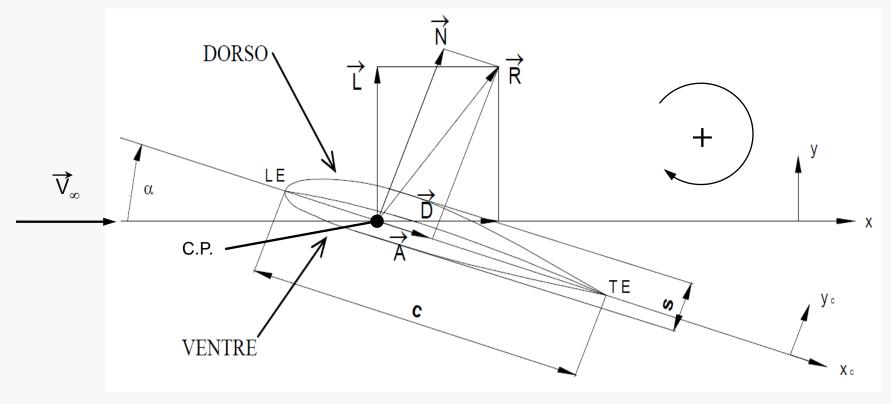
Dispensa del corso di "FLUIDODINAMICA DELLE MACCHINE"

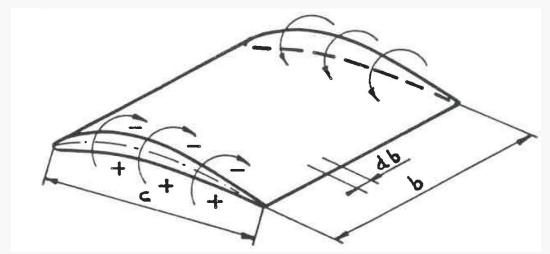
Argomento: Aerodinamica dei profili

Prof. Pier Ruggero Spina

Dipartimento di Ingegneria



L, D, M = f(geometria profilo, $\alpha, \lambda, M\alpha, Re, V_{\infty}, S$)

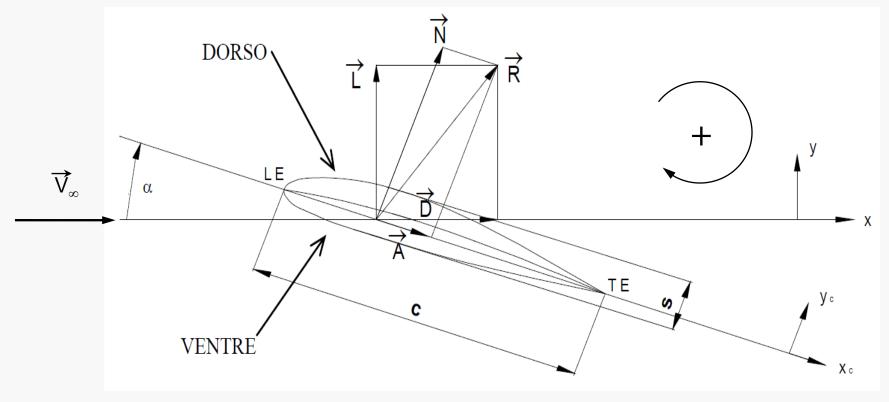


Allungamento (aspect ratio)

$$\lambda = \frac{b^2}{S} = \frac{b^2}{\int_0^b c \, \mathrm{d}b}$$

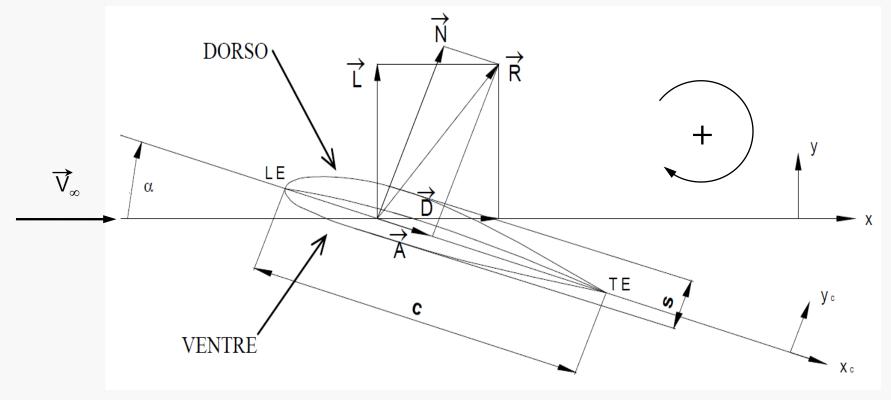
Nel caso di ala rettangolare ($c = \cos t$.):

$$\lambda = \frac{b^2}{c \cdot b} = \frac{b}{c}$$



L, D, M = f (geometria profilo, $\alpha, \lambda, Ma, Re, V_{\infty}, S$)

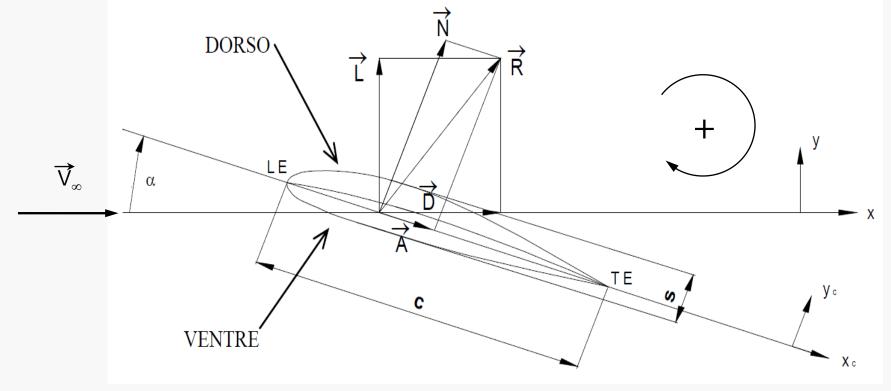
$$L = C_L \rho \frac{V_{\infty}^2}{2} S \qquad \qquad D = C_D \rho \frac{V_{\infty}^2}{2} S \qquad \qquad M = C_M \rho \frac{V_{\infty}^2}{2} S c$$



 C_L , C_D , C_M , = f (geometria profilo, α , λ , $M\alpha$, Re)

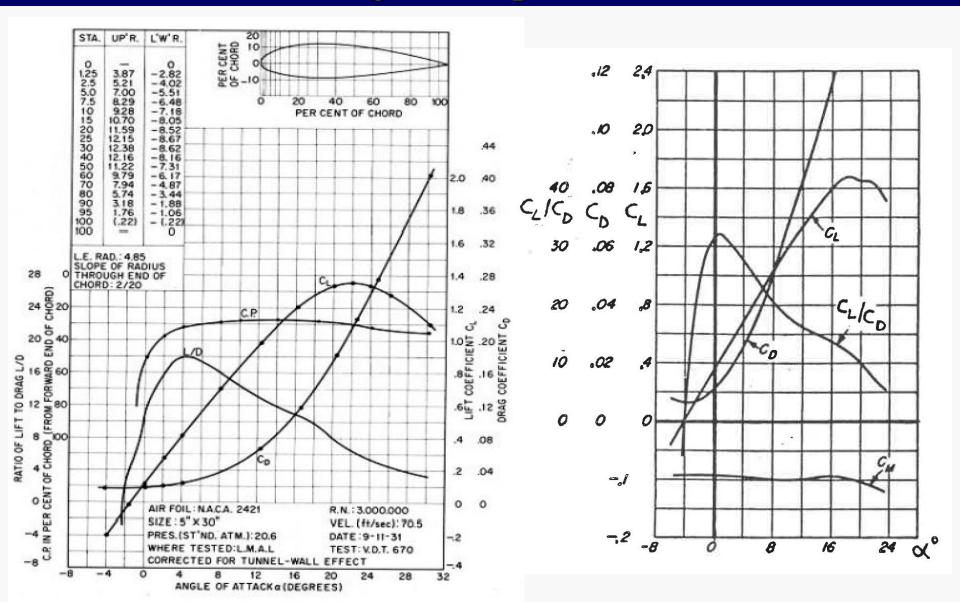
$$L = C_L \rho \frac{V_{\infty}^2}{2} S \qquad \qquad D = C_D \rho \frac{V_{\infty}^2}{2} S \qquad \qquad M = C_M \rho \frac{V_{\infty}^2}{2} S c$$

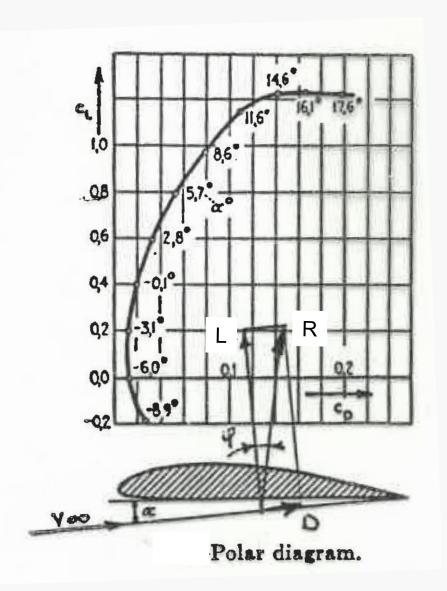
Forze agenti su profilo di ala rettangolare ($\lambda = b/c$) di lunghezza unitaria ($S = c \cdot 1$)

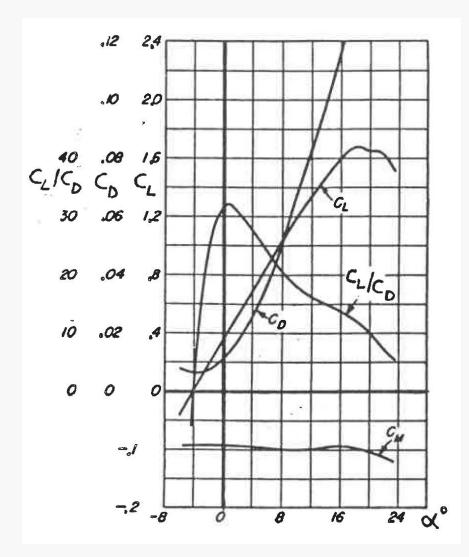


 C_L , C_D , C_M , = f (geometria profilo, α , λ , $M\alpha$, Re)

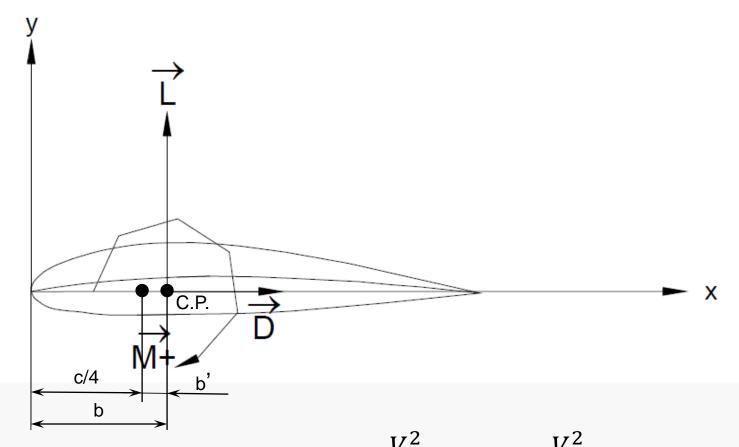
$$L = C_L \rho \frac{V_{\infty}^2}{2} c \qquad \qquad D = C_D \rho \frac{V_{\infty}^2}{2} c \qquad \qquad M = C_M \rho \frac{V_{\infty}^2}{2} c^2$$







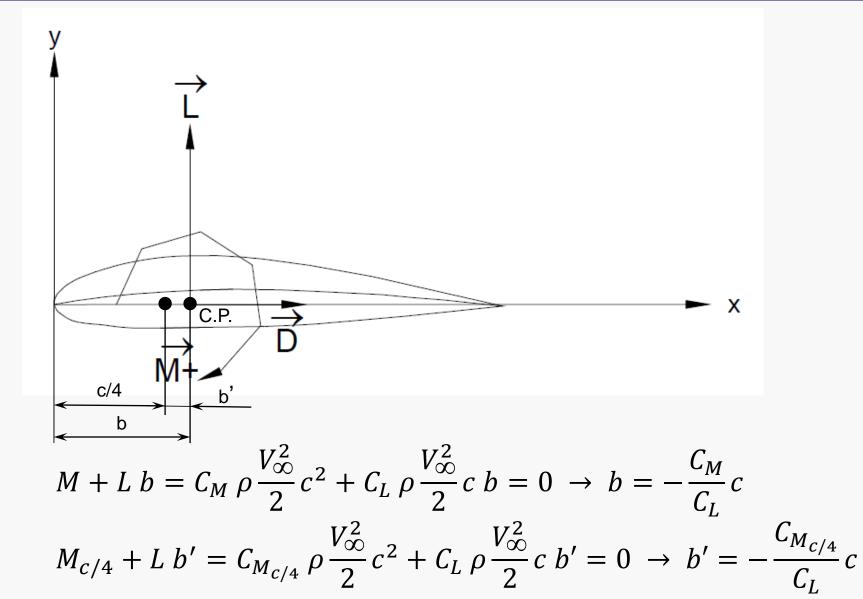
Localizzazione del Centro di Pressione



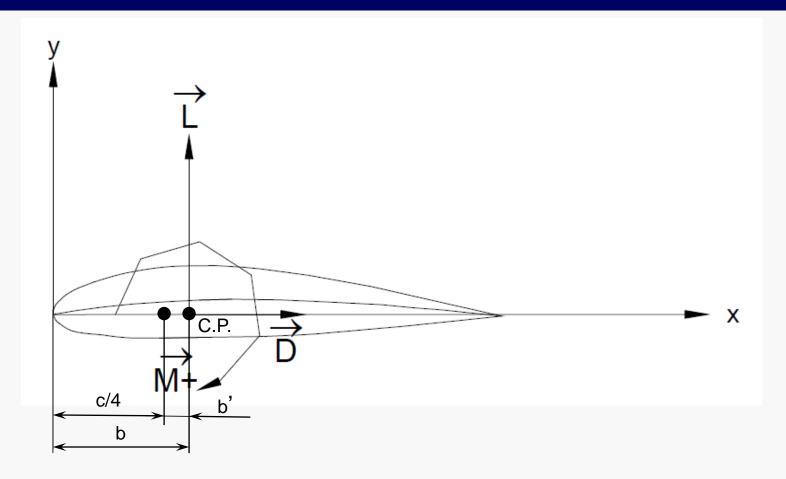
$$M_{C.P.} = 0 = M + L b = C_M \rho \frac{V_{\infty}^2}{2} c^2 + C_L \rho \frac{V_{\infty}^2}{2} c b =$$

$$= M_{C/4} + L b' = C_{M_{C/4}} \rho \frac{V_{\infty}^2}{2} c^2 + C_L \rho \frac{V_{\infty}^2}{2} c b'$$

Localizzazione del Centro di Pressione



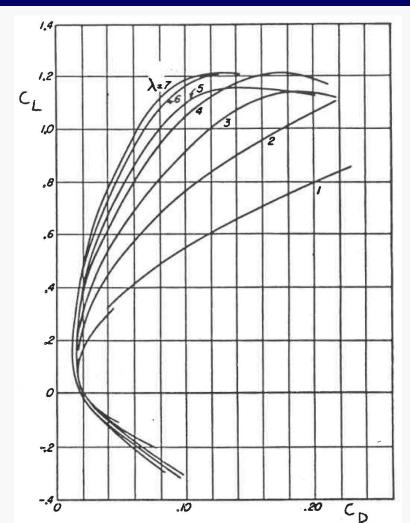
Localizzazione del Centro di Pressione

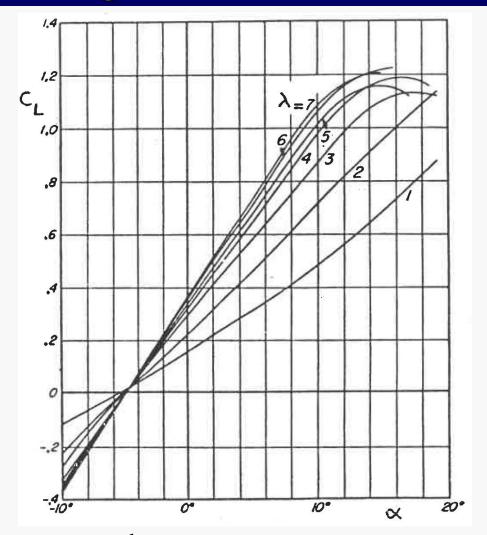


$$M_{c/4} = M + L b - L b' = M + L c/4$$

$$C_{M_{c/4}} \rho \frac{V_{\infty}^2}{2} c^2 = C_M \rho \frac{V_{\infty}^2}{2} c^2 + C_L \rho \frac{V_{\infty}^2}{2} c \frac{c}{4} \rightarrow C_{M_{c/4}} = C_M + \frac{C_L}{4}$$

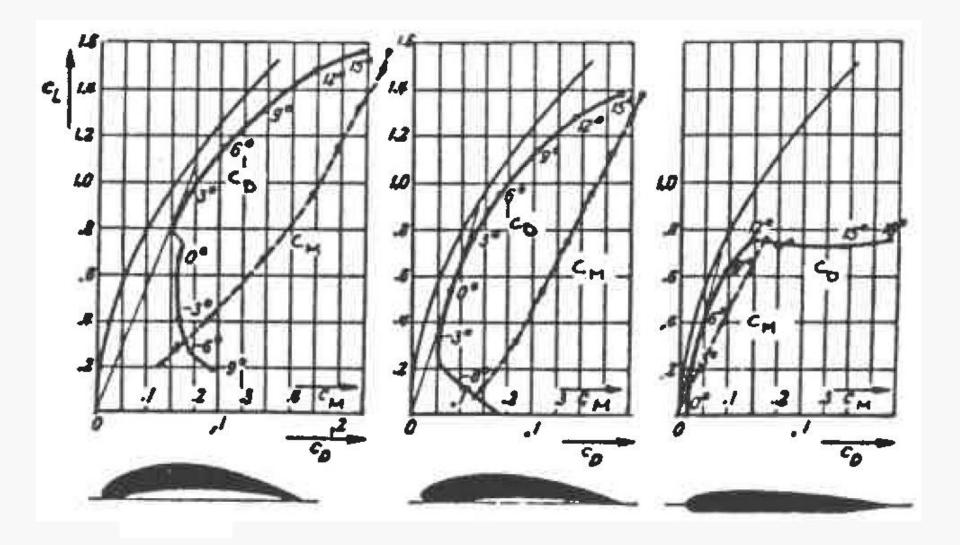
Influenza dell'allungamento λ



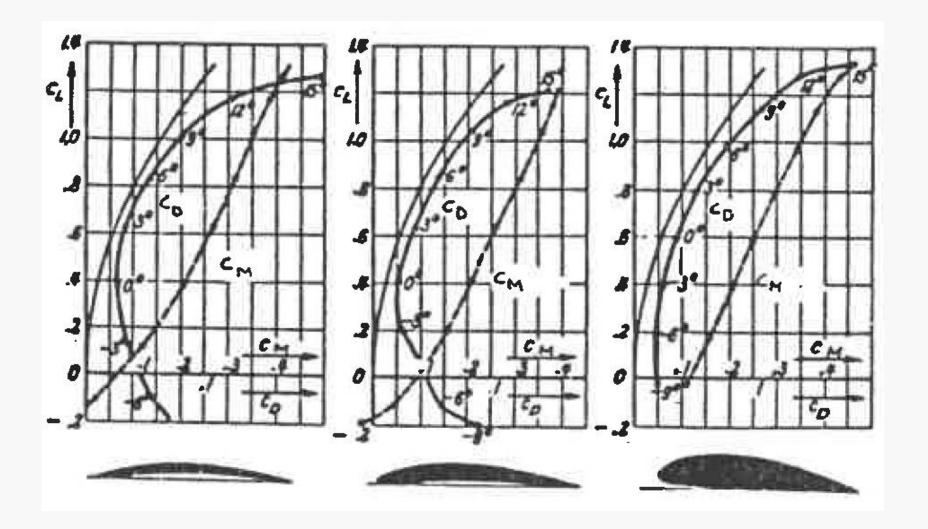


$$\lambda \downarrow \rightarrow C_L = \text{cost.} \begin{cases} C_D \uparrow \\ \alpha \uparrow \end{cases}$$

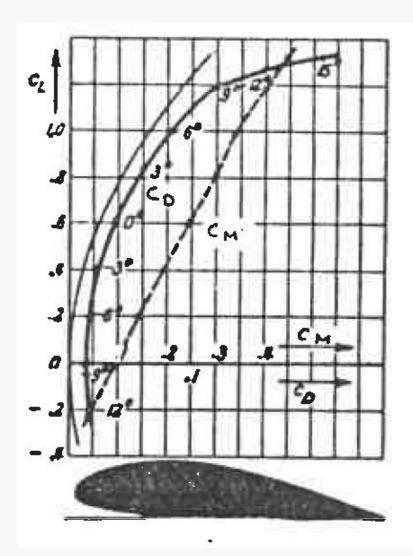
Influenza della geometria della linea media

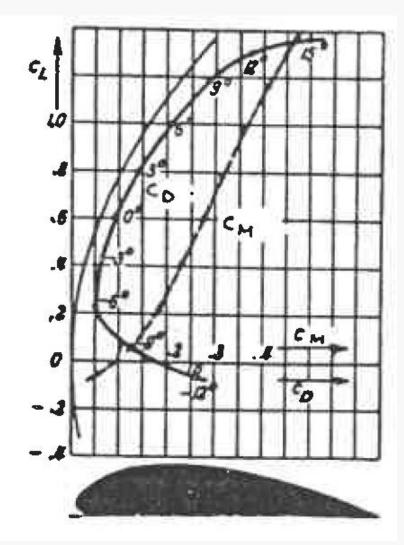


Influenza della distribuzione di spessori

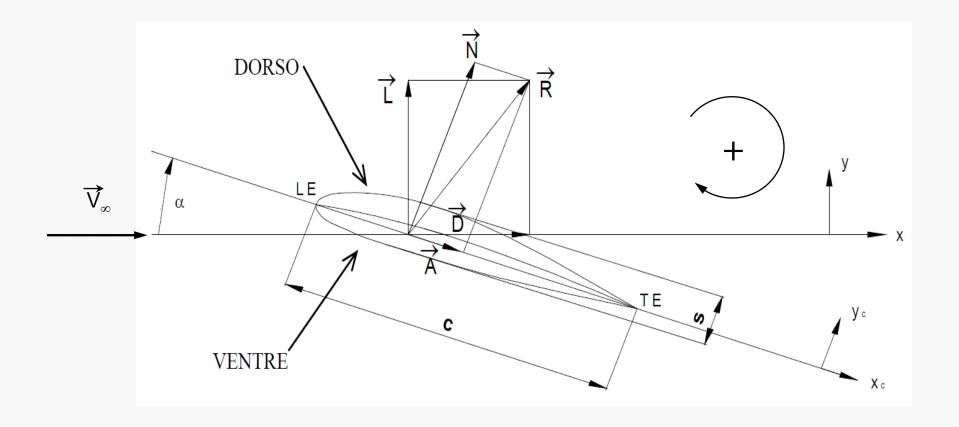


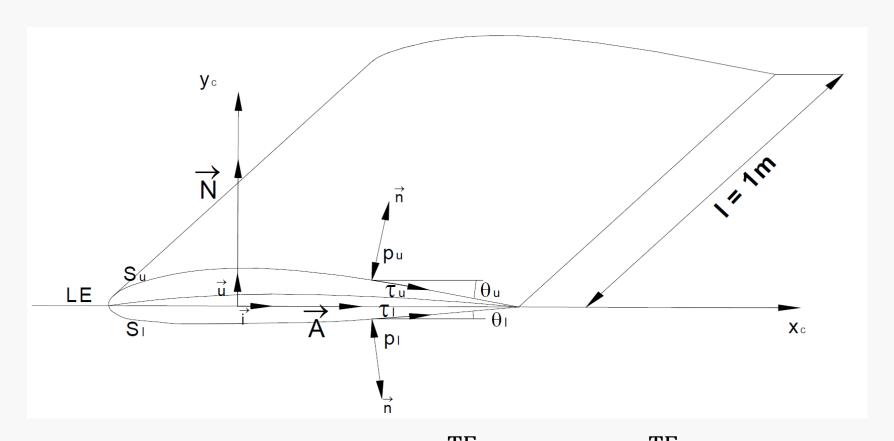
Influenza della forma del naso



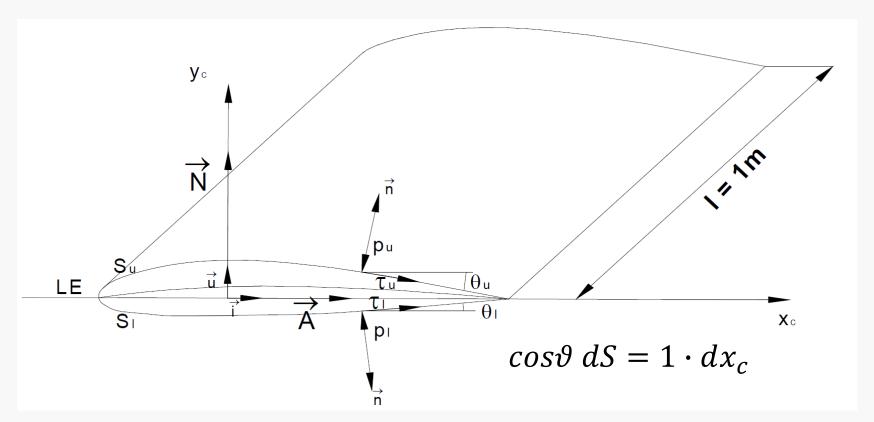


Distribuzione di pressione sui profili

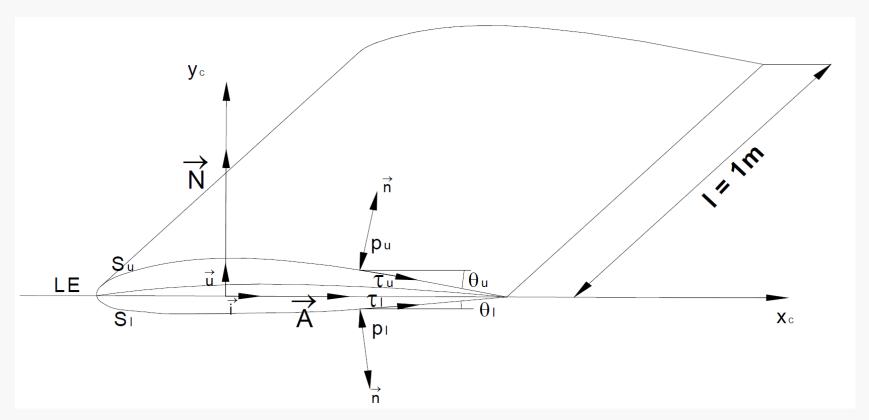




$$\overrightarrow{\mathbf{R}} = \oint_{\text{profilo}} -p \, \overrightarrow{\mathbf{n}} \, dS = \int_{\text{LE}}^{\text{TE}} p \, \overrightarrow{\mathbf{n}} \, dS - \int_{\text{LE}}^{\text{TE}} p \, \overrightarrow{\mathbf{n}} \, dS$$
ventre dorso

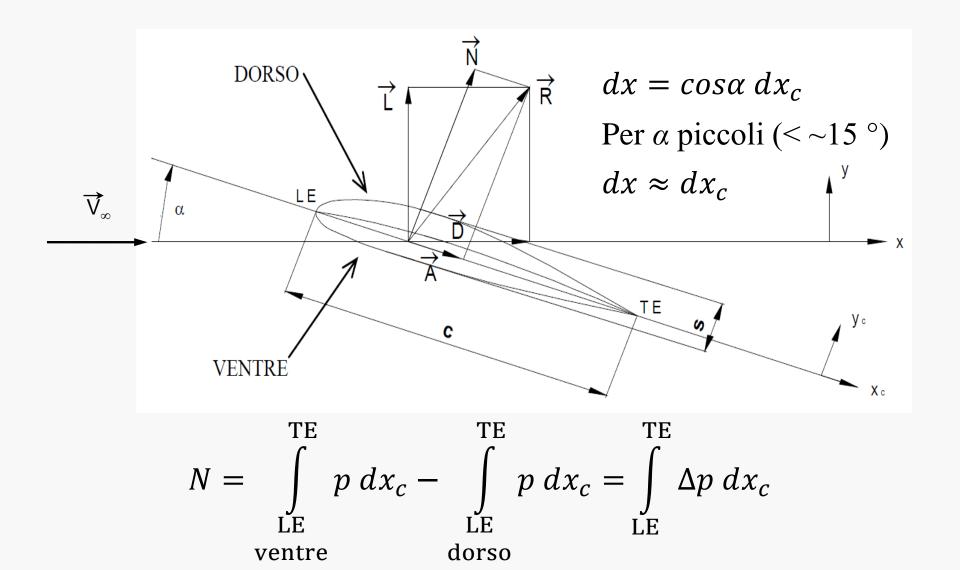


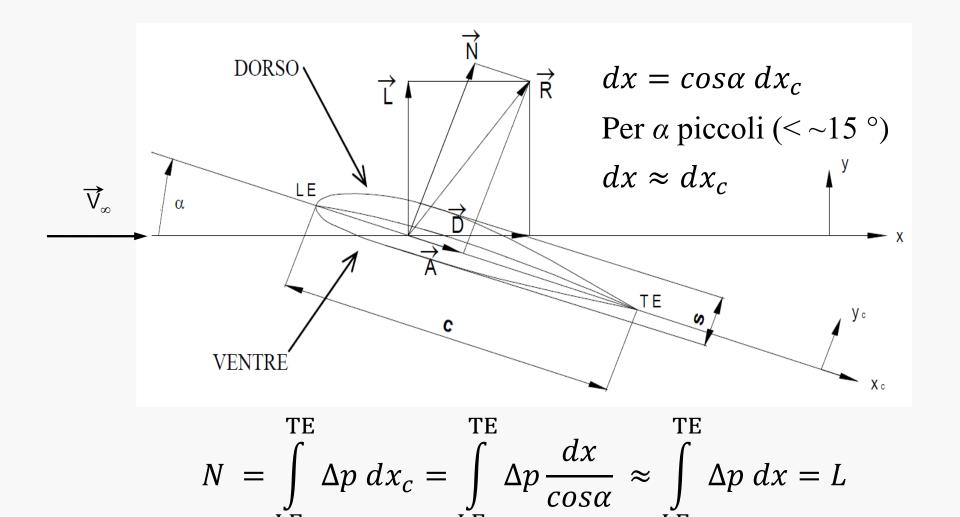
$$N = \int_{\text{LE}}^{\text{TE}} p \cos\theta \, dS - \int_{\text{LE}}^{\text{TE}} p \cos\theta \, dS$$
ventre dorso



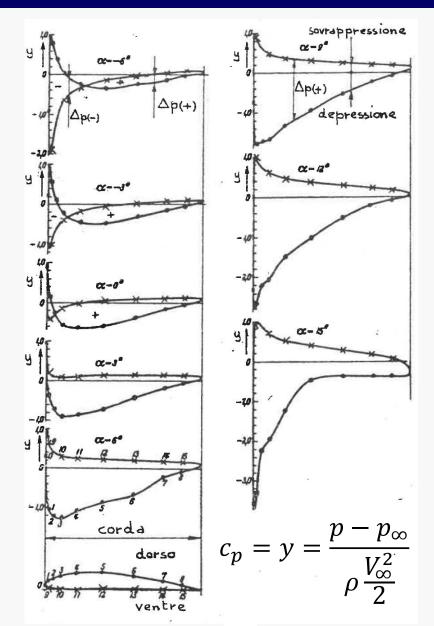
$$N = \int_{\text{LE}}^{\text{TE}} p \, dx_c - \int_{\text{LE}}^{\text{TE}} p \, dx_c = \int_{\text{LE}}^{\text{TE}} \Delta p \, dx_c$$
ventre dorso

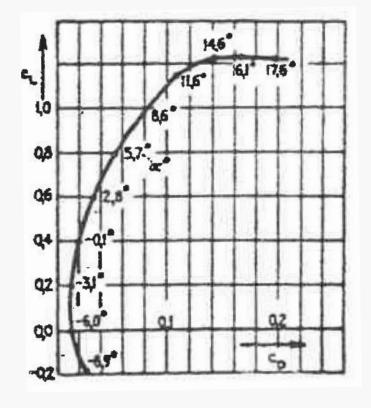
Prof. P. R. Spina





Distribuzione di pressione sui profili





Fluido incomprimibile non viscoso

$$p_{0\infty} = p_{\infty} + \rho \frac{V_{\infty}^2}{2} = p_0 = p + \rho \frac{V^2}{2} \rightarrow p_{0\infty} - p = \rho \frac{V^2}{2}$$

Fluido comprimibile non viscoso

$$p_{0\infty} = p_0 = p \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}}$$

$$p_{0\infty} - p = p \left[\left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] , \qquad p = \rho RT$$

Fluido comprimibile non viscoso

$$p_{0\infty} - p = \rho RT \left[\left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] =$$

$$= \frac{\rho}{\gamma} \frac{V^2}{2} 2 \frac{\gamma RT}{V^2} \left[\left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] =$$

$$= \rho \frac{V^2}{2} \frac{2}{\gamma} \frac{1}{M^2} \left[\left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

$$per M < 1 \text{ (flusso subsonico)}$$

Fluido incomprimibile non viscoso

$$(p_{0\infty} - p)_{\rm inc} = \rho \frac{V^2}{2}$$

Fluido comprimibile non viscoso

$$(p_{0\infty} - p)_{c} = \rho \frac{V^{2}}{2} \frac{2}{\gamma} \frac{1}{M^{2}} \left[\left(1 + \frac{\gamma - 1}{2} M^{2} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

per M < 1 (flusso subsonico)

A parità di V risulta quindi che:

$$(p_{0\infty} - p)_{c} > (p_{0\infty} - p)_{inc} \to (p)_{c} < (p)_{inc}$$

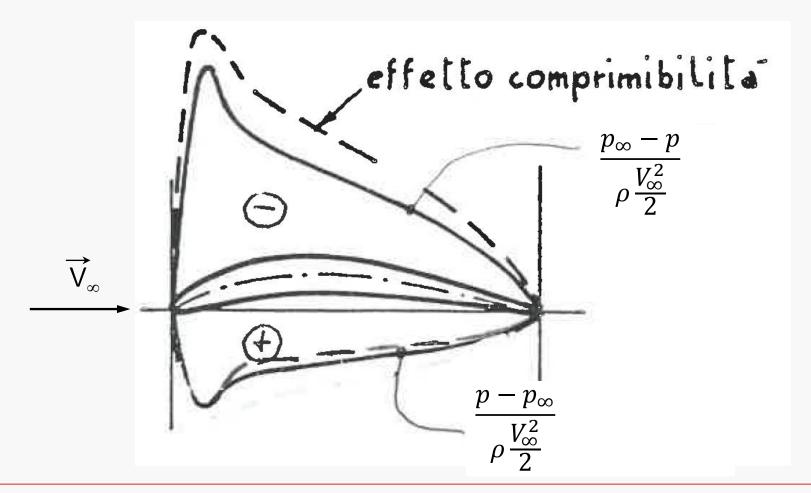
$$(p)_{\rm inc} = p_{0\infty} - \rho \frac{V^2}{2}$$

$$(p)_{c} = p_{0\infty} - \rho \frac{V^{2}}{2} \frac{2}{\gamma} \frac{1}{M^{2}} \left[\left(1 + \frac{\gamma - 1}{2} M^{2} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right]$$

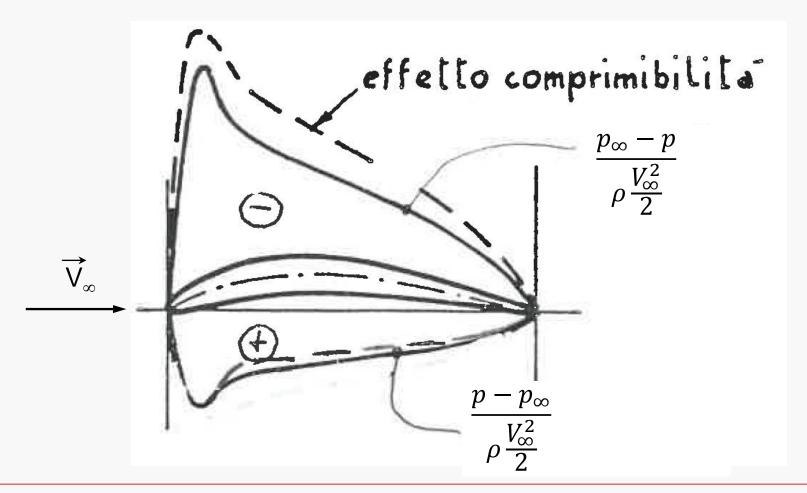
per M < 1 (flusso subsonico)

A parità di V risulta quindi che:

$$(p_{0\infty} - p)_{c} > (p_{0\infty} - p)_{inc} \to (p)_{c} < (p)_{inc}$$



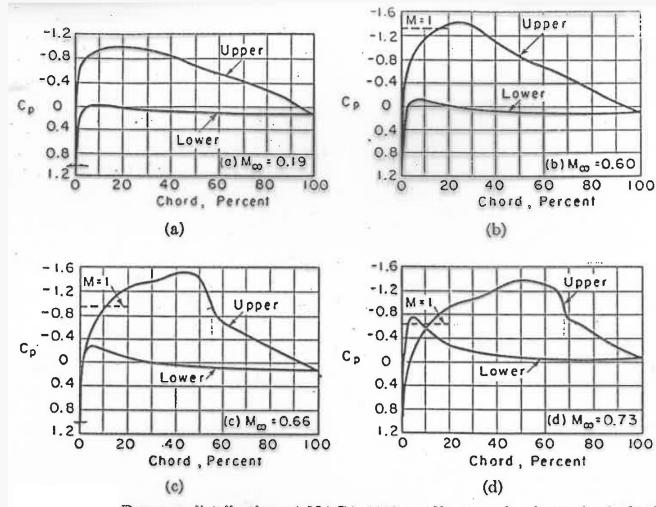
Regola di Prandtl – Glauert (
$$M_{\infty} \le M_{\rm cr}$$
): $C_L = \frac{(C_L)_{M_{\infty}=0}}{\sqrt{1-M_{\infty}^2}}$



Al crescere di M_{∞} aumentano le velocità sul profilo fino a quando, per $M_{\infty} = M_{\rm cr}$, in un punto del dorso del profilo viene raggiunta la velocità del suono.

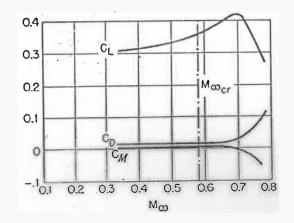
 $M_{\rm cr} = f$ (geometria profilo, α)

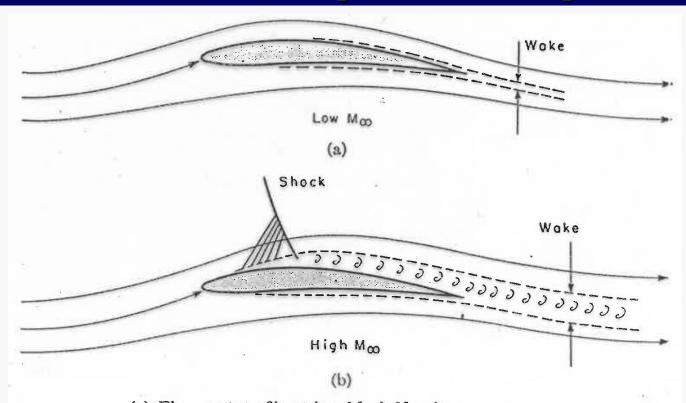




Pressure distribution on NACA 4412 profile at angle of attack of 1°52′ (after Stack, Lindsey, and Littell).

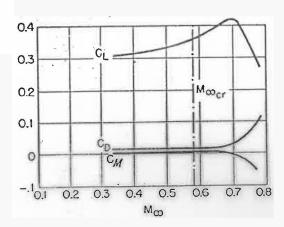
- (a) $M_{\infty} = 0.19$.
- (b) $M_{\infty} = 0.60$.
- (c) M_∞ = 0.66 (note shock at 55% chord).
- (d) $M_{\infty} = 0.73$ (note sheck at 67% chord).





(a) Flow past profile at low Mach Number.

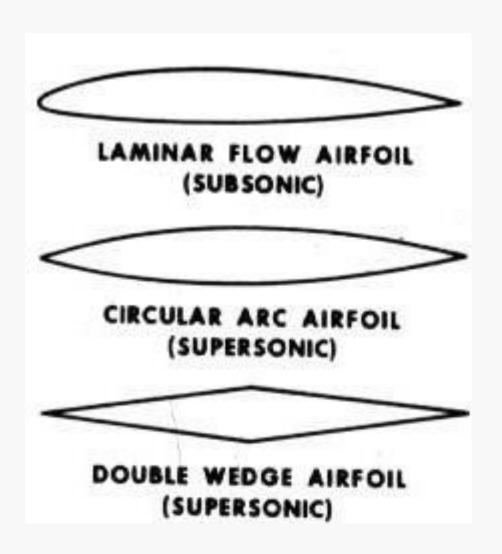
(b) Flow at high Mach Number, with boundary-layer separation owing to shock wave.

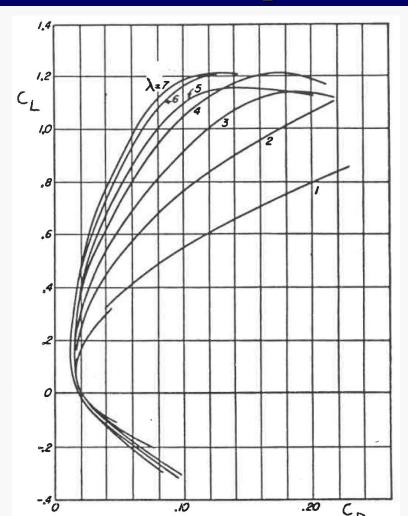


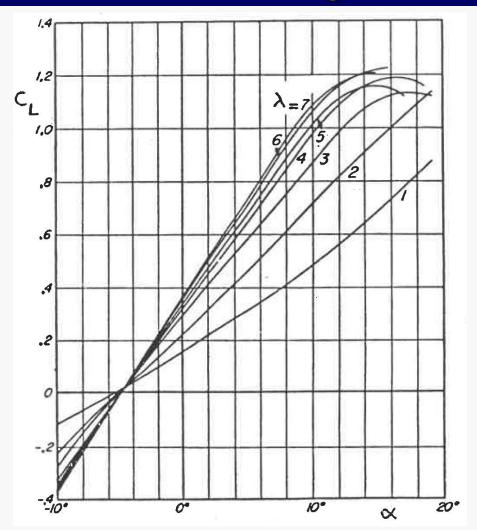
Profili per flussi supersonici

Per $M_{\infty} > 1$:

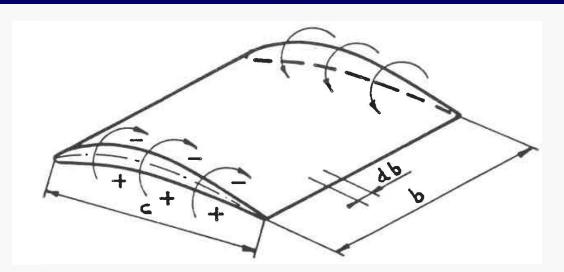
$$C_L = \frac{4 \alpha}{\sqrt{M_\infty^2 - 1}}$$



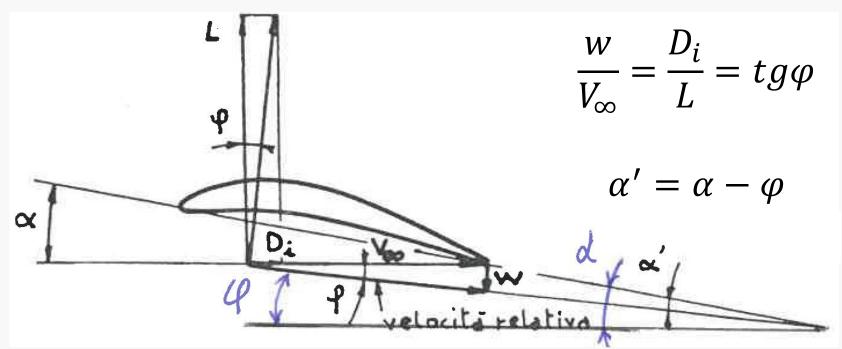




$$\lambda \downarrow \rightarrow C_L = \text{cost.} \begin{cases} C_D \uparrow \\ \alpha \uparrow \end{cases}$$



I vortici che trasportano il fluido dal ventre al dorso si prolungano dietro l'ala in due vortici controrotanti che generano una velocità indotta *w*



Ipotizzando una distribuzione ellittica della portanza per unità di lunghezza, risulta che:

$$w = \frac{L}{\pi b^2 \rho \frac{V_{\infty}}{2}}$$

$$D_{i} = L \frac{w}{V_{\infty}} = \frac{L^{2}}{\pi b^{2} \rho \frac{V_{\infty}^{2}}{2}} = C_{L} \rho \frac{V_{\infty}^{2}}{2} S \frac{C_{L} \rho \frac{V_{\infty}^{2}}{2} S}{\pi b^{2} \rho \frac{V_{\infty}^{2}}{2}} = \frac{C_{L}^{2} S}{\pi b^{2}} \rho \frac{V_{\infty}^{2}}{2} S$$

$$C_{D_i} = \frac{C_L^2}{\pi \lambda}$$

La resistenza globale di un profilo è la somma della resistenza indotta e della resistenza di profilo (somma della resistenza superficiale e della resistenza di forma) dovuta alla viscosità del fluido

$$C_D = C_{D_i} + C_{D_p} = \frac{C_L^2}{\pi \lambda} + C_{D_p}$$

Presi due profili uguali su ali di diverso allungamento, il coefficiente di resistenza di profilo risulta praticamente indipendente da λ

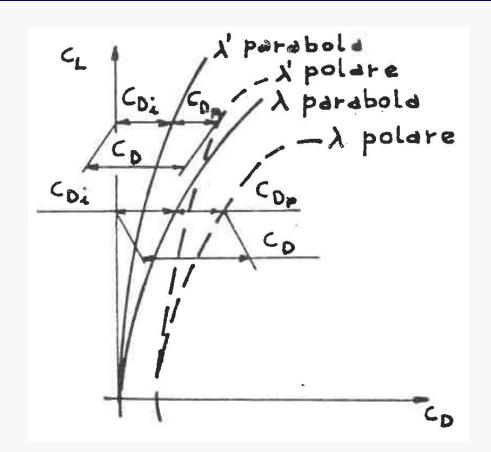
$$C_{D_p} = C_{D_1} - \frac{C_L^2}{\pi \lambda_1} = C_{D_2} - \frac{C_L^2}{\pi \lambda_2}$$

$$C_{D_2} = C_{D_1} + \frac{C_L^2}{\pi} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$$

$$\frac{w}{V_{\infty}} = tg\varphi \approx \varphi$$

$$\varphi \approx \frac{1}{V_{\infty}} \frac{L}{\pi b^2 \rho \frac{V_{\infty}}{2}} =$$

$$=\frac{C_L \rho \frac{V_\infty^2}{2} S}{\pi b^2 \rho \frac{V_\infty^2}{2}} = \frac{C_L}{\pi \lambda}$$



Due profili uguali su ali di diverso allungamento presentano la stessa portanza se presentano uguali valori dell'angolo α '

$$\alpha' = \alpha_1 - \varphi_1 = \alpha_1 - \frac{C_L}{\pi \lambda_1} = \alpha_2 - \varphi_2 = \alpha_2 - \frac{C_L}{\pi \lambda_2}$$

$$\alpha_2 = \alpha_1 + \frac{C_L}{\pi} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$$

Ogni galleria del vento ha le sue relazioni più adatte per effettuare la correzione delle prestazioni in funzione di λ

Molto utilizzate sono le relazioni di Prandtl-Betz

$$C_{L_2} = C_{L_1}$$

$$C_{D_2} = C_{D_1} + \frac{C_L^2}{0.96 \,\pi} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$$

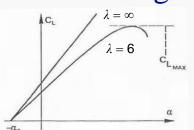
$$\alpha_2 = \alpha_1 + \frac{C_L}{0.96 \,\pi} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right)$$

Per ala con
$$\lambda = \infty$$
 $C_{L_{\infty}} = C_{L_{\lambda}}$

$$C_{D_{\infty}} = C_{D_{\lambda}} - \frac{C_L^2}{0.96 \,\pi \,\lambda}$$

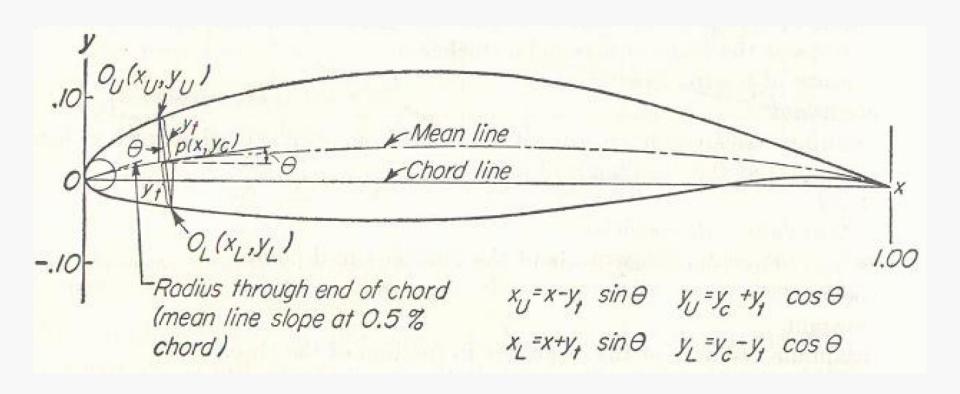
$$\alpha_{\infty} = \alpha_{\lambda} - \frac{C_L}{0.96 \,\pi \,\lambda}$$

Per i profili NACA generalmente le prestazioni sono rilevate su ali con $\lambda = 6$ e la relazione proposta per correggere i risultati per ali con $\lambda = \infty$ è la seguente:



$$\left(\frac{dC_L}{d\alpha}\right)_{\lambda=\infty} = \frac{1}{0.96} \left(\frac{dC_L}{d\alpha}\right)_{\lambda=6}$$

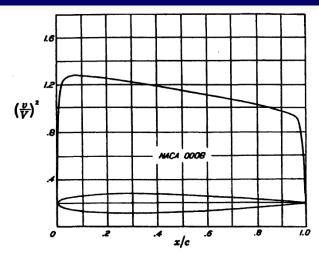
Profili NACA (National Advisory Committee for Aeronautics)



Equazione della distribuzione di spessori di profili NACA a 4 cifre

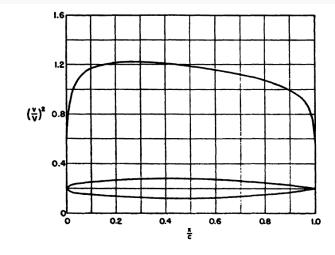
$$y_t = \frac{\frac{S_{\text{max}}}{c}}{0.20} \left(0.2969 \sqrt{x} - 0.1260 x - 0.3516 x^2 + 0.2843 x^3 - 0.1015 x^4 \right)$$

Profili NACA a 4 cifre – Distribuzione spessori



x (per cent c)	y (per cent c)	$(v/V)^2$	v/V	$\Delta v_a/V$
0	0	0	0	2.900
0.5		0.792	0.890	1.795
1.25	1.263	1.103	1.050	1.310
2.5	1.743	1.221	1.105	0.971
5.0	2.369	1.272	1.128	0.694
7.5	2.800	1.284	1.133	0.561
10	3.121	1.277	1.130	0.479
15	3.564	1.272	1.128	0.379
20	3.825	1.259	1.122	0.318
25	3.961	1.241	1.114	0.273
30	4.001	1.223	1.106	0.239
40	3.869	1.186	1.089	0.188
5 0	3.529	1.149	1.072	0.152
60	3.043	1.111	1.054	0.121
70	2.443	1.080	1.039	0.096
80	1.749	1.034	1.017	0.071
90	0.965	0.968	0.984	0.047
95	0.537	0.939	0.969	0.031
100	0.084			0
	L.E. ra	dius: 0.70 pe	r cent c	å

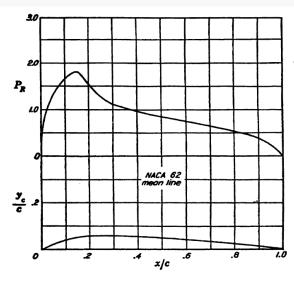
NACA 0008 Basic Thickness Form



x (per cent c)	(per cent c)	$(v/V)^2$	v/V	$\Delta v_a/V$
0	0	0	0	4.839
1.25	0.756	0.917	0.958	1.338
2.5	1.120	1.023	1.011	0.966
5.0	1.662	1.092	1.045	0.691
7.5	2.089	1.137	1.066	0.564
10	2.436	1.162	1.078	0.485
15	2.996	1.188	1.090	0.387
20	3.396	1.206	1.098	0.326
30	3.867	1.217	1.103	0.248
40	4.000	1.202	1.096	0.197
50	3.884	1.185	1.089	0.157
60	3.547	1.163	1.079	0.128
70	2.987	1.127	1.062	0.100
80	2.213	1.067	1.033	0.074
90	1.244	0.993	0.996	0.047
95	0.684	0.932	0.965	0.031
100	0.080	0	0	0

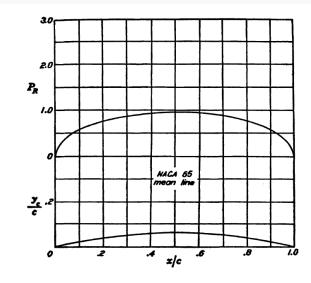
NACA 0008-34 Basic Thickness Form

Profili NACA a 4 cifre – Linee medie



	$c_{l_i} = 0.90$	$\alpha_i = 2.81^{\circ}$ c	m _{c/4} = - 0.	113
x (per cent c)	y _c (per cent c)	dy_c/dx	P_R	$\Delta v/V = P_R/4$
0	0	0.60000	0	0
1.25	0.726	0.56250	0.682	0.171
2.5	1.406	0.52500	1.031	0.258
5.0	2.625	0.45000	1.314	0.328
7.5	3.656	0.37500	1.503	0.376
10	4.500	0.30000	1.651	0.413
15	5.625	0.15000	1.802	0.451
20	6.000	0	1.530	0.383
25	5.977	- 0.00938	1.273	0.318
30	5.906	- 0.01875	1.113	0.279
40	5.625	- 0.03750	0.951	0.238
50	5.156	0.05625	0.843	0.211
60	4.500	- 0.07500	0.741	0.185
70	3.656	- 0.09375	0.635	0.159
80	2.625	- 0.11250	0.525	0.131
90	1.406	- 0.13125	0.377	0.094
95	0.727	- 0.1 4062	0.261	0.065
100	0	- 0.15000	0	0

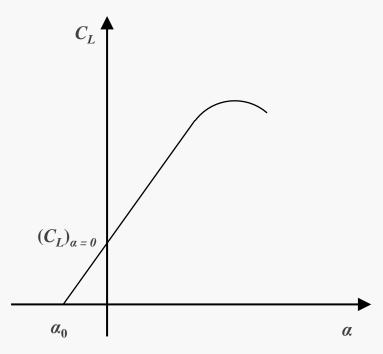
Data for NACA Mean Line 62



	$c_{l_i}=0.75$	$a_i = 0^\circ$ c_{m_i}	$_{1/4} = -0.18$	37
x (per cent c)	y _c (per cent c)	dy_{o}/dx	P_R	$\Delta v/V = P_R/4$
0	0	0.24000	0	0
1.25	0.296	0.23400	0.205	0.051
2.5	0.585	0.22800	0.294	0.074
5.0	1.140	0.21600	0.413	0.103
7.5	1.665	0.20400	0.502	0.126
10	2.160	0.19200	0.571	0.143
15	3.060	0.16800	0.679	0.170
20	3.840	0.14400	0.760	0.190
25	4.500	0.12000	0.824	0.206
30	5.040	0.09600	0.872	0.218
40	5.760	0.04800	0.932	0.233
50	6.000	0	0.951	0.238
60	5.760	- 0.04800	0.932	0.233
70	5.040	- 0.09600	0.872	0.218
80	3.840	- 0.14400	0.760	0.190
90	2.160	- 0.19200	0.571	0.143
95	1.140	-0.21600	0.413	0.103
100	0	- 0.24000	0	0

Data for NACA Mean Line 65

Correzione delle prestazioni al variare di (s_{max}/c)



Il tratto rettilineo della curva $C_L = f(\alpha)$ può essere espresso con la relazione:

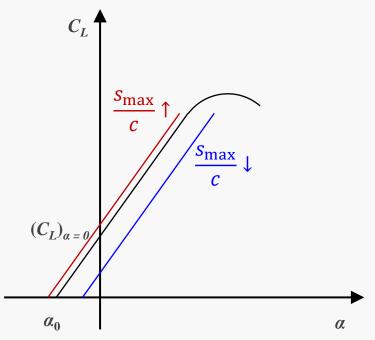
$$C_L = m \left(\frac{s_{\text{max}}}{c} \right)_1 + n \, \alpha$$

con:

$$\overrightarrow{a} \quad m = \left(\frac{c}{S_{\text{max}}}\right)_1 (C_L)_{\alpha=0}$$

$$n = -\frac{1}{\alpha_0} m \left(\frac{s_{\text{max}}}{c} \right)_1 = -\frac{(C_L)_{\alpha=0}}{\alpha_0}$$

Correzione delle prestazioni al variare di (s_{max}/c)



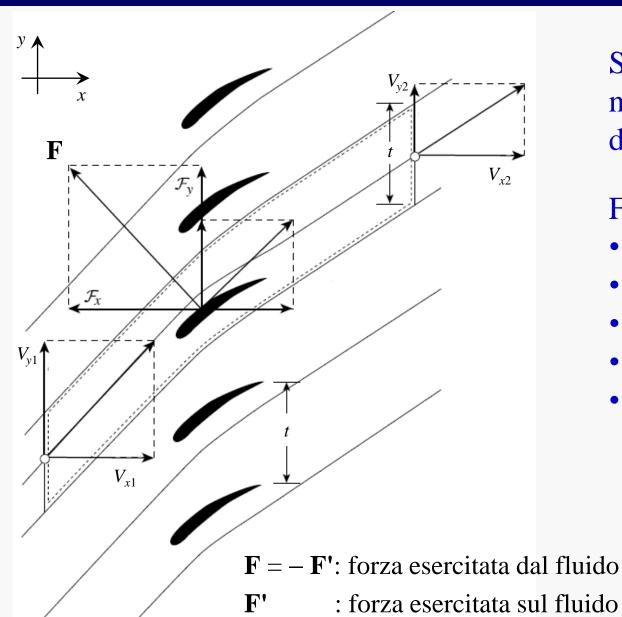
Per un diverso valore di $(s_{\text{max}}/c)_2$, il tratto rettilineo della curva $C_L = f(\alpha)$ può essere espresso con la relazione:

$$C_L = m \left(\frac{s_{\text{max}}}{c} \right)_2 + n \, \alpha$$

con:

$$m = \left(\frac{c}{s_{\text{max}}}\right)_1 (C_L)_{\alpha=0}$$

$$n = -\frac{1}{\alpha_0} m \left(\frac{s_{\text{max}}}{c} \right)_1 = -\frac{(C_L)_{\alpha=0}}{\alpha_0}$$

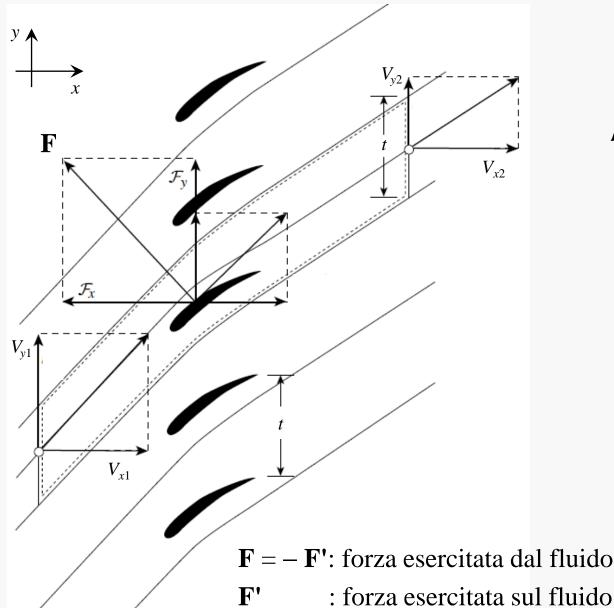


Prof. P. R. Spina

Schiera formata da un numero infinito di pale di lunghezza infinita

Flusso:

- stazionario
- incomprimibile
- non viscoso
- irrotazionale
- ad energia totale costante

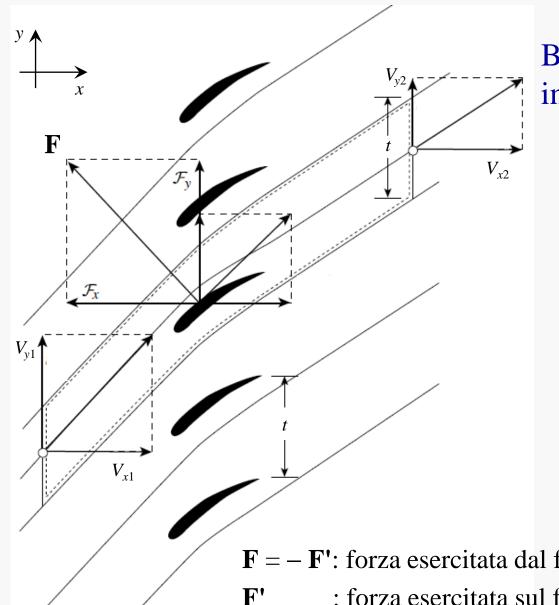


Bilancio di massa:

$$\rho_1 A_1 V_{x1} = \rho_2 A_2 V_{x2}$$
$$\rho t V_{x1} = \rho t V_{x2}$$

$$\bigvee_{x_1 = V_{x2} = V_x}$$

 $\mathbf{F} = -\mathbf{F'}$: forza esercitata dal fluido



Bilancio della quantità di moto in direzione x:

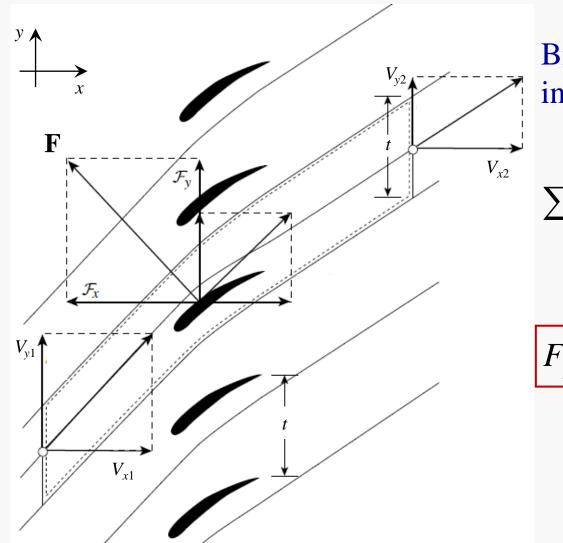
$$\sum F_{x}' = F_{x}' + t (p_{1} - p_{2}) =$$

$$= \rho t (V_{x2}^{2} - V_{x1}^{2}) = 0$$

$$F_{x} = -F_{x}' = t\left(p_{1} - p_{2}\right)$$

 $\mathbf{F} = -\mathbf{F'}$: forza esercitata dal fluido

: forza esercitata sul fluido



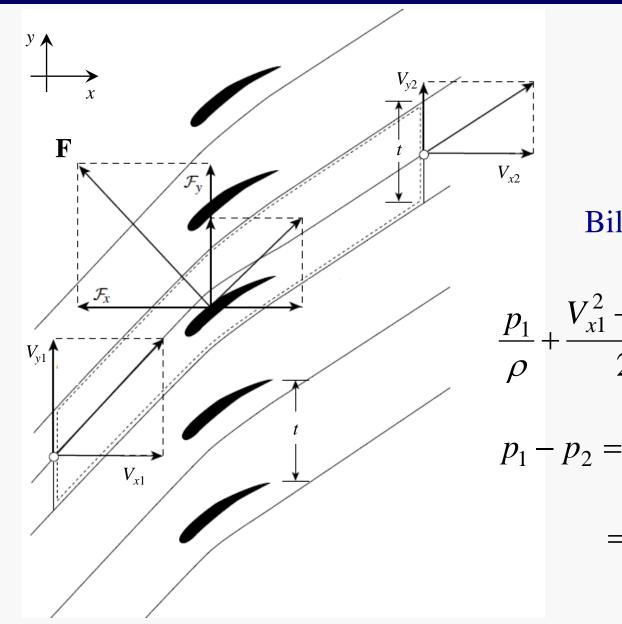
Bilancio della quantità di moto in direzione *y*:

$$\sum F_{y}' = F_{y}' = \rho V_{x} t (V_{y2} - V_{y1})$$

$$F_{y} = -F_{y}' = -\rho V_{x} t (V_{y2} - V_{y1})$$

 $\mathbf{F} = -\mathbf{F'}$: forza esercitata dal fluido

F': forza esercitata sul fluido

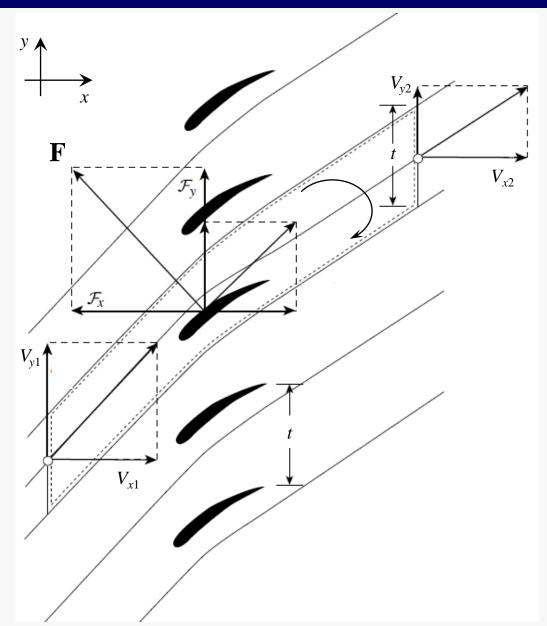


Bilancio dell'energia:

$$\frac{p_1}{\rho} + \frac{V_{x1}^2 + V_{y1}^2}{2} = \frac{p_2}{\rho} + \frac{V_{x2}^2 + V_{y2}^2}{2}$$

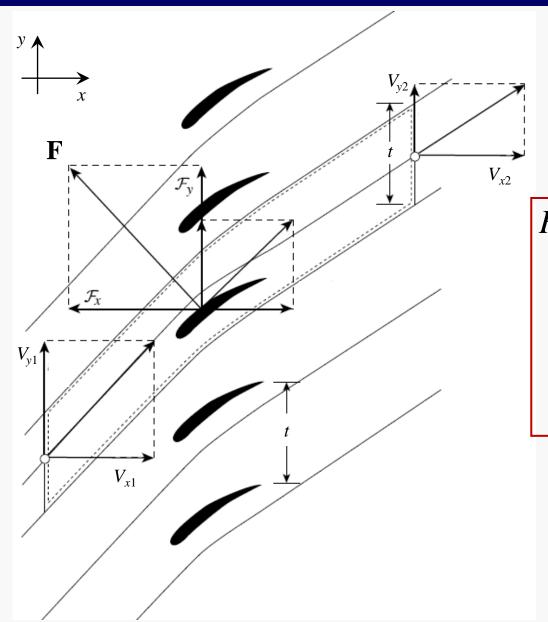
$$p_1 - p_2 = \rho \frac{V_{y2}^2 - V_{y1}^2}{2} =$$

$$= \frac{\rho}{2} (V_{y2} - V_{y1}) (V_{y2} + V_{y1})$$



Circolazione del vettore V lungo la linea chiusa tratteggiata:

$$\Gamma = -t \left(V_{y2} - V_{y1} \right)$$

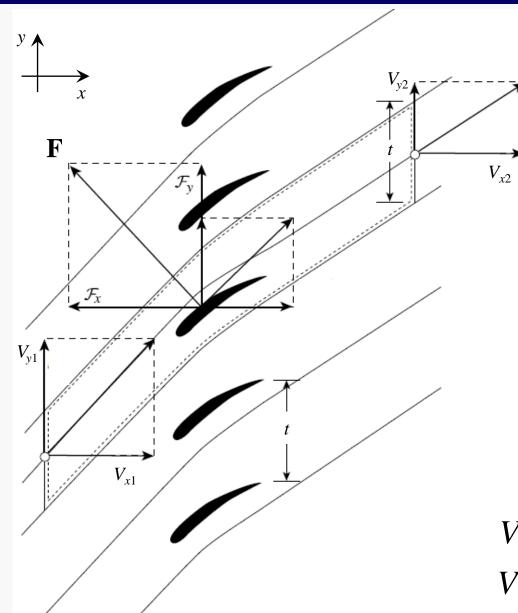


Le componenti della forza **F** lungo *x* e *y* assumono la forma:

$$\begin{split} F_{x} &= t \left(p_{1} - p_{2} \right) = \\ &= \frac{\rho}{2} t \left(V_{y2} - V_{y1} \right) \left(V_{y2} + V_{y1} \right) \\ &= -\rho \Gamma \frac{\left(V_{y2} + V_{y1} \right)}{2} \end{split}$$

$$F_{y} = -\rho V_{x} t \left(V_{y2} - V_{y1}\right) =$$

$$= \rho \Gamma V_{x}$$



Facendo tendere il passo t all'infinito, la circolazione Γ attorno al profilo mantiene comunque un valore finito diverso da zero:

$$\Gamma = -t \left(V_{y2} - V_{y1} \right)$$

$$\operatorname{per} t \to \infty \Longrightarrow V_{y2} \to V_{y1}$$

Il profilo tende quindi al profilo isolato dove:

$$egin{aligned} V_{x2} &= V_{x1} &= V_x \ V_{y2} &= V_{y1} &= V_y \ \end{aligned} \Rightarrow \mathbf{V}_2 = \mathbf{V}_1 = \mathbf{V}_{\infty}$$

Per profilo isolato, facendo coincidere la direzione di V_{∞} con la direzione x, risulta:

$$\mathbf{V}_{\infty} = (V_{x}, 0) \quad , \quad V_{x} = V_{\infty}$$

$$F_x = t(p_1 - p_2) = -\rho \Gamma \frac{(V_{y2} + V_{y1})}{2} = 0$$

$$F_{y} = L = C_{L} \rho \frac{V_{\infty}^{2}}{2} c = \rho \Gamma V_{\infty}$$

$$C_L = \frac{2\Gamma}{c V_{\infty}}$$

Campi potenziali di velocità

Flusso uniforme con velocità parallela all'asse *x* (in coordinate cartesiane ortogonali):

$$\Phi = V_0 x$$

$$V_x = \frac{\partial \Phi}{\partial x} = V_0$$

$$V_y = \frac{\partial \Phi}{\partial y} = 0$$

$$V_z = \frac{\partial \Phi}{\partial z} = 0$$

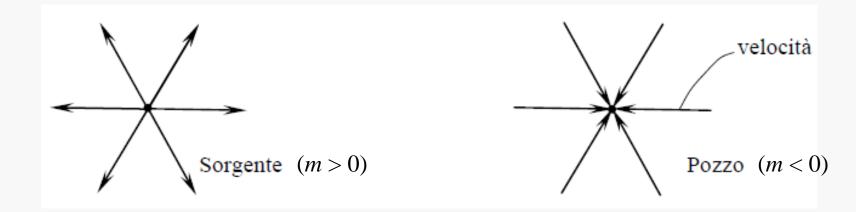
Campi potenziali di velocità

Sorgente e pozzo (in coordinate polari o cilindriche):

$$\Phi = m \ln r$$

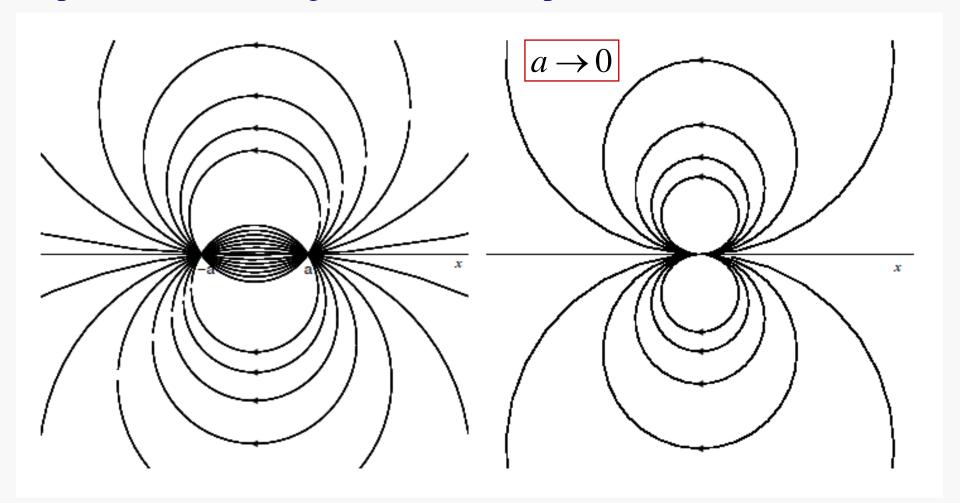
La sola componente di velocità diversa da zero è V_r :

$$V_r = \frac{\partial \Phi}{\partial r} = \frac{m}{r}$$



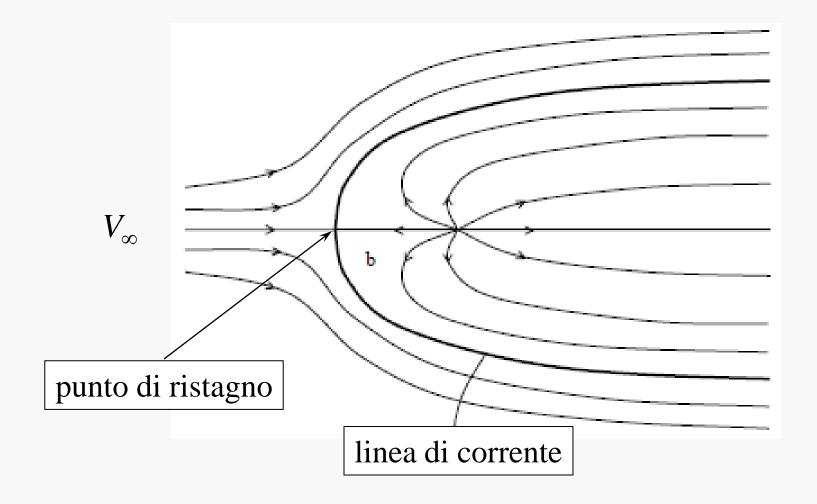
Campi potenziali di velocità

Dipolo o doppietta: è un campo di velocità costituito da una sorgente e un pozzo di intensità uguali (e contrarie) posti a distanza 2a.

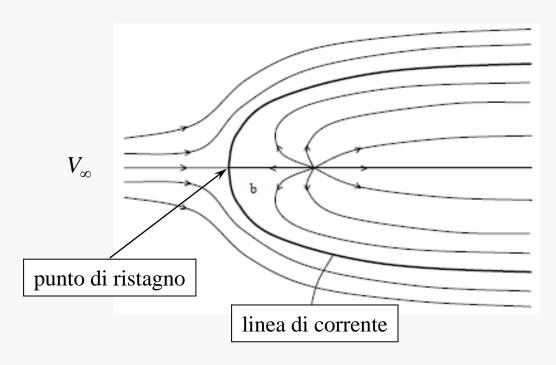


Prof. P. R. Spina

Sovrapposizione di un flusso uniforme e di una sorgente:



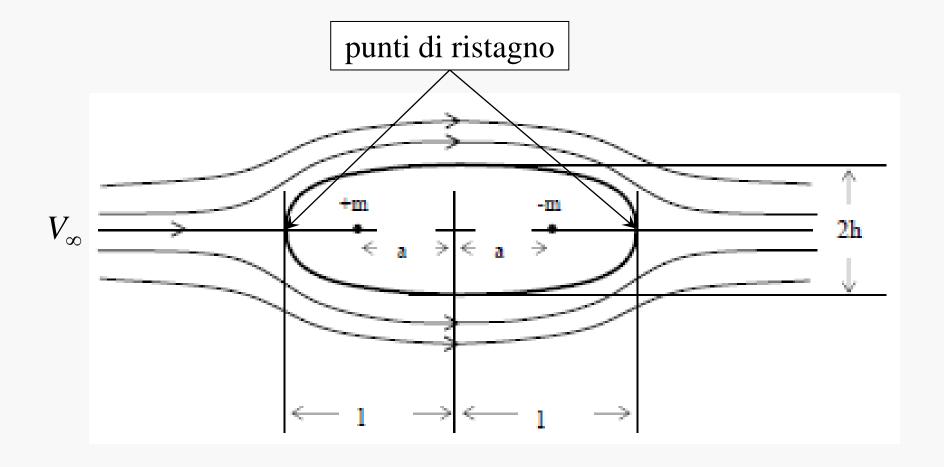
Sovrapposizione di un flusso uniforme e di una sorgente:



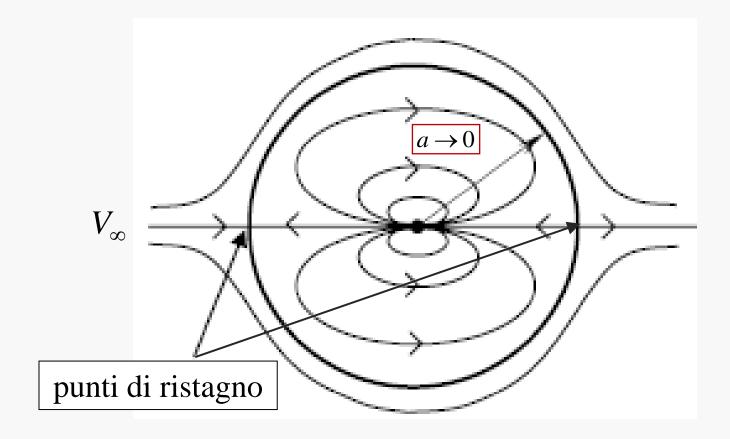
La linea di corrente passante per il punto di ristagno può essere considerata come un **contorno solido impermeabile** (in quanto la velocità vi è punto per punto tangente)

La singolarità (sorgente) si trova all'interno di tale linea di corrente

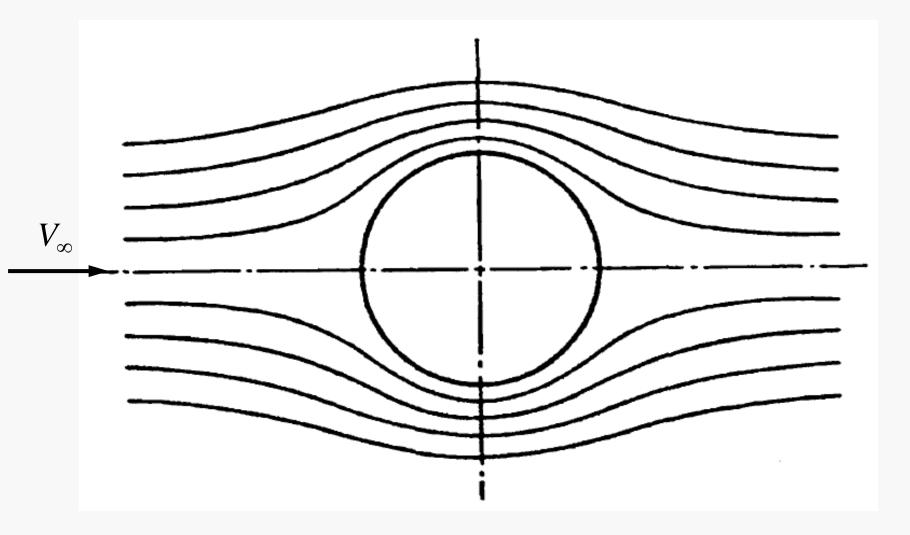
Sovrapposizione di un flusso uniforme e di un dipolo (o doppietta):



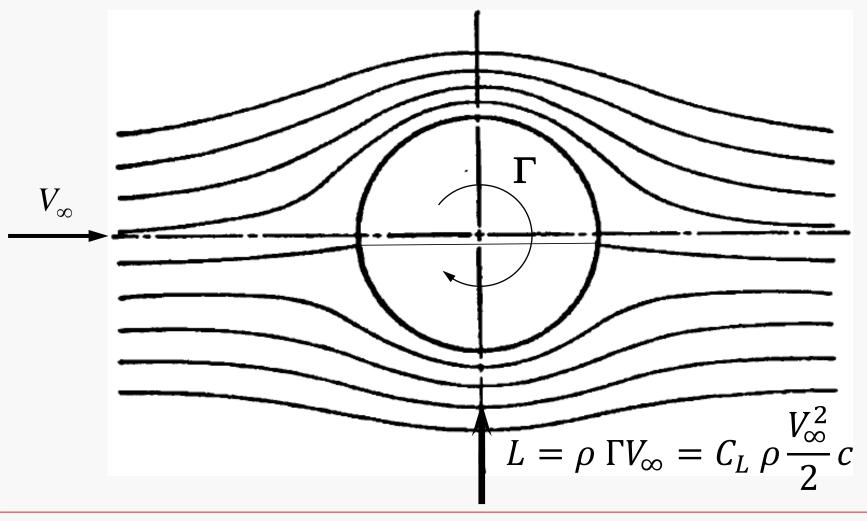
Sovrapposizione di un flusso uniforme e di un dipolo (o doppietta):



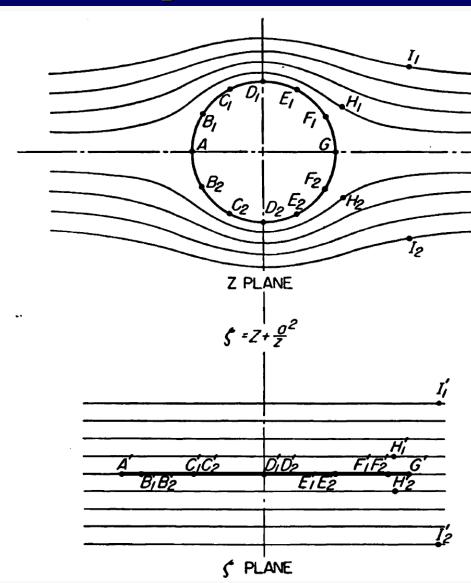
Sovrapposizione di un flusso uniforme e di un dipolo (o doppietta):



Sovrapposizione di un vortice ad un flusso uniforme e un dipolo:



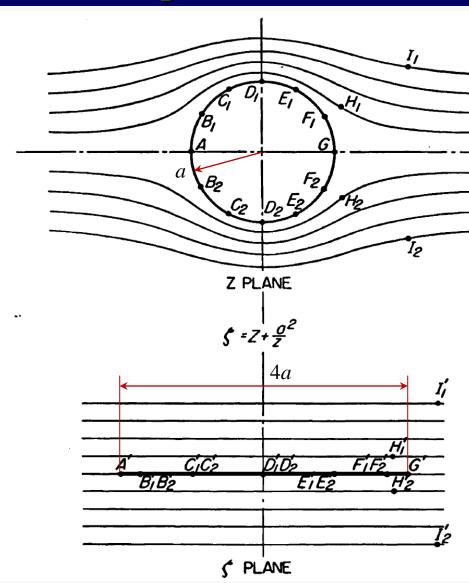
Trasformazione conforme di Joukowski profilo circolare con centro nell'origine



$$\zeta = z + \frac{a^2}{z}$$

Trasformazione conforme che permette di passare dal piano complesso z = x + i y al piano complesso $\zeta = \xi + i \eta$

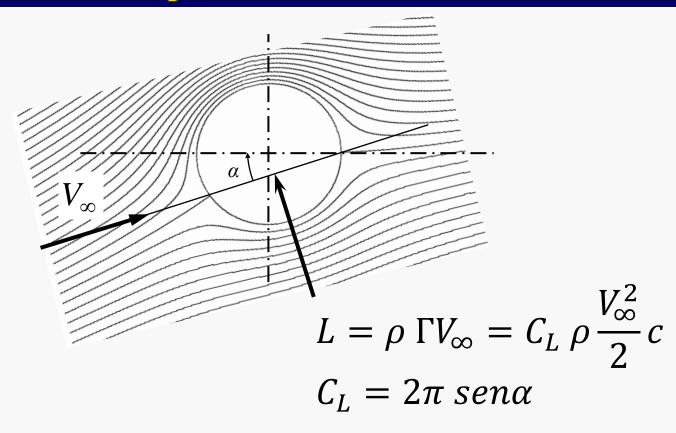
Trasformazione conforme di Joukowski profilo circolare con centro nell'origine



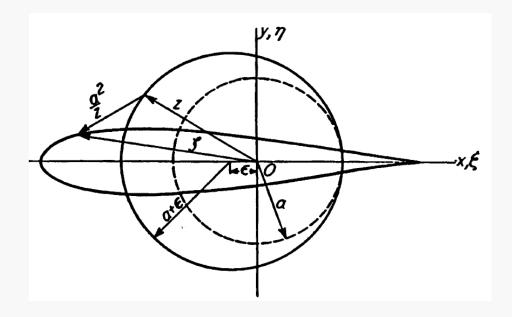
$$\zeta = z + \frac{a^2}{z}$$

Trasformazione conforme che permette di passare dal piano complesso z = x + i y al piano complesso $\zeta = \xi + i \eta$

Trasformazione conforme di Joukowski profilo circolare con centro nell'origine

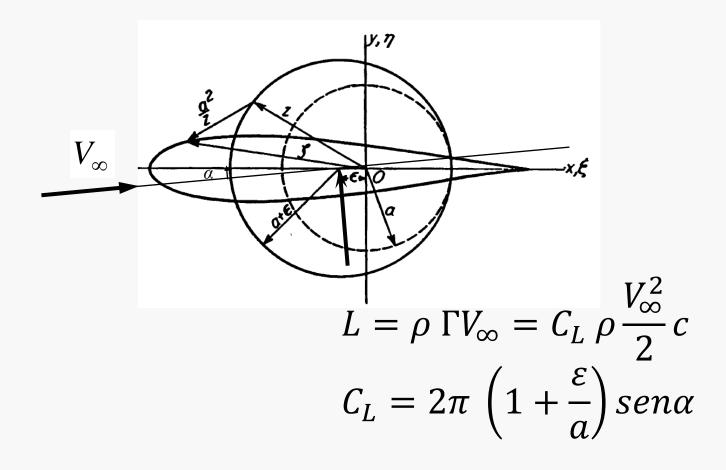


Trasformazione conforme di Joukowski profilo circolare con centro decentrato sull'asse x

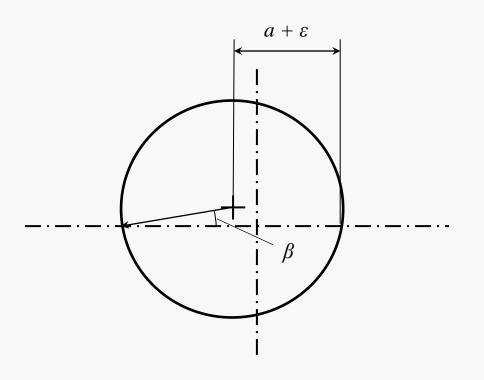


$$\zeta = z + \frac{a^2}{z}$$

Trasformazione conforme di Joukowski profilo circolare con centro decentrato sull'asse x

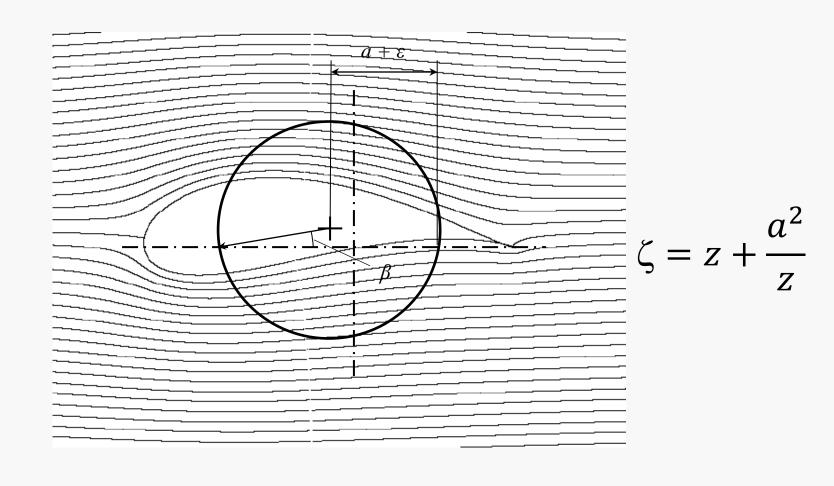


Trasformazione conforme di Joukowski profilo circolare con centro decentrato

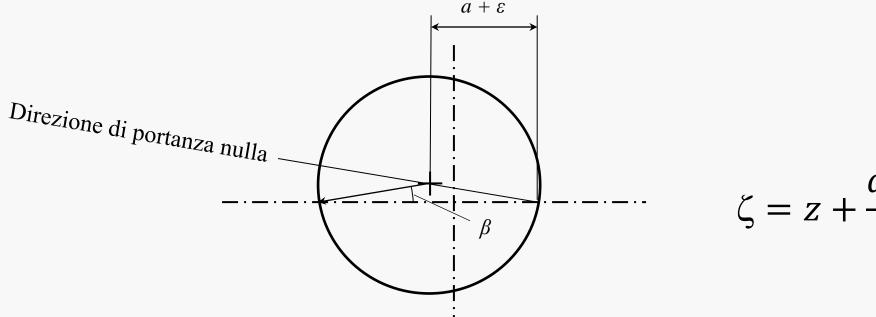


$$\zeta = z + \frac{a^2}{z}$$

Trasformazione conforme di Joukowski profilo circolare con centro decentrato



Trasformazione conforme di Joukowski profilo circolare con centro decentrato



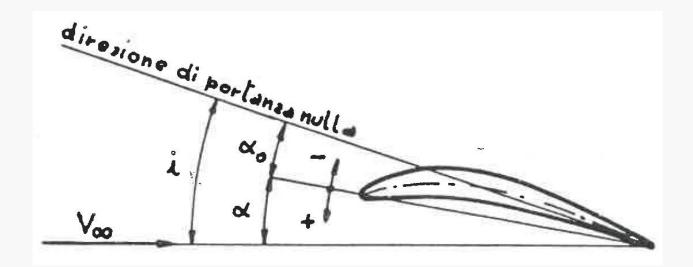
Prof. P. R. Spina

$$\zeta = z + \frac{a^2}{z}$$

$$C_L = 2\pi \left(1 + \frac{\varepsilon}{a}\right) sen(\alpha + \beta)$$
 $\beta = -\alpha_0$

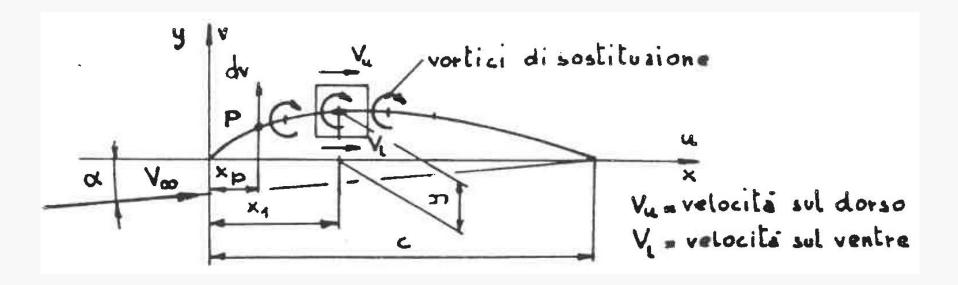
Trasformazione conforme di Joukowski

$$C_L = 2\pi \left(1 + \frac{\varepsilon}{a}\right) sen(\alpha + \beta)$$



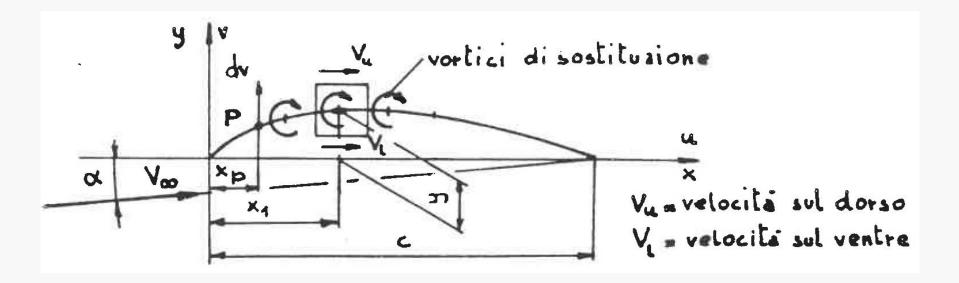
Per angoli d'attacco α piccoli, considerando che $\beta = -\alpha_0$, risulta:

$$C_L = 2\pi \left(1 + \frac{\varepsilon}{a}\right)(\alpha - \alpha_0) = 2\pi \left(1 + \frac{\varepsilon}{a}\right)i$$



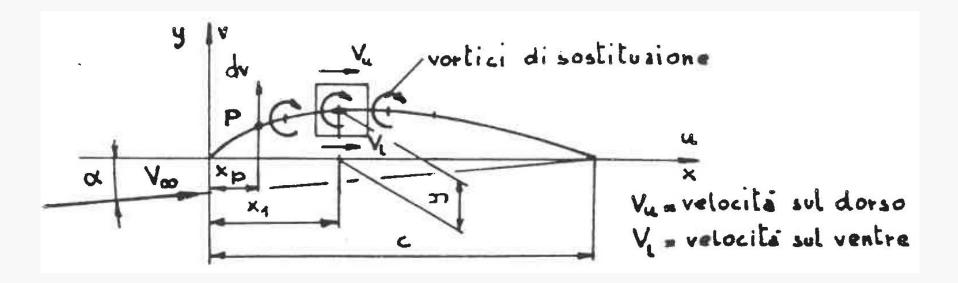
La linea media del profilo viene sostituita da una distribuzione di vortici che induce una circolazione

$$\Gamma = \int_{0}^{c} \gamma \ dx = \int_{0}^{c} (V_{u} - V_{l}) \ dx$$



La componente lungo y della velocità indotta nel generico punto P dal vortice infinitesimo posizionato in x vale:

$$dv_{x_{\rm P}} = \frac{\gamma \ dx}{2\pi(x - x_{\rm P})}$$

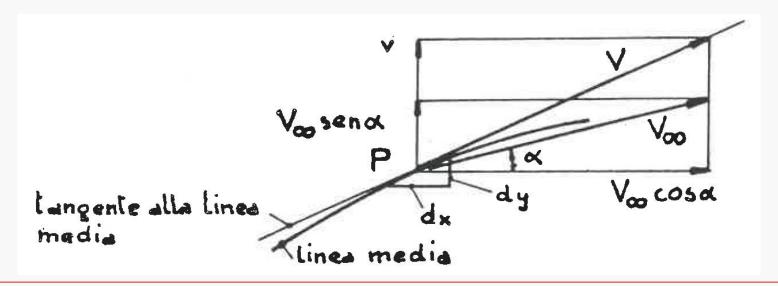


L'intera linea di vortici indurrà pertanto globalmente nel punto P la componente di velocità *v* lungo *y*

$$v_{x_{\rm P}} = \int_{0}^{c} \frac{\gamma \, dx}{2\pi (x - x_{\rm P})}$$

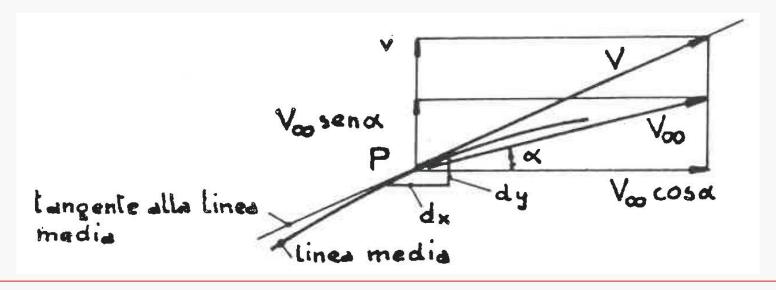
Dato che la componente di velocità u lungo x della velocità indotta è trascurabile, la velocità risultante \mathbf{V} tra la velocità indisturbata \mathbf{V}_{∞} e la velocità indotta \mathbf{v} deve essere in ogni punto tangente alla linea media

$$\frac{dy}{dx} = \frac{V_{\infty} \sin \alpha + v}{V_{\infty} \cos \alpha} = tg\alpha + \frac{v}{V_{\infty} \cos \alpha}$$



Per angoli d'attacco α piccoli

$$\frac{dy}{dx} = \frac{V_{\infty} sen \alpha + v}{V_{\infty} cos \alpha} = tg\alpha + \frac{v}{V_{\infty} cos \alpha} \approx \alpha + \frac{v}{V_{\infty}}$$



L'equazione integrale (1) lega la circolazione γ per unità di lunghezza alla componente ν lungo y della velocità indotta nel punto P dalla linea di vortici

$$v_{x_{\mathrm{P}}} = \int_{0}^{c} \frac{\gamma \, dx}{2\pi (x - x_{\mathrm{P}})} \tag{1}$$

L'equazione (2) lega a sua volta la componente v lungo y della velocità indotta nel punto P dalla linea di vortici alla pendenza della linea media in P $(dy/dx)_P$, all'angolo d'attacco α e alla velocità V_{∞}

$$\frac{dy}{dx} = \alpha + \frac{v}{V_{\infty}} \tag{2}$$

Combinando le equazioni (1) e (2) è possibile legare la distribuzione di vortici $\gamma = f(x)$ alla geometria della linea media dy/dx, all'angolo d'attacco α e alla velocità V_{∞}

$$\left(\frac{dy}{dx}\right)_{P} = \alpha + \frac{v}{V_{\infty}} = \alpha + \frac{1}{V_{\infty}} \int_{0}^{c} \frac{\gamma \, dx}{2\pi(x - x_{P})}$$

Dati geometria della linea media, α e V_{∞} è possibile determinare la circolazione intorno al profilo sottile e la corrispondente portanza

$$L = C_L \rho \frac{V_{\infty}^2}{2} c = \rho \Gamma V_{\infty} = \rho V_{\infty} \int_0^c \gamma dx$$

Dati geometria della linea media, α e V_{∞} è possibile determinare la circolazione intorno al profilo sottile e la corrispondente portanza

$$L = C_L \rho \frac{V_{\infty}^2}{2} c = \rho \Gamma V_{\infty} = \rho V_{\infty} \int_0^c \gamma dx$$

il coefficiente di portanza, l'angolo di portanza nulla e il coefficiente di momento

$$C_L = \frac{2\Gamma}{cV_{\infty}} = 2\pi (\alpha - \alpha_0) = 2\pi i$$

$$\alpha_0[^{\circ}] \approx -\frac{(y_c)_{max}}{c} 100$$

$$C_{M_{c/4}} \approx -2.5 \frac{(y_c)_{max}}{c}$$

Con un'accuratezza accettabile dal punto di vista ingegneristico, si può assumere che la distribuzione di velocità attorno ad un profilo possa essere determinata come somma di tre contributi

$$c_p^0 = \frac{p_0 - p}{\rho \frac{V_\infty^2}{2}} = \left(\frac{V}{V_\infty}\right)^2 = \left(\frac{v}{V_\infty} \pm \frac{\Delta v}{V_\infty} \pm \frac{\Delta v_a}{V_\infty}\right)^2$$

$$p_0 = p + \rho \frac{V^2}{2} = p_{0\infty} = p_{\infty} + \rho \frac{V_{\infty}^2}{2}$$

$$c_p^0 = \frac{p_0 - p}{\rho \frac{V_\infty^2}{2}} = \left(\frac{V}{V_\infty}\right)^2 = \left(\frac{v}{V_\infty} \pm \frac{\Delta v}{V_\infty} \pm \frac{\Delta v_a}{V_\infty}\right)^2$$

 $\frac{v}{V_{\alpha}}$

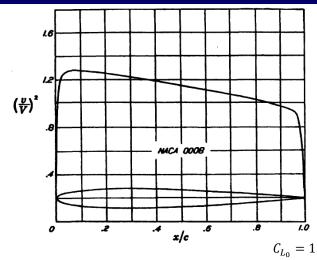
contributo distribuzione di spessori (distribuzione di velocità sul profilo simmetrico con stessa distribuzione di spessori, investito con angolo d'attacco nullo)

 $\frac{\Delta v}{V_{\infty}}$

contributo linea media (distribuzione di velocità sul profilo sottile coincidente con la linea media, investito con angolo d'attacco ideale)

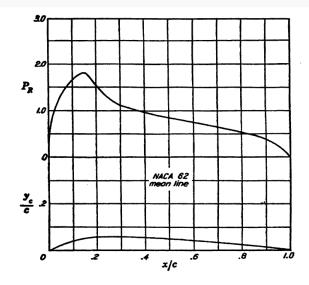
 $\frac{\Delta v_a}{V_a}$

contributo angolo d'attacco (distribuzione di velocità che determina un coefficiente di portanza aggiuntivo C_{L_0})



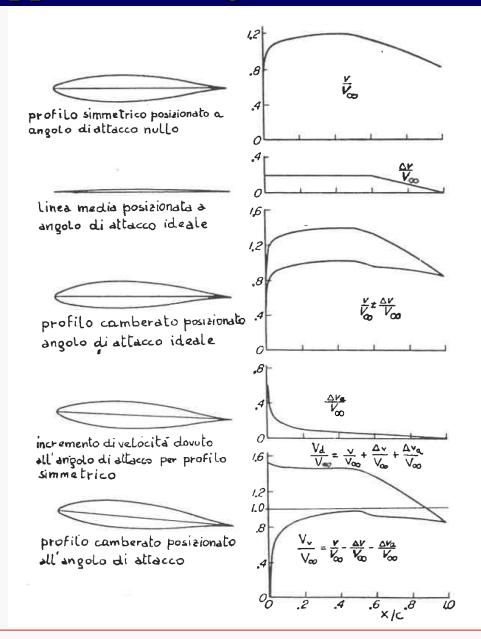
x (per cent c)	y (per cent c)	$(v/V)^2$	v/V	$\Delta v_a/V$
0	0	0	0	2.900
0.5		0.792	0.890	1.795
1.25	1.263	1.103	1.050	1.310
2.5	1.743	1.221	1.105	0.971
5.0	2.369	1.272	1.128	0.694
7.5	2.800	1.284	1.133	0.561
10	3.121	1.277	1.130	0.479
15	3.564	1.272	1.128	0.379
20	3.825	1.259	1.122	0.318
25	3.961	1.241	1.114	0.273
30	4.001	1.223	1.106	0.239
40	3.869	1.186	1.089	0.188
50	3.529	1.149	1.072	0.152
60	3.043	1.111	1.054	0.121
70	2.443	1.080	1.039	0.096
80	1.749	1.034	1.017	0.071
90	0.965	0.968	0.984	0.047
95	0.537	0.939	0.969	0.031
100	0.084		l	0

NACA 0008 Basic Thickness Form



$c_{li} = 0.90$ $\alpha_i = 2.81^{\circ}$ $c_{m_{c/4}} = -0.113$						
x (per cent c)	y _c (per cent c)	dy_{ϵ}/dx	P_R	$\Delta v/V = P_R/4$		
0	O	0.60000	0	0		
1.25	0.726	0.56250	0.682	0.171		
2.5	1.406	0.52500	1.031	0.258		
5.0	2.625	0.45000	1.314	0.328		
7.5	3.656	0.37500	1.503	0.376		
10	4.500	0.30000	1.651	0.413		
15	5.625	0.15000	1.802	0.451		
20	6.000	0	1.530	0.383		
25	5.977	-0.00938	1.273	0.318		
30	5.906	- 0.01875	1.113	0.279		
40	5.625	- 0.03750	0.951	0.238		
50	5.156	- 0.05625	0.843	0.211		
60	4.500	-0.07500	0.741	0.185		
70	3.656	-0.09375	0.635	0.159		
80	2.625	- 0.11 25 0	0.525	0.131		
90	1.406	- 0.13125	0.377	0.094		
95	0.727	- 0.14062	0.261	0.065		
100	0	- 0.15000	0	0		

Data for NACA Mean Line 62



$$\Delta c_p^0 = \left(\frac{v}{V_{\infty}} + \frac{\Delta v}{V_{\infty}} + f(\alpha)\frac{\Delta v_a}{V_{\infty}}\right)^2 - \left(\frac{v}{V_{\infty}} - \frac{\Delta v}{V_{\infty}} - f(\alpha)\frac{\Delta v_a}{V_{\infty}}\right)^2 = \frac{v}{V_{\infty}} + \frac{v}{V_{\infty}} +$$

$$= \left(\frac{V_{\rm d}}{V_{\infty}}\right)^2 - \left(\frac{V_{\rm v}}{V_{\infty}}\right)^2$$

$$C_{L} = \frac{L}{\rho \frac{V_{\infty}^{2}}{2} c} = \int_{0}^{c} \frac{p_{v} - p_{d}}{\rho \frac{V_{\infty}^{2}}{2} c} dx = \int_{0}^{c} \frac{p_{v} - p_{d} - p_{0} + p_{0}}{\rho \frac{V_{\infty}^{2}}{2} c} dx = \frac{1}{c} \int_{0}^{c} \left(c_{pd}^{0} - c_{pv}^{0} \right) dx = \frac{1}{c} \int_{0}^{c} \left[\left(\frac{V_{d}}{V_{\infty}} \right)^{2} - \left(\frac{V_{v}}{V_{\infty}} \right)^{2} \right] dx$$

$$f(\alpha) = \frac{C_L - C_{L_i}}{C_{L_0}} = \frac{k(\alpha - \alpha_0) - k(\alpha_i - \alpha_0)}{k\Delta\alpha} = \frac{\alpha - \alpha_i}{\Delta\alpha}$$

$$\alpha = \frac{C_L - C_{L_i}}{C_{L_0}} \Delta \alpha + \alpha_i \quad , \quad C_L = \frac{\alpha - \alpha_i}{\Delta \alpha} C_{L_0} + C_{L_i} \quad \uparrow$$

$$C_{L_i} = \frac{1}{c} \int_{0}^{c} \left[\left(\frac{v}{V_{\infty}} + \frac{\Delta v}{V_{\infty}} \right)^2 - \left(\frac{v}{V_{\infty}} - \frac{\Delta v}{V_{\infty}} \right)^2 \right] dx$$

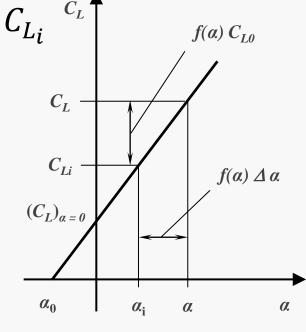
$$C_{L_i} = \frac{1}{c} \int_{0}^{c} \left[\left(\frac{v}{V_{\infty}} + \frac{\Delta v}{V_{\infty}} \right)^2 - \left(\frac{v}{V_{\infty}} - \frac{\Delta v}{V_{\infty}} \right)^2 \right] dx$$

$$k = \frac{C_{L_i}}{\alpha_i - \alpha_0}$$

$$\alpha_0[°] \approx -\frac{(y_c)_{max}}{c} 100$$

$$\rightarrow \Delta \alpha = \frac{C_{L_0}}{k}$$

$$\rightarrow \quad \Delta \alpha = \frac{C_{L_0}}{k}$$



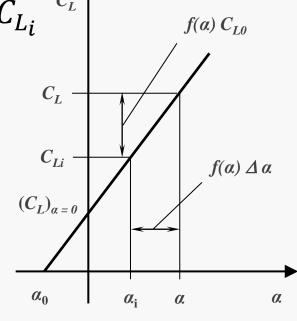
$$f(\alpha) = \frac{C_L - C_{L_i}}{C_{L_0}} = \frac{k(\alpha - \alpha_0) - k(\alpha_i - \alpha_0)}{k\Delta\alpha} = \frac{\alpha - \alpha_i}{\Delta\alpha}$$

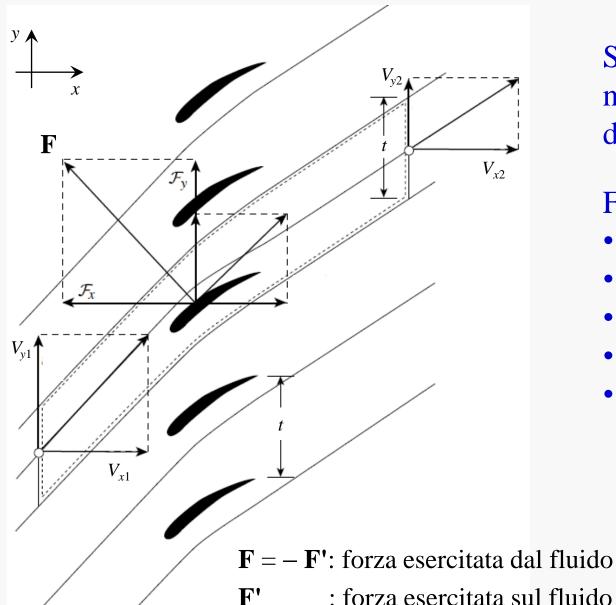
$$\alpha = \frac{C_L - C_{L_i}}{C_{L_0}} \Delta \alpha + \alpha_i \quad , \quad C_L = \frac{\alpha - \alpha_i}{\Delta \alpha} C_{L_0} + C_{L_i} \quad \uparrow$$

$$C_{L_i} = \frac{1}{c} \int_{0}^{c} \left[\left(\frac{v}{V_{\infty}} + \frac{\Delta v}{V_{\infty}} \right)^2 - \left(\frac{v}{V_{\infty}} - \frac{\Delta v}{V_{\infty}} \right)^2 \right] dx$$

$$C_{L_i} = \frac{1}{c} \int_{0}^{c} \left[\left(\frac{v}{V_{\infty}} + \frac{\Delta v}{V_{\infty}} \right)^2 - \left(\frac{v}{V_{\infty}} - \frac{\Delta v}{V_{\infty}} \right)^2 \right] dx$$

$$\Delta \alpha \approx \frac{C_{L_0}}{2\pi}$$

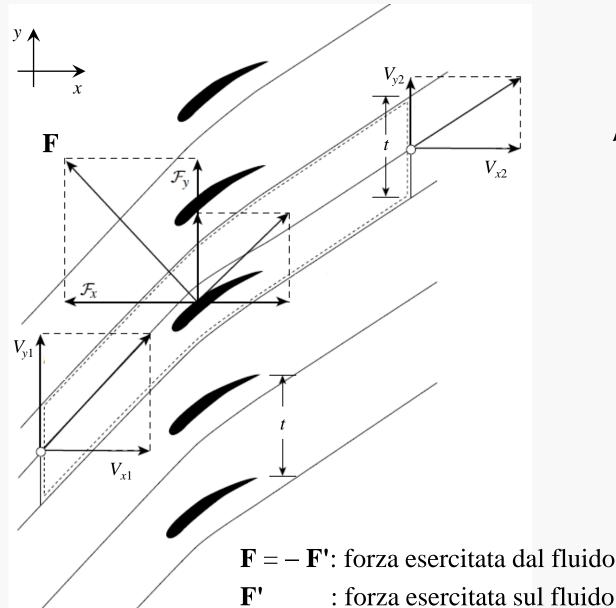




Schiera formata da un numero infinito di pale di lunghezza infinita

Flusso:

- stazionario
- incomprimibile
- non viscoso
- irrotazionale
- ad energia totale costante

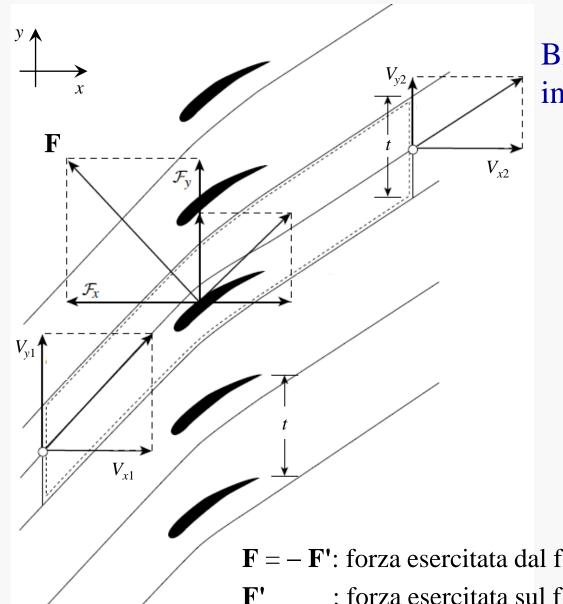


Bilancio di massa:

$$\rho_1 A_1 V_{x1} = \rho_2 A_2 V_{x2}$$
$$\rho t V_{x1} = \rho t V_{x2}$$

$$\bigvee_{x_1 = V_{x2} = V_x}$$

 $\mathbf{F} = -\mathbf{F'}$: forza esercitata dal fluido



Bilancio della quantità di moto in direzione x:

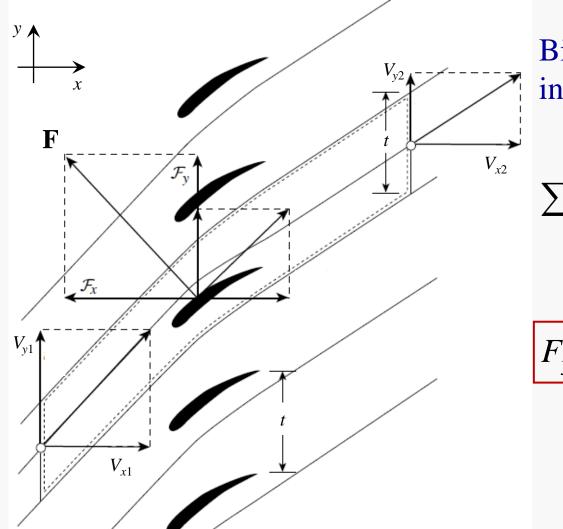
$$\sum F_{x}' = F_{x}' + t (p_{1} - p_{2}) =$$

$$= \rho t (V_{x2}^{2} - V_{x1}^{2}) = 0$$

$$F_{x} = -F_{x}' = t\left(p_{1} - p_{2}\right)$$

 $\mathbf{F} = -\mathbf{F'}$: forza esercitata dal fluido

: forza esercitata sul fluido



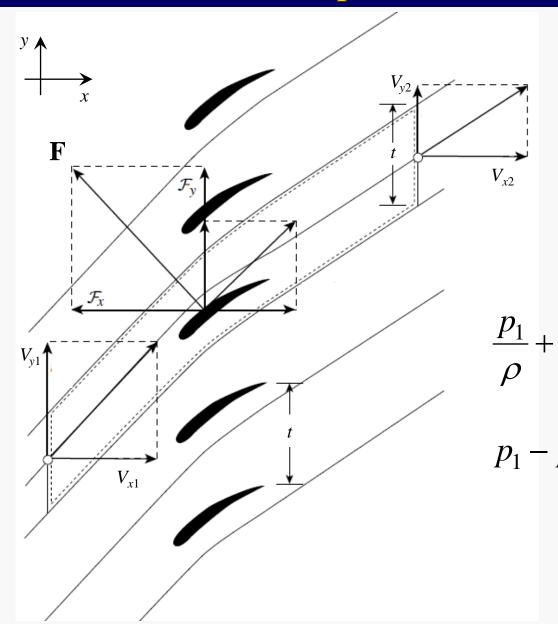
Bilancio della quantità di moto in direzione *y*:

$$\sum F_{y}' = F_{y}' = \rho V_{x} t (V_{y2} - V_{y1})$$

$$F_{y} = -F_{y}' = -\rho V_{x} t (V_{y2} - V_{y1})$$

 $\mathbf{F} = -\mathbf{F'}$: forza esercitata dal fluido

F': forza esercitata sul fluido

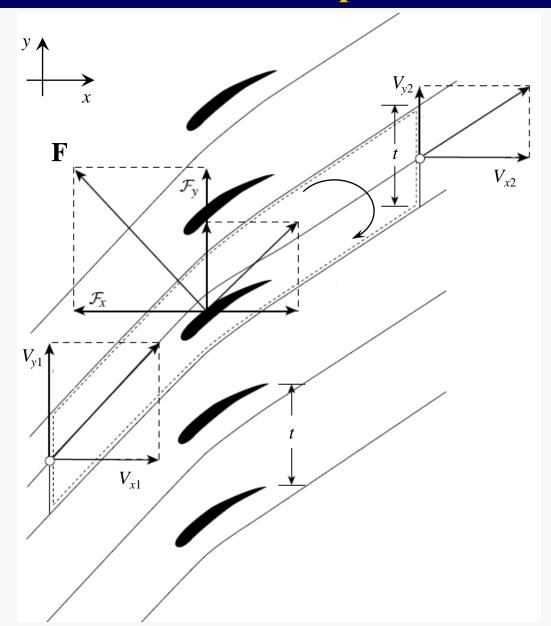


Bilancio dell'energia:

$$\frac{p_1}{\rho} + \frac{V_{x1}^2 + V_{y1}^2}{2} = \frac{p_2}{\rho} + \frac{V_{x2}^2 + V_{y2}^2}{2}$$

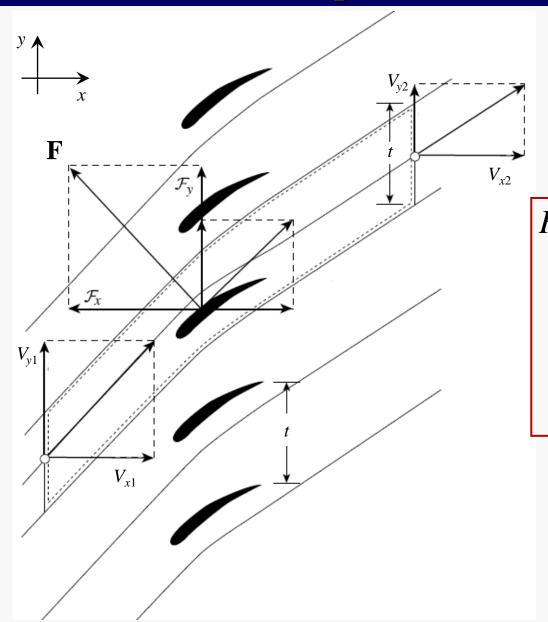
$$p_1 - p_2 = \rho \frac{V_{y2}^2 - V_{y1}^2}{2} =$$

$$= \frac{\rho}{2} (V_{y2} - V_{y1}) (V_{y2} + V_{y1})$$



Circolazione del vettore V lungo la linea chiusa tratteggiata:

$$\Gamma = -t \left(V_{y2} - V_{y1} \right)$$

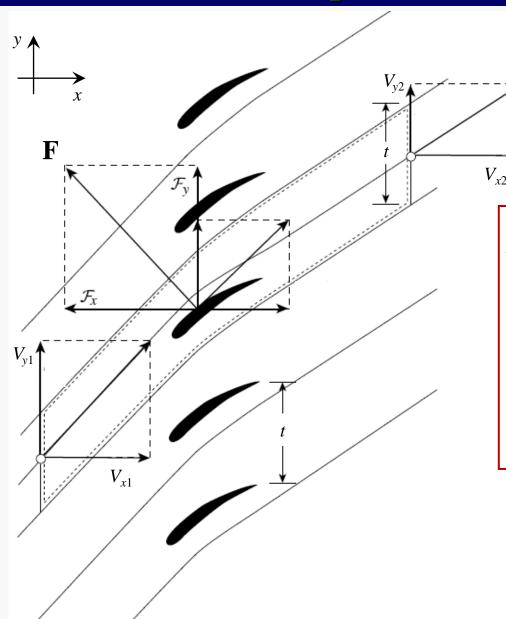


Le componenti della forza **F** lungo *x* e *y* assumono la forma:

$$\begin{split} F_{x} &= t \left(p_{1} - p_{2} \right) = \\ &= \frac{\rho}{2} t \left(V_{y2} - V_{y1} \right) \left(V_{y2} + V_{y1} \right) \\ &= -\rho \Gamma \frac{\left(V_{y1} + V_{y2} \right)}{2} \end{split}$$

$$F_{y} = -\rho V_{x} t \left(V_{y2} - V_{y1}\right) =$$

$$= \rho \Gamma V_{x}$$



Nel caso di fluido non viscoso la forza risultante **F** coincide con la portanza *L*:

$$L = \sqrt{F_y^2 + F_x^2} =$$

$$= \rho \Gamma \sqrt{V_x^2 + \left(\frac{V_{y1} + V_{y2}}{2}\right)^2} =$$

$$= \rho \Gamma V_{\infty}$$

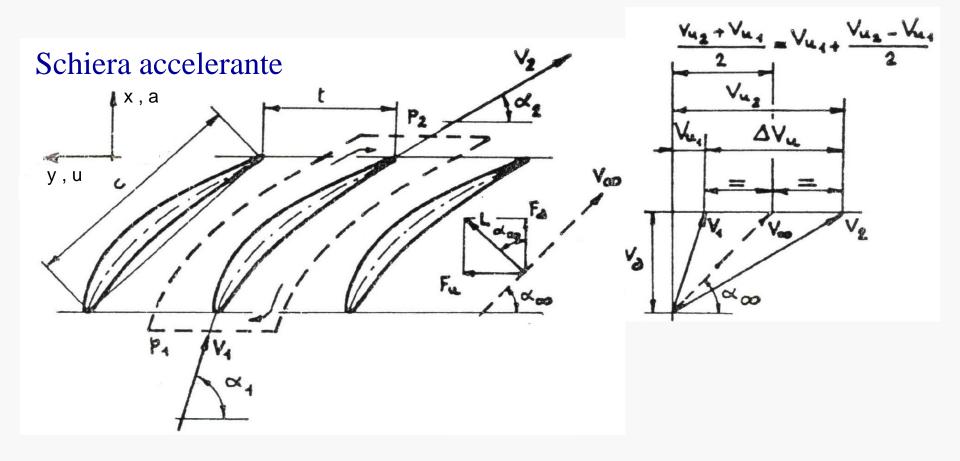
Con V_{∞} si è indicata la velocità fittizia media tra le velocità di ingresso e uscita della schiera

$$L = C_{Ls} \ \rho \frac{V_{\infty}^2}{2} c = \rho \ \Gamma V_{\infty}$$

La circolazione può essere scritta come: $\Gamma = t \Delta V_y$

Il coefficiente di portanza del profilo in schiera risulta:

$$C_{Ls} = 2 \frac{\Delta V_y}{V_\infty} \cdot \frac{t}{c}$$



$$C_{LS} = 2 \frac{\Delta V_u}{V_{\infty}} \frac{t}{c} = 2 \frac{V_{u2} - V_{u1}}{V_{\infty}} \frac{t}{c}$$

$$C_{LS} = 2 \frac{\Delta V_u}{V_{\infty}} \frac{t}{c} = 2 \frac{V_{u2} - V_{u1}}{V_{\infty}} \frac{t}{c}$$

$$V_{\infty} c \qquad V_{\infty} c \qquad V_{\infty} \qquad c$$

$$= 2 \frac{V_a(\cot g \, \alpha_2 - \cot g \, \alpha_1)}{V_a} \frac{t}{\sqrt{2}} = \text{Schiera accelerante}$$

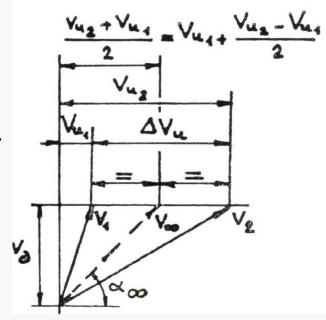
$$C_{Ls} = 2 \frac{V_a(\cot g \, \alpha_2 - \cot g \, \alpha_1)}{V_a} \frac{t}{c} =$$

$$=2\frac{t}{c}(\cot g \,\alpha_2 - \cot g \,\alpha_1) \, sen \,\alpha_\infty$$

sen α_{∞}

$$V_a \cot g \alpha_{\infty} = \frac{V_{u2} + V_{u1}}{2} = \frac{V_a(\cot g \alpha_2 + \cot g \alpha_1)}{2}$$

$$\cot g \ \alpha_{\infty} = \frac{(\cot g \ \alpha_2 + \cot g \ \alpha_1)}{2}$$



Schiera accelerante

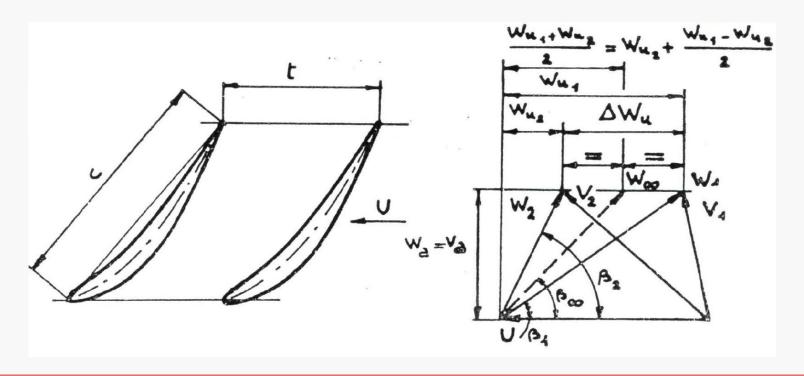
Schiera decelerante

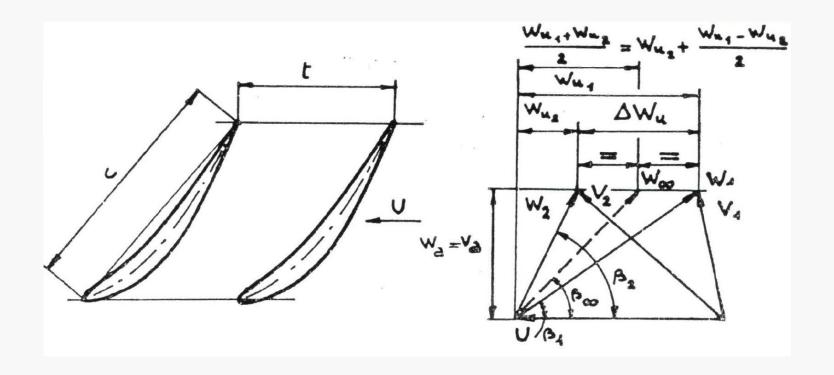
$$C_{LS} = 2 \frac{\Delta V_u}{V_{\infty}} \frac{t}{c} = 2 \frac{V_{u1} - V_{u2}}{V_{\infty}} \frac{t}{c}$$

$$C_{Ls} = 2 \frac{V_a(\cot g \,\alpha_1 - \cot g \,\alpha_2)}{\frac{V_a}{sen \,\alpha_\infty}} \frac{t}{c} =$$

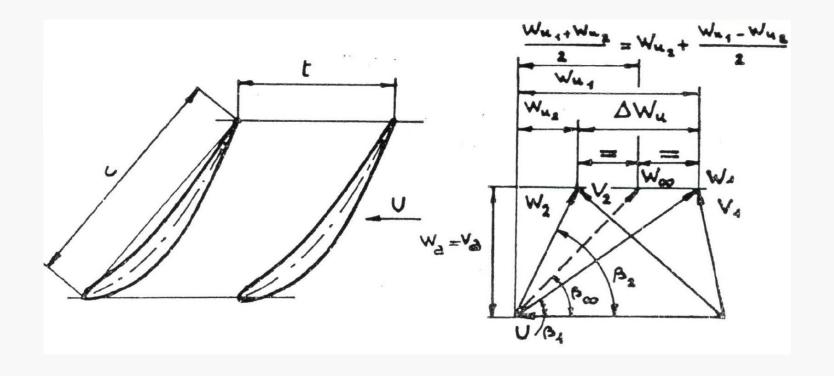
$$= 2 \frac{t}{c}(\cot g \,\alpha_1 - \cot g \,\alpha_2) \, sen \,\alpha_\infty$$

Per schiere rotoriche le relazioni sono le stesse, dove le velocità sono le velocità relative W e gli angoli sono gli angoli β tra le direzioni delle velocità relative W e la direzione periferica

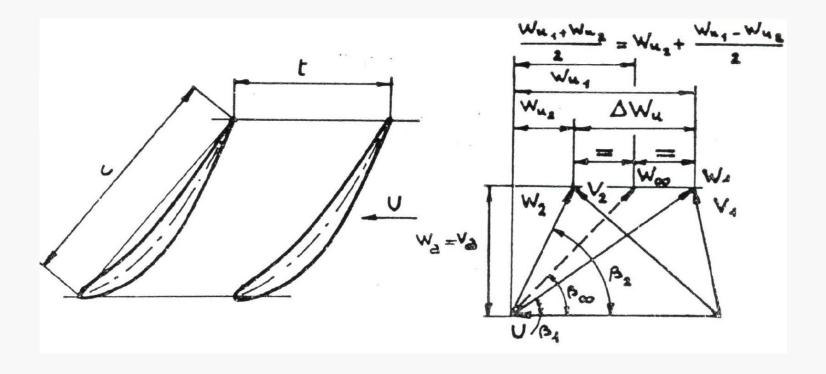




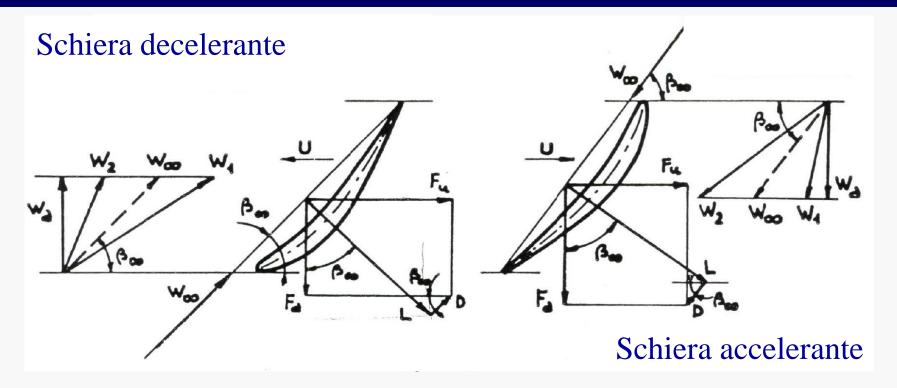
$$C_{Ls} = 2 \frac{\Delta W_u}{W_\infty} \frac{t}{c} = 2 \frac{W_{u1} - W_{u2}}{W_\infty} \frac{t}{c} = 2 \frac{W_a(\cot \beta_1 - \cot \beta_2)}{\frac{W_a}{\sec n \beta_\infty}} \frac{t}{c}$$



$$C_{Ls} = 2\frac{t}{c}(\cot \beta_1 - \cot \beta_2) \sin \beta_\infty$$



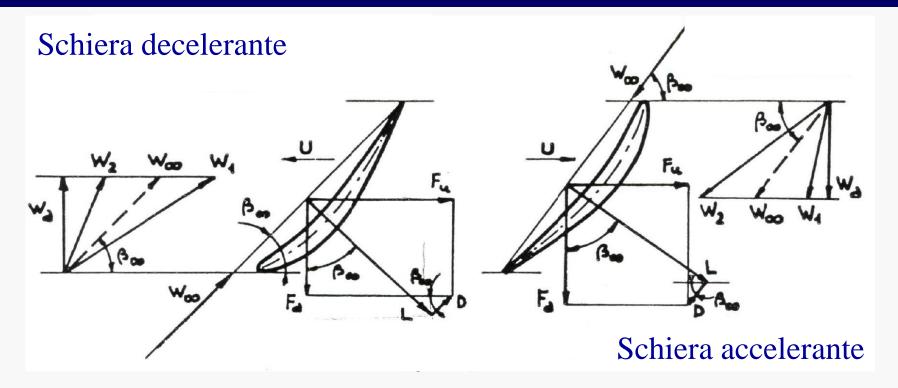
$$\cot g \, \beta_{\infty} = \frac{(\cot g \beta_2 + \cot g \beta_1)}{2}$$



$$F_u = L \operatorname{sen} \beta_{\infty} \pm D \operatorname{cos} \beta_{\infty} = \rho W_a t \Delta W_u$$

$$F_a = L \cos \beta_{\infty} \mp D \operatorname{sen} \beta_{\infty} = t(p_1 - p_2)$$

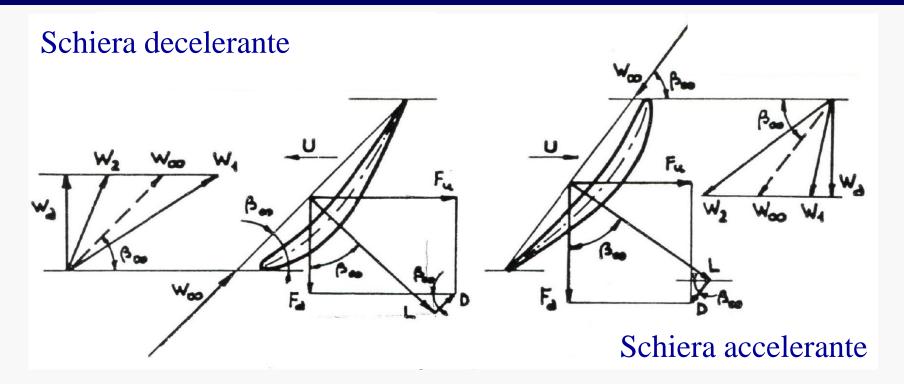
Prof. P. R. Spina



$$F_{u} = \rho W_{a} t \Delta W_{u} = \rho W_{\infty} \operatorname{sen} \beta_{\infty} t \Delta W_{u} =$$

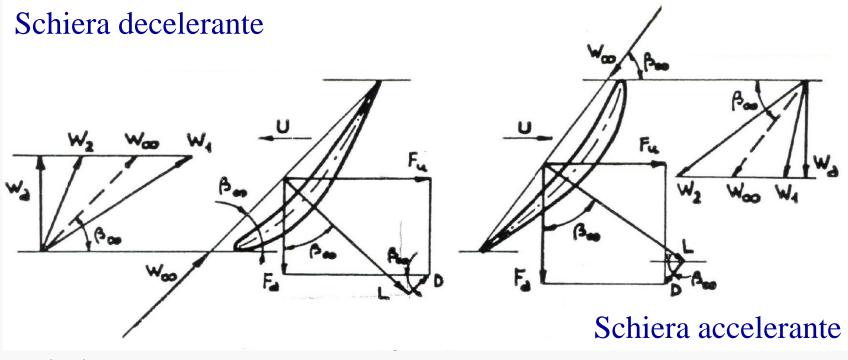
$$= C_{Ls} \rho \frac{W_{\infty}^{2}}{2} \operatorname{csen} \beta_{\infty} \pm C_{Ds} \rho \frac{W_{\infty}^{2}}{2} \operatorname{ccos} \beta_{\infty}$$

Prof. P. R. Spina



$$2 \frac{\Delta W_u}{W_{\infty}} \frac{t}{c} = C_{LS} \pm C_{DS} \cot \beta_{\infty}$$

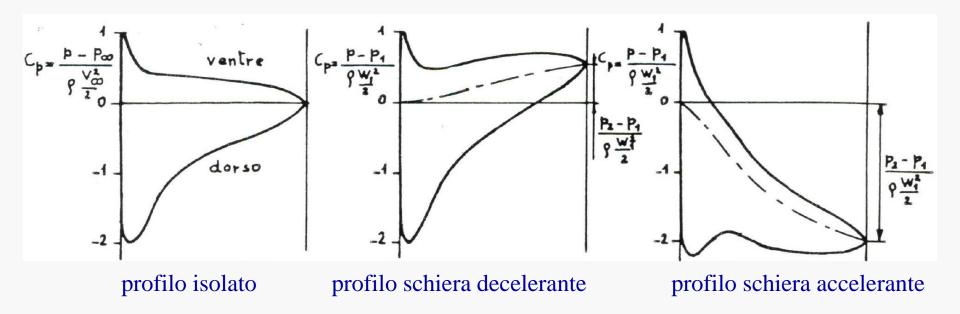
Prof. P. R. Spina



$$\frac{(F_u)_D r}{F_u r} = \frac{M_D}{M} = \frac{L sen \beta_{\infty} \pm D cos \beta_{\infty}}{L sen \beta_{\infty}} = 1 \pm \frac{C_{DS}}{C_{LS}} cotg \beta_{\infty}$$

$$\frac{(F_a)_D}{F_a} = \frac{(\Delta p)_D}{\Delta p} = \frac{L\cos\beta_{\infty} \mp D\sin\beta_{\infty}}{L\cos\beta_{\infty}} = 1 \mp \frac{C_{DS}}{C_{LS}} tg \beta_{\infty}$$

Effetto schiera

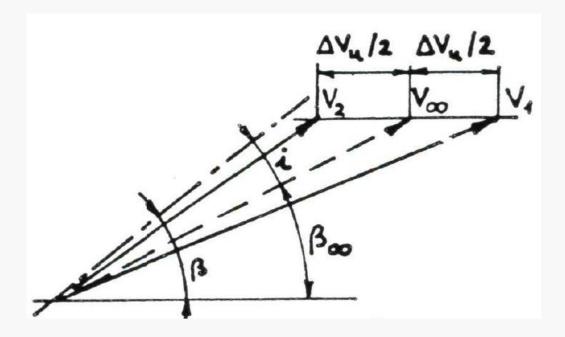


$$C_{Ls} = 2 \frac{\Delta V_u}{V_{\infty}} \frac{t}{c} = KC_L$$

Per profilo sottile:
$$K = \frac{C_{Ls}}{C_L} = \frac{2 \frac{\Delta V_u}{V_\infty} \frac{t}{c}}{2 \pi sen i} = \frac{\Delta V_u}{V_\infty \pi sen i} \frac{t}{c}$$

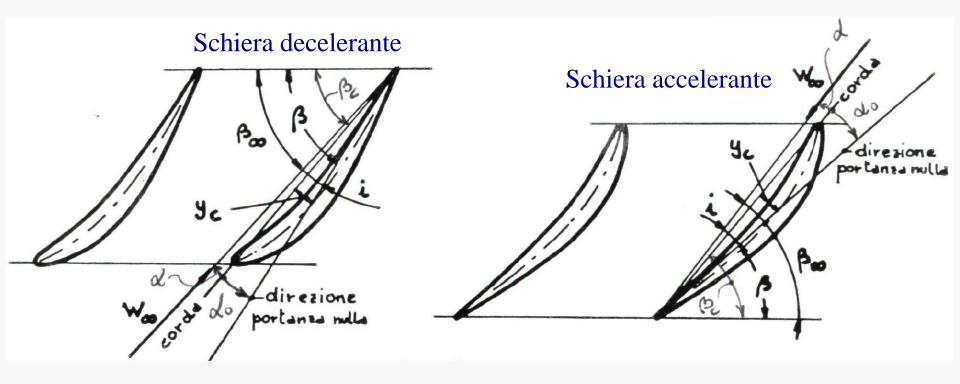
Effetto schiera

$$K = \frac{C_{Ls}}{C_L} = \frac{\Delta V_u}{V_{\infty} \pi sen i} \frac{t}{c}$$



$$K = \frac{C_{LS}}{C_L} = f\left(\frac{t}{c}, \beta\right)$$

Effetto schiera



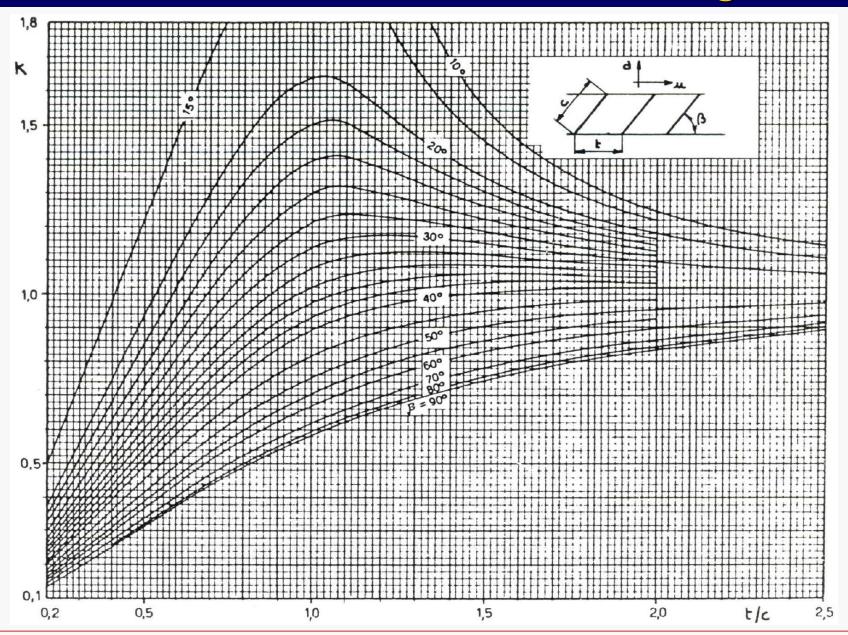
$$\beta = \beta_{\infty} + i = \beta_{\infty} + \alpha + |\alpha_0|$$

$$\beta_c = \beta_{\infty} + \alpha = \beta - |\alpha_0|$$

$$\beta = \beta_{\infty} - i = \beta_{\infty} - \alpha - |\alpha_0|$$

$$\beta_c = \beta_{\infty} - \alpha = \beta + |\alpha_0|$$

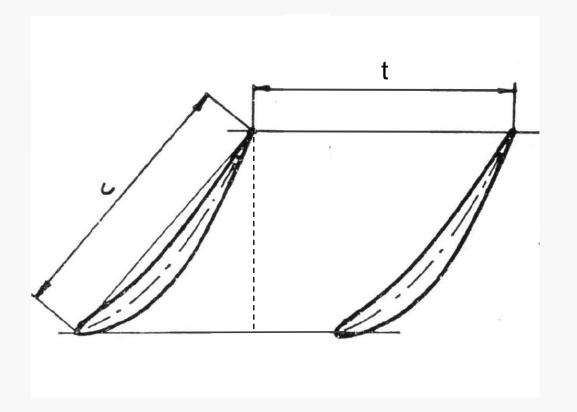
Coefficiente d'effetto schiera di Weinig



Prof. P. R. Spina "Fluidodinamica delle macchine", Laurea Magistrale in Ingegneria Meccanica

Individuazione della direzione di portanza nulla

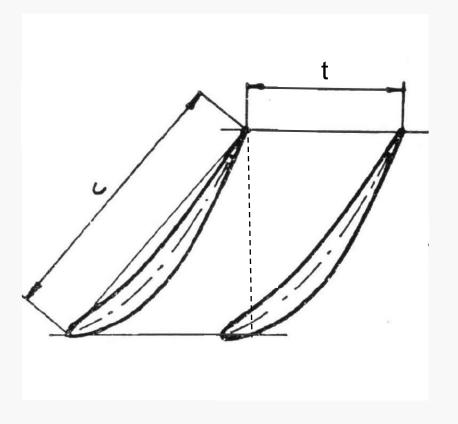
Schiera con **profili che non si ricoprono** ($t > c \cos \beta_c$)



come direzione di portanza nulla del profilo in schiera si può assumere quella del profilo isolato

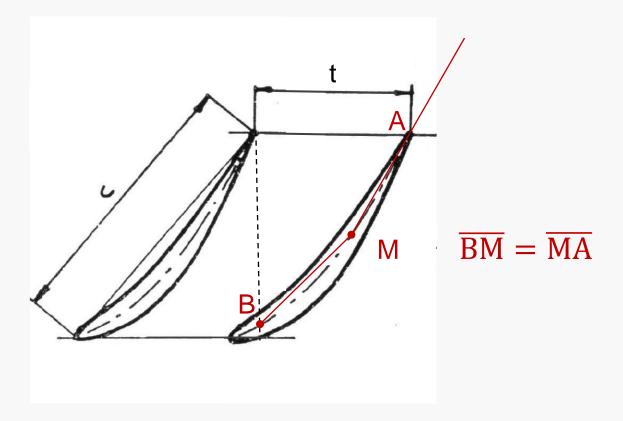
Individuazione della direzione di portanza nulla

Schiera con **profili che si ricoprono** ($t < c \cos \beta_c$)



Individuazione della direzione di portanza nulla

Schiera con **profili che si ricoprono** ($t < c \cos \beta_c$)



come direzione di portanza nulla del profilo in schiera si può assumere la retta passante per i punti MA

