Hardware

Read Sections 11.2, 11.3, 11.7 of Garcia-Molina et al.

Slides derived from those by Hector Garcia-Molina
Some images by Wikipedia

Outline

- Hardware: Disks
- Access Times
- Example - Megatron 747
- Reliability
- RAID

Hardware

Processor

Fast, slow, reduced instruction set, with cache, pipelined... Speed: $1000 \rightarrow 10000$ MIPS

Memory
Fast, slow, non-volatile, read-only,...
Access time: $10^{-6} \rightarrow 10^{-9} \mathrm{sec}$.

$$
1 \mu \mathrm{~S} \rightarrow 1 \mathrm{~ns}
$$

Secondary storage

 Hard DisksTertiary storage Optical disks: -CD-ROM -DVD-ROM...
Tape -Cartridges Robots

Focus on: "Typical Disk"

Terms: Platter, Surface, Head, Actuator Cylinder, Track
Sector (physical),
Block (logical), Gap

Disk Architecture

Top View

9

"Typical" Numbers

Diameter: 1 inch $\rightarrow 15$ inches (1 inch $=2.54 \mathrm{~cm}$:
$2.5 \mathrm{~cm} \rightarrow 38.1 \mathrm{~cm})$
Cylinders: $10000 \rightarrow 50000$
Surfaces: 2 -> 30
(Tracks/cyl)
Sector Size:512B \rightarrow 50KB
Capacity: 72 GB $\rightarrow 2$ TB

Diameter

- Form factors:
- 8 inches
- 5.25 inches
- 3,5 inches
- 2,5 inches
- 1,8 inches
- 1 inch

Capacity

Disk Access Time

?

13

Time $=$ Seek Time + Rotational Delay + Transfer Time + Other

14

Seek Time

Cylinders Traveled

15

Average Random Seek Time

$$
S=\frac{\sum_{i=1}^{N} \sum_{\substack{j=1 \\ j \neq i}}^{N} \operatorname{SEEKTIME}(i \rightarrow j)}{N(N-1)}
$$

"Typical" S: $3 \mathrm{~ms} \rightarrow 10 \mathrm{~ms}$

Rotational Delay

Block I Want

17

Average Rotational Delay

$$
R=1 / 2 \text { revolution }
$$

"typical" $\mathrm{R}=4.17 \mathrm{~ms}$ (7200 RPM) $\mathrm{R}=3 \mathrm{~ms}$ (10000 RPM) $\mathrm{R}=2 \mathrm{~ms}$ (15000 RPM)

Transfer Rate: t

- "typical" t: 60 MB/second
- transfer time: block size
t

Other Delays

- CPU time to issue I/O
- Contention for controller
- Contention for bus, memory
"Typical" Value: 0
- So far: Random Block Access - What about: Reading "Next" block?

21

Time to get $=$ Block Size + Negligible block t

- skip gap

22

Cost for Writing similar to Reading

... unless we want to verify!
need to add (full) rotation + Block siz
t

23

- To Modify a Block?

To Modify Block:
(a) Read Block
(b) Modify in Memory
(c) Write Block
[(d) Verify?]

Block Address:

- Physical Device
- Cylinder (Track) \#
- Surface \#
- Sector

25

Complication: Bad Blocks

Messy to handle
May map via software to
integer sequence
1
2
.
.
m

$A n$
 Example

Megatron 747 Disk

er

- 8 platters, 16 surfaces
- $2^{14}=16,384$ tracks per surface (16,384 cylinders)
- $2^{\prime}=128$ sectors per track
- $2^{12}=4096$ bytes per sector
- Capacity

- Single track $=2^{1 *} 2^{12}=512 \mathrm{~KB}$

Megatron 747 Disk

- Rotation speed: 7200 RPM
- Average seek time: 8.5 ms

Layout

- Radius: 1.75 inches
- The tracks occupy the outer inch
- The inner 0.75 inch is unoccupied
- Track density in the radial direction: 16,384 tracks per inch
- 10\% overhead between blocks

Density of bits

- Outermost track
- Length=3.5m ≈ 11 inches
- One track $=512 \mathrm{~KB}=4 \mathrm{Mbits}$
- 90\% of 11 inches holds 4Mbits
- Density=420,000 bits per inch
- Innermost track
- 90\% of 4.71 inches holds 4Mbits
- Density ≈ 1 Mbit per inch

Density of bits

- To avoid such a high difference of density, the disk stores more sectors on the outer track than on the inner tracks
- 96 sectors per track in the inner third
- 128 in the middle third
- 160 in the outer third
- The density varies from 742,000 bits per inch to 530,000 bits per inch

31

7200 RPM - 120 revolutions / sec

 $\longrightarrow 1$ rev. $=8.33 \mathrm{msec}$.One track:

ime over useful data:(8.33)(0.9)=7.5 ms. ime over gaps: $(8.33)(0.1)=0.833 \mathrm{~ms}$. ransfer time 1 sector $=7.5 / 128=0.059 \mathrm{~ms}$. rans. time 1 sector + gap $=8.33 / 128=0.065 \mathrm{~ms}$

Burst Bandwith

 4 KB in 0.059 ms .$B B=4 / 0.059=68 \mathrm{~KB} / \mathrm{ms}$.
or
$B B=68 \mathrm{~KB} / \mathrm{ms} \times 1000 \mathrm{~ms} / 1 \mathrm{sec}$ x 1MB/1024KB
$=68,000 / 1024=66.4 \mathrm{MB} / \mathrm{sec}$

33

Sustained bandwith (over track) 512 KB in 8.33 ms .

$\mathrm{SB}=512 / 8.33=61.5 \mathrm{~KB} / \mathrm{ms}$
or
$S B=61.5 \times 1000 / 1024=60 \mathrm{MB} / \mathrm{sec}$.

34

$\mathrm{T}_{1}=$ Time to read one random block

$\mathrm{T}_{1}=$ seek + rotational delay +T

$$
=8.5+(8.33 / 2)+0.059=12.72 \mathrm{~ms}
$$

Suppose OS deals with 16 KB blocks

1 block

$\mathrm{T}_{4}=8.5+(8.33 / 2)+0.059 * 1+$ $(0.065) * 3=12.92 \mathrm{~ms}$
 [Compare to $\mathrm{T}_{1}=12.72 \mathrm{~ms}$]

$$
36
$$

$\mathrm{T}_{\mathrm{T}}=$ Time to read a full track

(start at any block)

$$
\mathrm{T}_{\mathrm{T}}=8.5+(0.065 / 2)+8.33^{*}=16.86 \mathrm{~ms}
$$

* Actually, a bit less; do not have to read last gap.

Block Size Selection?

- Big Block \rightarrow Amortize I/O Cost

- Big Block \Rightarrow Read in more useless stuff! and takes longer to read

Reliability

- Measured by the Mean Time to Failure (MTTF):
- Length of time by which 50% of a population of disks will have failed catastrophically (head crash, no longer readable)
- For modern disks, the MTTF is 10 years
- This means that, on average, after 10 years it will crash
- We can assume that every year 5\% of the disks fail (uniform distribution assumption)
- Probability that a disk fails in one year $\mathrm{P}_{\mathrm{F}}=5 \%=1 / 20$

Probability of Failure

MTTF

- Expected value of the failure year:
- MTTF=E(year)= $=0.05 * 1+\ldots .+0.05 * 20=$ $=0.05 * 20 *(20+1) / 2=21 / 2 \approx 10$

Disk Arrays

- Redundant Arrays of Inexpensive Disks (RAID)
- Two aims: increase speed and reliability

RAID 0

- Uses "block level striping"
- Blocks that are consecutive for the OS are distributed evenly across different disks RAID 0
A1 A2 consecutive blocks: A1-A8
A3 A4
A5 A6
A7 A8

RAID 0

- Improves reading and writing speed
- With two disks, two blocks can be read at the same time
- A request for block "A1" would be serviced by disk 1. A simultaneous request for block A3 would have to wait, but a request for A2 could be serviced concurrently
- Reduces reliability: if one disk fails, the data is lost.

RAID 0

- $P($ data loss $)=P($ disk1 fails or disk2 fails)=
$=P($ disk1 fails $)+P($ disk2 fails $)-P(d i s k 1$ fails and disk2 fails)=
$=P_{F}+P_{F}-P_{F} * P_{F}=2 P_{F}-P_{F}^{2}=$
$=2 * 0.05-0.0025=0.0975$

RAID 0

- Number of years=1/0.0975 ≈ 10
- MTTF = E(year)=
$\approx 0.0975 * 10 *(10+1) / 2 \approx 11 / 2 \approx 5.5$

RAID 1

- Creates an exact copy (or mirror) of a set of data on two or more disks.
- Typically, a RAID 1 array contains two disks
- Improved
- Reading speed: two blocks can be read at the same time
- Reliability: if one disk crashes, we can use the other
- Writing speed remains the same

RAID 1

RAID 1
A1 A1
A2 A2
A3 A3
A4 A4

RAID 1 Reliability

- Two disks with MTTF of 10 years
- What is the MTTF resulting in data loss?
- Data loss happens when one disk fails and the other fails as well while we are replacing the first.
- Supposing it takes 3 hours to replace the first disk. This is $1 / 2920$ of a year
- $P($ fails rep $)=1 / 2920=3.42 \mathrm{E}-04$

RAID 1 Reliability

- The probability that the second disk fails while replacing the first is P (fails1 and fails2 rep)=
$=5 \mathrm{E}-2 * 5 \mathrm{E}-2 * 3.42 \mathrm{E}-04=8.55 \mathrm{E}-07$
- $P($ data loss $)=P(f a i l s 1$ and fails2 rep or fails2 and fails1 rep)=

RAID 1 Reliability

$=P($ fails1 and fails2 rep) +P (fails2 and fails1 rep)-P(fails2 and fails1 rep and fails1 and fails2 rep)=
$\approx 2 * 8.55 \mathrm{E}-07$
$=1.71 \mathrm{E}-06$

RAID 1 Reliability

- Number of years=1/1.71E-06 \approx 584795
- $M T T F=E$ (years) $=$
$=1.71 \mathrm{E}-06 * 584795 * 584796 / 2=$
$=584796 / 2=292398$

RAID 4

- Uses block-level striping with a dedicated parity disk.
RAID 4
A1 A2 A3 Ap
Consecutive blocks
B1 B2 B3 Bp
A1-A3,B1-B3,
C1 C2 C3 Cp
C1-C3, D1-D3
D1 D2 D3 Dp

$$
53
$$

Parity block

- Bit i of the block in position j on the parity disk is the parity bit of the bits in position i in the blocks in position j in the other disks
- Eg., blocks of one byte, blocks A1-A3

Disk1 11110000
Disk2 10101010
Disk3 00111000
Disk4 01100010 (parity disk)

RAID 4

- Improves reading time: multiple blocks can be read at the same time
- Improves reliability: if one disk fails, we can reconstruct its content (assuming the others are correct)

RAID 4

- Problem:
- When writing a block, we need to read and write the parity disk's block
- This creates a bottleneck

RAID 5

- Uses block-level striping with parity data distributed across all member disks. RAID 5
A1 A2 A3 Ap
B1 B2 Bp B3
C1 Cp C2 C3
Dp D1 D2 D3

RAID 5

- Reading and reliability as RAID 4
- Writing improved because the parity blocks are not all on one disk

RAID 6

- Uses block-level striping with dual parity data distributed across all member disks.
RAID 6
A1 A2 A3 Ap Aq
B1 B2 Bp Bq B3
C1 Cp Cq C2 C3
Dp Dq D1 D2 D3

RAID 6

- p and q blocks are computed with two different algorithms, e.g.
- parity and Reed-Solomon
- orthogonal dual parity
- diagonal parity

RAID 6

- It is able to recover from the loss of two disks
- Writing improved because the parity blocks are not all on one disk

Nested RAID Levels

- RAID 0+1:

RAID 0+1

- If a disk fails, it can be rebuilt from the corresponding disk in the other RAID 0 batch
- If two disk fails from the same stripe, no recovery

RAID 1+0 o RAID 10

64

RAID $1+0$ o RAID 10

- If a disk fails, it can be rebuilt from the corresponding disk in the other RAID 1 batches
- If two disk fails from the same RAID 1 batch, no recovery

RAID 5+0

66

RAID 5+1

RAID 51
RAID 1

RAID 5

RAID 5

