
Object-relational mapping

Source http://www.datanucleus.org/

http://www.datanucleus.org/

Object-relational impedance mismatch

• The object-relational impedance mismatch is a set
of conceptual and technical difficulties that are often
encountered when a RDBMS is being used by a
program written in an object-oriented programming
language or style.

2

Data type differences

• A major mismatch between existing relational and
OO languages is the type system differences.

• The relational model strictly prohibits by-reference
attributes (or pointers), whereas OO languages
embrace and expect by-reference behavior.

• Scalar types and their operator semantics are also
very often subtly to vastly different between the
models, causing problems in mapping.

• For example, most SQL systems support string types
with varying collations and constrained maximum
lengths, while most OO languages consider collation
only as an argument to sort routines and strings are
intrinsically sized to available memory 3

Structural and integrity differences

• In OO languages, objects can be composed of other
objects—often to a high degree—or specialize from a
more general definition. This may make the mapping
to relational schemas less straightforward.

• This is because relational data tends to be
represented in a named set of global, unnested
relation variables.

4

Manipulative differences

• The relational model has an intrinsic, relatively small
and well defined set of primitive operators for usage
in the query and manipulation of data, whereas OO
languages generally handle query and manipulation
through custom-built or lower-level physical access
path specific imperative operations

5

Transactional differences

• Relational database transactions, as the smallest unit
of work performed by databases, are much larger
than any operations performed by classes in OO
languages.

• Transactions in relational databases are dynamically
bounded sets of arbitrary data manipulations,
whereas the granularity of transactions in OO
languages is typically individual assignments of
primitive typed fields.

• OO languages typically have no analogue of isolation
or durability as well and atomicity and consistency
are only ensured for said writes of primitive typed
fields.

6

Solving impedance mismatch

• There have been some attempts at building object-
oriented database management systems (OODBMS)
that would avoid the impedance mismatch problem.

• They have been less successful in practice than
relational databases however, partly due to the
limitations of OO principles as a basis for a data
model.

• There has been research performed in extending the
database-like capabilities of OO languages through
such notions as transactional memory.

7

8

Object-relational mapping

• Object-relational mapping (ORM, O/RM, and O/R
mapping) is a programming technique for solving the
impedence mismatch

• The heart of the problem is translating the logical
representation of the objects into an atomized form
that is capable of being stored on the database,
while somehow preserving the properties of the
objects and their relationships so that they can be
reloaded as an object when needed.

• If this storage and retrieval functionality is
implemented, the objects are then said to be
persistent.

Object-relational mapping

• Compared to traditional techniques of exchange
between an object-oriented language and a relational
database, ORM often reduces the amount of code
that needs to be written

• Disadvantages of O/R mapping tools generally stem
from the high level of abstraction obscuring what is
actually happening in the implementation code.

9

Java Data Objects

• Java Data Objects (JDO) is a specification of Java
object persistence.

• One of its features is a transparency of the
persistence services to the domain model.

• JDO persistent objects are ordinary Java
programming language classes (POJOs); there is no
requirement for them to implement certain interfaces
or extend from special classes.

• JDO was developed under the Java Community
Process.

• JDO 3.0 was released in April 2010

10

Java Data Objects

• Object persistence is defined in the external XML
metafiles

• JDO vendors provide developers with enhancers,
which modify compiled Java class files so they can
be transparently persisted.

• Byte-code enhancement is not mandated by the JDO
specification, although it is the commonly used
mechanism for implementing the JDO specification's
requirements.

• Currently, JDO vendors offer several options for
persistence, e.g. to RDBMS, to OODB, or to files.

11

Java Data Objects

• JDO enhanced classes are portable across different
vendors' implementation. Once enhanced, a Java
class can be used with any vendor's JDO product

• JDO is both an object-relational mapping standard
and a transparent object persistence standard

• JDO, from an API point of view, is agnostic to the
technology of the underlying datastore

12

Java Persistence API

• The Java Persistence API, sometimes referred to as
JPA, is a Java programming language application
programming interface specification which describes
the management of relational data in applications

• The JPA 2.1 specification was developed under the
Java Community Process and was released 22 April
2013

• JPA uses the javax.persistence package

13

Java Persistence API

• JPA, is an object-relational mapping (ORM) standard,
while JDO is both an object-relational mapping
standard and a transparent object persistence
standard.

• JDO, from an API point of view, is agnostic to the
technology of the underlying datastore, whereas JPA
is targeted to RDBMS datastores (although there are
several JPA providers that support access to non-
relational datastores through the JPA API, such as
DataNucleus and ObjectDB).

14

Java Persistence API

• A persistence entity is a lightweight Java class whose
state is typically persisted to a table in a relational
database.

• Instances of such an entity correspond to individual
rows in the table.

• Entities typically have relationships with other
entities, and these relationships are expressed
through object/relational metadata.

• Object/relational metadata can be specified directly in
the entity class file by using annotations, or in a
separate XML descriptor file distributed with the
application.
 15

Java Persistence Query Language

• The Java Persistence Query Language (JPQL)
makes queries against entities stored in a relational
database. Queries resemble SQL queries in syntax,
but operate against entity objects rather than directly
with database tables.

16

Related technologies

• Hibernate provides an open source object-relational
mapping framework for Java.

• Hibernate solves object-relational impedance
mismatch problems by replacing direct persistence-
related database accesses with high-level object
handling functions.

• Hibernate's primary feature is mapping from Java
classes to database tables (and from Java data types
to SQL data types).

• Many of the features originally presented in Hibernate
were incorporated into the Java Persistence API

• Versions 3.2 and later provide an implementation for
the Java Persistence API. 17

Related technologies

• Enterprise JavaBeans
• The EJB 3.0 specification (itself part of the Java EE 5

platform) included a definition of the Java Persistence
API.

• However, javax.persistence does not require an EJB
container, and thus will work within a Java SE
environment as well

• The Java Persistence API replaces the persistence
solution of EJB 2.0 CMP (Container Managed
Persistence).

18

JDO with DataNucleus AccessPlatform

• Step 0 : Download DataNucleus AccessPlatform
• In our case, download JDO tutorial from the

Esercitazioni section of the course home page or
from

http://www.unife.it/ing/lm.infoauto/sistemi-
informativi/allegati/jdo-datanucleus-tutorial.zip
• Step 1 : Create your domain/model classes
• Do this as you would normally.

19

http://www.unife.it/ing/lm.infoauto/sistemi-informativi/allegati/jdo-datanucleus-tutorial.zip
http://www.unife.it/ing/lm.infoauto/sistemi-informativi/allegati/jdo-datanucleus-tutorial.zip

Working example: store

• Application handling products in a store
package org.datanucleus.samples.jdo.tutorial;
public class Product
{ protected long id; String name = null;
 String description = null; double price = 0.0;

 public Product(String name, String desc, double price)
 { this.name = name;
 this.description = desc;
 this.price = price;}
……
}

20

Book

package org.datanucleus.samples.jdo.tutorial;
public class Book extends Product
{ String author=null;
 String isbn=null;
 String publisher=null;
 public Book(String name, String desc, double price, String
author, String isbn, String publisher)
 { super(name,desc,price);
 this.author = author;
 this.isbn = isbn;
 this.publisher = publisher;
 }
….
} 21

Inheritance

• We have inheritance between 2 classes.
• Some data in the store will be of type Product , and

some will be Book
• This allows us to extend our store further in the future

and provide DVD items for example, and so on.
• JDO allows objects to be retrieved maintaining their

inheritances.

22

Inventory

package org.datanucleus.samples.jdo.tutorial;
import java.util.HashSet;
import java.util.Set;
public class Inventory
{ protected String name=null;
 protected Set<Product> products = new HashSet<Product>();
 public Inventory(String name) { this.name = name;}
 public String getName() { return name; }
 public Set<Product> getProducts() { return products; }
 public String toString()
 { return "Inventory : " + name;}
}

23

Step 2 : Define the Persistence for
classes

• You now need to define how the classes should be
persisted, in terms of which fields are persisted etc.
With JDO you could use

• XML Metadata
• Annotations
• Annotations + XML
• MetaData API at runtime
• Here we use what could be considered a best

practice, specifying basic persistence info as
annotations, and then adding on ORM information in
XML (since if we want then to persist to a different
datastore later we don't need to update/recompile our
classes, just change the XML file). 24

Product

package org.datanucleus.samples.jdo.tutorial;
import javax.jdo.annotations.IdGeneratorStrategy;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.Persistent;
import javax.jdo.annotations.PrimaryKey;
@PersistenceCapable public class Product
{ @PrimaryKey
 @Persistent(valueStrategy=IdGeneratorStrategy.NATIVE)
 protected long id;
 String name = null;
 String description = null; double price = 0.0;
……
}

25

Book

package org.datanucleus.samples.jdo.tutorial;
import javax.jdo.annotations.PersistenceCapable;
@PersistenceCapable
public class Book extends Product
{ String author=null;
 String isbn=null;
 String publisher=null;
 public Book(String name, String desc, double price, String
author, String isbn, String publisher)
 { super(name,desc,price);
 this.author = author;
 this.isbn = isbn;
 this.publisher = publisher;}
….} 26

Inventory

package org.datanucleus.samples.jdo.tutorial;
import java.util.HashSet;
import java.util.Set;
import javax.jdo.annotations.PersistenceCapable;
import javax.jdo.annotations.PrimaryKey;
@PersistenceCapable public class Inventory
{ @PrimaryKey protected String name=null;
 protected Set<Product> products = new HashSet<Product>();
 public Inventory(String name) { this.name = name;}
 public String getName() { return name; }
 public Set<Product> getProducts() { return products; }
 public String toString()
 { return "Inventory : " + name;}
} 27

Persistence information

• Note that we mark each class that can be persisted
with @PersistenceCapable and their primary key
field(s) with @PrimaryKey.

• In addition we defined a valueStrategy for Product
field id so that it will have its values generated
automatically.

• You now need to define which objects of these
classes are actually persisted. You do this via a
file META-INF/persistence.xml at the root of the
CLASSPATH.

28

Persistence information

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">
<persistence-unit name="Tutorial">
 <class>org.datanucleus.samples.jdo.tutorial.Inventory</class>
 <class>org.datanucleus.samples.jdo.tutorial.Product</class>
 <class>org.datanucleus.samples.jdo.tutorial.Book</class>
 <exclude-unlisted-classes/>

29

persistence.xml

 <properties>
 <property name="javax.jdo.option.ConnectionURL"
value="jdbc:db2://10.17.2.91:50000/PROVA"/>
 <property name="javax.jdo.option.ConnectionDriverName"
value="com.ibm.db2.jcc.DB2Driver"/>
 <property name="javax.jdo.option.ConnectionUserName"
value="utente"/>
 <property name="javax.jdo.option.ConnectionPassword"
value="Infonew1"/>
 <property name="javax.jdo.option.Mapping" value="db2"/>
 </properties>
 </persistence-unit>
</persistence>

30

ORM information

• We define ORM information in an XML file package-
db2.orm

<?xml version="1.0"?>
<!DOCTYPE orm SYSTEM "file:/javax/jdo/orm.dtd">
<orm>
 <package name="org.datanucleus.samples.jdo.tutorial">
 <class name="Inventory" table=“INVENTORIES<MATR>">
 <field name="name">
 <column name="INVENTORY_NAME" length="100"/>
 </field>
 <field name="products" table=
"INVENTORY_PRODUCTS<MATR>">
 <join/>
 </field>
 </class>

31

ORM information

<class name="Product" table="PRODUCTS<MATR>">
 <inheritance strategy="new-table"/>
 <field name="id"><column name="PRODUCT_ID"/></field>
 <field name="name"><column name="PRODUCT_NAME"
length="100"/></field>
 </class>
 <class name="Book" table="BOOKS<MATR>">
 <inheritance strategy="new-table"/>
 <field name="author"><column length="40"/></field>
 <field name="isbn"><column length="20" jdbc-type="CHAR"/>
 </field>
 <field name="publisher"><column length="40"/></field>
 </class>
 </package>
</orm>

 32

Tutorial in Eclipse

• Uncompress jdo-datanucleus-tutorial.zip into a new
folder jdo-datanucleus-tutorial

• Create a new Java project
• Copy the content of the src folder in the src folder of

the Java project

33

Tutorial in Eclipse

• Add all the libraries in the lib folder to the build path
of the project
– lib\datanucleus-core-3.2.11.jar;
– lib\datanucleus-api-jdo-3.2.7.jar;
– lib\javax.persistence-2.1.0.jar;
– lib\datanucleus-rdbms-3.2.10.jar;
– lib\jdo-api-3.1-rc1.jar; JDO API JAR
– lib\db2jcc.jar; JDBC driver classes
– lib\log4j-1.2.14.jar; logging classes

• Build the project

 34

Tutorial in Eclipse

• Copy jdo-datanucleus-tutorial/src/META-
INF/persistence.xml in bin/META-INF/persistence.xml
in the Java project

• Copy jdo-datanucleus-tutorial/src/package-db2.orm
in bin/package-db2.orm

• Copy jdo-datanucleus-tutorial/src/log4j.properties in
bin/log4j.properties

35

Step 3 : Enhance your classes

• JDO relies on the classes that you want to persist
being PersistenceCapable. That is, they need to
implement this Java interface.

• You could write your classes manually to do this but
this would be laborious. Alternatively you can use a
post-processing step to compilation that "enhances"
your compiled classes, adding on the necessary
extra methods to make them PersistenceCapable .

• There are several ways to do this, using an
"enhancer" at compile time (with JDK1.6+), or at
runtime, or as a post-compile step. We use the post-
compile step in this tutorial.

36

Step 3 : Enhance your classes

• DataNucleus JDO provides its own byte-code
enhancer for instrumenting/enhancing your classes
for use by any JDO implementation.

• Use the command line from the root folder of the
project

• java -cp bin;lib\datanucleus-core-3.2.11.jar;
lib\datanucleus-api-jdo-3.2.7.jar;lib\datanucleus-
rdbms-3.2.10.jar;lib\jdo-api-3.1-rc1.jar
org.datanucleus.enhancer.DataNucleusEnhancer
bin\package-db2.orm

• Assuming bytecode is in folder bin, libraries in folder
lib and package-db2.orm in folder bin
 37

Step 3 : Enhance your classes

• This command enhances the .class files that have
@PersistenceCapable annotations.

• If you accidentally omitted this step, at the point of
running your application and trying to persist an
object, you would get
a ClassNotPersistenceCapableException thrown.

• The output of this step are a set of class files that
represent PersistenceCapable classes.

38

Step 4 : Generate any schema required
for your domain classes

• This step is optional, depending on whether you have
an existing database schema.

• If you haven't, at this point you can use the RDBMS
SchemaTool to generate the tables where these
domain objects will be persisted.

• DataNucleus RDBMS SchemaTool is a command
line utility

39

Step 4 : Generate any schema required
for your domain classes

• java -cp bin;lib\datanucleus-core-3.2.11.jar;
lib\datanucleus-api-jpa-3.3.6.jar; lib\datanucleus-api-
jdo-3.2.7.jar;lib\javax.persistence-2.1.0.jar;
lib\datanucleus-rdbms-3.2.10.jar; lib\jdo-api-3.1-
rc1.jar;lib\db2jcc.jar;lib\geronimo-jta_1.1_spec-
1.1.jar;lib\log4j-1.2.14.jar
org.datanucleus.store.schema.SchemaTool -create
-pu Tutorial bin\package-db2.orm

• -pu Tutorial has the effect of indicating that the
pesistence information are specified in the Tutorial
persistence-unit in persistence.xml

40

Step 4 : Generate any schema required
for your domain classes

• This will generate the required tables, indexes, and
foreign keys for the classes defined in the JDO Meta-
Data file.

41

Step 5 : Write the code to persist
objects of your classes

• Now you need to define which objects of the classes
are actually persisted, and when. Interaction with the
persistence framework of JDO is performed via a
PersistenceManager.

• This provides methods for persisting of objects,
removal of objects, querying for persisted objects,
etc..

42

Main

import java.util.Iterator;
import java.util.List;

import javax.jdo.PersistenceManager;
import javax.jdo.PersistenceManagerFactory;
import javax.jdo.Extent;
import javax.jdo.Query;
import javax.jdo.JDOHelper;
import javax.jdo.Transaction;

43

Main

• The initial step is to obtain access to a
PersistenceManager

 PersistenceManagerFactory pmf =
JDOHelper.getPersistenceManagerFactory("Tutorial");
 PersistenceManager pm =
pmf.getPersistenceManager();
• We are creating a PersistenceManagerFactory using

the file persistence.xml as used above for
DataNucleus RDBMS SchemaTool. This will contain
all properties necessary for persistence usage.

44

Main

• Now that the application has a PersistenceManager it
can persist objects. This is performed as follows

 Transaction tx=pm.currentTransaction();
 Object inventoryId = null;
 try {
 tx.begin();
 Inventory inv = new Inventory("My Inventory");
 Product product = new Product("Sony Discman","A standard
discman from Sony",200.00);
 Book book = new Book("Lord of the Rings by Tolkien","The classic
story",49.99,"JRR Tolkien", "12345678", "MyBooks Factory");
 inv.getProducts().add(product);
 inv.getProducts().add(book);
 pm.makePersistent(inv);
 tx.commit(); inventoryId = pm.getObjectId(inv);
}

45

Main

 finally
 {
 if (tx.isActive())
 {
 tx.rollback();
 }
 pm.close();
 }

• Please note that the finally step is important in that it
tidies up connections to the datastore and the
PersistenceManager.

46

Main

• To retrieve objects from persistent storage:
 // Basic Extent of all Products
 pm = pmf.getPersistenceManager();
 tx = pm.currentTransaction();
 try
 { tx.begin();
 Extent e = pm.getExtent(Product.class, true);
 Iterator iter = e.iterator();
 while (iter.hasNext())
 { Object obj = iter.next();
 System.out.println("> " + obj); }
 tx.commit();
 }

47

Main

 catch (Exception e)
 {
 System.out.println("Exception thrown during retrieval of
Extent : " + e.getMessage());
 }
 finally
 {
 if (tx.isActive())
 {
 tx.rollback();
 }
 pm.close();
 }

48

Main

 // Perform some query operations
 pm = pmf.getPersistenceManager();
 tx = pm.currentTransaction();
 try { tx.begin();
 System.out.println("Executing Query for Products with price below
150.00");
 Query q=pm.newQuery("SELECT FROM " +
Product.class.getName() +
 " WHERE price < 150.00 ORDER BY price ASC");
 List<Product> products = (List<Product>)q.execute();
 Iterator<Product> iter = products.iterator();

49

Main

while (iter.hasNext())
 {
 Product p = iter.next();
 System.out.println("> " + p);

 // Give an example of an update
 if (p instanceof Book)
 {
 Book b = (Book)p;
 b.setDescription("This book has been reduced in price!");
 }
 }

 tx.commit();
 }

50

Main

 finally
 {
 if (tx.isActive())
 {
 tx.rollback();
 }
 pm.close();
 }
 System.out.println("");

51

Main

 // Clean out the database
 pm = pmf.getPersistenceManager();
 tx = pm.currentTransaction();
 try
 {
 tx.begin();

 System.out.println("Retrieving Inventory using its id");
 Inventory inv = (Inventory)pm.getObjectById(inventoryId);

 System.out.println("Clearing out Inventory");
 inv.getProducts().clear();

 52

Main

 System.out.println("Deleting Inventory");
 pm.deletePersistent(inv);

 System.out.println("Deleting all products from persistence");
 Query q = pm.newQuery(Product.class);
 long numberInstancesDeleted = q.deletePersistentAll();
 System.out.println("Deleted " + numberInstancesDeleted + "
products");

 tx.commit();
 }

53

Main

 finally
 {
 if (tx.isActive())
 {
 tx.rollback();
 }
 pm.close();
 }

 System.out.println("");
 System.out.println("End of Tutorial");
 }
}

54

Step 6 : Run your application

• Run Main by right clicking on the Main.java file and
selection Run As..->Java application

55

Output

DataNucleus AccessPlatform with JDO
===================================
Persisting Inventory of products
Inventory, Product and Book have been persisted
Retrieving Extent for Products
> Book : JRR Tolkien - Lord of the Rings by Tolkien
> Product : 2 name=Sony Discman [A standard discman from Sony]
Executing Query for Products with price below 150.00
> Book : JRR Tolkien - Lord of the Rings by Tolkien
Retrieving Inventory using its id
Clearing out Inventory
Deleting Inventory
Deleting all products from persistence
Deleted 2 products
End of Tutorial

56

Delete the schema

• java -cp bin;lib\datanucleus-core-
3.2.11.jar;lib\datanucleus-api-jpa-
3.3.6.jar;lib\datanucleus-api-jdo-
3.2.7.jar;lib\javax.persistence-
2.1.0.jar;lib\datanucleus-rdbms-3.2.10.jar;lib\jdo-api-
3.1-rc1.jar;lib\db2jcc.jar;lib\log4j-1.2.14.jar
org.datanucleus.store.schema.SchemaTool -delete -
pu Tutorial bin\package-db2.orm

57

JPA

• Similar to JDO:
– Annotations
– XML files
– Class enhancement

58

	Object-relational mapping
	Object-relational impedance mismatch
	Data type differences
	Structural and integrity differences
	Manipulative differences
	Transactional differences
	Solving impedance mismatch
	Object-relational mapping
	Object-relational mapping
	Java Data Objects
	Java Data Objects
	Java Data Objects
	Java Persistence API
	Java Persistence API
	Java Persistence API
	Java Persistence Query Language
	Related technologies
	Related technologies
	JDO with DataNucleus AccessPlatform
	Working example: store
	Book
	Inheritance
	Inventory
	Step 2 : Define the Persistence for classes
	Product
	Book
	Inventory
	Persistence information
	Persistence information
	persistence.xml
	ORM information
	ORM information
	Tutorial in Eclipse
	Tutorial in Eclipse
	Tutorial in Eclipse
	Step 3 : Enhance your classes
	Step 3 : Enhance your classes
	Step 3 : Enhance your classes
	Step 4 : Generate any schema required for your domain classes
	Step 4 : Generate any schema required for your domain classes
	Step 4 : Generate any schema required for your domain classes
	Step 5 : Write the code to persist objects of your classes
	Main
	Main
	Main
	Main
	Main
	Main
	Main
	Main
	Main
	Main
	Main
	Main
	Step 6 : Run your application
	Output
	Delete the schema
	JPA

