
NoSQL

Source: NoSQL Databases

Christof Strauch

www.christof-strauch.de/nosqldbs.pdf

http://www.christof-strauch.de/nosqldbs.pdf

NoSQL

• The term NoSQL was first used in 1998 for a

relational database that omitted the use of SQL

• The term was picked up again in 2009 and used for

conferences of advocates of non-relational databases

• Class of non-relational data storage systems

• Usually do not require a fixed table schema nor do

they use the concept of joins

• All NoSQL offerings relax one or more of the ACID

properties

2

NoSQL

• Stands for Not Only SQL

3

NoSQL !=

NoSQL

• “NoSQLers came to share how they had overthrown

the tyranny of slow, expensive relational databases in

favor of more efficient and cheaper ways of

managing data.”

Computerworld magazine

• Web 2.0 startups have begun their business without

Oracle and even without MySQL

• Instead, they built their own datastores influenced by

Amazon’s Dynamo and Google’s Bigtable in order to

store and process huge amounts of data like they

appear e.g. in social community or cloud computing

applications

4

NoSQL

• Most of these datastores became open source

software.

• For example, Cassandra originally developed for a

new search feature by Facebook is now part of the

Apache Software Project.

5

NoSQL features

• Avoidance of Unneeded Complexity: Relational

databases provide a variety of features and strict

data consistency. But this rich feature set and the

ACID properties implemented by RDBMSs might be

more than necessary for particular applications and

use cases.

• High Throughput: Some NoSQL databases provide

a significantly higher data throughput than traditional

RDBMSs

• Horizontal Scalability and Running on Commodity

Hardware: Machines can be added and removed (or

crash) without causing the same operational efforts to

perform distribution in RDBMS cluster-solutions
6

NoSQL features

• Avoidance of Expensive Object-Relational

Mapping: Most of the NoSQL databases are

designed to store data structures that are either

simple or more similar to the ones of object-oriented

programming languages compared to relational data

structures

• Compromising Reliability for Better Performance

• The Current “One size fit’s it all” Databases

Thinking Was and Is Wrong

7

NoSQL features

• The Myth of Effortless Distribution and

Partitioning of Centralized Data Models: data

models originally designed with a single database in

mind often cannot easily be partitioned and

distributed among database servers

• Movements in Programming Languages and

Development Frameworks: provide abstractions for

database access trying to hide the use of SQL and

relational databases

8

NoSQL Features

• Requirements of Cloud Computing: two major

requirements of datastores in cloud computing

environments

1.High until almost ultimate scalability—especially in

the horizontal direction

2.Low administration overhead

9

NoSQL Features

• The RDBMS plus Caching-Layer

Pattern/Workaround vs. Systems Built from

Scratch with Scalability in Mind: distribute MySQL

to handle high write loads, cache objects in

memcached to handle high read loads, and then

write a lot of glue code to make it all work together.

• Memchached: partitioned—though transient— in-

memory database

• It replicates most frequently requested parts of a

database to main memory, rapidly delivers this data

to clients and therefore disburdens database servers

significantly.

10

Main memory

• Compared to the 1970s, enormous amounts of main

memory have become cheap and available

• “The overwhelming majority of OLTP databases are

less than 1 Tbyte in size and growing [. . .] quite

slowly”

• Such databases are “capable of main memory

deployment now or in near future”. Stonebraker et al.

• The OLTP market a main memory market even today

or in near future.

11

CAP Theorem

• Consistency meaning if and how a system is in a

consistent state after the execution of an operation.

• A distributed system is typically considered to be

consistent if after an update operation of some writer

all readers see his updates in some shared data

source.

• Availability meaning that a system is designed and

implemented in a way that allows it to continue

operation (i.e. allowing read and write operations) if

e.g. nodes in a cluster crash or some hardware or

software parts are down due to upgrades.

12

CAP Theorem

• Partition Tolerance understood as the ability of the

system to continue operation in the presence of

network partitions. These occur if two or more

“islands” of network nodes arise which (temporarily or

permanently) cannot connect to each other

13

CAP Theorem

It is impossible for a distributed computer system to

simultaneously provide all three of the following

guarantees

• Consistency: all nodes see the same data at the

same time

• Availability: every request receives a response about

whether it was successful or failed

• Partition Tolerance: the system continues to operate

despite arbitrary message loss

You have to choose only two. In almost all cases,

you would choose availability over consistency

14

CAP Theorem

15

ACID vs. BASE

• The internet with its wikis, blogs, social networks etc.

creates an enormous and constantly growing amount

of data needing to be processed, analyzed and

delivered.

• Companies, organizations and individuals offering

applications or services in this field have to determine

their individual requirements regarding performance,

reliability, availability, consistency and durability

• For a growing number of applications and use-cases

(including web applications, especially in large and

ultra-large scale, and even in the e-commerce

sector), availability and partition tolerance are more

important than strict consistency.
16

BASE

• The BASE approach forfeits the ACID properties of

consistency and isolation in favor of “availability,

graceful degradation, and performance”

• The acronym BASE is composed of the following

characteristics:

– Basically available

– Soft-state

– Eventual consistency

• An application works basically all the time (basically

available), does not have to be consistent all the time

(soft-state) but will be in some known state eventually

(eventual consistency)
17

Strict Consistency

• All read operations must return data from the latest

completed write operation, regardless of which

replica the operations went to

• This implies that either read and write operations for

a given dataset have to be executed on the same

node or that strict consistency is assured by a

distributed transaction protocol (like two-phase-

commit or Paxos).

• As we have seen above, such a strict consistency

cannot be achieved together with availability and

partition tolerance according to the CAP-theorem

18

Eventual Consistency

• Readers will see writes, as time goes on

• In a steady state, the system will eventually return the

last written value

• Clients therefore may face an inconsistent state of

data as updates are in progress.

• For instance, in a replicated database updates may

go to one node which replicates the latest version to

all other nodes that contain a replica of the modified

dataset so that the replica nodes eventually will have

the latest version.

19

Eventual Consistency

• An eventually consistent system may provide more

differentiated, additional guarantees to its clients

• Read Your Own Writes (RYOW) Consistency

signifies that a client sees his updates immediately

after they have been issued and completed,

regardless if he wrote to one server and in the

following reads from different servers.

• Updates by other clients are not visible to him

instantly

20

Partitioning

• Assuming that data in large scale systems exceeds

the capacity of a single machine and should also be

replicated to ensure reliability and allow scaling

measures such as load-balancing, ways of

partitioning the data of such a system have to be

thought about.

• Approaches:

– Memory Caches

21

Memory Caches

• Can be seen as partitioned—though transient—in-

memory databases as they replicate most frequently

requested parts of a database to main memory,

rapidly deliver this data to clients and therefore

disburden database servers significantly (e.g.

memcached).

• In the case of memcached the memory cache

consists of an array of processes with an assigned

amount of memory that can be launched on several

machines in a network and are made known to an

application via configuration.

22

Sharding

• Sharding means to partition the data in such a way

that data typically requested and updated together

resides on the same node and that load and storage

volume is roughly evenly distributed among the

servers

• Data shards may also be replicated for reasons of

reliability and load-balancing and it may be either

allowed to write to a dedicated replica only or to all

replicas maintaining a partition of the data.

• To allow such a sharding scenario there has to be a

mapping between data partitions (shards) and

storage nodes that are responsible for these shards.

23

Sharding

• This mapping can be static or dynamic, determined

by a client application, by some dedicated “mapping-

service/component” or by some network

infrastructure between the client application and the

storage nodes

• The downside of sharding scenarios is that joins

between data shards are not possible, so that the

client application or proxy layer inside or outside the

database has to issue several requests and

postprocess (e.g. filter, aggregate) results instead.

24

Sharding

• In a partitioned scenario knowing how to map

database objects to servers is key. An obvious

approach may be a simple hashing of database-

object primary keys against the set of available

database nodes in the following manner:

• partition = hash(o) mod n with o = object to hash, n =

number of nodes

• The downside of this procedure is that the data have

to be redistributed whenever nodes leave and join

25

Sharding

• In a setting where nodes may join and leave at

runtime (e.g. due to node crashes, temporal

unattainability, maintenance work) a different

approach such as consistent hashing has to be found

26

Consistent Hashing

• The basic idea behind the consistent hashing

algorithm is to hash both objects and nodes using the

same hash function

• Not only hashing objects but also machines has the

advantage that machines get an interval of the hash-

function’s range and adjacent machines can take

over parts of the interval of their neighbors if those

leave and can give parts of their own interval away if

a new node joins and gets mapped to an adjacent

interval

27

Consistent Hashing

• The consistent hashing approach has the advantage

that client applications can calculate which node to

contact in order to request or write a piece of data

and there is no metadata server necessary as in

systems like the the Google File System (GFS) which

has a central (though clustered) metadata server that

contains the mappings between storage servers and

data partitions

28

Consistent Hashing

• Three red colored

nodes A, B and C and

four blue colored

objects 1–4 are mapped

to a hash-function’s

result range pictured as

a ring.

• Objects are mapped by

moving clockwise

• objects 4 and 1 are

mapped to node A,

object 2 to node B and

object 3 to node C.
29

Consistent Hashing

• When a node leaves

the system, objects will

get mapped to their

adjacent node (in

clockwise direction) and

when a node enters the

system it will get

hashed onto the ring

and will overtake

objects

30

Consistent Hashing

• Node C left and node D

entered the system, so

that now objects 3 and

4 will get mapped to

node D and only 1 to A

• By changing the

number of nodes not all

objects have to be

remapped to the new

set of nodes but only

part of the objects.

31

Data models

• key-/value-stores

• document databases

• column-oriented databases

32

Key-/value-stores

• Simple data model: a map/dictionary, allowing clients

to put and request values per key.

• Besides the data-model and the API, modern key-

value stores favor high scalability over consistency

and therefore most of them also omit rich ad-hoc

querying and analytics features (especially joins and

aggregate operations are set aside)

• Often, the length of keys to be stored is limited to a

certain number of bytes while there is less limitation

on values

• A large number of this class of NoSQL stores has

been heavily influenced by Amazon’s Dynamo

33

Other Key-/Value-Stores

• Tokyo Cabinet and Tokyo Tyrant

• Redis

• Memcached and MemcacheDB

• Scalaris

34

Document Databases

• They allow to encapsulate key-/value-pairs in

documents.

• There is no strict schema documents have to

conform to which eliminates the need of schema

migration efforts

• The two major representatives for the class are

– Apache CouchDB

– MongoDB

35

Column-Oriented Databases

• The approach to store and process data by column

instead of row has its origin in analytics and business

intelligence where column-stores operating in a

shared-nothing massively parallel processing

architecture can be used to build high-performance

applications.

• The class of column-oriented stores is seen as less

puristic, also subsuming datastores that integrate

column- and row-orientation

• The main inspiration for column-oriented datastores

is Google’s Bigtable

• Cassandra is inspired by Bigtable

36

Google’s Bigtable

• The data structure provided and processed by

Google’s Bigtable is described as “a sparse,

distributed, persistent multidimensional sorted map”.

• Values are stored as arrays of bytes which do not get

interpreted by the data store. They are addressed by

the triple (row-key, column-key, timestamp)

• Example of a Bigtable storing information a web

crawler might emit

37

Bigtable

• The map contains a non-fixed number of rows

representing domains read by the crawler as well as

a non-fixed number of columns:

– the first of these columns (contents:) contains the

page contents

• the others (anchor:<domain-name>) store link texts

from referring domains—each of which is

represented by one dedicated column

38

