
ADO.NET 2.0 in Visual Basic 2005

2

Preliminaries

• First you have to import the namespace containing

the ADO.NET classes

• Namespace with ADO.NET classes

Imports System.Data

• Namespace with ADO.NET classes specific for SQL

Server (.NET Framework Data Provider for SQL

Server)

Imports System.Data.SqlClient

3

Connection

• In ADO.NET you use a Connection object to

connect to a specific data source by supplying

necessary authentication information in a connection

string. The Connection object you use depends on

the type of data source.

• To connect to Microsoft SQL Server 7.0 or later, use

the SqlConnection object of the .NET Framework

Data Provider for SQL Server

4

Connection

Dim connection As New SqlConnection(_

"Data Source=192.168.0.252; User ID =si;” & _

“Password=sistemi;" & _

"Initial Catalog=AdventureWorks")

connection.Open()

5

Connection String Keywords

• “Data source” or “server”= name of database server,
optionally followed by \instance_name

• “User ID” and “Password”: SQL Server
authentication, for example:

– “User ID=myuser;Password=mypassword;Initial
Catalog=AdventureWorks;Server=MySqlServer“

– Username must be an SQL Server login

• “Integrated Security=true”: the Windows
authentication is used, no username and password
must be specified

• “Initial Catalog” or “Database”= the database to
connect to

6

Commands

• After establishing a connection to a data source, you

can execute commands and get results from the data

source using a Command object.

• You can create a command using the Command

constructor, which takes as arguments (both optional)

– an SQL statement to execute at the data source,

– a Connection object.

• You can also create a command for a particular

connection using the CreateCommand method of

the Connection object.

7

Creating a Command

Dim cmd As New SqlCommand(_

 “SELECT * FROM Person.Contact”, _

 connection)

8

Execute Methods

• The Command object exposes several Execute

methods that you can use to perform the intended

action.

– When returning results as a stream of data, use

ExecuteReader to return a DataReader object.

– Use ExecuteScalar to return a singleton value.

– Use ExecuteNonQuery to execute commands

that do not return rows

9

ExecuteReader

Dim reader As SqlDataReader = cmd.ExecuteReader()

Try

 While reader.Read()

 Console.WriteLine(String.Format("{0}, {1}", _

 reader(0), reader(1)))

 End While

Finally ' Always call Close when done reading.

 reader.Close()

End Try

10

DataReader

• You can use the ADO.NET DataReader to retrieve a

read-only, forward-only stream of data from a

database.

• Results are returned as the query executes, and are

stored in the network buffer on the client until you

request them using the Read method of the

DataReader.

11

DataReader

• You use the Read method of the DataReader object

to obtain a row from the results of the query.

• You can access each column of the returned row by

passing the name or ordinal reference of the column

to the DataReader.

12

ExecuteReader

Dim reader As SqlDataReader = cmd.ExecuteReader()

Try

 While reader.Read()

 Console.WriteLine(String.Format("{0}, {1}", _

 reader("ContactID"),reader("NameStyle")))

 End While

Finally ' Always call Close when done reading.

 reader.Close()

End Try

13

ExecuteReader

• For best performance, the DataReader provides a

series of methods that allow you to access column

values in their native data types (GetDateTime,

GetDouble, GetGuid, GetInt32, and so on).

• They take only the column number, not the column

name

14

DataReader

Do While reader.Read()

 Console.WriteLine(vbTab & "{0}" & vbTab & "{1}", _

 reader.GetInt32(0), reader.GetBoolean(1))

Loop

reader.Close()

15

DataReader

• The DataReader is a good choice when retrieving

large amounts of data because the data is not

cached in memory.

• You should always call the Close method when you

have finished using the DataReader object.

• Note that while a DataReader is open, the

Connection is in use exclusively by that

DataReader. You cannot execute any commands for

the Connection, including creating another

DataReader, until the original DataReader is closed.

16

Multiple Result Sets

• If multiple result sets are returned, the DataReader

provides the NextResult method to iterate through

the result sets in order.

17

Multiple Result Sets

Dim command As SqlCommand = New SqlCommand(_

"SELECT CurrencyCode, Name FROM Sales.Currency;" & _

"SELECT DepartmentID, Name FROM HumanResources.Department", _

 connection)

Dim reader As SqlDataReader = command.ExecuteReader()

Dim nextResult As Boolean = True

Do Until Not nextResult

 Console.WriteLine(vbTab & reader.GetName(0) & vbTab & _

 reader.GetName(1))

 Do While reader.Read()

 Console.WriteLine(vbTab & reader(0) & vbTab & _
 reader.GetString(1))

 Loop

 nextResult = reader.NextResult()

Loop

reader.Close()

18

Returning a Single Value

• You may need to return database information that is
simply a single value rather than in the form of a table
or data stream.

• For example, you may want to return the result of an
aggregate function such as COUNT(*), SUM(Price),
or AVG(Quantity).

• The Command object provides the capability to
return single values using the ExecuteScalar
method.

• The ExecuteScalar method returns as a scalar value
the value of the first column of the first row of the
result set

19

Returning a Single Value

' Assumes that connection is a valid SqlConnection

object.

Dim ordersCMD As SqlCommand = New _

 SqlCommand(_

 "SELECT COUNT(*) FROM Sales.Store", connection)

Dim count As Int32 = CInt(ordersCMD.ExecuteScalar())

Console.WriteLine("Number of stores={0}", count)

20

Modifying Data

• You can execute stored procedures or data definition

language statements (for example, CREATE TABLE

and ALTER COLUMN)

• You can execute INSERT, UPDATE and DELETE

statements

• These commands do not return rows as a query

would, so the Command object provides an

ExecuteNonQuery to process them.

21

Creating a Table

Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User ID=si;

Password=sistemi;" & _

 "Initial Catalog=prova").

connection.Open()

Dim queryString As String = "CREATE TABLE “ & _

“IMPIEGATI_MAT " & _

 "(ID INT PRIMARY KEY, NOME VARCHAR(20), COGNOME

VARCHAR(20), CITTA VARCHAR(50), ETA INT)"

 Dim command As SqlCommand = New

SqlCommand(queryString, connection)

 command.ExecuteNonQuery()

22

Modifying Data

 Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User ID=si;
Password=sistemi;" & _

 "Initial Catalog=prova")

 connection.Open()

 Dim queryString As String = "INSERT INTO " & _

 "IMPIEGATI_MAT " & _

 "Values('Mario', 'Rossi', 'Ferrara', 30)"

 Dim command As SqlCommand = New _

 SqlCommand(queryString, connection)

 Dim recordsAffected As Int32 = command.ExecuteNonQuery()

Console.WriteLine("{0} records affected", _

 recordsAffected)

23

Using Parameters

• The ? syntax for parameters can not be used

• Parameters must have a name

• Each SqlCommand has a list of parameters

associated to it

• They must be explicitly added to the parameters list

• Then their value can be set

24

Using Parameters

Dim connection As New SqlConnection(_

"Data Source=192.168.0.252; User ID =si;” & _

“Password=sistemi; " & _

"Initial Catalog=AdventureWorks")

connection.Open()

Dim cmd As New SqlCommand("SELECT * FROM “& _
“Person.Contact C where C.ContactID=@ID", _

 connection)

 connection.Open()

 cmd.Parameters.Add("@ID", SqlDbType.Int)

 cmd.Parameters("@ID").Value = 1

25

Using Parameters

 Dim reader As SqlDataReader = cmd.ExecuteReader()

 Try

 While reader.Read()

 Console.WriteLine(String.Format("{0}, {1}",

reader(0), reader(1)))

 End While

Finally ' Always call Close when done reading.

 reader.Close()

 End Try

26

Reuse of SqlCommand

• You can reset the CommandText property and reuse

the SqlCommand object.

• However, you must close the SqlDataReader before

you can execute a new or previous command.

27

Reuse of SqlCommand

 Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User ID=si;Password=sistemi;" & _

 "Initial Catalog=prova")

 connection.Open()

 Dim queryString As String = "INSERT INTO " & _

 "IMPIEGATI_MAT " & _

 "Values('Andrea', 'Bianchi', 'Rovigo', 31)"

 Dim command As SqlCommand = New SqlCommand(queryString,
connection)

 Dim recordsAffected As Int32 = command.ExecuteNonQuery()

 Console.WriteLine("{0} records affected", recordsAffected)

 command.CommandText = " INSERT INTO " & _

 "IMPIEGATI_MAT " & _

 "Values('Giovanni', 'Verdi', 'Bologna', 40)"

 recordsAffected = command.ExecuteNonQuery()

 Console.WriteLine("{0} records affected", recordsAffected)

28

DataSet

• The ADO.NET DataSet is a memory-resident

representation of data that provides a consistent

relational programming model regardless of the

source of the data it contains.

• A DataSet represents a complete set of data

including the tables that contain, order, and constrain

the data, as well as the relationships between the

tables.

• A DataSet can be populated with tables of data from

an existing relational data source using a

DataAdapter

29

DataSet

• A DataSet object is a collection of DataTable objects

• A DataTable object stores a table of data

• A DataSet object contains also information on the

relations among the tables and on the constraints.

30

Populating a DataSet

• By means of a DataAdapter

• To create a DataAdapter, pass to the constructor a
string containing an SQL command and an open
connection.

• Alternatively, pass a Command object. This will be
stored in the SelectCommand property

• The Fill method of the DataAdapter is used to
populate a DataSet with the results of the
SelectCommand of the DataAdapter. Fill takes as
its arguments a DataSet to be populated, and a
DataTable object, or the name of the DataTable to
be filled with the rows returned from the
SelectCommand.

31

Populating a DataSet

Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User

ID=si;Password=sistemi;" & _

 "Initial Catalog=prova")

 connection.Open()

 Dim queryString As String = _

 "SELECT* FROM " & _

 "IMPIEGATI_MAT"

 Dim adapter As SqlDataAdapter = New SqlDataAdapter(_

 queryString, connection)

 Dim impiegati As DataSet = New DataSet

 adapter.Fill(impiegati, "IMPIEGATI_MAT")

32

Showing Data

• To show data to the user, use a DataGridView

• If grdDemo is an object of type DataGridView

 grdDemo.DataSource = impiegati

 grdDemo.DataMember = "IMPIEGATI_MAT"

The first statement select the DataSource of the

DataGridView, the second selects the table to show

33

DataGridView

34

Editing Data in a DataSet

• You have to choose a DataTable

• You can access the content of a DataTable by using

the Rows collection of the DataTable.

• ds.Tables(“TableName”) returns the DataTable

object with name “TableName” from the DataSet ds

• ds.Tables(“TableName”).Rows(0) returns the row

number 0 from “TableName”

• ds.Tables(“TableName”).Rows(0)(ColumnNumber)

• ds.Tables(“TableName”).Rows(0)(ColumnName)

• Return the value of the column with ColumnNumber

or ColumnName

35

Editing Data in a Dataset

Dim row As DataRow = _

 impiegati.Tables(“IMPIEGATI_MAT").Rows(0)

row(“Nome") = “Maria"

36

Adding a Row

• You can add new rows of data to a DataTable.

• To add a new row, declare a new variable as type
DataRow.

• A new DataRow object is returned when you call the
NewRow method of DataTable.

• The DataTable then creates the DataRow object
based on the structure of the table

• You then can manipulate the newly added row using
the column index or the column name

• After data is inserted into the new row, the Add
method is used to add the row to the
DataRowCollection.

37

Adding a Row

 Dim imp As DataTable = _

 impiegati.Tables("IMPIEGATI_MAT")

 Dim workRow As DataRow = imp.NewRow()

workRow(“ID”)=4

 workRow("NOME") = "Stefano"

workRow(2) = "Zucchi"

workRow(3) = "Roma"

workRow("ETA") = 25

imp.Rows.Add(workRow)

38

Deleting a Row

• Use the Delete method of the DataRow object.

• The Delete method marks the row for deletion.

39

Deleting a Row

Dim imp As DataTable = _

 impiegati.Tables("IMPIEGATI_MAT")

 For Each row As DataRow In imp.Rows

 If row(2) = "Verdi" Then

 row.Delete()

 End If

 Next

40

Changes to the Database

• Updating the DataSet does not update the database

from which the data was taken to populate it

41

RowState

• Each DataRow object has a RowState property that

you can examine to determine the current state of the

row.

• Moreover, a row can have various version

• For example, after you have made a modification to a

column in a row, the row will have a row state of

Modified, and two row versions: Current, which

contains the current row values, and Original, which

contains the row values before the column was

modified.

42

RowState

• Main row states:

– Unchanged: No changes have been made since

it was created by DataAdapter.Fill.

– Added: The row has been added to the table

– Modified: Some element of the row has been

changed

– Deleted: The row has been deleted from a table

43

Updating the Data Source

• The Update method of the DataAdapter is called to

resolve changes from a DataSet back to the data

source.

• The Update method, like the Fill method, takes as

arguments an instance of a DataSet, and an optional

DataTable object or DataTable name. The DataSet

instance is the DataSet that contains the changes

that have been made, and the DataTable identifies

the table from which to retrieve the changes.

44

Updating the Data Source

• When you call the Update method, the DataAdapter analyzes

the changes that have been made and executes the appropriate

command (INSERT, UPDATE, or DELETE).

• When the DataAdapter encounters a change to a DataRow, it

uses the InsertCommand, UpdateCommand, or

DeleteCommand to process the change.

• This allows you to maximize the performance of the ADO.NET

application by specifying command syntax at design-time and,

where possible, through the use of stored procedures.

• You must explicitly set the commands before calling Update.

45

Command Generation

• If Update is called and the appropriate command
does not exist for a particular update (for example, no
DeleteCommand for deleted rows), an exception is
thrown

• If your DataTable maps to or is generated from a
single database table, you can take advantage of the
SqlCommandBuilder object to automatically
generate the DeleteCommand, InsertCommand,
and UpdateCommand of the DataAdapter.

• The table schema retrieved by the SelectCommand
property determines the syntax of the automatically
generated INSERT, UPDATE, and DELETE
statements

46

Command Generation

• The SqlCommandBuilder must execute the
SelectCommand in order to return the metadata
necessary to construct the INSERT, UPDATE, and
DELETE SQL commands.

• As a result, an extra trip to the data source is
necessary, which can hinder performance. To
achieve optimal performance, specify your
commands explicitly rather than using the
SqlCommandBuilder

• The SelectCommand must also return at least one
primary key or unique column. If none are present, an
InvalidOperation exception is generated, and the
commands are not generated.

47

Command Generation

 Dim connection As New SqlConnection(_

 "Data Source=192.168.0.252;User
ID=si;Password=sistemi;" & _

 "Initial Catalog=prova")

 connection.Open()

Dim queryString As String = _

 "SELECT * FROM " & _

 "IMPIEGATI_MAT"

Dim adapter As SqlDataAdapter = New
SqlDataAdapter(_

 queryString, connection)

48

Command Generation

Dim builder As SqlCommandBuilder = New

SqlCommandBuilder(adapter)

 builder.QuotePrefix = "["

 builder.QuoteSuffix = "]"

Dim impiegati As DataSet = New DataSet

 adapter.Fill(impiegati, "IMPIEGATI_MAT")

 grdDemo.DataSource = impiegati

 grdDemo.DataMember = "IMPIEGATI_MAT"

49

Update Command

• Updates rows at the data source for all rows in the

table with a RowState of Modified. Updates the

values of all columns except for columns that are not

updateable, such as identities or expressions.

Updates all rows where the column values at the data

source match the primary key column values of the

row, and where the remaining columns at the data

source match the original values of the row.

50

Update

 Dim row As DataRow = _

 impiegati.Tables("IMPIEGATI_MAT").Rows(0)

 row("Nome") = "Marianna"

' Without the SqlCommandBuilder, this line would fail.

 adapter.Update(impiegati, "IMPIEGATI_MAT")

51

Insert Command

• Inserts a row at the data source for all rows in the

table with a RowState of Added. Inserts values for all

columns that are updateable (but not columns such

as identities, expressions, or timestamps).

52

Insert

 Dim imp As DataTable = _

 impiegati.Tables("IMPIEGATI_MAT")

 Dim workRow As DataRow = imp.NewRow()

 workRow("ID") = 5

 workRow("Nome") = "Andrea"

 workRow(2) = "Biagi"

 imp.Rows.Add(workRow)

 ' Without the SqlCommandBuilder, this line would
fail.

 adapter.Update(impiegati, "IMPIEGATI_MAT")

 connection.Close()

53

Delete Command

• Deletes rows at the data source for all rows in the

table with a RowState of Deleted. Deletes all rows

where the column values match the primary key

column values of the row, and where the remaining

columns at the data source match the original values

of the row.

54

Delete

Dim imp As DataTable =

impiegati.Tables("IMPIEGATI_MAT")

 For Each row As DataRow In imp.Rows

 If row(1) = "Marianna" Then

 row.Delete()

 End If

 Next

 ' Without the SqlCommandBuilder, this line would

fail.

 adapter.Update(impiegati, "IMPIEGATI_MAT")

55

Optimistic Concurrency Control

• The logic for generating commands automatically for UPDATE
and DELETE statements is based on optimistic concurrency--
that is, records are not locked for editing and can be modified by
other users or processes at any time.

• Because a record could have been modified after it was
returned from the SELECT statement, but before the UPDATE
or DELETE statement is issued, the automatically generated
UPDATE or DELETE statement contains a WHERE clause,
specifying that a row is only updated if it contains all original
values and has not been deleted from the data source. This is
done to avoid new data being overwritten.

• Where an automatically generated update attempts to update a
row that has been deleted or that does not contain the original
values found in the DataSet, the command does not affect any
records and a DBConcurrencyException is thrown.

56

Manually Setting the Update Commands

• To specify a different concurrency control, the update

commands can be manually set

57

Transactions

• To perform a transaction

1. Call the BeginTransaction method of the

SqlConnection object to mark the start of the

transaction. The BeginTransaction method

returns a reference to a SqlTransaction object.

2. Assign the SqlTransaction object to the

Transaction property of the SqlCommand to be

executed. If a command is executed on a

connection with an active transaction, and the

SqlTransaction object has not been assigned to

the Transaction property of the Command

object, an exception is thrown.

58

Transactions

3. Execute the required commands.

4. Call the Commit method of the SqlTransaction

object to complete the transaction, or call the

Rollback method to abort the transaction. If the

connection is closed or disposed before either

the Commit or Rollback methods have been

executed, the transaction is rolled back.

59

Transactions

 Dim connection As New SqlConnection(_

 "Data Source=10.17.2.91;User ID=si;Password=sistemi;" & _

 "Initial Catalog=prova")

 connection.Open()

 ' Start a local transaction.

 Dim sqlTran As SqlTransaction = _
connection.BeginTransaction()

 ' Enlist the command in the current transaction.

 Dim command As SqlCommand = _
connection.CreateCommand()

 command.Transaction = sqlTran

60

Transactions

 Try

 command.CommandText = _

 "INSERT INTO IMPIEGATI_MAT(ID,NOME) “ & _

”VALUES(6,'Pietro')"

 command.ExecuteNonQuery()

 command.CommandText = _

 "INSERT INTO IMPIEGATI_MAT(ID,NOME) “ & _

VALUES(7,'Anna')"

 command.ExecuteNonQuery()

 sqlTran.Commit()

 Console.WriteLine("Both records were written to

database.")

Transactions

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 Console.WriteLine("Neither record was " & _

"written to database.")

 sqlTran.Rollback()

 End Try

61

