
Procedural T-SQL and Stored Procedural T-SQL and Stored
Procedures in SQL Server 2005Procedures in SQL Server 2005

2

Procedural T-SQLProcedural T-SQL

• To perform processes that cannot be done using a
single Transact-SQL statement, you can group
Transact-SQL statements together in several ways:
– Batches: A batch is a group of one or more

Transact-SQL statements that are sent from an
application to the server as one unit. Microsoft
SQL Server 2005 executes each batch as a single
executable unit.

3

Procedural T-SQLProcedural T-SQL

– Stored procedures: A stored procedure is a group of
Transact-SQL statements that have been predefined and
precompiled on the server. The stored procedure can
accept parameters, and can return result sets, return
codes, and output parameters to the calling application.

– Triggers
– Scripts: A script is a series of Transact-SQL statements

stored in a file. The file can be used as input to the sqlcmd
utility or SQL Server Management Studio Code editor. The
utilities then execute the Transact-SQL statements stored
in the file.

4

BatchesBatches

• In ADO, a batch is the string of Transact-SQL
statements enclosed in the CommandText property
of a Command object

• In Microsoft SQL Server Management Studio and the
sqlcmd utility the GO command signals the end of a
batch. GO is not a Transact-SQL statement; it simply
signals to the utilities how many SQL statements
should be included in a batch.

5

ScriptsScripts

• A script is a series of Transact-SQL statements
stored in a file.

• The file can be used as input to SQL Server
Management Studio Code editor or the sqlcmd
utility.

• Transact-SQL scripts have one or more batches. The
GO command signals the end of a batch. If a
Transact-SQL script does not have any GO
commands, it is executed as a single batch.

6

T-SQL VariableT-SQL Variable

• To pass data between Transact-SQL statements you
can use variables

• After a variable has been declared, or defined, one
statement in a batch can set the variable to a value
and a later statement in the batch can get the value
from the variable.

7

Declaring a VariableDeclaring a Variable

• The DECLARE statement initializes a Transact-SQL variable by:
– Assigning a name. The name must have a single @ as the

first character.
– Assigning a system-supplied or user-defined data type and a

length. For numeric variables, a precision and scale are also
assigned. For variables of type XML, an optional schema
collection may be assigned.

– Setting the value to NULL.
• The scope of a variable lasts from the point it is declared until

the end of the batch or stored procedure in which it is declared.

8

ExampleExample

DECLARE @MyCounter int;

DECLARE @LastName nvarchar(30), @FirstName
nvarchar(20), @StateProvince nchar(2);

9

Setting a Value in a VariableSetting a Value in a Variable

• To assign a value to a variable, use the SET
statement. This is the preferred method of assigning
a value to a variable. Syntax

SET @local_variable = expression
• A variable can also have a value assigned by being

referenced in the select list of a SELECT statement.

– If a variable is referenced in a select list, the
SELECT statement should only return one row.

10

SET ExampleSET Example

USE AdventureWorks;
GO
-- Declare two variables.
DECLARE @FirstNameVariable nvarchar(50),
 @PostalCodeVariable nvarchar(15);
-- Set their values.
SET @FirstNameVariable = N'Amy';
SET @PostalCodeVariable = N'BA5 3HX';
-- Use them in the WHERE clause of a SELECT statement.
SELECT LastName, FirstName, JobTitle, City,

StateProvinceName, CountryRegionName
FROM HumanResources.vEmployee
WHERE FirstName = @FirstNameVariable
 OR PostalCode = @PostalCodeVariable;
GO

11

SET ExampleSET Example

USE AdventureWorks;

GO

DECLARE @rows int;

SET @rows = (SELECT COUNT(*) FROM
Sales.Customer);

SELECT @rows;

12

ExampleExample

USE AdventureWorks;

GO

DECLARE @EmpIDVariable int;

SELECT @EmpIDVariable = MAX(EmployeeID)

FROM HumanResources.Employee;

GO

13

Setting a Variable with a SELECTSetting a Variable with a SELECT

• If a SELECT statement returns more than one row, the variable
is set to the value returned for the expression in the last row of
the result set.

• For example, in this batch @EmpIDVariable is set to the
EmployeeID value of the last row returned, which is 1:

USE AdventureWorks;

GO

DECLARE @EmpIDVariable int;

SELECT @EmpIDVariable = EmployeeID

FROM HumanResources.Employee

ORDER BY EmployeeID DESC;

SELECT @EmpIDVariable;

GO

14

Control of FlowControl of Flow

• BEGIN...END
• GOTO
• IF...ELSE

• RETURN

• WAITFOR
• WHILE, BREAK, CONTINUE
• CASE

15

BEGIN…ENDBEGIN…END

• The BEGIN and END statements are used to group multiple
Transact-SQL statements into a logical block.

• Use the BEGIN and END statements anywhere a control-of-flow
statement must execute a block of two or more Transact-SQL
statements

• The BEGIN and END statements are used when:
– A WHILE loop needs to include a block of statements.
– An element of a CASE function needs to include a block of

statements.
– An IF or ELSE clause needs to include a block of

statements.

16

BEGIN…ENDBEGIN…END

• When an IF statement controls the execution of only one
Transact-SQL statement, no BEGIN or END statement is
needed:

IF (@@ERROR <> 0)

 SET @ErrorSaveVariable = @@ERROR
• If more than statement must be executed use BEGIN…END

IF (@@ERROR <> 0)

BEGIN

 SET @ErrorSaveVariable = @@ERROR

 PRINT 'Error encountered, ' +

 CAST(@ErrorSaveVariable AS VARCHAR(10))

END

17

GOTOGOTO

• The GOTO statement causes the execution of a
Transact-SQL batch to jump to a label.

• The label name is defined using the syntax

label_name:

• before a statement

• GOTO is best used for breaking out of deeply nested
control-of-flow statements.

18

GOTO ExampleGOTO Example

IF (SELECT SYSTEM_USER()) = 'payroll'
 GOTO calculate_salary
-- Other program code would appear here.
-- When the IF statement evaluates to TRUE, the statements
-- between the GOTO and the calculate_salary label are
-- ignored. When the IF statement evaluates to FALSE the
-- statements following the GOTO are executed.
calculate_salary:
 -- Statements to calculate a salary would appear after the label.

19

IF…ELSEIF…ELSE

• Syntax

IF Boolean_expression

{ sql_statement | statement_block }

[ELSE { sql_statement | statement_block }]

20

IF…ELSE ExampleIF…ELSE Example

IF (@ErrorSaveVariable <> 0)
BEGIN
 PRINT 'Errors encountered, rolling back.'
 PRINT 'Last error encountered: ' +
 CAST(@ErrorSaveVariable AS VARCHAR(10))
 ROLLBACK
END
ELSE
BEGIN
 PRINT 'No Errors encountered, committing.'
 COMMIT
END
RETURN @ErrorSaveVariable

21

RETURNRETURN

• The RETURN statement unconditionally terminates a script,
stored procedure, or batch. None of the statements in a stored
procedure or batch following the RETURN statement are
executed.

• When used in a stored procedure, the RETURN statement can
specify an integer value to return to the calling application,
batch, or procedure. If no value is specified on RETURN, a
stored procedure returns the value 0.

• Most stored procedures follow the convention of using the return
code to indicate the success or failure of the stored procedure.
The stored procedures return a value of 0 when no errors were
encountered. Any nonzero value indicates that an error
occurred.

22

WAITFORWAITFOR

• The WAITFOR statement suspends the execution of a batch,
stored procedure, or transaction until:
– A specified time interval has passed.
– A specified time of day is reached.

• The WAITFOR statement is specified with one of the following
clauses:
– The DELAY keyword followed by a time_to_pass before

completing the WAITFOR statement. The time to wait before
completing the WAITFOR statement can be up to 24 hours.

– The TIME keyword followed by a time_to_execute, which
specifies the time that the WAITFOR statement completes

23

WAITFOR ExamplesWAITFOR Examples

-- waits 2 seconds

WAITFOR DELAY '00:00:02'

SELECT EmployeeID FROM
AdventureWorks.HumanResources.Employee;

-- executes the query at 22:00

WAITFOR TIME '22:00';

SELECT EmployeeID FROM
AdventureWorks.HumanResources.Employee;

24

WHILEWHILE

• Syntax

WHILE Boolean_expression

{ sql_statement | statement_block }

• The statement block may contain BREAK and/or
CONTINUE

25

BREAK and CONTINUEBREAK and CONTINUE

• BREAK
– Causes an exit from the innermost WHILE loop.

Any statements that appear after the END
keyword, marking the end of the loop, are
executed.

• CONTINUE

– Causes the WHILE loop to restart, ignoring any
statements in the loop after the CONTINUE
keyword.

26

ExampleExample

USE AdventureWorks;
GO
DECLARE abc CURSOR FOR
SELECT * FROM Purchasing.ShipMethod;
OPEN abc;
FETCH NEXT FROM abc
WHILE (@@FETCH_STATUS = 0)
 FETCH NEXT FROM abc;
CLOSE abc;
DEALLOCATE abc;
GO

27

CASECASE

• Syntax: two forms
– The simple CASE function compares an expression to a set

of simple expressions to determine the result.
– The searched CASE function evaluates a set of Boolean

expressions to determine the result.

• Simple CASE function:

CASE input_expression

WHEN when_expression THEN result_expression [...n]

[ELSE else_result_expression]

END

28

CASECASE

• Searched CASE function:

CASE

WHEN Boolean_expression THEN result_expression
 [...n]

[ELSE else_result_expression]

END

29

Simple CASE functionSimple CASE function

• Evaluates input_expression, and then in the order
specified, evaluates input_expression =
when_expression for each WHEN clause.

• Returns the result_expression of the first
input_expression = when_expression that evaluates
to TRUE.

• If no input_expression = when_expression evaluates
to TRUE, the Database Engine returns the
else_result_expression if an ELSE clause is
specified, or a NULL value if no ELSE clause is
specified.

30

Searched CASE function Searched CASE function

• Evaluates, in the order specified,
Boolean_expression for each WHEN clause.

• Returns result_expression of the first
Boolean_expression that evaluates to TRUE.

• If no Boolean_expression evaluates to TRUE, the
Database Engine returns the else_result_expression
if an ELSE clause is specified, or a NULL value if no
ELSE clause is specified.

31

Simple CASE ExampleSimple CASE Example

USE AdventureWorks;
GO
SELECT ProductNumber, Category =
 CASE ProductLine
 WHEN 'R' THEN 'Road'
 WHEN 'M' THEN 'Mountain'
 WHEN 'T' THEN 'Touring'
 WHEN 'S' THEN 'Other sale items'
 ELSE 'Not for sale'
 END,
 Name
FROM Production.Product
ORDER BY ProductNumber;
GO

32

Simple CASE ExampleSimple CASE Example

USE AdventureWorks

GO

SELECT Name,

 CASE Name

 WHEN 'Human Resources' THEN 'HR'

 WHEN 'Finance' THEN 'FI'

 WHEN 'Information Services' THEN 'IS'

 WHEN 'Executive' THEN 'EX'

 WHEN 'Facilities and Maintenance' THEN 'FM'

 END AS Abbreviation

FROM AdventureWorks.HumanResources.Department

WHERE GroupName = 'Executive General and Administration'

33

Searched CASE ExampleSearched CASE Example

USE AdventureWorks;
GO
SELECT ProductNumber, Name, 'Price Range' =
 CASE
 WHEN ListPrice = 0 THEN 'Mfg item - not for resale'
 WHEN ListPrice < 50 THEN 'Under $50'
 WHEN ListPrice >= 50 and ListPrice < 250 THEN 'Under

$250'
 WHEN ListPrice >= 250 and ListPrice < 1000 THEN 'Under

$1000'
 ELSE 'Over $1000'
 END
FROM Production.Product
ORDER BY ProductNumber ;
GO

34

ExpressionsExpressions

• An expression is a combination of identifiers, values,
and operators that SQL Server 2005 can evaluate to
obtain a result.

• Expressions can be used, for example, as part of the
data to retrieve in a query, or as a search condition
when looking for data that meets a set of criteria.

35

ExpressionsExpressions

• An expression can be any of the following:
– Constant
– Function

– Column name

– Variable
– Subquery
– CASE

• An expression can also be built from combinations of
these entities joined by operators.

36

OperatorsOperators

• Arithmetic Operators
• Logical Operators
• String Concatenation Operator

• Bitwise Operators

• Unary Operators
• Comparison Operators

37

NULL ValuesNULL Values

• A value of NULL indicates that the data is unknown,
not applicable, or that the data will be added later

• A value of NULL is different from an empty or zero
value.

• No two null values are equal. Comparisons between
two null values, or between a NULL and any other
value, return unknown because the value of each
NULL is unknown.

38

NULL ValuesNULL Values

• To test for null values in a query, use IS NULL or IS NOT NULL in
the WHERE clause.

• When query results are viewed in SQL Server Management Studio
Code editor, null values are shown as (null) in the result set.

• Null values can be inserted into a column by explicitly stating NULL
in an INSERT or UPDATE statement, by leaving a column out of an
INSERT statement, or when adding a new column to an existing
table by using the ALTER TABLE statement.

• Null values cannot be used for information that is required to
distinguish one row in a table from another row in a table, for
example, foreign or primary keys.

39

NULL ValuesNULL Values

• When null values are present in data, logical and
comparison operators can potentially return a third
result of UNKNOWN instead of just TRUE or FALSE.

• A row for which the WHERE condition evaluates to
UNKNOWN is not returned by the selection

• Truth table for AND

AND TRUE UNKNOWN FALSE

TRUE TRUE UNKNOWN FALSE

UNKNOWN UNKNOWN UNKNOWN FALSE

FALSE FALSE FALSE FALSE

40

Truth Table for OR and NOTTruth Table for OR and NOT

OR TRUE UNKNOWN FALSE

TRUE TRUE TRUE TRUE

UNKNOWN TRUE UNKNOWN UNKNOWN

FALSE TRUE UNKNOWN FALSE

NOT Evaluates to

TRUE FALSE

UNKNOWN UNKNOWN

FALSE TRUE

41

NULL ValuesNULL Values

• Transact-SQL also offers an extension for null
processing.

• If the option ANSI_NULLS is set to OFF,
comparisons between nulls, such as NULL = NULL,
evaluate to TRUE. Comparisons between NULL and
any data value evaluate to FALSE.

42

Stored proceduresStored procedures

• Microsoft’s implementation of SQL-2003 PSM
• When using Transact-SQL programs, two methods

are available for storing and executing the programs.
– You can store the programs in the client and

create applications that send the commands to
SQL Server and process the results.

– You can store the programs as stored procedures
in SQL Server and create applications that
execute the stored procedures and process the
results.

43

Benefits of Stored ProceduresBenefits of Stored Procedures

• The benefits of using stored procedures in SQL
Server rather than Transact-SQL programs stored
locally on client computers are:
– They can have security attributes (such as

permissions). Users can be granted permission to
execute a stored procedure without having to have
direct permissions on the objects referenced in the
procedure.

– They can enhance the security of your application.
Parameterized stored procedures can help protect
your application from SQL Injection attacks.

44

Benefits of Stored ProceduresBenefits of Stored Procedures

– They allow modular programming.
You can create the procedure once, and call it any
number of times in your program. This can improve the
maintainability of your application and allow
applications to access the database in a uniform
manner.

– They can reduce network traffic.
An operation requiring hundreds of lines of Transact-
SQL code can be performed through a single statement
that executes the code in a procedure, rather than by
sending hundreds of lines of code over the network.

45

Benefits of Stored ProceduresBenefits of Stored Procedures

– They allow faster execution. Transact-SQL stored
procedures reduce the compilation cost of
Transact-SQL code by caching the plans and
reusing them for repeated executions. This means
the stored procedure does not need to be
reparsed and reoptimized with each use resulting
in much faster execution times

46

SQL InjectionSQL Injection

• SQL injection is an attack in which malicious code is
inserted into strings that are later passed to an
instance of SQL Server for parsing and execution

• The primary form of SQL injection consists of direct
insertion of code into user-input variables that are
concatenated with SQL commands and executed

47

ExampleExample

var Shipcity;

ShipCity = Request.form ("ShipCity");

var sql = "select * from OrdersTable where ShipCity = '"
+ ShipCity + "'";

• The user is prompted to enter the name of a city. If
she enters Redmond, the query assembled by the
script looks similar to the following:

SELECT * FROM OrdersTable WHERE ShipCity =
'Redmond'

48

ExampleExample

• However, assume that the user enters the following:

Redmond'; drop table OrdersTable--
• In this case, the following query is assembled by the

script:

SELECT * FROM OrdersTable WHERE ShipCity =
'Redmond';drop table OrdersTable--'

49

ExampleExample

• The semicolon (;) denotes the end of one query and
the start of another.

• The double hyphen (--) indicates that the rest of the
current line is a comment and should be ignored.

• Since the modified code is syntactically correct, it will
be executed by the server. SQL Server will first select
all records in OrdersTable where ShipCity is
Redmond. Then, SQL Server will drop OrdersTable.

50

Types of Stored ProceduresTypes of Stored Procedures

• User-defined:
– Transact-SQL: procedures written in Transact-

SQL
– CLR: A CLR stored procedure is a reference to a

Microsoft .NET Framework common language
runtime (CLR) method that can take and return
user-supplied parameters. They are implemented
as public, static methods on a class in a .NET
Framework assembly.

• System stored procedures: they have the sp_ prefix.
System stored procedures logically appear in the sys
schema of every system- and user-defined database.

51

Stored ProceduresStored Procedures

• Almost any Transact-SQL code that can be written as
a batch can be used to create a stored procedure.
SELECT statements can be used (differently from
SQL/PSM)

• To create a stored procedure use CREATE
PROCEDURE

52

Stored ProceduresStored Procedures

• When creating a stored procedure, you should specify:
– Any input parameters and output parameters to the

calling procedure or batch.
– The programming statements that perform

operations in the database, including calling other
procedures.

– The status value returned to the calling procedure or
batch to indicate success or failure (and the reason
for failure).

– Any error handling statements needed to catch and
handle potential errors.

53

Naming Stored ProceduresNaming Stored Procedures

• They are schema level objects, so if the schema is
not specified the procedure is created in the default
schema

• Do not start a procedure with “sp_” to avoid confusion
with system stored procedures

54

CREATE PROCEDURECREATE PROCEDURE

CREATE PROCEDURE [schema_name.]
procedure_name

 [{ @parameter [type_schema_name.] data_type}

 [= default] [OUT | OUTPUT]] [,...n]

AS { <sql_statement> [;][...n] | <method_specifier> } [;]

55

ExampleExample

• The following stored procedure returns the first and
last name, the titles, and the department names of
employees from a view. This stored procedure does
not use any parameters

USE AdventureWorks;
GO
CREATE PROCEDURE

HumanResources.uspGetAllEmployees
AS
 SELECT LastName, FirstName, JobTitle, Department
 FROM HumanResources.vEmployeeDepartment;
GO

56

Procedure ExecutionProcedure Execution

• The uspGetEmployees stored procedure can be
executed in three ways:

EXECUTE HumanResources.uspGetAllEmployees;

GO

-- Or

EXEC HumanResources.uspGetAllEmployees;

GO

-- Or, if this procedure is the first statement within a
batch:

HumanResources.uspGetAllEmployees;

57

ParametersParameters

• Their name must start with @ and must follow the
rules for object identifiers.

• The parameter name can be used in the stored
procedure to obtain and change the value of the
parameter.

• Parameters in a stored procedure are defined with a
data type, much as a column in a table is defined.

• A stored procedure parameter can be defined with
any of the SQL Server 2005 data types, except the
table data type. Stored procedure parameters can
also be defined with CLR user-defined types

58

ParametersParameters

• The data type of a parameter determines the type
and range of values that are accepted for the
parameter.

• For example, if you define a parameter with a tinyint
data type, only numeric values ranging from 0 to 255
are accepted.

• An error is returned if a stored procedure is executed
with a value incompatible with the data type.

59

Direction of a ParameterDirection of a Parameter

• The direction of a parameter is either in, meaning a
value is passed to the stored procedure, or out,
meaning the stored procedure returns a value to the
calling program. The default is an input parameter.

• To specify an output parameter, you must specify the
OUTPUT or OUT keyword in the definition of the
parameter in the stored procedure.

• The stored procedure returns the current value of the
output parameter to the calling program when the
stored procedure exits. The calling program must
also use the OUTPUT keyword when executing the
stored procedure to save the parameter's value in a
variable of the calling program.

60

Calling a Procedure With ParametersCalling a Procedure With Parameters

• Values can be passed to stored procedures
– by explicitly naming the parameters and assigning

the appropriate value or
– by supplying the the values of parameters in the

order in which the parameters have been defined
in the CREATE PROCEDURE. In this case the
parameters are not named

61

ExampleExample

USE AdventureWorks;

GO

CREATE PROCEDURE HumanResources.uspGetEmployees

 @LastName nvarchar(50),

 @FirstName nvarchar(50)

AS

 SELECT FirstName, LastName, JobTitle, Department

 FROM HumanResources.vEmployeeDepartment

 WHERE FirstName = @FirstName AND LastName =
@LastName;

GO

62

ExampleExample

• The uspGetEmployees stored procedure can be executed in the
following ways:

EXEC HumanResources.uspGetEmployees @LastName =
N'Ackerman', @FirstName = N'Pilar';

GO
-- Or
EXECUTE HumanResources.uspGetEmployees @FirstName =

N'Pilar', @LastName = N'Ackerman';
GO
-- Or
EXECUTE HumanResources.uspGetEmployees N'Ackerman',

N'Pilar';
-- Or, if this procedure is the first statement within a batch:
HumanResources.uspGetEmployees N'Ackerman', N'Pilar';

63

Default ValuesDefault Values

• If default values are specified for a parameter in the
procedure definition, the parameter can be left
unspecified in a procedure call

64

ExampleExample

USE AdventureWorks;

GO

CREATE PROCEDURE HumanResources.uspGetEmployees2

 @LastName nvarchar(50) = N'D%',

 @FirstName nvarchar(50) = N'%'

AS

 SELECT FirstName, LastName, JobTitle, Department

 FROM HumanResources.vEmployeeDepartment

 WHERE FirstName LIKE @FirstName

 AND LastName LIKE @LastName;

GO

65

Example of ExecutionExample of Execution

EXECUTE HumanResources.uspGetEmployees2;

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'Wi%';

-- Or

EXECUTE HumanResources.uspGetEmployees2 @FirstNname =
N‘F%';

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'[CK]ars[OE]n';

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'Hesse',
N'Stefen';

66

OUTPUT ParametersOUTPUT Parameters

• If you specify the OUTPUT keyword for a parameter
in the procedure definition, the stored procedure can
return the current value of the parameter to the
calling program when the stored procedure exits.

• To save the output value of the parameter in a
variable, the calling program must use the OUTPUT
keyword when executing the stored procedure

67

OUTPUT Parameters ExampleOUTPUT Parameters Example

USE AdventureWorks;
GO
CREATE PROCEDURE Sales.uspGetEmployeeSalesYTD
@SalesPerson nvarchar(50),
@SalesYTD money OUTPUT
AS
SELECT @SalesYTD = SalesYTD
FROM Sales.SalesPerson AS sp
JOIN HumanResources.vEmployee AS e ON e.EmployeeID =

sp.SalesPersonID
WHERE LastName = @SalesPerson;
RETURN
GO

68

OUTPUT Parameters ExampleOUTPUT Parameters Example

-- Declare the variable to receive the output value of the procedure.

DECLARE @SalesYTDBySalesPerson money;

-- Execute the procedure specifying a last name for the input

-- parameter and saving the output value in the variable

-- @SalesYTD

EXECUTE Sales.uspGetEmployeeSalesYTD

 N'Blythe', @SalesYTD = @SalesYTDBySalesPerson OUTPUT;

-- Display the value returned by the procedure.

PRINT 'Year-to-date sales for this employee is ' +

 convert(varchar(10),@SalesYTDBySalesPerson);

GO

69

OUTPUT ParametersOUTPUT Parameters

• Input values can also be specified for OUTPUT parameters
when the stored procedure is executed.

• This allows the stored procedure to receive a value from the
calling program, change it or perform operations with it, then
return the new value to the calling program.

• In the previous example, the @SalesYTDBySalesPerson
variable can be assigned a value prior to executing the stored
procedure. The @SalesYTD parameter initially contains that
value in the body of the stored procedure, and the value of the
@SalesYTD variable is returned to the calling program when
the stored procedure exits.

• It is like the type INOUT of PSM

70

Return ValueReturn Value

• A stored procedure can return an integer value called
a return code to indicate the execution status of a
procedure.

• You specify the return code for a stored procedure
using the RETURN statement.

• As with OUTPUT parameters, you must save the
return code in a variable when the stored procedure
is executed to use the return code value in the calling
program. E.g.

DECLARE @result int;

EXECUTE @result = my_proc;

71

NestingNesting

• Stored procedures are nested when one stored
procedure calls another or executes managed code
by referencing a CLR routine.

• You can nest stored procedures and managed code
references up to 32 levels.

• Attempting to exceed the maximum of 32 levels of
nesting causes the whole calling chain to fail.

72

CursorsCursors

• The typical process for using a Transact-SQL cursor in a stored
procedure or trigger is:
1. Declare variables to contain the data returned by the cursor.

Declare one variable for each result set column. Declare the
variables to be large enough to hold the values returned by
the column and with a data type that can be implicitly
converted from the data type of the column.

2. Associate a Transact-SQL cursor with a SELECT statement
using the DECLARE CURSOR statement. The DECLARE
CURSOR statement also defines the characteristics of the
cursor.

3. Use the OPEN statement to execute the SELECT statement
and populate the cursor.

73

CursorsCursors

4. Use the FETCH INTO statement to fetch
individual rows and have the data for each
column moved into the specified variables. Other
Transact-SQL statements can then reference
those variables to access the fetched data
values.

5. When you are finished with the cursor, use the
CLOSE statement. Closing a cursor frees some
resources, such as the cursor's result set and its
locks on the current row, but the cursor structure
is still available for processing if you reissue an
OPEN statement.

74

SyntaxSyntax

DECLARE cursor_name [INSENSITIVE] [SCROLL]

CURSOR FOR select_statement

[FOR { READ ONLY | UPDATE [OF column_name [,...n]] }]

• INSENSITIVE: Defines a cursor that makes a temporary copy of
the data. All requests to the cursor are answered from this
temporary table in tempdb; therefore, modifications made to
base tables are not reflected in the data returned by fetches
made to this cursor, and this cursor does not allow
modifications. If INSENSITIVE is omitted, committed deletes
and updates made to the underlying tables (by any user) are
reflected in subsequent fetches

75

SyntaxSyntax

• SCROLL: Specifies that all fetch options (FIRST,
LAST, PRIOR, NEXT, RELATIVE, ABSOLUTE) are
available. If SCROLL is not specified in DECLARE
CURSOR, NEXT is the only fetch option supported.

76

SyntaxSyntax

• READ ONLY: Prevents updates made through this
cursor. The cursor cannot be referenced in a WHERE
CURRENT OF clause in an UPDATE or DELETE
statement.

• UPDATE [OF column_name [,...n]]: Defines
updatable columns within the cursor. If OF
column_name [,...n] is specified, only the columns
listed allow modifications. If UPDATE is specified
without a column list, all columns can be updated.

77

SyntaxSyntax

FETCH [[NEXT | PRIOR | FIRST | LAST

 | ABSOLUTE { n | @nvar }

 | RELATIVE { n | @nvar}]

FROM]

cursor_name [INTO @variable_name [,...n]]

The @@FETCH_STATUS function reports the status of
the last FETCH statement. It returns 0 if the last
FETCH statement was successful

78

ExampleExample

• In the following example the results of the fetch are
returned to the user

USE AdventureWorks

GO

DECLARE contact_cursor CURSOR FOR

SELECT LastName FROM Person.Contact

WHERE LastName LIKE 'B%'

ORDER BY LastName

OPEN contact_cursor

79

ExampleExample

-- Perform the first fetch.

FETCH NEXT FROM contact_cursor

-- Check @@FETCH_STATUS to see if there are any more rows
to fetch.

WHILE @@FETCH_STATUS = 0

BEGIN

 -- This is executed as long as the previous fetch succeeds.

 FETCH NEXT FROM contact_cursor

END

CLOSE contact_cursor

DEALLOCATE contact_cursor

GO

80

ExampleExample

USE AdventureWorks
GO
-- Declare the variables to store the values returned by FETCH.
DECLARE @LastName varchar(50), @FirstName varchar(50)
DECLARE contact_cursor CURSOR FOR
SELECT LastName, FirstName FROM Person.Contact
WHERE LastName LIKE 'B%'
ORDER BY LastName, FirstName
OPEN contact_cursor
-- Perform the first fetch and store the values in variables.
-- Note: The variables are in the same order as the columns
-- in the SELECT statement.
FETCH NEXT FROM contact_cursor
INTO @LastName, @FirstName

81

ExampleExample

-- Check @@FETCH_STATUS to see if there are any more rows to
fetch.

WHILE @@FETCH_STATUS = 0
BEGIN
 -- Concatenate and display the current values in the variables.
 PRINT 'Contact Name: ' + @FirstName + ' ' + @LastName
 -- This is executed as long as the previous fetch succeeds.
 FETCH NEXT FROM contact_cursor
 INTO @LastName, @FirstName
END
CLOSE contact_cursor
DEALLOCATE contact_cursor
GO

82

User Defined FunctionsUser Defined Functions

• Like functions in programming languages, Microsoft
SQL Server 2005 user-defined functions are routines
that accept parameters, perform an action, such as a
complex calculation, and return the result of that
action as a value. The return value can either be a
single scalar value or a table.

• The benefits of using user-defined functions in SQL
Server are the same as for stored procedures

83

User Defined FunctionsUser Defined Functions

• In SQL Server 2005, user-defined functions can be
written in Transact-SQL, or in any .NET programming
language

• All user-defined functions have the same two-part
structure: a header and a body. The function takes
zero or more input parameters.

84

Types of Functions Types of Functions

• Scalar functions
• Inline table functions
• Multistatement table functions

85

InvocationInvocation

• Scalar-valued functions can be invoked where scalar
expressions are used. This includes computed
columns and CHECK constraint definitions.

• Scalar-valued functions can also be executed by
using the EXECUTE statement.

• Table-valued functions can be invoked where table
expressions are allowed in the FROM clause of
SELECT, UPDATE, or DELETE statements.

86

Syntax of Scalar FunctionsSyntax of Scalar Functions

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema_name.]

 parameter_data_type

[= default] } [,...n]])

RETURNS return_data_type

[AS]

BEGIN

function_body

RETURN scalar_expression

END [;]

87

ExampleExample

CREATE FUNCTION dbo.GetWeekDay
-- function name
(@Date datetime) -- input parameter name and data

 -- type
RETURNS int -- return parameter data type
AS
BEGIN -- begin body definition
RETURN DATEPART (weekday, @Date)

-- action performed
END;
GO

88

ExampleExample

SELECT
dbo.GetWeekDay(CONVERT(DATETIME,'20020201'
,101)) AS DayOfWeek;

GO
• Result

DayOfWeek

6

(1 row(s) affected)

89

ExampleExample

DECLARE @weekday int

EXECUTE @weekday= dbo.GetWeekDay
@Date=CONVERT(DATETIME,'20020201',101)

90

Syntax of Inline Table FunctionsSyntax of Inline Table Functions

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema_name.]

 parameter_data_type

[= default] } [,...n]])

RETURNS TABLE

[AS]

RETURN [(] select_stmt [)] [;]

91

ExampleExample

USE AdventureWorks;
GO
CREATE FUNCTION Sales.ufn_SalesByCustomer (@custID int)
RETURNS TABLE
AS
RETURN
(
 SELECT P.ProductID, P.Name, SUM(SD.LineTotal) AS 'YTD Total'
 FROM Production.Product AS P
 JOIN Sales.SalesOrderDetail AS SD ON SD.ProductID = P.ProductID
 JOIN Sales.SalesOrderHeader AS SH ON SH.SalesOrderID =

SD.SalesOrderID
 WHERE SH.CustomerID = @custID
 GROUP BY P.ProductID, P.Name
);
GO

92

Example of Invocation of the FunctionExample of Invocation of the Function

SELECT * FROM Sales.ufn_SalesByCustomer (602);

93

Multistatement table functionsMultistatement table functions

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.]

 parameter_data_type
[= default] } [,...n]])

RETURNS @return_variable TABLE
< table_type_definition >
[AS]
BEGIN

function_body
RETURN

END [;]

94

Multistatement table functionsMultistatement table functions

• The table to be returned is stored into
@return_variable in the body of the function

• When RETURN is executed, the result is returned to
the calling statement

95

Built-in FunctionsBuilt-in Functions

• Built-in functions are provided by SQL Server to help
you perform a variety of operations. They cannot be
modified. You can use built-in functions in Transact-
SQL statements to:
– Access information from SQL Server system

tables without accessing the system tables directly
(system functions).

– Perform common tasks such as SUM, GETDATE,
or IDENTITY.

96

Built-in FunctionsBuilt-in Functions

• Built-in functions return either scalar or table data
types.

• For example, @@ERROR returns 0 if the last
Transact-SQL statement executed successfully. If the
statement generated an error, @@ERROR returns
the error number. And the function SUM(parameter)
returns the sum of all the values for the parameter.

97

System FunctionsSystem Functions

• The names of some Transact-SQL system functions
start with two at signs (@@).

• The @@functions are system functions, and their
syntax usage follows the rules for functions.

• Example

SELECT SUSER_NAME()

• Retrieve the user name for the current user that is
logged on by using SQL Server Authentication

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

