
NoSQL

Source: NoSQL Databases
Christof Strauch

www.christof-strauch.de/nosqldbs.pdf

http://www.christof-strauch.de/nosqldbs.pdf

NoSQL

• The term NoSQL was first used in 1998 for a
relational database that omitted the use of SQL

• The term was picked up again in 2009 and used for
conferences of advocates of non-relational databases

• Class of non-relational data storage systems
• Usually do not require a fixed table schema nor do

they use the concept of joins
• All NoSQL offerings relax one or more of the ACID

properties

2

NoSQL

• Stands for Not Only SQL

3

NoSQL !=

4

NoSQL

• “NoSQLers came to share how they had overthrown
the tyranny of slow, expensive relational databases in
favor of more efficient and cheaper ways of
managing data.”

Computerworld magazine
• Web 2.0 startups have begun their business without

Oracle and even without MySQL
• Instead, they built their own datastores influenced by

Amazon’s Dynamo and Google’s Bigtable in order to
store and process huge amounts of data like they
appear e.g. in social community or cloud computing
applications

5

NoSQL

• Most of these datastores became open source
software.

• For example, Cassandra originally developed for a
new search feature by Facebook is now part of the
Apache Software Project.

6

NoSQL features

• Avoidance of Unneeded Complexity: Relational
databases provide a variety of features and strict
data consistency. But this rich feature set and the
ACID properties implemented by RDBMSs might be
more than necessary for particular applications and
use cases.

• High Throughput: Some NoSQL databases provide
a significantly higher data throughput than traditional
RDBMSs

• Horizontal Scalability and Running on Commodity
Hardware: Machines can be added and removed (or
crash) without causing the same operational efforts to
perform sharding in RDBMS cluster-solutions

7

NoSQL features

• Avoidance of Expensive Object-Relational
Mapping: Most of the NoSQL databases are
designed to store data structures that are either
simple or more similar to the ones of object-oriented
programming languages compared to relational data
structures

• Complexity and Cost of Setting up Database
Clusters

• Compromising Reliability for Better Performance
• The Current “One size fit’s it all” Databases

Thinking Was and Is Wrong

8

NoSQL features

• The Myth of Effortless Distribution and
Partitioning of Centralized Data Models: data
models originally designed with a single database in
mind often cannot easily be partitioned and
distributed among database servers

• Movements in Programming Languages and
Development Frameworks: provide abstractions for
database access trying to hide the use of SQL and
relational databases

9

NoSQL Features

• Requirements of Cloud Computing: two major
requirements of datastores in cloud computing
environments

1. High until almost ultimate scalability—especially in
the horizontal direction

2. Low administration overhead

10

NoSQL Features

• The RDBMS plus Caching-Layer
Pattern/Workaround vs. Systems Built from
Scratch with Scalability in Mind: Shard MySQL to
handle high write loads, cache objects in memcached
to handle high read loads, and then write a lot of glue
code to make it all work together.

• Memchached: partitioned—though transient— in-
memory database

• It replicates most frequently requested parts of a
database to main memory, rapidly deliver this data to
clients and therefore disburden database servers
significantly.

11

Main memory

• As—compared to the 1970s—enormous amounts of
main memory have become cheap and available

• “The overwhelming majority of OLTP databases are
less than 1 Tbyte in size and growing [. . .] quite
slowly”

• Such databases are “capable of main memory
deployment now or in near future”. Stonebraker et al.

• The OLTP market a main memory market even today
or in near future.

12

CAP Theorem

• Consistency meaning if and how a system is in a
consistent state after the execution of an operation.

• A distributed system is typically considered to be
consistent if after an update operation of some writer
all readers see his updates in some shared data
source.

• Availability and especially high availability meaning
that a system is designed and implemented in a way
that allows it to continue operation (i.e. allowing read
and write operations) if e.g. nodes in a cluster crash
or some hardware or software parts are down due to
upgrades.

13

CAP Theorem

• Partition Tolerance understood as the ability of the
system to continue operation in the presence of
network partitions. These occur if two or more
“islands” of network nodes arise which (temporarily or
permanently) cannot connect to each other

14

CAP Theorem

It is impossible for a distributed computer system to
simultaneously provide all three of the following
guarantees
• Consistency: all nodes see the same data at the

same time
• Availability: every request receives a response about

whether it was successful or failed
• Partition Tolerance: the system continues to operate

despite arbitrary message loss
You have to choose only two. In almost all cases,
you would choose availability over consistency

15

CAP Theorem

16

ACID vs. BASE

• The internet with its wikis, blogs, social networks etc.
creates an enormous and constantly growing amount
of data needing to be processed, analyzed and
delivered.

• Companies, organizations and individuals offering
applications or services in this field have to determine
their individual requirements regarding performance,
reliability, availability, consistency and durability

• For a growing number of applications and use-cases
(including web applications, especially in large and
ultra-large scale, and even in the e-commerce
sector), availability and partition tolerance are more
important than strict consistency.

17

BASE

• The BASE approach forfeits the ACID properties of
consistency and isolation in favor of “availability,
graceful degradation, and performance”

• The acronym BASE is composed of the following
characteristics:
– Basically available
– Soft-state
– Eventual consistency

• An application works basically all the time (basically
available), does not have to be consistent all the time
(soft-state) but will be in some known state eventually
(eventual consistency)

18

Strict Consistency

• All read operations must return data from the latest
completed write operation, regardless of which
replica the operations went to

• This implies that either read and write operations for
a given dataset have to be executed on the same
node or that strict consistency is assured by a
distributed transaction protocol (like two-phase-
commit or Paxos).

• As we have seen above, such a strict consistency
cannot be achieved together with availability and
partition tolerance according to the CAP-theorem

19

Eventual Consistency

• Readers will see writes, as time goes on
• In a steady state, the system will eventually return the

last written value
• Clients therefore may face an inconsistent state of

data as updates are in progress.
• For instance, in a replicated database updates may

go to one node which replicates the latest version to
all other nodes that contain a replica of the modified
dataset so that the replica nodes eventually will have
the latest version.

20

Eventual Consistency

• An eventually consistent system may provide more
differentiated, additional guarantees to its clients

• Read Your Own Writes (RYOW) Consistency
signifies that a client sees his updates immediately
after they have been issued and completed,
regardless if he wrote to one server and in the
following reads from different servers.

• Updates by other clients are not visible to him
instantly

21

Versioning of Datasets in Distributed
Scenarios

• If datasets are distributed among nodes, they can be
read and altered on each node and no strict
consistency is ensured by distributed transaction
protocols

• Questions arise on how “concurrent” modifications
and versions are processed and to which values a
dataset will eventually converge to.

22

Solutions to versioning

• Timestamps seem to be an obvious solution for
developing a chronological order. However,
timestamps “rely on synchronized clocks and don’t
capture causality”

• Optimistic Locking implies that a unique counter or
clock value is saved for each piece of data. When a
client tries to update a dataset it has to provide the
counter/clock-value of the revision it likes to update

• Vector Clocks are an alternative approach to
capture order and allow reasoning between updates
in a distributed system

23

Solutions to versioning

• Multiversion Storage means to store a timestamp
for each table cell. These timestamps “don’t
necessarily need to correspond to real life”, but can
also be some artificial values that can be brought into
a definite order.

• For a given row multiple versions can exist
concurrently.

• Besides the most recent version a reader may also
request the “most recent before T” version.

24

Vector clocks

• A vector clock is defined as a tuple V [0], V [1], ...,V
[n] of clock values

• In a distributed scenario node i maintains such a
tuple of clock values, which represent the state of
itself and the other (replica) nodes’ state it is aware
about at a given time (Vi[0] for the clock value of the
first node, Vi[1] for the clock value of the second
node, . . . Vi[i] for itself, . . . Vi[n] for the clock value of
the last node).

• Clock values may be real timestamps derived from a
node’s local clock, version/revision numbers or some
other ordinal values.

25

Vector clocks

• As an example, the vector clock on node number 2
may take on the following values:

• V2[0] = 45, V2[1] = 3, V2[2] = 55
• This reflects that from the perspective of the second

node, the following updates occurred to the dataset
the vector clock refers to:
– an update on node 1 produced revision 3
– an update on node 0 lead to revision 45
– the most recent update is encountered on node 2

itself which produced revision 55.

26

Vector clocks updates

• Vector clocks are updated in a way defined by the
following rules
– If an internal operation happens at node i, this

node will increment its clock Vi[i]. This means that
internal updates are seen immediately by the
executing node

– If node i sends a message to node k, it first
advances its own clock value Vi[i] and attaches
the vector clock Vi to the message to node k.
Thereby, he tells the receiving node about his
internal state and his view of the other nodes at
the time the message is sent.

27

Vector clocks updates

– If node i receives a message from node j, it first
advances its vector clock Vi[i] and then merges its
own vector clock with the vector clock Vmessage
attached to the message from node j so that:

• Vi = max(Vi, Vmessage)
To compare two vector clocks Vi and Vj in order to
derive a partial ordering, the following rule is applied:

• Vi > Vj, if ∀k Vi[k] > Vj [k]
If neither Vi > Vj nor Vi < Vj applies, a conflict
caused by concurrent updates has occurred and
needs to be resolved by e.g. a client application.

28

Vector clocks for consistency

• Vector clocks can be utilized to resolve consistency
between writes on multiple replicas

• Replica nodes do typically not maintain a vector clock
for clients but clients participate in the vector clock
scenario in such a way that they keep a vector clock
of the last replica node they have talked to and use
this vector clock depending on the client consistency
model that is required; e.g. for monotonic read
consistency a client attaches this last vector clock it
received to requests and the contacted replica node
makes sure that the vector clock of its response is
greater than the vector clock the client submitted.
This means that the client can be sure to see only
newer versions of some piece of data 29

Advantages of vector clocks

• Compared to the alternative approaches mentioned
above (timestamps, optimistic locking with revision
numbers, multiversion storage) the advantages of
vector clocks are:
– No dependence on synchronized clocks
– No total ordering of revision numbers required
– No need to store and maintain multiple revisions

of a piece of data on all nodes

30

Partitioning

• Assuming that data in large scale systems exceeds
the capacity of a single machine and should also be
replicated to ensure reliability and allow scaling
measures such as load-balancing, ways of
partitioning the data of such a system have to be
thought about.

• Approaches:
– Memory Caches

31

Memory Caches

• Can be seen as partitioned—though transient—in-
memory databases as they replicate most frequently
requested parts of a database to main memory,
rapidly deliver this data to clients and therefore
disburden database servers significantly (e.g.
memcached).

• In the case of memcached the memory cache
consists of an array of processes with an assigned
amount of memory that can be launched on several
machines in a network and are made known to an
application via configuration.

32

Memory Caches

• The memcached protocol whose implementation is
available in different programming languages to be
used in client applications provides a simple key-
/value-store API.

• It stores objects placed under a key into the cache by
hashing that key against the configured memcached-
instances

33

Clustering

• Clustering of database servers is another approach
to partition data which strives for transparency
towards clients who should not notice talking to a
cluster of database servers instead of a single server.

• While this approach can help to scale the persistence
layer of a system to a certain degree many criticize
that clustering features have only been added on top
of DBMSs that were not originally designed for
distribution

34

Separating Reads from Writes

• Write-operations for all or parts of the data are routed
to master(s)

• A number of replica-servers satisfy read requests
(slaves).

• If the master replicates to its clients asynchronously
there are no write lags but if the master crashes
before completing replication to at least one client the
write-operation is lost

• If the master replicates writes synchronously the
update does not get lost, but write lags cannot be
avoided. If the master crashes the slave with the
most recent version of data can be elected as the
new master.

35

Separating Reads from Writes

• The master-/slave-model works well if the read/write
ratio is high.

• The replication of data can happen either by transfer
of state (i.e. copying of the recent version of data or
delta towards the former version) or by transfer of
operations which are applied to the state on the
slaves nodes and have to arrive in the correct order

36

Sharding

• Sharding means to partition the data in such a way
that data typically requested and updated together
resides on the same node and that load and storage
volume is roughly evenly distributed among the
servers

• Data shards may also be replicated for reasons of
reliability and load-balancing and it may be either
allowed to write to a dedicated replica only or to all
replicas maintaining a partition of the data.

• To allow such a sharding scenario there has to be a
mapping between data partitions (shards) and
storage nodes that are responsible for these shards.

37

Sharding

• This mapping can be static or dynamic, determined
by a client application, by some dedicated “mapping-
service/component” or by some network
infrastructure between the client application and the
storage nodes

• The downside of sharding scenarios is that joins
between data shards are not possible, so that the
client application or proxy layer inside or outside the
database has to issue several requests and
postprocess (e.g. filter, aggregate) results instead.

38

Sharding

• In a partitioned scenario knowing how to map
database objects to servers is key. An obvious
approach may be a simple hashing of database-
object primary keys against the set of available
database nodes in the following manner:

• partition = hash(o) mod n with o = object to hash, n =
number of nodes

• The downside of this procedure is that at least parts
of the data have to be redistributed whenever nodes
leave and join

39

Sharding

• In a setting where nodes may join and leave at
runtime (e.g. due to node crashes, temporal
unattainability, maintenance work) a different
approach such as consistent hashing has to be found

40

Consistent Hashing

• The basic idea behind the consistent hashing
algorithm is to hash both objects and nodes using the
same hash function

• Not only hashing objects but also machines has the
advantage that machines get an interval of the hash-
function’s range and adjacent machines can take
over parts of the interval of their neighbors if those
leave and can give parts of their own interval away if
a new node joins and gets mapped to an adjacent
interval

41

Consistent Hashing

• The consistent hashing approach has the advantage
that client applications can calculate which node to
contact in order to request or write a piece of data
and there is no metadata server necessary as in
systems like the the Google File System (GFS) which
has such a central (though clustered) metadata
server that contains the mappings between storage
servers and data partitions

42

Consistent Hashing

• Three red colored
nodes A, B and C and
four blue colored
objects 1–4 are mapped
to a hash-function’s
result range pictured as
a ring.

• Objects are mapped by
moving clockwise

• objects 4 and 1 are
mapped to node A,
object 2 to node B and
object 3 to node C. 43

Consistent Hashing

• When a node leaves
the system, objects will
get mapped to their
adjacent node (in
clockwise direction) and
when a node enters the
system it will get
hashed onto the ring
and will overtake
objects

44

Consistent Hashing

• Node C left and node D
entered the system, so
that now objects 3 and
4 will get mapped to
node D

• By changing the
number of nodes not all
objects have to be
remapped to the new
set of nodes but only
part of the objects.

45

Virtual Nodes

• Issues with this procedure: at first, the distribution of
nodes on the ring is actually random as their
positions are determined by a hash function and the
intervals between nodes may be “unbalanced” which
in turn results in an unbalanced distribution of cache
objects on these nodes

• Solution: hash a number of representatives/
replicas—also called virtual nodes—for each physical
node onto the ring

46

Virtual Nodes

• The number of virtual nodes
for a physical can be
defined individually
according to its hardware
capacity (cpu, memory, disk
capacity) and does not have
to be the same for all
physical nodes.

• By appending e.g. a replica
counter to a node’s id which
then gets hashed, these
virtual nodes should
distribute points for this
node all over the ring. 47

Replication Factor

• If a node has left the scene, data stored on this node
becomes unavailable, unless it has been replicated to
other nodes before

• In the opposite case of a new node joining the others,
adjacent nodes are no longer responsible for some
pieces of data which they still store but not get asked
for anymore as the corresponding objects are no
longer hashed to them by requesting clients.

• Solution: a replication factor (r) is introduced: not only
the next node but the next r (physical!) nodes in
clockwise direction become responsible for an object

48

Replication Factor

• The uppercase letters
represent storage
nodes and the circles
with arrows represent
data objects which are
mapped onto the ring at
the depicted positions.

• r=3 so for every data
object three physical
nodes are responsible
which are listed in
square brackets in the
figure. 49

Read and write operations

• Introducing replicas in a partitioning scheme—
besides reliability benefits—also makes it possible to
spread workload for read requests that can go to any
physical node responsible for a requested piece of
data.

50

Membership Changes

• In a partitioned database where nodes may join and
leave the system at any time without impacting its
operation all nodes have to communicate with each
other, especially when membership changes.

51

New node

• When a new node joins the system the following
actions have to happen
1. The newly arriving node announces its presence

and its identifier to adjacent nodes or to all nodes
via broadcast.

2. The neighbors of the joining node react by
adjusting their object and replica ownerships.

3. The joining node copies datasets it is now
responsible for from its neighbors. This can be
done in bulk and also asynchronously.

4. If, in step 1, the membership change has not
been broadcasted to all nodes, the joining node
is now announcing its arrival 52

New node

• Node X joins a system
for which r=3

• It is hashed between A
and B, so that the
nodes H, A and B
transfer data to the new
node X and after that
the nodes B, C and D
can drop parts of their
data for which node X is
now responsible as a
third replica (in addition
to nodes H, A and B).

53

Node leaving

• When a node leaves the system the following actions
have to occur

• Nodes within the system need to detect whether a
node has left as it might have crashed and not been
able to notify the other nodes of its departure. It is
also common in many systems that no notifications
get exchanged when a node leaves.

• If a node’s departure has been detected, the
neighbors of the node have to react by exchanging
data with each other and adjusting their object and
replica ownerships.

54

Node leaving

• Node B leaves the
system. Nodes C, D
and E become
responsible for new
intervals of hashed
objects and therefore
have to copy data from
nodes in
counterclockwise
direction and also
reorganize their
internal representation
of the intervals

55

Cluster management

56

• Internal nodes may need to find each other
• Since nodes may fail and recover, a configuration file

doesn't really suffice
• We need a way of keeping some kind of consistent

view of the cluster state

Omniscient Master

• When nodes join/leave or change state, they talk to a
master

• That master holds the authoritative view of the world
• Pros: simplicity, single consistent view of the cluster
• Cons: potential Single Point of Failure (SPOF) unless

master is made highly available. Not partition-
tolerant.

57

Gossip

• Gossip is one method to propagate a view of cluster
status
– Every t seconds, on each node:
– The node selects some other node to chat with.
– The node reconciles its view of the cluster with its

gossip buddy
– Each node maintains a “timestamp" for itself and

for the most recent information it has from every
other node

• Information about cluster state spreads in O(log n)
rounds (eventual consistency)

• Scalable and no SPOF, but state is only eventually
consistent 58

Storage Layout

• It determines how the disk is accessed and therefore
directly implicate performance.

• Furthermore, the storage layout defines which kind of
data (e.g. whole rows, whole columns, subset of
columns) can be read en bloque

59

Row-Based Storage Layout

• Means that a table of a relational model gets
serialized as its lines are appended and flushed to
disk

• The advantages of this storage layout are that at first
whole datasets can be read and written in a single IO
operation and that secondly one has a good locality
of access (on disk and in cache) of different columns

• On the downside, operating on columns is expensive
as a considerable amount data (in a naïve
implementation all of the data) has to be read.

60

Columnar Storage Layout

• Serializes tables by appending their columns and
flushing them to disk

• Therefore operations on columns are fast and cheap
while operations on rows are costly and can lead to
seeks in a lot or all of the columns.

• A typical application field for this type of storage
layout is analytics where an efficient examination of
columns for statistical purposes is important.

61

Columnar Storage Layout with Locality
Groups

• Is similar to column-based storage but adds the
feature of defining so called locality groups that are
groups of columns expected to be accessed together
by clients.

• The columns of such a group may therefore be
stored together and physically separated from other
columns and column groups

• The idea of locality groups was introduced in
Google’s Bigtable paper.

62

Log Structured Merge Trees

• (LSM-trees aka «The BigTable model») in contrast to
the storage layouts explained before do not describe
how to serialize logical datastructures (like tables,
documents etc.) but how to efficiently use memory
and disk storage in order to satisfy read and write
requests in an efficient, performant and still safely
manner.

• The idea is to hold chunks of data in memory (in so
called Memtables), maintaining on-disk commit-logs
for these in-memory data structures and flushing the
memtables to disk from time to time into so called
SSTables

63

Log Structured Merge Trees

• Random IO for writes is bad (and impossible in some
distributed file systems)

• LSM Trees convert random writes to sequential
writes

• Writes go to a commit log and in-memory storage
(Memtable)

• The Memtable is occasionally flushed to disk
(SSTable)

• The disk stores are periodically compacted

64

LSM Data Layout

65

Read path

66

Write path

67

LSM Memtable Flush

68

LSM Compaction

69

SSTables are immutable and get compacted
over time by copying the compacted SSTable
to another area of the disk while preserving the
original SSTable and removing the latter after
the compactation process has happened

Query Models

• Substantial differences in the querying capabilities
the different NoSQL datastores offer

• Whereas key/value stores by design often only
provide a lookup by primary key or some id field and
lack capabilities to query any further fields, other
datastores like the document databases CouchDB
and MongoDB allow for complex queries

• This is not surprising as in the design of many
NoSQL databases rich dynamic querying features
have been omitted in favor of performance and
scalability

70

Data models

• key-/value-stores
• document databases
• column-oriented databases

71

Key-/value-stores

• Simple data model: a map/dictionary, allowing clients
to put and request values per key.

• Besides the data-model and the API, modern key-
value stores favor high scalability over consistency
and therefore most of them also omit rich ad-hoc
querying and analytics features (especially joins and
aggregate operations are set aside)

• Often, the length of keys to be stored is limited to a
certain number of bytes while there is less limitation
on values

• A large number of this class of NoSQL stores has
been heavily influenced by Amazon’s Dynamo

72

Amazon’s Dynamo

• The interface Dynamo provided to client applications
consists of only two operations:
– get(key), returning a list of objects and a context
– put(key, context, object), with no return value

• The get-operation may return more than one object if
there are version conflicts for objects stored under
the given key.

• It also returns a context, in which system metadata
such as the object version is stored, and clients have
to provide this context object as a parameter in
addition to key and object in the put operation.

73

Amazon’s Dynamo Implementation

• Key and object values are not interpreted by Dynamo
but handled as “an opaque array of bytes”. The key is
hashed by the MD5 algorithm to determine the
storage nodes responsible for this key-/value-pair.

• To provide incremental scalability, Dynamo uses
consistent hashing to dynamically partition data
across the storage hosts that are present in the
system at a given time

• To determine conflicting versions, perform syntactic
reconciliation and support client application to resolve
conflicting versions Dynamo uses the concept of
vector clocks

74

Project Voldemort

• A key-/value-store initially developed for and still
used at LinkedIn.

• API consisting of:
– get(key), returning a value object
– put(key, value)
– delete(key)

• Both, keys and values can be complex, compound
objects such as lists and maps

75

Project Voldemort

• The simple data structure and API of a key-value
store does not provide complex querying capabilities:
joins have to be implemented in client applications
while constraints on foreign-keys are impossible;
besides, no triggers and views may be set up.

• Project Voldemort allows namespaces for key-/value-
pairs called “stores“, in which keys are unique.

• Each key is associated with exactly one value

76

Other Key-/Value-Stores

• Tokyo Cabinet and Tokyo Tyrant
• Redis
• Memcached and MemcacheDB
• Scalaris

77

Document Databases

• They allow to encapsulate key-/value-pairs in
documents.

• There is no strict schema documents have to
conform to which eliminates the need of schema
migration efforts

• The two major representatives for the class are
– Apache CouchDB
– MongoDB

78

Apache CouchDB

• The main abstraction and data structure in CouchDB
is a document.

• Documents consist of named fields that have a
key/name and a value.

• A fieldname has to be unique within a document and
its assigned value may a string (of arbitrary length),
number, Boolean, date, an ordered list or an
associative map

• Documents may contain references to other
documents (URIs, URLs) but these do not get
checked or held consistent by the database

• A further limitation is that documents in CouchDB
cannot be nested 79

Apache CouchDB

• A wiki article may be an example of such a
document:

"Title" : "CouchDB",
"Last editor" : "172.5.123.91" ,
"Last modified": "9/23/2010" ,
"Categories": ["Database", "NoSQL", "Document
Database"],
"Body": "CouchDB is a ...",
"Reviewed": false

80

Apache CouchDB

• Besides fields, documents may also have
attachments

• CouchDB maintains some metadata such as a
unique identifier and a revision number for each
document

• The document id is a 128 bit value (so a CouchDB
database can store 3.4x1038 different documents)

• The revision number is a 32 bit value determined by
a hash-function

81

Apache CouchDB

• Documents do not correspond to a fixed schema
(schema-free) but have some inner structure known
to applications as well as the database itself.

• Compared to key-/value-stores data can be
evaluated more sophisticatedly

• In the web application field there are a lot of
document-oriented applications which CouchDB
addresses as its data model fits this class of
applications and the possibility to iteratively extend or
change documents can be done with a lot less effort
compared to a relational database

82

Apache CouchDB

• Each CouchDB database consists of exactly one
flat/non-hierarchical namespace that contains all the
documents which have a unique identifier (consisting
of a document id and a revision number aka
sequence id)

• CouchDBs way to query, present, aggregate and
report the semi-structured document data are views

• A typical example for views is to separate different
types of documents (such as blog posts, comments,
authors in a blog system) which are not distinguished
by the database itself as all of them are just
documents to it
 83

Apache CouchDB

• Views are defined by JavaScript functions which
neither change nor save or cache the underlying
documents but only present them to the requesting
user or client application.

• Therefore documents as well as views (which are in
fact special documents, called design-documents)
can be replicated and views do not interfere with
replication.

84

Views

• Views and are calculated on demand.
• There is no limitation regarding the number of views

in one database or the number of representations of
documents by views

• The JavaScript functions defining a view are called
map and reduce which have similar responsibilities
as in Google’s MapReduce approach

85

Map function

• The map function gets a document as a parameter,
can do any calculation and may emit arbitrary data
for it if it matches the view’s criteria; if the given
document does not match these criteria the map
function emits nothing.

• Examples of emitted data for a document are the
document itself, extracts from it, references to or
contents of other documents (e.g. semantically
related ones like the comments of a user in a forum,
blog or wiki).

86

Map and reduce functions

• The data structure emitted by the map function is a
triple consisting of the document id, a key and a
value which can be chosen by the map function.

• After the map function has been executed its results
get passed to an optional reduce function which can
do some aggregation on the view

• As all documents of the database are processed by a
view’s functions this can be time consuming and
resource intensive for large databases

• Therefore a view is not created and indexed when
write operations occur but on demand (at the first
request directed to it) and updated incrementally
when it is requested again 87

Apache CouchDB

• CouchDB databases are addressed via a RESTful
HTTP interface that allows to read and update
documents

• The CouchDB project also provides libraries
providing convenient access from a number of
programming languages as well as a web
administration interface

88

Interface

• CouchDB documents are requested by their URL
according to the RESTful HTTP paradigm (read via
HTTP GET, created and updated via HTTP PUT and
deleted via HTTP DELETE method).

• A read operation has to go before an update to a
document as for the update operation the revision
number of the document that has been read and
should be updated has to be provided as a
parameter.

• To retrieve document urls—and maybe already their
data needed in an application—views can be
requested by client applications (via HTTP GET).

89

MongoDB

• MongoDBs name is derived from the adjective
humongous

• It is a schema-free document database
• MongoDB databases reside on a MongoDB server

that can host more than one of such databases which
are independent and stored separately by the
MongoDB server.

• A database contains one or more collections
consisting of documents.

• In order to control access to the database a set of
security credentials may be defined for databases

90

MongoDB

• The documents within a collection may be
heterogeneous although the MongoDB manual
suggests to create “one database collection for each
of your top level objects”

• Once the first document is inserted into a database, a
collection is created automatically and the inserted
document is added to this collection

• JavaScript is used by the interactive MongoDB shell

91

Collections

• Collections may also be created explicitly by the
createCollection-command:

db. createCollection (<name >, {< configuration
parameters >})

92

Documents

• The abstraction and unit of data storable in MongoDB
is a document, a data structure comparable to an
XML document, a Python dictionary, a Ruby hash or
a JSON document.

• In fact, MongoDB persists documents by a format
called BSON which is very similar to JSON but in a
binary representation for reasons of efficiency and
because of additional datatypes compared to JSON

• Documents in MongoDB are limited in size by 4
megabytes

93

Documents

• As an example, a document representing a wiki
article may look like the following in JSON notation:

{
title: "MongoDB",
last_editor: "172.5.123.91" ,
last_modified: new Date ("9/23/2010") ,
body: "MongoDB is a...",
categories: [" Database", "NoSQL", "Document
Database "] ,
reviewed: false
}

94

Documents

• To add such a document into a MongoDB collection
the insert function is used:

db.<collection >. insert({ title: "MongoDB", last_editor :
... });
• Once a document is inserted it can be retrieved by

matching queries issued by the find operation and
updated via the save operation:

db.<collection >. find({ categories: ["NoSQL",
"Document Databases"] });
db.<collection >. save({ ... });

95

MongoDB

• MongoDB does not provide a foreign key mechanism
so that references between documents have to be
resolved by additional queries issued from client
applications.

• References may be set manually by assigning some
reference field the value of the _id field of the
referenced document

• The MongoDB points out that although references
between documents are possible there is the
alternative to nest documents within documents. The
embedding of documents is “much more efficient”
according to the MongoDB manual as “[data] is then
colocated on disk”.

96

Queries

• Selection Queries in MongoDB are specified as
query objects, BSON documents containing selection
criteria, and passed as a parameter to the find
operation which is executed on the collection to be
queried

queried db.<collection >. find({ title: "MongoDB");
• The selection criteria given to the find operation can

be seen as an equivalent to the WHERE clause in
SQL statements

97

Selection

• In the selection criteria passed to the find operation a
lot of operators are allowed—besides equality
comparisons as in the example above.

• These have the following general form:
<fieldname >: {$<operator >: <value >}
<fieldname >: {$<operator >: <value >, $<operator >:
value} // AND -junction

98

Selection

• Examples of allowed operators
• Non-equality: $ne
• Numerical Relations: $gt, $gte, $lt, $lte (representing

>, ≥, <, ≤)
• Equality-comparison to (at least) one element of an

array: $in with an array of values as comparison
operand, e.g.

{ categories: {$in: ["NoSQL", "Document Databases"]} }
…

99

Projection

• A second parameter can be given to the find
operation to limit the fields that shall be retrieved—
analogous to the projection clause of a SQL
statement

• These fields are again specified by a BSON object
consisting of their names assigned to the value 1:

db.<collection >. find({<selection criteria >}, {<field_1
>:1, ...});

100

Result Processing

• The results of the find operation may be processed
further by arranging them using the sort operation,
restricting the number of results by the limit operation
and ignoring the first n results by the skip operation:

db.<collection >. find(...).sort({<field >: <1| -1
>}).limit(<number >).skip(<number >);

101

Inserts

• Documents are inserted into a MongoDB collection
by executing the insert operation which simply takes
the document to insert as an argument:

db.<collection >. insert(<document >);
• MongoDB appends the primary key field _id to the

document passed to insert.
• Alternatively, documents may also be inserted into a

collection using the save operation:
db.<collection >. save(<document >);
• The save operation comprises inserts as well as

updates: if the _id field is not present in the document
given to save it will be inserted; otherwise it updates
the document with that _id value in the collection 102

Updates

• The save operation can be used to update
documents.

• However, there is also an explicit update operation
with additional parameters and the following syntax:

db.<collection >. update(<criteria >, <new document >);

103

Deletes

• To delete documents from a collection, the remove
operation has to be used which takes a document
containing selection criteria as a parameter:

db.<collection >. remove({ <criteria > });
• Selection criteria has to be specified in the same

manner as for the find operation

104

The eval-operation

• To execute arbitrary blocks of code locally on a
database server, the code has to be enclosed by an
anonymous JavaScript function and passed to
MongoDB’s generic eval operation:

db.eval(function(<formal parameters >) { ... }, <actual
parameters >);

105

Implementation

• MongoDB supports horizontal scaling via an
automatic sharding architecture to distribute data
across “thousands of nodes” with automatic
balancing of load and data as well as automatic
failover

• MongoDB uses read/write locks for many operations
with any number of concurrent read operations
allowed, but typically only one write operation. The
acquisition of write locks is greedy and, if pending,
prevents subsequent read lock acquisitions

• Replication is asynchronous

106

Column-Oriented Databases

• The approach to store and process data by column
instead of row has its origin in analytics and business
intelligence where column-stores operating in a
shared-nothing massively parallel processing
architecture can be used to build high-performance
applications.

• The class of column-oriented stores is seen less
puristic, also subsuming datastores that integrate
column- and row-orientation

• The main inspiration for column-oriented datastores
is Google’s Bigtable

• Cassandra is inspired by Bigtable
107

Google’s Bigtable

108

Google’s Bigtable

• The data structure provided and processed by
Google’s Bigtable is described as “a sparse,
distributed, persistent multidimensional sorted map”.

• Values are stored as arrays of bytes which do not get
interpreted by the data store. They are addressed by
the triple (row-key, column-key, timestamp)

• Example of a Bigtable storing information a web
crawler might emit

109

Bigtable

• The map contains a non-fixed number of rows
representing domains read by the crawler as well as
a non-fixed number of columns:
– the first of these columns (contents:) contains the

page contents
• the others(anchor:<domain-name>) store link texts

from referring domains—each of which is
represented by one dedicated column
 110

Rows

• Every value also has an associated timestamp (t3, t5,
t6 for the page contents, t9 for the link text from CNN
Sports Illustrated, t8 for the link text from MY-look).

• Row keys in Bigtable are strings of up to 64KB size.
• Rows are kept in lexicographic order and are

dynamically partitioned by the datastore into so called
tablets, “the the unit of distribution and load
balancing” in Bigtable.

• Client applications can exploit these properties by
wisely choosing row keys as the ordering of row-keys
directly influences the partitioning of rows into tablets

111

Rows

• Row ranges with a small lexicographic distance are
probably split into only a few tablets, so that read
operations will have only a small number of servers
delivering these tablets

• In the example the domain names used as row keys
are stored hierarchically descending (from a DNS
point of view), so that subdomains have a smaller
lexicographic distance than if the domain names
were stored reversely (e.g. com.cnn.blogs,
com.cnn.www in contrast to blogs.cnn.com,
www.cnn.com).

112

Columns

• The number of columns per table is not limited.
• Columns are grouped by their key prefix into sets

called column families.
• Column families are an important concept in Bigtable

as they have specific properties and implications
– They “form the basic unit of access control”,
– They are expected to store the same or a similar

type of data.
– Their data gets compressed together by Bigtable.
– They have to be specified before data can be

stored into a column contained in a column family.

113

Columns

• The example shows two column families: content and
anchor.

• The content column family consists of only one
column whose name does not have to be qualified
further.

• In contrast, the anchor column family contains two
columns qualified by the domain name of the
referring site.

114

Timestamps

• Timestamps, represented as 64-bit integers, are
used in Bigtable to discriminate different reversion of
a cell value.

• The value of a timestamp is either assigned by the
datastore (i.e. the actual timestamp of saving the cell
value) or chosen by client applications (and required
to be unique).

• Bigtable orders the cell values in decreasing order of
their timestamp value “so that the most recent
version can be read first”.

• In order to disburden client applications from deleting
old or irrelevant revisions of cell values, an automatic
garbage-collection is provided 115

API

• Read Operations include the lookup and selection of
rows by their key, the limitation of column families as
well as timestamps (comparable to projections in
relational databases) as well as iterators for columns.

• Write Operations for Rows cover the creation,
update and deletion of values for a column of the
particular row.

• Write Operations for Tables and Column Families
include their creation and deletion.

• Administrative Operations allow to change “cluster,
table, and column family metadata, such as access
control rights”.

116

API

• Server-Side Code Execution is provided for scripts
written in Google’s data processing language Sawzall

• MapReduce Operations may use contents of
Bigtable maps as their input source as well as output
target.

• Transactions are provided on a single-row basis:
“Every read or write of data under a single row key is
atomic (regardless of the number of different columns
being read or written in the row), a design decision
that makes it easier for clients to reason about the
system’s behavior in the presence of concurrent
updates to the same row”

117

	NoSQL
	NoSQL
	NoSQL
	Diapositiva numero 4
	NoSQL
	NoSQL
	NoSQL features
	NoSQL features
	NoSQL features
	NoSQL Features
	NoSQL Features
	Main memory
	CAP Theorem
	CAP Theorem
	CAP Theorem
	CAP Theorem
	ACID vs. BASE
	BASE
	Strict Consistency
	Eventual Consistency
	Eventual Consistency
	Versioning of Datasets in Distributed Scenarios
	Solutions to versioning
	Solutions to versioning
	Vector clocks
	Vector clocks
	Vector clocks updates
	Vector clocks updates
	Vector clocks for consistency
	Advantages of vector clocks
	Partitioning
	Memory Caches
	Memory Caches
	Clustering
	Separating Reads from Writes
	Separating Reads from Writes
	Sharding
	Sharding
	Sharding
	Sharding
	Consistent Hashing
	Consistent Hashing
	Consistent Hashing
	Consistent Hashing
	Consistent Hashing
	Virtual Nodes
	Virtual Nodes
	Replication Factor
	Replication Factor
	Read and write operations
	Membership Changes
	New node
	New node
	Node leaving
	Node leaving
	Cluster management
	Omniscient Master
	Gossip
	Storage Layout
	Row-Based Storage Layout
	Columnar Storage Layout
	Columnar Storage Layout with Locality Groups
	Log Structured Merge Trees
	Log Structured Merge Trees
	LSM Data Layout
	Read path
	Write path
	LSM Memtable Flush
	LSM Compaction
	Query Models
	Data models
	Key-/value-stores
	Amazon’s Dynamo
	Amazon’s Dynamo Implementation
	Project Voldemort
	Project Voldemort
	Other Key-/Value-Stores
	Document Databases
	Apache CouchDB
	Apache CouchDB
	Apache CouchDB
	Apache CouchDB
	Apache CouchDB
	Apache CouchDB
	Views
	Map function
	Map and reduce functions
	Apache CouchDB
	Interface
	MongoDB
	MongoDB
	Collections
	Documents
	Documents
	Documents
	MongoDB
	Queries
	Selection
	Selection
	Projection
	Result Processing
	Inserts
	Updates
	Deletes
	The eval-operation
	Implementation
	Column-Oriented Databases
	Google’s Bigtable
	Google’s Bigtable
	Bigtable
	Rows
	Rows
	Columns
	Columns
	Timestamps
	API
	API

