
Physical Organization: SQL Server Physical Organization: SQL Server 
20052005



2

TablesTables

• Tables and indexes are stored as a collection of 8 KB 
pages 

• A table is divided in one or more partitions 
• Each partition contains data rows in either a heap or 

a clustered table. 

• The pages of the heap or clustered index are 
managed in one or more allocation units, depending 
on the column types in the data rows.



3

TablesTables



4

PartitionsPartitions

• Table and index pages are divided in one or more 
partitions. 

• By default, a table or index has only one partition that 
contains all the table or index pages. The partition 
resides in a single filegroup. 

• When a table or index uses multiple partitions, the 
data is partitioned horizontally so that groups of rows 
are mapped into individual partitions, based on a 
specified column. 



5

PartitionsPartitions

• The partitions can be put on one or more filegroups in 
the database. The table or index is treated as a 
single logical entity when queries or updates are 
performed on the data. 

• To view the partitions used by a table or index, use 
the sys.partitions catalog view.



6

Organization of a PartitionOrganization of a Partition

• SQL Server 2005 tables use one of two methods to 
organize their data pages within a partition: 

• Clustered tables: tables that have a clustered index. 
The data rows are stored in order based on the clustered 
index key. The clustered index is implemented as a 
B+tree index. 
– The pages in each level of the index, including the 

data pages in the leaf level, are linked in a doubly-
linked list. 

• Heaps: tables that have no clustered index. The data 
rows are not stored in any particular order, and there is 
no particular order to the sequence of the data pages. 
The data pages are not linked in a linked list. 



7

Allocation UnitsAllocation Units

• An allocation unit is a collection of pages within a 
heap or B+tree used to manage data based on their 
page type. 

Allocation unit 
type Is used to manage 

IN_ROW_DATA Data or index rows that contain all data, except large object 
(LOB) data. Pages are of type Data or Index.

LOB_DATA

Large object data stored in one or more of these data types: 
text, ntext, image, xml, varchar(max), nvarchar(max), 
varbinary(max), or CLR user-defined types (CLR UDT). 
Pages are of type Text/Image.

ROW_OVERFLO
W_DATA

Variable length data stored in varchar, nvarchar, varbinary, or 
sql_variant columns that exceed the 8,060 byte row size limit. 
Pages are of type Data.



8

IN_ROW_DATA Allocation UnitIN_ROW_DATA Allocation Unit

• For every partition used by a table (heap or clustered 
table), index, or indexed view, there is one 
IN_ROW_DATA allocation unit that is made up of a 
collection of data pages. 

• This allocation unit also contains additional 
collections of pages to implement each nonclustered 
and XML index defined for the table or view.



9

ROW_OVERFLOW_DATA Allocation UnitROW_OVERFLOW_DATA Allocation Unit

• For every partition used by a table (heap or clustered 
table), index, or indexed view, there can be one 
ROW_OVERFLOW_DATA allocation unit. 

• This allocation unit contains zero (0) pages until a 
data row with variable length columns (varchar, 
nvarchar, varbinary, or sql_variant) in the 
IN_ROW_DATA allocation unit exceeds the 8 KB row 
size limit. 

• When the size limitation is reached, SQL Server 
moves the column with the largest width from that 
row to a page in the ROW_OVERFLOW_DATA 
allocation unit. A 24-byte pointer to this off-row data 
is maintained on the original page. 



10

LOB_DATA Allocation UnitLOB_DATA Allocation Unit

• When a table or index has one or more LOB data 
types, one LOB_DATA allocation unit per partition is 
allocated to manage the storage of that data. 

• The LOB data types include text, ntext, image, xml, 
varchar(max), nvarchar(max), varbinary(max), and 
CLR user-defined types.



11

HeapsHeaps

• A heap stores a table without a clustered index. 
• When a heap has multiple partitions, each partition 

has a heap structure that contains the data for that 
specific partition.

• At a minimum, each heap will have one 
IN_ROW_DATA allocation unit per partition. The 
heap may also have one LOB_DATA allocation unit 
per partition and one ROW_OVERFLOW_DATA 
allocation unit per partition.



12

Clustered TablesClustered Tables

• They are organized as B+-trees
• One page per node
• The leaf nodes contain the data pages of the 

underlying table. 

• Thus the data is stored inside the clustered index

• The pages in each level of the index are linked in a 
doubly-linked list. 

• When a clustered index has multiple partitions, each 
partition has a B+-tree structure that contains the 
data for that specific partition. 



13

Clustered TablesClustered Tables

• The pages in the data chain and the rows in them are 
ordered on the value of the clustered index key. 

• All inserts are made at the point where the key value 
in the inserted row fits in the ordering sequence 
among existing rows.

• At a minimum, each clustered index will have one 
IN_ROW_DATA allocation unit per partition. The 
clustered index may also have one LOB_DATA 
allocation unit per partition and one 
ROW_OVERFLOW_DATA allocation unit per 
partition.



A Clustered A Clustered 
TableTable

in a Singlein a Single
PartitionPartition



15

Nonclustered IndexesNonclustered Indexes

• Same B+-tree structure as clustered tables but
– The leaf layer of a nonclustered index is made up 

of index pages instead of data pages.
– The data rows of the underlying table are not 

sorted and stored in order based on their 
nonclustered keys

• When a nonclustered index has multiple partitions, 
each partition has a B+-tree structure that contains 
the data for that specific partition. 



16

Nonclustered IndexesNonclustered Indexes

• Nonclustered indexes can be defined on a table or 
view with a clustered index or a heap. 

• Each index row in the leaves of the nonclustered index 
contains the key value and a row locator. This locator 
points to the data row in the clustered index or heap 
having the key value. 

• At a minimum, each nonclustered index will have one 
IN_ROW_DATA allocation unit per partition. The 
unclustered index may also have one LOB_DATA 
allocation unit per partition and one 
ROW_OVERFLOW_DATA allocation unit per partition.



17

Row LocatorsRow Locators

• If the table is a heap the row locator is a pointer to the row. The 
pointer is built from the file identifier (ID), page number, and 
number of the row on the page. The whole pointer is known as a 
Row ID (RID).

• If the table has a clustered index, the row locator is the 
clustered index key for the row. 
– If the clustered index is not a unique index, SQL Server 

2005 makes any duplicate keys unique by adding an 
internally generated value called a uniqueifier. This four-
byte value is not visible to users. 

– SQL Server retrieves the data row by searching the 
clustered index using the clustered index key stored in the 
leaf row of the nonclustered index.



18

Nonclustered IndexesNonclustered Indexes

• When a nonclustered index has multiple partitions, 
each partition has a B+tree structure that contains the 
index rows for that specific partition.



A A 
Nonclustered Nonclustered 

IndexIndex
in a Singlein a Single
PartitionPartition



20

PagesPages

•Pages in file are numbered sequentially, 
starting from 0



21

PagesPages

• The first page of a file contains information about the 
attributes of the file

• Other pages at the beginning of the file can be used 
for containing system information, such as allocation 
maps



22

Management of Space on DisksManagement of Space on Disks

• Space on disks is managed in extents
• An extent is eight physically contiguous pages, or 64 

KB. This means SQL Server databases have 16 
extents per megabyte.

• SQL Server has two types of extents: 

– Uniform extents are owned by a single object; all 
eight pages in the extent can only be used by the 
owning object.

– Mixed extents are shared by up to eight objects. 
Each of the eight pages in the extent can be 
owned by a different object.



23

ExtentsExtents

• A new table or index is generally allocated pages 
from mixed extents. When the table or index grows to 
the point that it has eight pages, it then switches to 
use uniform extents for subsequent allocations. 



24

Space AllocationSpace Allocation

• The data structures that manage extent allocations 
and track free space have a relatively simple 
structure. Benefits:
– The free space information is densely packed, so 

relatively few pages contain this information. 
– Most of the allocation information is not chained 

together. This simplifies the maintenance of the 
allocation information. 



25

Space AllocationSpace Allocation

• SQL Server uses two types of allocation maps to record the 
allocation of extents: 

• Global Allocation Map (GAM): GAM pages record what extents 
have been allocated. Each GAM covers 64,000 extents, or 
almost 4 GB of data. The GAM has one bit for each extent. If the 
bit is 1, the extent is free; if the bit is 0, the extent is allocated. 

• Shared Global Allocation Map (SGAM): SGAM pages record 
which extents are currently being used as mixed extents and 
also have at least one unused page. Each SGAM covers 64,000 
extents, or almost 4 GB of data. The SGAM has one bit for each 
extent. If the bit is 1, the extent is being used as a mixed extent 
and has a free page. If the bit is 0, the extent is not used as a 
mixed extent, or it is a mixed extent and all its pages are being 
used. 



26

GAM and SGAM BitsGAM and SGAM Bits

Current use of extent GAM bit setting SGAM bit setting 

Free, not being used 1 0

Uniform extent, or full mixed 
extent 0 0

Mixed extent with free pages 0 1



27

Space Allocation AlgorithmSpace Allocation Algorithm

• To allocate a uniform extent, the Database Engine searches the 
GAM for a 1 bit and sets it to 0. 

• To find a mixed extent with free pages, the Database Engine 
searches the SGAM for a 1 bit. 

• To allocate a mixed extent, the Database Engine searches the 
GAM for a 1 bit, sets it to 0, and then also sets the 
corresponding bit in the SGAM to 1. 

• To deallocate an extent, the Database Engine makes sure that 
the GAM bit is set to 1 and the SGAM bit is set to 0. 

• The algorithms that are actually used internally by the Database 
Engine are more sophisticated but they do not have to manage 
chains of extent allocation information.



28

Tracking Free Space Tracking Free Space 

• Page Free Space (PFS) pages record the allocation 
status of each page, whether an individual page has 
been allocated, and the amount of free space on 
each page. 

• The PFS has one byte for each page, recording 
whether the page is allocated, and if so, whether it is 
empty, 1 to 50 percent full, 51 to 80 percent full, 81 to 
95 percent full, or 96 to 100 percent full.

• After an extent has been allocated to an object, the 
Database Engine uses the PFS pages to record 
which pages in the extent are allocated or free. This 
information is used when the Database Engine has to 
allocate a new page. 



29

Tracking Free SpaceTracking Free Space

• The amount of free space in a page is only 
maintained for heap and Text/Image pages. It is used 
when the Database Engine has to find a page with 
free space available to hold a newly inserted row. 

• Indexes do not require that the page free space be 
tracked, because the point at which to insert a new 
row is set by the index key values



30

File structureFile structure

• A PFS page is the first page after the file header 
page in a data file (page number 1). This is followed 
by a GAM page (page number 2), and then an SGAM 
page (page 3). There is a PFS page approximately 
8,000 pages in size after the first PFS page. There is 
another GAM page 64,000 extents after the first GAM 
page on page 2, and another SGAM page 64,000 
extents after the first SGAM page on page 3.



31

Space Used by Allocation UnitsSpace Used by Allocation Units

• An Index Allocation Map (IAM) page maps the 
extents in a 4-gigabye (GB) part of a database file 
used by an allocation unit 

• An IAM page has the same coverage as a GAM or 
SGAM page. 

• If the allocation unit contains extents from more than 
one file, or more than one 4-GB range of a file, there 
will be multiple IAM pages linked in an IAM chain. 

• Therefore, each allocation unit has at least one IAM 
page for each file on which it has extents. 



32

IAM PagesIAM Pages

• An IAM page has a header that indicates the starting 
extent of the range of extents mapped by the IAM 
page. 

• The IAM page also has a large bitmap in which each 
bit represents one extent. The first bit in the map 
represents the first extent in the range, the second bit 
represents the second extent, and so on.

• If a bit is 0, the extent it represents is not allocated to 
the allocation unit owning the IAM. If the bit is 1, the 
extent it represents is allocated to the allocation unit 
owning the IAM page.



33

IAM PagesIAM Pages



34

IAM PagesIAM Pages

• IAM pages are allocated as required for each 
allocation unit and are located randomly in the file.

• The catalog view, 
sys.system_internals_allocation_units points to 
the first IAM page for an allocation unit. 



35

Heap OrganizationHeap Organization

• The IAM pages are used to move through the heap. The only 
logical connection between data pages is the information 
recorded in the IAM pages.

• The column first_iam_page in the 
sys.system_internals_allocation_units catalog view points to 
the first IAM page in the chain of IAM pages that manage the 
space allocated to the heap in a specific partition. 

• Table scans or serial reads of a heap can be performed by 
scanning the IAM pages to find the extents that are holding 
pages for the heap. Because the IAM represents extents in the 
same order that they exist in the data files, this means that 
serial heap scans progress sequentially through each file. 



36

Heap OrganizationHeap Organization



37

Space Allocation AlgorithmsSpace Allocation Algorithms

• When the SQL Server Database Engine has to insert a new row 
in a heap or Text/Image page and no space is available in the 
current page, it uses the IAM and PFS pages to find a page with 
sufficient space to hold the row.

• The Database Engine uses the IAM pages to find the extents 
allocated to the allocation unit. For each extent, the Database 
Engine searches the PFS pages to see if there is a page that 
can be used. 

• Each IAM and PFS page covers lots of data pages, so there are 
few IAM and PFS pages in a database. This means that the IAM 
and PFS pages are generally in memory in the SQL Server 
buffer pool, so they can be searched quickly. 



38

Space Allocation AlgorithmsSpace Allocation Algorithms

• For clustered tables, the insertion point of a new row 
is set by the index key. In this case, the search 
process previously described does not occur. 

• The Database Engine allocates a new extent to an 
allocation unit only when it cannot quickly find a page 
in an existing extent with sufficient space to hold the 
row being inserted. 



39

System DatabasesSystem Databases

• System databases store metadata regarding the 
databases available in the instance

System database Description 

master Database Records all the system-level information for an instance of SQL Server.

msdb Database Is used by SQL Server Agent for scheduling alerts and jobs. 

model Database

Is used as the template for all databases created on the instance of SQL 
Server. Modifications made to the model database, such as database size, 
collation, recovery model, and other database options, are applied to any 
databases created afterward.

Resource 
Database

Is a read-only database that contains system objects that are included with 
SQL Server 2005. System objects are physically persisted in the Resource 
database, but they logically appear in the sys schema of every database.

tempdb Database Is a workspace for holding temporary objects or intermediate result sets.



40

master Databasemaster Database

• Records all the system-level information for a SQL 
Server instance. This includes:
– instance-wide metadata such as logon accounts, 

endpoints, linked servers, and system 
configuration settings, other databases and the 
location of those database files

– initialization information for SQL Server. 
Therefore, SQL Server cannot start if the master 
database is unavailable. In SQL Server 2005, 
system objects are stored in the Resource 
database.



41

Physical files of the master DBPhysical files of the master DB

File Logical 
name 

Physical 
name 

File growth 

Primary data master master.mdf
Autogrow by 10 percent until 
the disk is full.

Log mastlog mastlog.ldf
Autogrow by 10 percent to a 
maximum of 2 terabytes.



42

Recomentations for the master DBRecomentations for the master DB

• Always have a current backup of the master 
database available.

• Back up the master database as soon as possible 
after the following operations:
– Creating, modifying, or dropping any database

– Changing server or database configuration values

– Modifying or adding logon accounts
• Do not create user objects in master. Otherwise, 

master must be backed up more frequently.



43

Model DatabaseModel Database

• When a CREATE DATABASE statement is issued, 
the first part of the database is created by copying in 
the contents of the model database. The rest of the 
new database is then filled with empty pages. 

• If you modify the model database, all databases 
created afterward will inherit those changes. For 
example, you could set permissions or database 
options, or add objects such as tables, functions, or 
stored procedures. 



44

Resource DatabaseResource Database

• The Resource database is a read-only database that 
contains all the system objects that are included in 
SQL Server 2005. 

• SQL Server system objects, such as sys.objects, 
are physically persisted in the Resource database, 
but they logically appear in the sys schema of every 
database. The Resource database does not contain 
user data or user metadata.

• The Resource database is not visible from 
Management Studio

• Can be used only in single user mode and for 
troubleshooting



45

tempdb Databasetempdb Database

• It is a global resource that is available to all users connected to 
the instance of SQL Server 

• It is used to hold the following: 
– Temporary user objects that are explicitly created, such as: 

global or local temporary tables, temporary stored 
procedures, table variables, or cursors.

– Internal objects that are created by the SQL Server 2005 
Database Engine, for example, work tables to store 
intermediate results for sorting. 

• Operations within tempdb are minimally logged. This enables 
transactions to be rolled back. tempdb is re-created every time 
SQL Server is started so that the system always starts with a 
clean copy of the database. 

• Temporary tables and stored procedures are dropped 
automatically on disconnect



46

Modifying System TablesModifying System Tables

• SQL Server does not support users directly updating the 
information in system objects such as system tables, system 
stored procedures, and catalog views. 

• To update the information one must use:
– Administration utilities, such as SQL Server Management 

Studio. 
– SQL-SMO (Server Management Objects) API. This lets 

programmers include complete functionality for 
administering SQL Server in their applications. 

– Transact-SQL scripts and stored procedures. These can use 
system stored procedures and Transact-SQL DDL 
statements



47

Viewing System Database DataViewing System Database Data

• You should not code Transact-SQL statements that directly 
query the system tables, 

• Instead, applications should obtain information from the system 
tables by using the following: 
– System catalog views
– SQL-SMO 
– Windows Management Instrumentation (WMI) interface 
– Catalog functions, methods, attributes, or properties of the 

data API used in the application, such as ADO, OLE DB, or 
ODBC. 

– Transact-SQL system stored procedures and built-in 
functions.



48

System CatalogSystem Catalog

• Is the collections of metadata, or data about the 
objects of databases, such as:
– Tables, columns, indexes, views

• It is used by dynamic applications: applications that 
are not hard-coded to work with a specific set of 
tables and views must have a mechanism for 
determining the structure and attributes of the objects 
in any database to which they connect 



49

Accessing the System CatalogAccessing the System Catalog

• SQL Server-based applications can access the 
information in the system catalogs by using the 
following: 
– Catalog views (recommended).
– Information schema views (allow SQL-92 

compatibility).

– OLE DB schema rowsets.

– ODBC catalog functions.
– System stored procedures and functions.



50

Catalog ViewsCatalog Views

• All user-available catalog metadata is exposed 
through catalog views. 

• They are the views of the master database
• They belong to the schema sys

• Examples:

– sys.partitions
– sys.system_internals_allocation_units
– sys.database_files
– sys.tables

– sys.views



51

sys.partitionssys.partitions

• sys.partitions contains a row for each partition in a table or index. 
• A heap has a row in sys.partitions with index_id = 0. 

– The first_iam_page column in 
sys.system_internals_allocation_units points to the IAM 
chain for the collection of heap data pages in the specified 
partition. The server uses the IAM pages to find the pages in 
the data page collection, because they are not linked. 

• A clustered index on a table or a view has a row in sys.partitions 
with index_id = 1. 
– The root_page column in 

sys.system_internals_allocation_units points to the top of 
the clustered index B+-tree in the specified partition. The server 
uses the index B+-tree to find the data pages in the partition. 



52

sys.partitionssys.partitions

• Each nonclustered index created for a table or a view 
has a row in sys.partitions with index_id > 1.
– The root_page column in 

sys.system_internals_allocation_units points to 
the top of the nonclustered index B-tree in the 
specified partition. 

• Each table that has at least one LOB column also 
has a row in sys.partitions with index_id > 250. 
– The first_iam_page in 

sys.system_internals_allocation_units column 
points to the chain of IAM pages that manage the 
pages in the LOB_DATA allocation unit. 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

