
Physical Organization: SQL Server

Leggere Cap 7 Riguzzi et al. Sistemi Informativi

2

Tables

• Tables and indexes are stored as a collection of 8 KB

pages

• A table is divided in one or more partitions

• Each partition contains data rows in either a heap or

a clustered table.

• The pages of the heap or clustered index are

managed in one or more allocation units, depending

on the column types in the data rows.

3

Tables

4

Partitions

• Table and index pages are divided in one or more

partitions.

• By default, a table or index has only one partition that

contains all the table or index pages. The partition

resides in a single filegroup.

• When a table or index uses multiple partitions, the

data is partitioned horizontally so that groups of rows

are mapped into individual partitions, based on a

specified column.

5

Partitions

• The partitions can be put on one or more filegroups in

the database. The table or index is treated as a

single logical entity when queries or updates are

performed on the data.

• To view the partitions used by a table or index, use

the sys.partitions catalog view.

6

Organization of a Partition

• SQL Server tables use one of two methods to
organize their data pages within a partition:

• Clustered tables: tables that have a clustered index.
The data rows are stored in order based on the
clustered index key. The clustered index is
implemented as a B+tree index.

– The pages in each level of the index, including the
data pages in the leaf level, are linked in a doubly-
linked list.

• Heaps: tables that have no clustered index. The data
rows are not stored in any particular order, and there
is no particular order to the sequence of the data
pages. The data pages are not linked in a linked list.

7

Allocation Units

• An allocation unit is a collection of pages within a

heap or B+tree used to manage data based on their

page type.

Allocation unit

type
Is used to manage

IN_ROW_DATA
Data or index rows that contain all data, except large object

(LOB) data. Pages are of type Data or Index.

LOB_DATA

Large object data stored in one or more of these data types:

text, ntext, image, xml, varchar(max), nvarchar(max),

varbinary(max), or CLR user-defined types (CLR UDT).

Pages are of type Text/Image.

ROW_OVERFLO

W_DATA

Variable length data stored in varchar, nvarchar, varbinary, or

sql_variant columns that exceed the 8,060 byte row size limit.

Pages are of type Data.

8

IN_ROW_DATA Allocation Unit

• For every partition used by a table (heap or clustered

table), index, or indexed view, there is one

IN_ROW_DATA allocation unit that is made up of a

collection of data pages.

• This allocation unit also contains additional

collections of pages to implement each nonclustered

and XML index defined for the table or view.

9

ROW_OVERFLOW_DATA Allocation Unit

• For every partition used by a table (heap or clustered
table), index, or indexed view, there can be one
ROW_OVERFLOW_DATA allocation unit.

• This allocation unit contains zero (0) pages until a
data row with variable length columns (varchar,
nvarchar, varbinary, or sql_variant) in the
IN_ROW_DATA allocation unit exceeds the 8 KB row
size limit.

• When the size limitation is reached, SQL Server
moves the column with the largest width from that
row to a page in the ROW_OVERFLOW_DATA
allocation unit. A 24-byte pointer to this off-row data
is maintained on the original page.

10

LOB_DATA Allocation Unit

• When a table or index has one or more LOB data

types, one LOB_DATA allocation unit per partition is

allocated to manage the storage of that data.

• The LOB data types include text, ntext, image, xml,

varchar(max), nvarchar(max), varbinary(max), and

CLR user-defined types.

11

Heaps

• A heap stores a table without a clustered index.

• When a heap has multiple partitions, each partition

has a heap structure that contains the data for that

specific partition.

• At a minimum, each heap will have one

IN_ROW_DATA allocation unit per partition. The

heap may also have one LOB_DATA allocation unit

per partition and one ROW_OVERFLOW_DATA

allocation unit per partition.

12

Clustered Tables

• They are organized as B+-trees

• One page per node

• The leaf nodes contain the data pages of the

underlying table.

• Thus the data is stored inside the clustered index

• The pages in each level of the index are linked in a

doubly-linked list.

• When a clustered index has multiple partitions, each

partition has a B+-tree structure that contains the

data for that specific partition.

13

Clustered Tables

• The pages in the data chain and the rows in them are

ordered on the value of the clustered index key.

• All inserts are made at the point where the key value

in the inserted row fits in the ordering sequence

among existing rows.

• At a minimum, each clustered index will have one

IN_ROW_DATA allocation unit per partition. The

clustered index may also have one LOB_DATA

allocation unit per partition and one

ROW_OVERFLOW_DATA allocation unit per

partition.

A Clustered

Table

in a Single

Partition

15

Nonclustered Indexes

• Same B+-tree structure as clustered tables but

– The leaf layer of a nonclustered index is made up

of index pages instead of data pages.

– The data rows of the underlying table are not

sorted and stored in order based on their

nonclustered keys

• When a nonclustered index has multiple partitions,

each partition has a B+-tree structure that contains

the data for that specific partition.

16

Nonclustered Indexes

• Nonclustered indexes can be defined on a table or

view with a clustered index or a heap.

• Each index row in the leaves of the nonclustered

index contains the key value and a row locator. This

locator points to the data row in the clustered index or

heap having the key value.

• At a minimum, each nonclustered index will have one

IN_ROW_DATA allocation unit per partition. The

unclustered index may also have one LOB_DATA

allocation unit per partition and one

ROW_OVERFLOW_DATA allocation unit per

partition.

17

Row Locators

• If the table is a heap the row locator is a pointer to the row. The

pointer is built from the file identifier (ID), page number, and

number of the row on the page. The whole pointer is known as a

Row ID (RID).

• If the table has a clustered index, the row locator is the clustered

index key for the row.

– If the clustered index is not a unique index, SQL Server 2005

makes any duplicate keys unique by adding an internally

generated value called a uniqueifier. This four-byte value is

not visible to users.

– SQL Server retrieves the data row by searching the

clustered index using the clustered index key stored in the

leaf row of the nonclustered index.

18

Nonclustered Indexes

• When a nonclustered index has multiple partitions,

each partition has a B+tree structure that contains the

index rows for that specific partition.

A

Nonclustered

Index

in a Single

Partition

20

Pages

•Pages in file are numbered sequentially,

starting from 0

21

Pages

• The first page of a file contains information about the

attributes of the file

• Other pages at the beginning of the file can be used

for containing system information, such as allocation

maps

22

Management of Space on Disks

• Space on disks is managed in extents

• An extent is eight physically contiguous pages, or 64

KB. This means SQL Server databases have 16

extents per megabyte.

• SQL Server has two types of extents:

– Uniform extents are owned by a single object; all

eight pages in the extent can only be used by the

owning object.

– Mixed extents are shared by up to eight objects.

Each of the eight pages in the extent can be

owned by a different object.

23

Extents

• A new table or index is generally allocated pages

from mixed extents. When the table or index grows to

the point that it has eight pages, it then switches to

use uniform extents for subsequent allocations.

24

Space Allocation

• The data structures that manage extent allocations

and track free space have a relatively simple

structure. Benefits:

– The free space information is densely packed, so

relatively few pages contain this information.

– Most of the allocation information is not chained

together. This simplifies the maintenance of the

allocation information.

25

Space Allocation

• SQL Server uses two types of allocation maps to record the
allocation of extents:

• Global Allocation Map (GAM): GAM pages record what extents
have been allocated. Each GAM covers 64,000 extents, or
almost 4 GB of data. The GAM has one bit for each extent. If the
bit is 1, the extent is free; if the bit is 0, the extent is allocated.

• Shared Global Allocation Map (SGAM): SGAM pages record
which extents are currently being used as mixed extents and
also have at least one unused page. Each SGAM covers 64,000
extents, or almost 4 GB of data. The SGAM has one bit for each
extent. If the bit is 1, the extent is being used as a mixed extent
and has a free page. If the bit is 0, the extent is not used as a
mixed extent, or it is a mixed extent and all its pages are being
used.

26

GAM and SGAM Bits

Current use of extent GAM bit setting SGAM bit setting

Free, not being used 1 0

Uniform extent, or full mixed

extent
0 0

Mixed extent with free pages 0 1

27

Space Allocation Algorithm

• To allocate a uniform extent, the Database Engine searches the

GAM for a 1 bit and sets it to 0.

• To find a mixed extent with free pages, the Database Engine

searches the SGAM for a 1 bit.

• To allocate a mixed extent, the Database Engine searches the

GAM for a 1 bit, sets it to 0, and then also sets the

corresponding bit in the SGAM to 1.

• To deallocate an extent, the Database Engine makes sure that

the GAM bit is set to 1 and the SGAM bit is set to 0.

• The algorithms that are actually used internally by the Database

Engine are more sophisticated but they do not have to manage

chains of extent allocation information.

28

Tracking Free Space

• Page Free Space (PFS) pages record the allocation
status of each page, whether an individual page has
been allocated, and the amount of free space on
each page.

• The PFS has one byte for each page, recording
whether the page is allocated, and if so, whether it is
empty, 1 to 50 percent full, 51 to 80 percent full, 81 to
95 percent full, or 96 to 100 percent full.

• After an extent has been allocated to an object, the
Database Engine uses the PFS pages to record
which pages in the extent are allocated or free. This
information is used when the Database Engine has to
allocate a new page.

29

Tracking Free Space

• The amount of free space in a page is only

maintained for heap and Text/Image pages. It is used

when the Database Engine has to find a page with

free space available to hold a newly inserted row.

• Indexes do not require that the page free space be

tracked, because the point at which to insert a new

row is set by the index key values

30

File structure

• A PFS page is the first page after the file header

page in a data file (page number 1). This is followed

by a GAM page (page number 2), and then an SGAM

page (page 3). There is a PFS page approximately

8,000 pages in size after the first PFS page. There is

another GAM page 64,000 extents after the first GAM

page on page 2, and another SGAM page 64,000

extents after the first SGAM page on page 3.

31

Space Used by Allocation Units

• An Index Allocation Map (IAM) page maps the

extents in a 4-gigabye (GB) part of a database file

used by an allocation unit

• An IAM page has the same coverage as a GAM or

SGAM page.

• If the allocation unit contains extents from more than

one file, or more than one 4-GB range of a file, there

will be multiple IAM pages linked in an IAM chain.

• Therefore, each allocation unit has at least one IAM

page for each file on which it has extents.

32

IAM Pages

• An IAM page has a header that indicates the starting

extent of the range of extents mapped by the IAM

page.

• The IAM page also has a large bitmap in which each

bit represents one extent. The first bit in the map

represents the first extent in the range, the second bit

represents the second extent, and so on.

• If a bit is 0, the extent it represents is not allocated to

the allocation unit owning the IAM. If the bit is 1, the

extent it represents is allocated to the allocation unit

owning the IAM page.

33

IAM Pages

34

IAM Pages

• IAM pages are allocated as required for each

allocation unit and are located randomly in the file.

• The catalog view,

sys.system_internals_allocation_units points to

the first IAM page for an allocation unit.

35

Heap Organization

• The IAM pages are used to move through the heap. The only

logical connection between data pages is the information

recorded in the IAM pages.

• The column first_iam_page in the

sys.system_internals_allocation_units catalog view points to

the first IAM page in the chain of IAM pages that manage the

space allocated to the heap in a specific partition.

• Table scans or serial reads of a heap can be performed by

scanning the IAM pages to find the extents that are holding

pages for the heap. Because the IAM represents extents in the

same order that they exist in the data files, this means that serial

heap scans progress sequentially through each file.

36

Heap Organization

37

Space Allocation Algorithms

• When the SQL Server Database Engine has to insert a new row

in a heap or Text/Image page and no space is available in the

current page, it uses the IAM and PFS pages to find a page with

sufficient space to hold the row.

• The Database Engine uses the IAM pages to find the extents

allocated to the allocation unit. For each extent, the Database

Engine searches the PFS pages to see if there is a page that

can be used.

• Each IAM and PFS page covers lots of data pages, so there are

few IAM and PFS pages in a database. This means that the IAM

and PFS pages are generally in memory in the SQL Server

buffer pool, so they can be searched quickly.

38

Space Allocation Algorithms

• For clustered tables, the insertion point of a new row

is set by the index key. In this case, the search

process previously described does not occur.

• The Database Engine allocates a new extent to an

allocation unit only when it cannot quickly find a page

in an existing extent with sufficient space to hold the

row being inserted.

39

System Databases

• System databases store metadata regarding the

databases available in the instance

System database Description

master Database Records all the system-level information for an instance of SQL Server.

msdb Database Is used by SQL Server Agent for scheduling alerts and jobs.

model Database

Is used as the template for all databases created on the instance of SQL

Server. Modifications made to the model database, such as database size,

collation, recovery model, and other database options, are applied to any

databases created afterward.

Resource

Database

Is a read-only database that contains system objects that are included with

SQL Server. System objects are physically persisted in the Resource

database, but they logically appear in the sys schema of every database.

tempdb Database Is a workspace for holding temporary objects or intermediate result sets.

