
Triggers in SQL Server 2005Triggers in SQL Server 2005

2

Triggers in SQL Server 2005Triggers in SQL Server 2005

• Two types:
– DML triggers
– DDL triggers

3

DML TriggersDML Triggers

• Rules Event-Action
• There is no condition

4

DML TriggersDML Triggers

CREATE TRIGGER [schema_name .]trigger_name

ON { table | view }

{ FOR | AFTER | INSTEAD OF }

 { [INSERT] [,] [UPDATE] [,] [DELETE] }

AS { sql_statement [;] [,...n] |

EXTERNAL NAME <method specifier [;] > }

5

ExecutionExecution

• EXTERNAL NAME <method specifier [;] > : allows
to specify a CLR method to be executed

• FOR, AFTER: the sql statement is executed after the
event

• INSTEAD OF: the sql statement is executed instead
of the event

• There is no BEFORE case

6

ExecutionExecution

• AFTER triggers fire after the triggering action
(INSERT, UPDATE, or DELETE), INSTEAD OF
triggers and constraints are processed.

• INSTEAD OF triggers fire in place of the triggering
action and before constraints are processed.

• If the constraints are violated, the INSTEAD OF
trigger actions are rolled back and the AFTER trigger
is not executed

7

ExecutionExecution

• Each table or view can have one INSTEAD OF
trigger for each triggering action (UPDATE, DELETE,
and INSERT).

• A table can have several AFTER triggers for each
triggering action

8

Deleted and Inserted TableDeleted and Inserted Table

• DML triggers use the deleted and inserted logical
(conceptual) tables.

• They have the same structure of the table on which
the trigger is defined, that is, the table on which the
user action is tried.

• The deleted and inserted tables hold the old values
or new values of the rows that are changed by the
user action.

• For example, to retrieve all values in the deleted
table, use:

SELECT *
FROM deleted

9

Deleted and Inserted TableDeleted and Inserted Table

• DELETE: the deleted table contains all the rows that
have been deleted, the inserted table is empty

• INSERT: the inserted table contains all the rows that
have been inserted, the deleted table is empty

• UPDATE: it is seen as a delete followed by an insert,
deleted contains the old versions of the rows
updated, inserted the new versions

• The table on which the trigger is defined is modified
when the trigger fires if the trigger is AFTER, it is not
modified if it is INSTEAD OF

10

Deleted and Inserted TableDeleted and Inserted Table

• For a trigger on a table the format of the inserted
and deleted tables is the same as the format of the
table. Each column in the inserted and deleted
tables maps directly to a column in the base table.

• For a trigger on a view the format of the inserted and
deleted tables passed to a trigger matches the select
list of the SELECT statement defined for the view

11

Trigger LevelTrigger Level

• There is no distinction between row-level triggers and
statement-level triggers

• All the triggers are statement-level
• If multiple rows are affected, the inserted and deleted

tables will have more than one row

• Special care must be taken to consider these cases

12

Triggers and ConstraintsTriggers and Constraints

• AFTER triggers are never executed if a constraint
violation occurs; therefore, these triggers cannot be
used for any processing that might prevent constraint
violations.

• INSTEAD OF triggers are executed instead of the
triggering action. These triggers are executed after
the inserted and deleted tables reflecting the
changes to the base table are created, but before any
other actions are taken. They are executed before
any constraints, so can perform preprocessing that
supplements the constraint actions.

13

ExecutionExecution

• If an INSTEAD OF trigger defined on a table executes a
statement against the table that would usually fire the INSTEAD
OF trigger again, the trigger is not called recursively.

• Instead, the statement is processed as if the table had no
INSTEAD OF trigger and starts the chain of constraint
operations and AFTER trigger executions.

• For example, if a DML trigger is defined as an INSTEAD OF
INSERT trigger for a table, and the trigger executes an INSERT
statement on the same table, the INSERT statement executed
by the INSTEAD OF trigger does not call the trigger again.

• The INSERT executed by the trigger starts the process of
performing constraint actions and firing any AFTER INSERT
triggers defined for the table.

14

ExecutionExecution

• If an INSTEAD OF trigger defined on a view executes a
statement against the view that would usually fire the INSTEAD
OF trigger again, it is not called recursively. Instead, the
statement is resolved as modifications against the base tables
underlying the view. In this case, the view definition must meet
all of the restrictions for an updatable view.

• For example, if a DML trigger is defined as an INSTEAD OF
UPDATE trigger for a view, and the trigger executes an
UPDATE statement referencing the same view, the UPDATE
statement executed by the INSTEAD OF trigger does not call
the trigger again.

• The UPDATE executed by the trigger is processed against the
view as if the view did not have an INSTEAD OF trigger. Each
modification to an underlying base table starts the chain of
applying constraints and firing AFTER triggers defined for the
table.

15

PositionPosition

• The CREATE TRIGGER statement must be
the first statement in the batch.

• All other statements that follow in that batch
are interpreted as part of the definition of the
CREATE TRIGGER statement.

16

INSTEAD OF TriggersINSTEAD OF Triggers

• The primary advantage of INSTEAD OF triggers is
that they enable views that would not be updatable to
support updates.

• A view based on multiple base tables must use an
INSTEAD OF trigger to support inserts, updates, and
deletes that reference data in more than one table.

• Another advantage of INSTEAD OF triggers is that
they enable you to code logic that can reject parts of
a batch while letting other parts of a batch to
succeed.

17

Updatable ViewsUpdatable Views

• You can modify the data of an underlying base table through a
view, as long as the following conditions are true:
– Any modifications, including UPDATE, INSERT, and

DELETE statements, must reference columns from only one
base table.

– The columns being modified in the view must directly
reference the underlying data in the table columns. The
columns cannot be derived in any other way, such as
through the following:

• An aggregate function: AVG, COUNT, SUM, MIN, MAX,
GROUPING

• A computation. The column cannot be computed from an
expression that uses other columns.

18

Updatable ViewsUpdatable Views

– The columns being modified are not affected by
GROUP BY, HAVING, or DISTINCT clauses.

– TOP is not used anywhere in the select_statement
of the view together with the WITH CHECK
OPTION clause.

19

Nulls and DefaultsNulls and Defaults

• Similarly, when no value is specified in the INSERT
statement for a column, a DML trigger is still
activated when:
– An implicit null value is inserted into a column

because no DEFAULT definition exists.
– A default value is inserted into a column because

a DEFAULT definition does exist.

20

ExampleExample

• The SubTotal column in the PurchaseOrderHeader
table must be the sum of the LineTotal column for all
the related rows in the PurchaseOrderDetail table

• The SubTotal column in the PurchaseOrderHeader
must be updated when new lines are inserted in
PurchaseOrderDetail

21

ExampleExample

-- Trigger is valid for single-row inserts.
USE AdventureWorks;
GO
CREATE TRIGGER NewPODetail
ON Purchasing.PurchaseOrderDetail
AFTER INSERT AS
 UPDATE PurchaseOrderHeader
 SET SubTotal = SubTotal + LineTotal
 FROM inserted
 WHERE PurchaseOrderHeader.PurchaseOrderID =

inserted.PurchaseOrderID ;

22

ExampleExample

• If there are more than one row in inserted, it is not
defined which one is used for the update

23

Example 2Example 2

-- Trigger is valid for multirow and single-row inserts.
USE AdventureWorks;
GO
CREATE TRIGGER NewPODetail2
ON Purchasing.PurchaseOrderDetail
AFTER INSERT AS
 UPDATE PurchaseOrderHeader
 SET SubTotal = SubTotal +
 (SELECT SUM(LineTotal)
 FROM inserted
 WHERE PurchaseOrderHeader.PurchaseOrderID
 = inserted.PurchaseOrderID)
 WHERE PurchaseOrderHeader.PurchaseOrderID IN
 (SELECT PurchaseOrderID FROM inserted);

24

DDL TriggersDDL Triggers

• DDL Triggers are a special kind of trigger that fire in
response to Data Definition Language (DDL)
statements.

• They can be used to perform administrative tasks in
the database such as auditing and regulating
database operations.

• DDL triggers fire only after the DDL statements that
trigger them are run. DDL triggers cannot be used as
INSTEAD OF triggers

25

DDL TriggersDDL Triggers

• Use DDL triggers when you want to do the following:
– You want to prevent certain changes to your

database schema.
– You want something to occur in the database in

response to a change in your database schema.

– You want to record changes or events in the
database schema.

26

ExampleExample

• The following example illustrates how a DDL trigger
can be used to prevent any table in a database from
being modified or dropped:

CREATE TRIGGER safety

ON DATABASE

FOR DROP_TABLE, ALTER_TABLE

AS

 PRINT 'You must disable Trigger "safety" to drop or
alter tables!'

 ROLLBACK ;

27

SyntaxSyntax

CREATE TRIGGER trigger_name ON

{ ALL SERVER | DATABASE }

{ FOR | AFTER } { event_type | event_group } [,...n]

AS { sql_statement [;] [,...n] |

EXTERNAL NAME < method specifier > [;] }

ALL SERVER: the trigger fires for any event in the
current server

DATABASE: the trigger fires for any event in the current
database

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

