Link Analysis Algorithms Page Rank

Source: http://infolab.stanford.edu/~ullman/mining/2009/index.html
Anand Rajaraman, Jeffrey D. Ullman

Ranking web pages

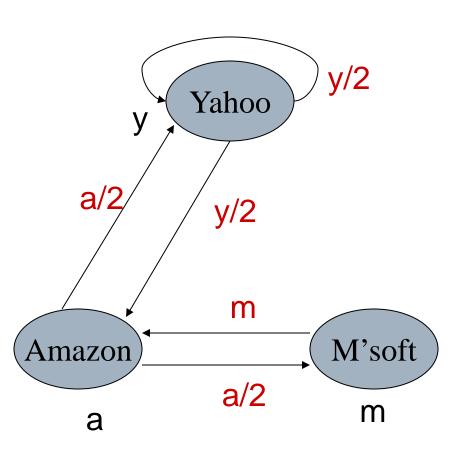
- Web pages are not equally "important"
 - www.joe-schmoe.com V www.stanford.edu
- Inlinks as votes
 - www.stanford.edu has 23,400 inlinks
 - www.joe-schmoe.com has 1 inlink
- Are all inlinks equal?
 - Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- □ If page P with importance x has n outlinks, each link gets x/n votes
- □ Page P's own importance is the sum of the votes on its inlinks

Simple "flow" model

The web in 1839



$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

Solving the flow equations

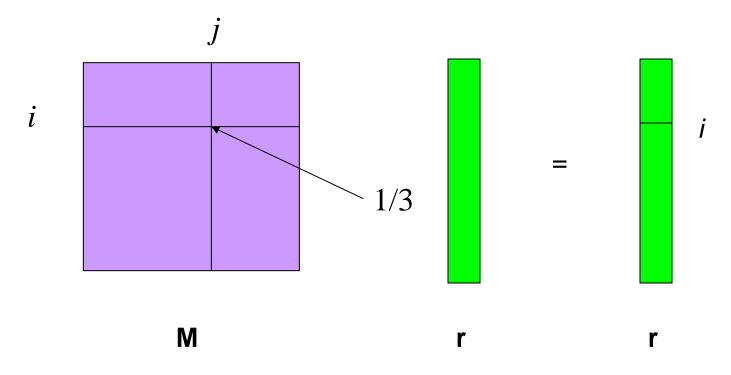
- ☐ 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix formulation

- Matrix M has one row and one column for each web page
- Suppose page j has n outlinks
 - If $j \rightarrow i$, then $M_{ij} = 1/n$
 - Else M_{ij}=0
- M is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - \mathbf{r}_{i} is the importance score of page i
 - Call it the rank vector
 - $|\mathbf{r}| = 1$

Example

Suppose page j links to 3 pages, including i



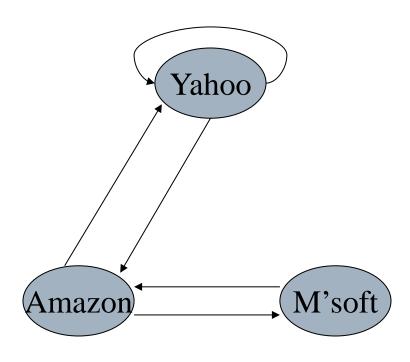
Eigenvector formulation

The flow equations can be written

r = Mr

- □ So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example



$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

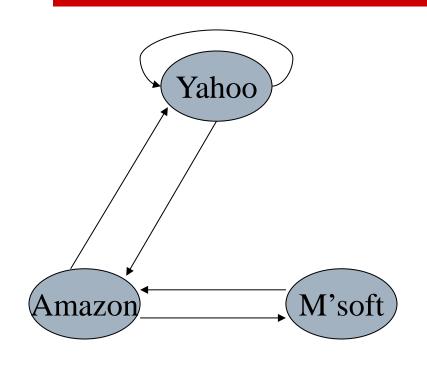
$$r = Mr$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration method

- ☐ Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- □ Initialize: $\mathbf{r}^{0} = [1/N,, 1/N]^{T}$
- \square Iterate: $\mathbf{r}^{k+1} = \mathbf{Mr}^k$
- □ Stop when $|\mathbf{r}^{k+1} \mathbf{r}^{k}|_{1} < \varepsilon$
 - $\|\mathbf{x}\|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example



y
$$1/3$$
 $1/3$ $5/12$ $3/8$ $2/5$ $a = 1/3$ $1/2$ $1/3$ $11/24$... $2/5$ m $1/3$ $1/6$ $1/4$ $1/6$ $1/5$

Random Walk Interpretation

- □ Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let **p**(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - p(t) is a probability distribution on pages

The stationary distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - p(t+1) = Mp(t)
- □ Suppose the random walk reaches a state such that p(t+1) = Mp(t) = p(t)
 - Then p(t) is called a stationary distribution for the random walk
- \square Our rank vector \mathbf{r} satisfies $\mathbf{r} = \mathbf{Mr}$
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

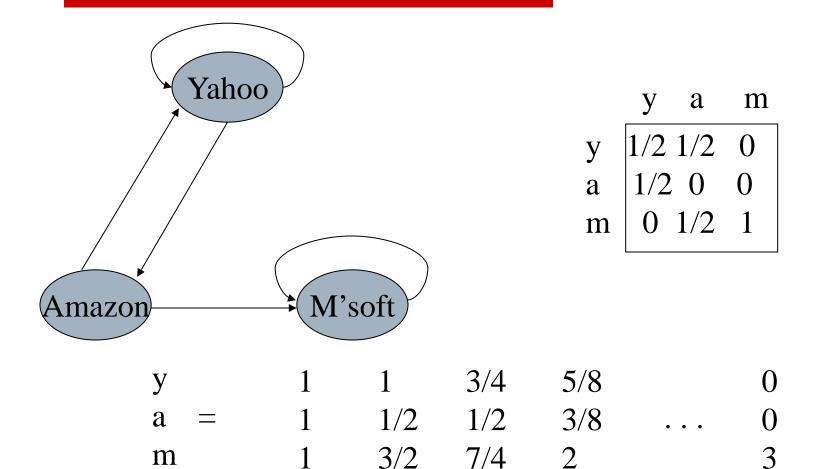
A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

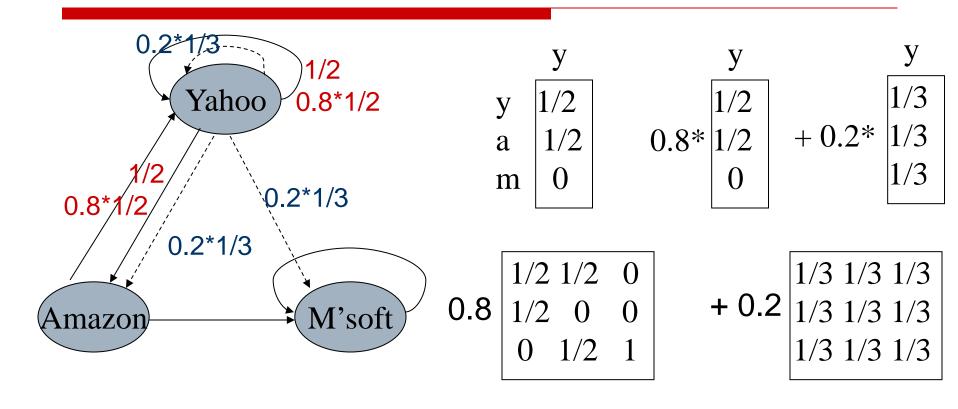
Microsoft becomes a spider trap



Random teleports

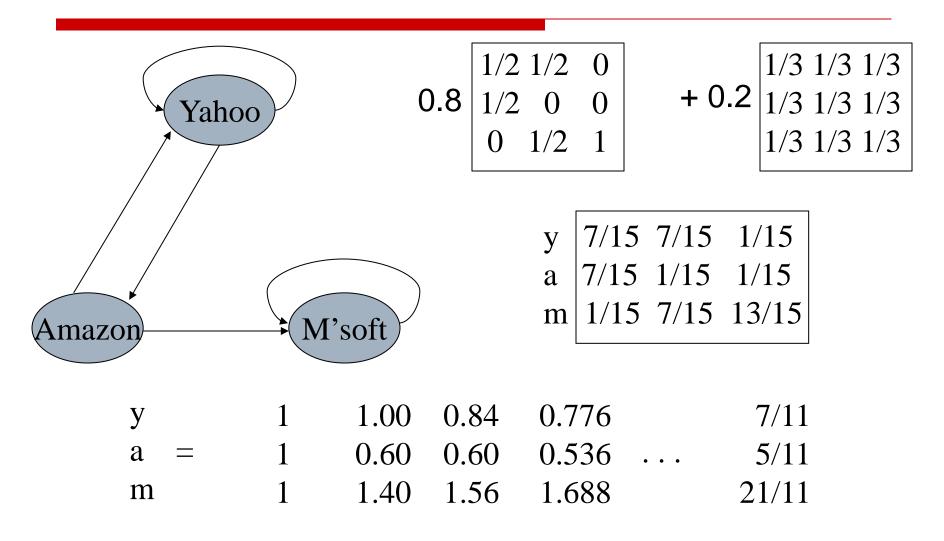
- □ The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)



y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15

Random teleports ($\beta = 0.8$)



Matrix formulation

- Suppose there are N pages
 - Consider a page j, with set of outlinks O(j)
 - We have $M_{ij} = 1/|O(j)|$ when $j \rightarrow i$ and $M_{ij} = 0$ otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability (1-β)/N
 - \square reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction (1-β) of its score and redistribute evenly

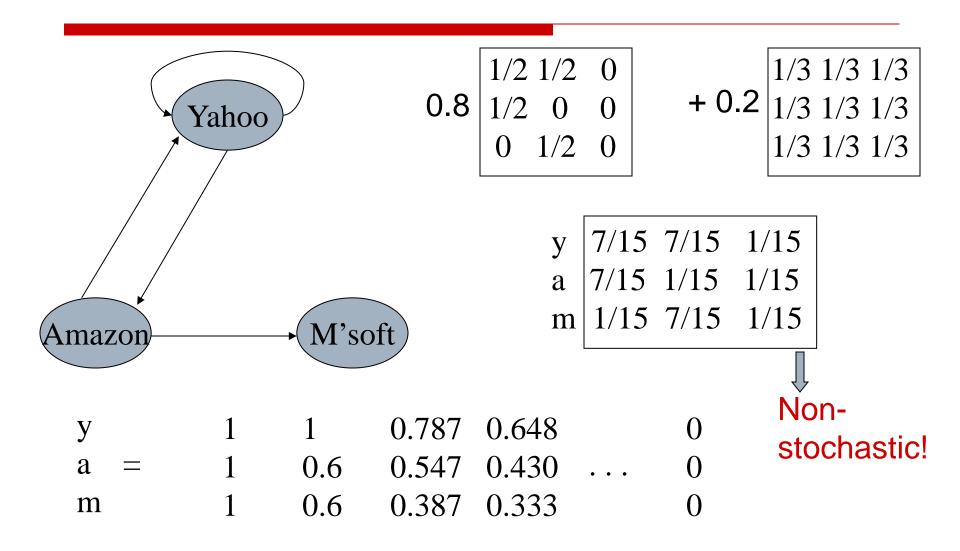
Page Rank

- □ Construct the N×N matrix A as follows
 - $A_{ij} = \beta M_{ij} + (1-\beta)/N$
- Verify that A is a stochastic matrix
- □ The page rank vector r is the principal eigenvector of this matrix
 - \blacksquare satisfying $\mathbf{r} = \mathbf{Ar}$
- Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

- □ Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step

Microsoft becomes a dead end



Dealing with dead-ends

- □ Teleport
 - Follow random teleport links with probability
 1.0 from dead-ends
 - Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Computing page rank

- Key step is matrix-vector multiplication
 - rnew = Arold
- Easy if we have enough main memory to hold A, rold, rnew
- □ Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - □ 10¹⁸ is a large number!

Rearranging the equation

```
\mathbf{r} = \mathbf{Ar}, where
A_{ij} = \beta M_{ii} + (1-\beta)/N
r_i = \sum_{1 \le i \le N} A_{ii} r_i
r_{i} = \sum_{1 \le i \le N} [\beta M_{ii} + (1-\beta)/N] r_{i}
    = \beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N \sum_{1 \le i \le N} r_i
    = \beta \sum_{1 \le i \le N} M_{ii} r_i + (1-\beta)/N, since |\mathbf{r}| = 1
\mathbf{r} = \beta \mathbf{M} \mathbf{r} + [(1-\beta)/N]_{N}
where [x]_N is an N-vector with all entries x
```

Sparse matrix formulation

- We can rearrange the page rank equation:
 - $r = \beta Mr + [(1-\beta)/N]_N$
 - $[(1-β)/N]_N$ is an N-vector with all entries (1-β)/N
- M is a sparse matrix!
 - 10 links per node, approx 10N entries
- ☐ So in each iteration, we need to:
 - Compute r^{new} = βMr^{old}
 - Add a constant value (1-β)/N to each entry in r^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

node degree destination nodes

0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store rold and matrix M on disk

Basic Algorithm:

- ☐ Initialize: $\mathbf{r}^{\text{old}} = [1/N]_{N}$
- Iterate:
 - Update: Perform a sequential scan of M and rold to update rnew
 - Write out r^{new} to disk as r^{old} for next iteration
 - Every few iterations, compute |r^{new}-r^{old}| and stop if it is below threshold
 - Need to read in both vectors into memory

Update step

```
Initialize all entries of \mathbf{r}^{\text{new}} to (1-\beta)/N

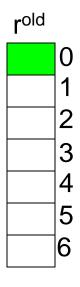
For each page p (out-degree n):

Read into memory: p, n, \text{dest}_1, \ldots, \text{dest}_n, r^{\text{old}}(p)

for j = 1..n:

r^{\text{new}}(\text{dest}_i) += \beta^* r^{\text{old}}(p)/n
```


src	degree	destination
О	3	1, 5, 6
1	4	17, 64, 113, 117
2	2	13, 23



Analysis

- □ In each iteration, we have to:
 - Read rold and M
 - Write r^{new} back to disk
 - \blacksquare IO Cost = $2|\mathbf{r}| + |\mathbf{M}|$
- What if we had enough memory to fit both r^{new} and r^{old}?
- What if we could not even fit r^{new} in memory?
 - 10 billion pages

Block-based update algorithm

2	
3	

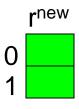
src	degree	destination
0	4	0, 1, 3, 5
1	2	0, 5
2	2	3, 4



Analysis of Block Update

- □ Similar to nested-loop join in databases
 - Break **r**^{new} into k blocks that fit in memory
 - Scan M and rold once for each block
- □ k scans of **M** and **r**old
 - | k(|M| + |r|) + |r| = k|M| + (k+1)|r|
- Can we do better?
- □ Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

Block-Stripe Update algorithm



src	degree	destination
О	4	0, 1
1	2	0
2	2	1

0	4	3
2	2	3

4	
5	

0	4	5
1	2	5
2	2	4

Block-Stripe Analysis

- ☐ Break **M** into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But usually worth it
- Cost per iteration
 - |M|(1+ε) + (k+1)|r|