and the
specified back pressure make the local flow properties are function of
both the local area ratio (as in the former case) and the pressure ratio.

• If pe/p0 < (pe)c/p0 the duct becomes chocked: the flow remains sonic
at the throat and, no matter how the pressure is reduced below (pe)c,
the mass flow remain a fixed value.

• If pe/p0 = (pe)is/p0, where (pe)is is the pressure at the outlet of the
domain which come from the solution of the isentropic case, the so-
lution is unique and is given from the analytic solution of equation
(2.6)

In this section we are interested in the second case of the list. If the back
pressure is lower than the one which causes the Mach number to be 1 in the
throat section the isentropic hypothesis for the resolution of the flow field is
not acceptable any more.

Particularly what happens is depicted in Fig. 4.2: the final solution tends
to be equal to the isentropic one up to a certain point in the divergent nozzle.
Here the back pressure, being higher than the value in case of isentropic
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Figure 4.2: Shock in a nozzle: location and variation of relevant quantities

solution, causes the presence of a normal shock wave. The location of the
shock is such that the discontinuity in pressure plus the pressure recovery of
the subsonic flow downwards the shock is equal to the back pressure value.
The solution downward the shock wave is still isentropic for a subsonic flow,
but with an entropy value greater than upwards the shock.

It is interesting to note than since the imposed pressure value pe is lower
than the critical one,(pe)c, the mass flow of the duct is fixed no matter how
much this value goes down. In this situation we are dealing with a chocked
flow, and the only way to change the mass flow is by the modification of
the inlet pressure, since the chocked throat section and the outlet cannot
communicate. Disturbances cannot work their way upstream of the throat
and thus the convergent part of the nozzle is frozen in its state.

To obtain such a solution the inlet boundary conditions are theoretically
the same described in 4.1.2: two variables are hold fixed and one is let free to
float. The application to the conservative variable is done keeping in mind
that U1 = ρA. Thus, if we want ρ to be equal to one at the inlet, it follows:

U1(i=1) = (ρA)i=1 = Ai=1 = const (4.40)

For what concerns the momentum equation, the floating value of U2 is eval-
uated through a Neumann condition at the end of each time step, and thus:

U2(i=1) = 2U2(i=2) − U2(i=3) (4.41)
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Eventually the value of U3 is evaluated keeping in mind that

U3 = ρ

(
e

γ − 1
+
γ

2
V 2

)
A (4.42)

or, equivalently, since Ti=1 = 1 and e = T ,

U3 = U1

(
1

γ − 1
+
γ

2
V 2

)
(4.43)

For what concerns the outlet, a pressure ratio right to force a normal
shock wave is pe/p01 = 0.6784. Here, we must specify a variable value at
the outlet. Let’s obtain U1 and U2 in the usual way:

U1(i=Nx) = 2U1(i=Nx−1) − U1(i=Nx−2) (4.44)

U2(i=Nx) = 2U2(i=Nx−1) − U2(i=Nx−2) (4.45)

On the other hand the effect of the imposed pressure reflects on U3. From
Eqn. (4.42), recalling the equation of state, e = T and the definition of
U2 = ρAV :

U3 (i=Nx) =
pNxA

γ − 1
+
γ

2
U2 (i=Nx)VNx (4.46)

The boundary condition value is known imposing pNx = pe/p01 = 0.6784.
For the initial guess of the flow field we should choose a initial condition
that is qualitative similar to the final state. We will implement the following
distribution:

ρ = 1

T = 1

}
for 0 ≤ x ≤ 0.5 (4.47)

ρ = 1− 0.366(x− 0.5)

T = 1− 0.167(x− 0.5)

}
for 0.5 ≤ x ≤ 1.5 (4.48)

ρ = 0.634− 0.702(x− 1.5)

T = 0.833− 0.4908(x− 1.5)

}
for 1.5 ≤ x ≤ 2.1 (4.49)

ρ = 0.5892− 0.10228(x− 2.1)

T = 0.93968− 0.0622(x− 2.1)

}
for 2.1 ≤ x ≤ 3 (4.50)

4.2.4 Lax–Friedrichs technique

The Lax–Friedrichs method is on of the most stable simple scheme for the
discretisation of non linear partial differential equation one can think. To
derive this scheme, let’s think to the FTCS scheme (Forward Time - Central
Space):

un+1
i = uni −

∆t

2∆x
(f(uni+1)− f(uni−1)) (4.51)
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As it is well known the FTCS scheme (4.51) is unconditionally unstable. If
one replaces the term uni by (uni+1 +uni−1)/2, one obtains the Lax–Friedrichs
method:

un+1
i =

1

2
(uni+1 + uni−1)− ∆t

2∆x
(f(uni+1)− f(uni−1)) (4.52)

This method is conservative, consistent and converges to the correct solu-
tion as ∆x → 0 and ∆t → 0 provided that the CFL condition is satisfied.
Furthermore it is first-order accurate in time and space.

1
2 % Lax−Fr iedr i ch ’ s e x p l i c i t technique f o r the r e s o l u t i o n
3 % of 1d eu l e r equat ion − non i s e n t r o p i c case
4
5
6 %i n i t i a l i s a t i o n o f the cons e rva t i v e v a r i a b l e s
7 U1=rho .∗ s ;
8
9

10
11
12 whi le ( t<endTime )
13
14 t=t+dt ;
15 time (n)=t ;
16
17 f o r i =1:Nx
18 F1( i )=U2( i ) ;
19 end
20
21
22 U1newt (1)=U1(1) ;
23
24 U3newt (1)=U3(1) ;
25 f o r i =2:Nx−1
26 U1newt ( i ) =0.5∗(U1( i +1)+U1newt ( i −1) )−dt/dx∗(F1( i +1)−F1( i −1) ) ;
27
28 end
29
30 U1newt (1) = s (1) ;
31
32 U1newt (Nx) = 2∗U1newt (Nx−1)−U1newt (Nx−2) ;
33
34 %update the f low f i e l d f o r the next c a l c u l a t i o n
35 U1=U1newt ;
36
37 %eva luat i on o f the CFL cond i t i on :
38 dt=min ( d t l o c a l ) ;
39
40 end

4.2.5 MacCormack’s technique

The first order leads to stable but unsatisfactory results in terms of com-
parison with the analytical data. The passage to a second order in time
and space is therefore suggested. The technique shown in section 4.1.3 can
therefore be implemented in this case without major changes. Just keep in
mind to use the proper boundary conditions as well as the new conservative
variables derived in section 4.2.2. The only major distinction between the
isentropic case and the current problem is reported below.

Artificial Viscosity

In the case of shock capturing approach, the need of smoothing and sta-
bilization of the solution arise. If the isentropic case did not ask for any
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numerical expedient to smooth the solution. Here the dissipation inherent
in the algorithm is not enough to keep the solution under control and thus
an extra term of viscosity must be added. We would like this extra viscous
term to be a fourth order difference in order not to interfere too much with
the actual solution of the problem.

(Sj)
n
i =

Cx|(p)ni+1 − 2(p)ni + (p)ni−1|
(p)ni+1 + 2(p)ni + (p)ni−1

((Uj)
n
i+1 − 2(Uj)

n
i + (Uj)

n
i−1) (4.53)

Where the subscript j = 1, 2, 3 represent the variable. So, the implementa-
tion of the technique with the add of the new term takes the following form.
Starting from the predictor step, for the conserved variable U1, we have:

(U1)n+1
i = (U1)ni +

(
∂U1

∂t

)n+1

i

∆t+ (S1)ni (4.54)

Moving to the corrector step,

(U1)n+1
i = (U1)ni +

(
∂U1

∂t

)n+1

ave

∆t+ (S1)n+1
i (4.55)

where,

(S1)n+1
i =

Cx|(p)n+1
i+1 − 2(p)n+1

i + (p)n+1
i−1 |

(p)n+1
i+1 + 2(p)n+1

i + (p)n+1
i−1

× ((U1)n+1
i+1 − 2(U1)n+1

i + (U1)n+1
i−1 ) (4.56)

Result

To validate your code, compare the outcome of your simulation with Fig.
4.3. The solid line is the numerical result obtained imposing Cx = 0.2.
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Figure 4.3: Analitical result for the comparison with the outcome of the
numerical simulation
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