
SQL in Programming Languages

Slides derived from those by Jeffrey D. Ullman

2

SQL and Programming Languages

• The user does not want to execute SQL statements
• She wants to interact with an application targeted to

her domain
– Limited set of choices
– Simple execution of complex operations
– Graphical interface:

• Simple data input
• Nice data output (presentation)

3

Applications

• They are written in traditional programming
languages:
– C, C++, Java, Fortran, C#, Visual Basic, Cobol

• Host languages

4

Approaches

• Embedded SQL
– Older approach (since the 70s)

• Call Level Interface (CLI)
– Most recent
– SQL/CLI, ODBC, JDBC

5

Embedded SQL

• In the embedded SQL approach the programmer
inserts SQL statements directly in the source code of
the host programming language

• A precompiler is used to translate the code so that
SQL statements are translated into
function/procedure calls of the specific DBMS API

• From a file containing embedded SQL to a file in the
same language containing function calls

6

Concrete Examples

• In DB2 you can develop embedded SQL applications
in the following host programming languages: C,
C++, COBOL, FORTRAN, and REXX

• The DB2 precompiler is invoked with PREP
(PRECOMPILE)

• In Postgres the preprocessor for C is called ECPG

7

Shared Variables

• To connect SQL and the host-language program, the
two parts must share some variables.

• Declarations of shared variables are bracketed by:
 EXEC SQL BEGIN DECLARE SECTION;
 <host-language declarations>
 EXEC SQL END DECLARE SECTION;

8

Use of Shared Variables

• In SQL, the shared variables must be preceded by a
colon.
– They may be used as constants provided by the

host-language program.
– They may get values from SQL statements and

pass those values to the host-language program.
• In the host language, shared variables behave like

any other variable.

9

Example: C Plus SQL

EXEC SQL BEGIN DECLARE SECTION;
 char theBar[21], theBeer[21];
 float thePrice;
EXEC SQL END DECLARE SECTION;
 /* obtain values for theBar and theBeer */
EXEC SQL SELECT price INTO :thePrice
 FROM Sells
 WHERE bar = :theBar AND beer = :theBeer;
 /* do something with thePrice */

10

Embedded Queries

• You may use SELECT-INTO for a query guaranteed
to produce a single tuple.

• Otherwise, you have to use a cursor.
– Small syntactic differences between PSM and

Embedded SQL cursors, but the key ideas are
identical.

11

Cursor Statements

• Declare a cursor c with:
EXEC SQL DECLARE c CURSOR FOR <query>;
• Open and close cursor c with:
EXEC SQL OPEN CURSOR c;
EXEC SQL CLOSE CURSOR c;
• Fetch from c by:
EXEC SQL FETCH c INTO <variable(s)>;

– Macro NOT FOUND is true if and only if the
FETCH fails to find a tuple.

12

Example -- 1

• Let’s write C + SQL to print Joe’s menu --- the list of
beer-price pairs that we find in Sells(bar, beer, price)
with bar = Joe’s Bar.

• A cursor will visit each Sells tuple that has bar = Joe’s
Bar.

13

Example – 2 (Declarations)

EXEC SQL BEGIN DECLARE SECTION;
 char theBeer[21]; float thePrice;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE c CURSOR FOR
 SELECT beer, price FROM Sells
 WHERE bar = ‘Joe’’s Bar’;

14

Example – 3 (Executable)

EXEC SQL OPEN CURSOR c;
while(1) {
 EXEC SQL FETCH c
 INTO :theBeer, :thePrice;
 if (NOT FOUND) break;
 /* format and print theBeer and thePrice */
}
EXEC SQL CLOSE CURSOR c;

15

Need for Dynamic SQL

• Most applications use specific queries and
modification statements in their interaction with the
database.
– Thus, we can compile the EXEC SQL …

statements into specific procedure calls and
produce an ordinary host-language program that
uses a library.

• What if the program is something like a generic query
interface, that doesn’t know what it needs to do until it
runs?

16

Dynamic SQL

• Preparing a query:
EXEC SQL PREPARE <query-name>
 FROM <text of the query>;
• Executing a query:
EXEC SQL EXECUTE <query-name>;
• “Prepare” = optimize query.
• Prepare once, execute many times.

17

Example: A Generic Interface

EXEC SQL BEGIN DECLARE SECTION;
 char query[MAX_LENGTH];
EXEC SQL END DECLARE SECTION;
while(1) {
 /* issue SQL> prompt */
 /* read user’s query into array query */
 EXEC SQL PREPARE q FROM :query;
 EXEC SQL EXECUTE q;
}

18

Execute-Immediate

• If we are only going to execute the query once, we
can combine the PREPARE and EXECUTE steps
into one.

• Use:
EXEC SQL EXECUTE IMMEDIATE <text>;

19

Example: Generic Interface Again

EXEC SQL BEGIN DECLARE SECTION;
 char query[MAX_LENGTH];
EXEC SQL END DECLARE SECTION;
while(1) {
 /* issue SQL> prompt */
 /* read user’s query into array query */
 EXEC SQL EXECUTE IMMEDIATE :query;
}

20

DB2 Example

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <sqlenv.h>
 #include <sqlutil.h>

 EXEC SQL BEGIN DECLARE SECTION;
 short id;
 char name[10];
 short dept;
 double salary;
 char hostVarStmtDyn[50];
 EXEC SQL END DECLARE SECTION;

21

DB2 Example
 int main()
 {
 int rc = 0;
 EXEC SQL INCLUDE SQLCA;

 /* connect to the database */
 printf("\n Connecting to database...");
 EXEC SQL CONNECT TO "sample";
 if (SQLCODE <0)
 {
 printf("\nConnect Error: SQLCODE = %d\n”,SQLCODE);
 goto connect_reset;
 }
 else
 {
 printf("\n Connected to database.\n");
 }

The SQLCA structure is
updated after the
execution of each SQL
statement.

SQLCODE is a field of
SQLCA that contains the
result of the last operation

22

DB2 Example
 /* execute an SQL statement (a query) using static SQL; copy the single row
 of result values into host variables*/
 EXEC SQL SELECT id, name, dept, salary
 INTO :id, :name, :dept, :salary
 FROM staff WHERE id = 310;
 if (SQLCODE <0)
 {
 printf("Select Error: SQLCODE = %d\n”,SQLCODE);
 }
 else
 {
 /* print the host variable values to standard output */
 printf("\n Executing a static SQL query statement, searching for
 \n the id value equal to 310\n");
 printf("\n ID Name DEPT Salary\n");
 printf(" %d\t%s\t%d\t%f\n”,id,name,dept,salary);
 }

23

DB2 Example
 strcpy(hostVarStmtDyn, "UPDATE staff
 SET salary = salary + 1000
 WHERE dept = ?");
 /* execute an SQL statement (an operation) using a host variable
 and DYNAMIC SQL*/
 EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn;
 if (SQLCODE <0)
 {
 printf("Prepare Error: SQLCODE = %d\n”,SQLCODE);
 }
 else
 {
 EXEC SQL EXECUTE StmtDyn USING :dept;
 }
 if (SQLCODE <0)
 {
 printf("Execute Error: SQLCODE = %d\n”,SQLCODE);
 }

24

DB2 Example

/* Read the updated row using STATIC SQL and CURSOR */
 EXEC SQL DECLARE posCur1 CURSOR FOR
 SELECT id, name, dept, salary
 FROM staff WHERE id = 310;
 if (SQLCODE <0)
 {
 printf("Declare Error: SQLCODE = %d\n”,SQLCODE);
 }
 EXEC SQL OPEN posCur1;
 EXEC SQL FETCH posCur1 INTO :id, :name, :dept, :salary ;

25

DB2 Example

 if (SQLCODE <0)
 {
 printf("Fetch Error: SQLCODE = %d\n”,SQLCODE);
 }
 else
 {
 printf(" Executing an dynamic SQL statement, updating the
 \n salary value for the id equal to 310\n");
 printf("\n ID Name DEPT Salary\n");
 printf(" %d\t%s\t%d\t%f\n”,id,name,dept.salary);
 }
 EXEC SQL CLOSE posCur1;

26

DB2 Example

/* Commit the transaction */
 printf("\n Commit the transaction.\n");
 EXEC SQL COMMIT;
 if (SQLCODE <0)
 {
 printf("Error: SQLCODE = %d\n”,SQLCODE);
 }
 /* Disconnect from the database */
 connect_reset :
 EXEC SQL CONNECT RESET;
 if (SQLCODE <0)
 {
 printf("Connection Error: SQLCODE = %d\n”,SQLCODE);
 }
 return 0;
 } /* end main */

27

Call Level Interface

• Sending commands to DBMS by means of function
calls of an API
– standard SQL/CLI (’95 and then part of SQL:1999)
– ODBC: proprietary (Microsoft) implementation of

SQL/CLI
– OLE DB: high level API
– ADO: higher level API
– JDBC: CLI for Java

28

SQL/CLI

• SQL/CLI is the library for C
• ODBC differs from SQL/CLI in minor details

29

Data Structures

• C connects to the database by structs of the following
types:
1.Environments : represent the DBMS installation.
2.Connections : logins to the database.
3.Statements : records that hold SQL statements to

be passed to a connection.
4.Descriptions : records about tuples from a query

or parameters of a statement.

30

Environments, Connections, and Statements

• Function SQLAllocHandle(T,I,O) is used to create
these structs, which are called environment,
connection, and statement handles.
– T = type, e.g., SQL_HANDLE_STMT.
– I = input handle = struct at next higher level

(statement < connection < environment).
– O = (address of) output handle.

31

Example: SQLAllocHandle

SQLAllocHandle(SQL_HANDLE_STMT,
 myCon, &myStat);
• myCon is a previously created connection

handle.
• myStat is the name of the statement handle

that will be created.

32

Preparing and Executing

• SQLPrepare(H, S, L) causes the string S, of
length L, to be interpreted as an SQL
statement, optimized, and the executable
statement is placed in statement handle H.

• SQLExecute(H) causes the SQL statement
represented by statement handle H to be
executed.

33

Example: Prepare and Execute

SQLPrepare(myStat, “SELECT beer, price
 FROM Sells WHERE bar = ‘Joe’’s Bar’”,
 SQL_NTS);
SQLExecute(myStat);

This constant says the second argument
is a “null-terminated string”; i.e., figure out
the length by counting characters.

34

Dynamic Execution

• If we will execute a statement S only once,
we can combine PREPARE and EXECUTE
with:

SQLExecuteDirect(H,S,L);
– As before, H is a statement handle and L

is the length of string S.

35

Fetching Tuples

• When the SQL statement executed is a
query, we need to fetch the tuples of the
result.
– That is, a cursor is implied by the fact we

executed a query, and need not be
declared.

• SQLFetch(H) gets the next tuple from the
result of the statement with handle H.

36

Accessing Query Results

• When we fetch a tuple, we need to put the
components somewhere.

• Thus, each component is bound to a variable
by the function SQLBindCol.
– This function has 6 arguments, of which we

shall show only 1, 2, and 4:
• 1 = handle of the query statement.
• 2 = column number.
• 4 = address of the variable.

37

Example: Binding

• Suppose we have just done
SQLExecute(myStat), where myStat is the
handle for query

SELECT beer, price FROM Sells
WHERE bar = ‘Joe’’s Bar’
• Bind the result to theBeer and thePrice:
SQLBindCol(myStat, 1, , &theBeer, ,);
SQLBindCol(myStat, 2, , &thePrice, ,);

38

Example: Fetching

• Now, we can fetch all the tuples of the answer
by:

while (SQLFetch(myStat) != SQL_NO_DATA)
 {
 /* do something with theBeer and
 thePrice */
 }

CLI macro representing
SQLSTATE = 02000 = “failed
to find a tuple.”

39

OLE DB

• ODBC is complicated, so Microsoft proposed OLE
DB and ADO

• OLE DB: is a library that provides applications with
uniform access to data stored in diverse information
sources
– Not only relational

• OLE DB is based on the Microsoft object model:
Component Object Model (COM)

40

ADO and ADO.NET

• ADO: Activex Data Object
• High level interface for OLE DB
• ADO.NET: ADO for the .NET framework
• ADO.NET is independent from OLE DB: there does

not exist OLE DB.NET

41

.NET Framework

• The .NET Framework is Microsoft's replacement for
COM technology.

• You can code .NET applications in over forty different
programming languages. The most popular
languages for .NET development are C# and Visual
Basic .NET.

• The .NET Framework class library provides the
building blocks with which you build .NET
applications. This class library is language agnostic
and provides interfaces to operating system and
application services.

42

.NET Framework

• .NET applications (regardless of language) compile
into Intermediate Language (IL), a type of bytecode.

• The Common Language Runtime (CLR) is the heart
of the .NET Framework, compiling the IL code on the
fly, and then running it.

• In running the compiled IL code, the CLR activates
objects, verifies their security clearance, allocates
their memory, executes them, and cleans up their
memory once execution is finished.

	SQL in Programming Languages
	SQL and Programming Languages
	Applications
	Approaches
	Embedded SQL
	Concrete Examples
	Shared Variables
	Use of Shared Variables
	Example: C Plus SQL
	Embedded Queries
	Cursor Statements
	Example -- 1
	Example – 2 (Declarations)
	Example – 3 (Executable)
	Need for Dynamic SQL
	Dynamic SQL
	Example: A Generic Interface
	Execute-Immediate
	Example: Generic Interface Again
	DB2 Example
	DB2 Example
	DB2 Example
	DB2 Example
	DB2 Example
	DB2 Example
	DB2 Example
	Call Level Interface
	SQL/CLI
	Data Structures
	Environments, Connections, and Statements
	Example: SQLAllocHandle
	Preparing and Executing
	Example: Prepare and Execute
	Dynamic Execution
	Fetching Tuples
	Accessing Query Results
	Example: Binding
	Example: Fetching
	OLE DB
	ADO and ADO.NET
	.NET Framework
	.NET Framework

