
1

Organization of Records in
Blocks

Read Sec. 4.2 Riguzzi et al. Sistemi Informativi

Slides derived from those by Hector Garcia-Molina

2

• How to lay out records on blocks

Topic

3

What are the data items we want to store?

• a salary
• a name
• a date
• a picture

What we have available: Bytes

8
bits

4

To represent:

• Integer (short): 2 bytes
 e.g., 35 is

00000000 00100011

• Real, floating point
n bits for mantissa, m for exponent….

5

• Characters
 → various coding schemes suggested,
 most popular is ascii

To represent:

Example:
A: 1000001
a: 1100001
5: 0110101
LF: 0001010

6

• Boolean
 e.g., TRUE

 FALSE
1111 1111

0000 0000

To represent:

• Application specific
 e.g., RED → 1 GREEN → 3
 BLUE → 2 YELLOW → 4 …

 Can we use less than 1 byte/code?
Yes, but only if desperate...

7

• Dates
 e.g.: - Integer, # days since Jan 1, 1900
 - 8 characters, YYYYMMDD
 - 7 characters, YYYYDDD
 (not YYMMDD! Why?)
• Time
 e.g. - Integer, seconds since midnight
 - characters, HHMMSSFF

To represent:

8

• Fixed length characters strings
(CHAR(n)):
– n bytes
– If the value is shorter, fill the array with a

pad charater, whose 8-bit code is not one
of the legal characters for SQL strings

c t a X X

To represent:

X

9

• Variable-length characters strings
(CHAR VARYING(n)): n+1 bytes max
– Null terminated
 e.g.,

– Length given
 e.g.,

c t a

c t a 3

To represent:

10

• BINARY VARYING(n)

To represent:

Length

$ ^ # 3

11

Key Point

• Fixed length items

• Variable length items
 - usually length given at beginning

12

Data Items

Records

Blocks

Files

Memory

Overview

13

Types of records:

• Main choices:
– FIXED vs VARIABLE LENGTH

14

A SCHEMA (not record) contains
 following information
 - # fields
 - type of each field
 - order in record
 - meaning of each field

15

Example: fixed length

Employee record
 (1) E#, 2 byte integer
 (2) E.name, 10 char. Schema
 (3) Dept, 2 byte code

55 s m i t h 02

83 j o n e s 01

Records

16

Record header - data at beginning
 that describes record

May contain:
 - record type
 - record length
 - time stamp
 -...

17

Next: placing records into blocks

blocks ...

 a file

assume fixed
length blocks

assume a single file (for now)

18

(1) separating records
(2) spanned vs. unspanned
(3) mixed record types – clustering
(4) split records
(5) indirection

Options for storing records in blocks:

19

Block

(a) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)
 - within each record
 - in block header

(1) Separating records

R2 R1 R3

20

• Unspanned: records must be within one
block

 block 1 block 2

 ...

• Spanned
 block 1 block 2

 ...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2 R3
(a)

R3
(b) R6 R5 R4 R7

(a)

21

 need indication need indication

 of partial record of continuation
 “pointer” to rest (+ from where?)

R1 R2 R3
(a)

R3
(b) R6 R5 R4 R7

(a)

With spanned records:

22

• Unspanned is much simpler, but may
waste space…

• Spanned essential if
 record size > block size

Spanned vs. unspanned:

23

Example
106 records
each of size 2,050 bytes (fixed)
block size = 4096 bytes

 block 1 block 2

 2050 bytes wasted 2046 2050 bytes wasted 2046

R1 R2

• Total wasted = 2 x 109 Utiliz = 50%
• Total space = 4 x 109

24

• Mixed - records of different types
 (e.g. EMPLOYEE, DEPT)
 allowed in same block

 e.g., a block

(3) Mixed record types

EMP e1 DEPT d1 DEPT d2

25

Why do we want to mix?
 Answer: CLUSTERING

 Records that are frequently
 accessed together should be
 in the same block

26

Compromise:

 No mixing, but keep related
 records in same cylinder ...

27

Example

Q1: select A#, C_NAME, C_CITY, …
 from DEPOSIT, CUSTOMER
 where DEPOSIT.C_NAME =
 CUSTOMER.NAME

a block

CUSTOMER,NAME=SMITH

DEPOSIT,C_NAME=SMITH

DEPOSIT,C_NAME=SMITH

28

• If Q1 frequent, clustering good
• But if Q2 frequent
 Q2: SELECT *
 FROM CUSTOMER

 CLUSTERING IS COUNTER PRODUCTIVE

29

 Fixed part in
 one block
Typically for
Variable length
records
 Variable part in
 another block

(4) Split records

30

Block with fixed parts

R1 (a)
R1 (b)

Block with variable parts

R2 (a)

R2 (b)

R2 (c)

Block with
variable
parts

31

• How does one refer to records?

(5) Indirection

Rx

Many options:
 Physical Indirect

32

 Purely Physical

 Device ID
E.g., Record Cylinder #
 Address = Track #
 or ID Block #
 Offset in block

Block ID

33

 Fully Indirect

E.g., Record ID is arbitrary bit string

 map
rec ID
 r address
 a

Physical
addr. Rec ID

34

Tipical Use logical block #’s
 understood by file system

 File ID
 Block #
 Offset in block

File ID, Physical
Block # Block ID

File Syst.
Map

35

Indirection in block

 Header

A block: Free space

R4

R3

R2 R1

36

Tradeoff

 Flexibility Cost
 to move records of indirection
 (for deletions, insertions)

37

Block header - data at beginning that
 describes block

May contain:
 - File ID (or RELATION or DB ID)
 - This block ID
 - Record directory
 - Pointer to free space
 - Type of block (e.g. contains recs type 4;
 is overflow, …)
 - Pointer to other blocks “like it”
 - Timestamp ...

38

Insertion/Deletion

Other Topic

39

Options for deletion:

(a) Immediately reclaim space
(b) Mark deleted

– May need chain of deleted records

 (for re-use)
– Need a way to mark:

• special characters
• delete field
• in map

40

 As usual, many tradeoffs...

• How expensive is to move valid records
to free space for immediate reclaim?

• How much space is wasted?
– delete fields, free space chains,...

41

SQL Server

• The page size is 8 KB (8192 bytes), i.e. 128 pages
per MB

• Each page begins with a 96-byte header that is used
to store system information about the page:
– page number, page type, the amount of free space on the

page, and the allocation unit ID of the object that owns the
page

• Eight physically contiguous pages form an extent.
Extents are used to efficiently manage the pages. All
pages are stored in extents.

42

Page Types in SQL Server

Page type Contents

Data Data rows with all data, except text,
ntext, image

Index Index entries.

Text/Image •text, ntext, image,
•nvarchar(max), varchar(max),
varbinary(max), and xml data when
they don’t fit in a block
•Variable length columns when the data
row exceeds 8 KB: varchar, nvarchar,
varbinary, and sql_variant

43

Page Types in SQL Server
Page type Contents

Global Allocation Map, Shared Global
Allocation Map

Information about whether extents are
allocated.

Page Free Space Information about page allocation and
free space available on pages.

Index Allocation Map

Information about extents used by a
table or index per allocation unit.

Bulk Changed Map

Information about extents modified by
bulk operations since the last BACKUP
LOG statement per allocation unit.

Differential Changed Map Information about extents that have
changed since the last BACKUP
DATABASE statement per allocation unit.

44

Data Pages in SQL Server

• Data rows are put
on the page serially,
starting immediately
after the header.

• Row offset table:
– Each entry records

how far the first byte
of the row is from
the start of the page.

45

Large row support
• Rows cannot span pages in SQL Server, however

portions of the row may be moved off the row's page
so that the row can actually be very large.

• The maximum amount of data and overhead that is
contained in a single row on a page is 8,060 bytes

• When the total row size of all fixed and variable
columns in a table exceeds the 8,060 byte limitation,
SQL Server dynamically moves one or more variable
length columns to pages to the
ROW_OVERFLOW_DATA allocation unit, starting with
the column with the largest width.

46

Large row support

• When a column is moved to a page in
the ROW_OVERFLOW_DATA allocation
unit, a 24-byte pointer on the original
page is maintained.

• If a subsequent operation reduces the
row size, SQL Server dynamically moves
the columns back to the original data
page.

	��Organization of Records in Blocks
	Diapositiva numero 2
	What are the data items we want to store?
	To represent:
	To represent:
	To represent:
	To represent:
	To represent:
	To represent:
	To represent:
	Diapositiva numero 11
	Overview
	Types of records:
	Diapositiva numero 14
	Example: fixed length
	Record header - data at beginning�			that describes record
	Next: placing records into blocks
	Diapositiva numero 18
	(1) Separating records
	(2) Spanned vs. Unspanned
	Diapositiva numero 21
	Diapositiva numero 22
	Example
	(3) Mixed record types
	Why do we want to mix?�	Answer: CLUSTERING
	Compromise:
	Example
	Diapositiva numero 28
	(4) Split records
	Diapositiva numero 30
	(5) Indirection
		Purely Physical
		Fully Indirect
	Tipical Use logical block #’s�	 understood by file system
	Indirection in block
	Tradeoff
	Block header - data at beginning that�			 describes block
	Diapositiva numero 38
	Options for deletion:
	 As usual, many tradeoffs...
	SQL Server
	Page Types in SQL Server
	Page Types in SQL Server
	Data Pages in SQL Server
	Large row support
	Large row support

