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SQL and Programming Languages 

• The user does not want to execute SQL statements 
• She wants to interact with an application targeted to 

her domain 
– Limited set of choices 
– Simple execution of complex operations 
– Graphical interface: 

• Simple data input 
• Nice data output (presentation) 
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Applications 

• They are written in traditional programming 
languages: 
– C, C++, Java, Fortran, C#, Visual Basic, Cobol 

• Host languages 
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Approaches 

• Embedded SQL 
– Older approach (since the 70s) 

• Call Level Interface (CLI) 
– Most recent 
– SQL/CLI, ODBC, JDBC 
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Embedded SQL 

• In the embedded SQL approach the programmer 
inserts SQL statements directly in the source code of 
the host programming language 

• A precompiler is used to translate the code so that 
SQL statements are translated into 
function/procedure calls of the specific DBMS API 

• From a file containing embedded SQL to a file in the 
same language containing function calls 
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Concrete Examples 

• In DB2 you can develop embedded SQL applications 
in the following host programming languages: C, 
C++, COBOL, FORTRAN, and REXX 

• The DB2 precompiler is invoked with PREP 
(PRECOMPILE) 

• In Postgres the preprocessor for C is called ECPG  
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Shared Variables 

• To connect SQL and the host-language program, the 
two parts must share some variables. 

• Declarations of shared variables are bracketed by: 
 EXEC SQL BEGIN DECLARE SECTION; 
  <host-language declarations> 
 EXEC SQL END DECLARE SECTION; 
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Use of Shared Variables 

• In SQL, the shared variables must be preceded by a 
colon. 
– They may be used as constants provided by the 

host-language program. 
– They may get values from SQL statements and 

pass those values to the host-language program. 
• In the host language, shared variables behave like 

any other variable. 
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Example: C Plus SQL 

EXEC SQL BEGIN DECLARE SECTION; 
 char theBar[21], theBeer[21]; 
 float thePrice; 
EXEC SQL END DECLARE SECTION; 
 /* obtain values for theBar and theBeer */ 
EXEC SQL SELECT price INTO :thePrice 
 FROM Sells 
 WHERE bar = :theBar AND beer = :theBeer; 
 /* do something with thePrice */ 
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Embedded Queries 

• You may use SELECT-INTO for a query guaranteed 
to produce a single tuple. 

• Otherwise, you have to use a cursor. 
– Small syntactic differences between PSM and 

Embedded SQL cursors, but the key ideas are 
identical. 
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Cursor Statements 

• Declare a cursor c with: 
EXEC SQL DECLARE c  CURSOR FOR <query>; 
• Open and close cursor c with: 
EXEC SQL OPEN CURSOR c; 
EXEC SQL CLOSE CURSOR c; 
• Fetch from c by: 
EXEC SQL FETCH c INTO <variable(s)>; 

– Macro NOT FOUND is true if and only if the 
FETCH fails to find a tuple. 
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Example -- 1 

• Let’s write C + SQL to print Joe’s menu --- the list of 
beer-price pairs that we find in Sells(bar, beer, price) 
with bar = Joe’s Bar. 

• A cursor will visit each Sells tuple that has bar = Joe’s 
Bar. 
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Example – 2 (Declarations) 

EXEC SQL BEGIN DECLARE SECTION; 
 char theBeer[21]; float thePrice; 
EXEC SQL END DECLARE SECTION; 
EXEC SQL DECLARE c CURSOR FOR 
 SELECT beer, price FROM Sells 
 WHERE bar = ‘Joe’’s Bar’; 
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Example – 3 (Executable) 

EXEC SQL OPEN CURSOR c; 
while(1) { 
 EXEC SQL FETCH c 
   INTO :theBeer, :thePrice; 
 if (NOT FOUND) break; 
 /* format and print theBeer and thePrice */ 
} 
EXEC SQL CLOSE CURSOR c; 
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Need for Dynamic SQL 

• Most applications use specific queries and 
modification statements in their interaction with the 
database. 
– Thus, we can compile the EXEC SQL … 

statements into specific procedure calls and 
produce an ordinary host-language program that 
uses a library. 

• What if the program is something like a generic query 
interface, that doesn’t know what it needs to do until it 
runs? 
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Dynamic SQL 

• Preparing a query: 
EXEC SQL PREPARE <query-name> 
   FROM <text of the query>; 
• Executing a query: 
EXEC SQL EXECUTE <query-name>; 
• “Prepare” = optimize query. 
• Prepare once, execute many times. 
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Example: A Generic Interface 

EXEC SQL BEGIN DECLARE SECTION; 
 char query[MAX_LENGTH]; 
EXEC SQL END DECLARE SECTION; 
while(1) { 
 /* issue SQL> prompt */ 
 /* read user’s query into array query */ 
 EXEC SQL PREPARE q FROM :query; 
 EXEC SQL EXECUTE q; 
} 
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Execute-Immediate 

• If we are only going to execute the query once, we 
can combine the PREPARE and EXECUTE steps 
into one. 

• Use: 
EXEC SQL EXECUTE IMMEDIATE <text>; 
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Example: Generic Interface Again 

EXEC SQL BEGIN DECLARE SECTION; 
 char query[MAX_LENGTH]; 
EXEC SQL END DECLARE SECTION; 
while(1) { 
 /* issue SQL> prompt */ 
 /* read user’s query into array query */ 
 EXEC SQL EXECUTE IMMEDIATE :query; 
} 
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DB2 Example 

 #include <stdio.h>                                                   
       #include <stdlib.h> 
       #include <string.h> 
       #include <sqlenv.h> 
       #include <sqlutil.h>                                                
 
      EXEC SQL BEGIN DECLARE SECTION; 
        short id; 
        char name[10]; 
        short dept; 
        double salary; 
        char hostVarStmtDyn[50]; 
      EXEC SQL END DECLARE SECTION;                                         
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DB2 Example 
 int main()                                                            
       {  
         int rc = 0; 
         EXEC SQL INCLUDE SQLCA; 
 
         /* connect to the database */ 
         printf("\n Connecting to database..."); 
         EXEC SQL CONNECT TO "sample"; 
         if (SQLCODE  <0) 
         { 
            printf("\nConnect Error:  SQLCODE = %d\n”,SQLCODE); 
            goto connect_reset; 
         } 
         else 
         { 
            printf("\n Connected to database.\n"); 
         } 
          

 

The SQLCA structure is 
updated after the 
execution of each SQL 
statement. 

SQLCODE is a field of 
SQLCA that contains the 
result of the last operation 
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DB2 Example 
 /* execute an SQL statement (a query) using static SQL; copy the single row  
            of result values into host variables*/ 
         EXEC SQL SELECT id, name, dept, salary 
                 INTO :id, :name, :dept, :salary 
                 FROM staff WHERE id = 310; 
         if (SQLCODE  <0)  
         { 
            printf("Select Error:  SQLCODE = %d\n”,SQLCODE); 
         } 
         else 
         { 
            /* print the host variable values to standard output */ 
            printf("\n Executing a static SQL query statement, searching for  
               \n the id value equal to 310\n"); 
            printf("\n ID   Name        DEPT       Salary\n"); 
            printf(" %d\t%s\t%d\t%f\n”,id,name,dept,salary); 
         } 
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DB2 Example 
 strcpy(hostVarStmtDyn, "UPDATE staff  
                                SET salary = salary + 1000  
                                WHERE dept = ?"); 
         /* execute an SQL statement (an operation) using a host variable 
            and DYNAMIC SQL*/ 
         EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn; 
         if (SQLCODE  <0) 
         { 
            printf("Prepare Error:  SQLCODE = %d\n”,SQLCODE); 
         } 
         else 
         { 
            EXEC SQL EXECUTE StmtDyn USING :dept; 
         } 
         if (SQLCODE  <0) 
         { 
            printf("Execute Error:  SQLCODE = %d\n”,SQLCODE); 
         } 
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DB2 Example 

/* Read the updated row using STATIC SQL and CURSOR */ 
         EXEC SQL DECLARE posCur1 CURSOR FOR  
            SELECT id, name, dept, salary  
            FROM staff WHERE id = 310; 
         if (SQLCODE  <0) 
         { 
            printf("Declare Error:  SQLCODE = %d\n”,SQLCODE); 
         } 
         EXEC SQL OPEN posCur1; 
         EXEC SQL FETCH posCur1 INTO :id, :name, :dept, :salary ; 
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DB2 Example 

 if (SQLCODE  <0) 
         { 
            printf("Fetch Error:  SQLCODE = %d\n”,SQLCODE); 
         } 
         else 
         { 
            printf(" Executing an dynamic SQL statement, updating the  
                     \n salary value for the id equal to 310\n"); 
            printf("\n ID   Name        DEPT       Salary\n"); 
   printf(" %d\t%s\t%d\t%f\n”,id,name,dept.salary); 
         } 
         EXEC SQL CLOSE posCur1; 
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DB2 Example 

/* Commit the transaction */ 
         printf("\n  Commit the transaction.\n"); 
         EXEC SQL COMMIT; 
         if (SQLCODE  <0) 
         { 
            printf("Error:  SQLCODE = %d\n”,SQLCODE); 
         } 
         /* Disconnect from the database */ 
         connect_reset : 
            EXEC SQL CONNECT RESET; 
            if (SQLCODE  <0) 
            { 
               printf("Connection Error:  SQLCODE = %d\n”,SQLCODE); 
            } 
         return 0; 
        } /* end main */ 
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Call Level Interface 

• Sending commands to DBMS by means of function 
calls of an API 
– standard SQL/CLI (’95 and then part of SQL:1999) 
– ODBC: proprietary (Microsoft) implementation of 

SQL/CLI 
– OLE DB: high level API 
– ADO: higher level API 
– JDBC: CLI for Java 
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SQL/CLI 

• SQL/CLI  is the library for C 
• ODBC differs from SQL/CLI in minor details 
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Data Structures 

• C connects to the database by structs of the following 
types: 
1.Environments : represent the DBMS installation. 
2.Connections : logins to the database. 
3.Statements : records that hold SQL statements to 

be passed to a connection. 
4.Descriptions : records about tuples from a query 

or parameters of a statement. 
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Environments, Connections, and Statements 

• Function SQLAllocHandle(T,I,O) is used to create 
these structs, which are called environment, 
connection, and statement handles. 
– T = type, e.g., SQL_HANDLE_STMT. 
– I = input handle = struct at next higher level 

(statement < connection < environment). 
– O = (address of) output handle. 
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Example: SQLAllocHandle 

SQLAllocHandle(SQL_HANDLE_STMT, 
 myCon, &myStat); 
• myCon is a previously created connection 

handle. 
• myStat is the name of the statement handle 

that will be created. 
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Preparing and Executing 

• SQLPrepare(H, S, L) causes the string S, of 
length L, to be interpreted as an SQL 
statement, optimized, and the executable 
statement is placed in statement handle H. 

• SQLExecute(H) causes the SQL statement 
represented by statement handle H  to be 
executed. 
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Example: Prepare and Execute 

SQLPrepare(myStat, “SELECT beer, price 
 FROM Sells WHERE bar = ‘Joe’’s Bar’”, 
 SQL_NTS); 
SQLExecute(myStat); 

This constant says the second argument 
is a “null-terminated string”; i.e., figure out 
the length by counting characters. 
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Dynamic Execution 

• If we will execute a statement S  only once, 
we can combine PREPARE and EXECUTE 
with: 

SQLExecuteDirect(H,S,L); 
– As before, H  is a statement handle and L  

is the length of string S. 
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Fetching Tuples 

• When the SQL statement executed is a 
query, we need to fetch the tuples of the 
result. 
– That is, a cursor is implied by the fact we 

executed a query, and need not be 
declared. 

• SQLFetch(H) gets the next tuple from the 
result of the statement with handle H. 
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Accessing Query Results 

• When we fetch a tuple, we need to put the 
components somewhere. 

• Thus, each component is bound to a variable 
by the function SQLBindCol. 
– This function has 6 arguments, of which we 

shall show only 1, 2, and 4: 
• 1 = handle of the query statement. 
• 2 = column number. 
• 4 = address of the variable. 
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Example: Binding 

• Suppose we have just done 
SQLExecute(myStat), where myStat is the 
handle for query 

SELECT beer, price FROM Sells 
WHERE bar = ‘Joe’’s Bar’ 
• Bind the result to theBeer and thePrice: 
SQLBindCol(myStat, 1, , &theBeer, , ); 
SQLBindCol(myStat, 2, , &thePrice, , ); 
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Example: Fetching 

• Now, we can fetch all the tuples of the answer 
by: 

while ( SQLFetch(myStat) != SQL_NO_DATA) 
 { 
  /* do something with theBeer and 
      thePrice */ 
 } 

 
CLI macro representing 
SQLSTATE = 02000 = “failed 
to find a tuple.” 
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OLE DB 

• ODBC is complicated, so Microsoft proposed OLE 
DB and ADO 

• OLE DB: is a library that provides applications with 
uniform access to data stored in diverse information 
sources  
– Not only relational 

• OLE DB is based on the Microsoft object model: 
Component Object Model (COM) 
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ADO and ADO.NET 

• ADO: Activex Data Object 
• High level interface for OLE DB 
• ADO.NET: ADO for the .NET framework 
• ADO.NET is independent from OLE DB: there does 

not exist OLE DB.NET 
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.NET Framework 

• The .NET Framework is Microsoft's replacement for 
COM technology.  

• You can code .NET applications in over forty different 
programming languages. The most popular 
languages for .NET development are C# and Visual 
Basic .NET.  

• The .NET Framework class library provides the 
building blocks with which you build .NET 
applications. This class library is language agnostic 
and provides interfaces to operating system and 
application services.  
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.NET Framework 

• .NET applications (regardless of language) compile 
into Intermediate Language (IL), a type of bytecode.  

• The Common Language Runtime (CLR) is the heart 
of the .NET Framework, compiling the IL code on the 
fly, and then running it.  

• In running the compiled IL code, the CLR activates 
objects, verifies their security clearance, allocates 
their memory, executes them, and cleans up their 
memory once execution is finished.  
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