
Physical Design

Read Chapter 9 of Riguzzi et al.

Sistemi Informativi

2

Physical Design

• Design of the physical structures of the database

• Last phase of database design

• Input:

– Database logical schema

– Information on the load

• Output:

– Definition of the primary structures of tables

– Definition of indexes on tables

– Setting of a number of DBMS specific parameters

3

Choice of Indexes

• Very important

• Usually one index on the primary key

– Sometimes compulsory

– Useful because the primary key is often involved

in joins and selections

• Other indexes for easing certain selections and joins

• It is possible to investigate how the indexes are used

in queries by the command

– SHOW PLAN

• If the performances are unsatisfactory, indexes can

be added or removed

4

Index Creation

• Pattern common to different DBMS

– CREATE [UNIQUE] INDEX IndexName ON

TableName(AttributeList)

– DROP INDEX IndexName

• Syntax details vary widely among DBMS

• UNIQUE: AttributeList is a superkey

• No way to specify the type of index (B+Tree, Hash,...)

5

Physical Structures

• Primary structures (defined when creating the table):

– heap ("unclustered")

– ordered ("clustered"), also on a pseudokey

– hash ("clustered"), also on a pseudokey

– array ("clustered"), also on a pseudokey

– clustering of different tables

• Indexes (primary/secondary, defined when creating

the index)

– ISAM

– B+-tree

– bitmap

SQL Server Physical Structures

• Primary structures

– Heap

– Ordered with sparse B+-tree

• Secondary indexes: dense B+-tree

6

7

Relational Index Creation

CREATE [UNIQUE] [CLUSTERED |

NONCLUSTERED] INDEX index_name

ON <object> (column [ASC | DESC] [,...n])

<object> ::= table_or_view

8

Sort Order

• You should consider whether the data for the index
key column should be stored in ascending or
descending order.

• Ascending is the default

• Keywords: ASC (ascending) and DESC (descending)

• Specifying the order in which key values are stored in
an index is useful when queries referencing the table
have ORDER BY clauses that specify order
directions for the columns in that index.

• In these cases, the index can remove the need for a
SORT operator in the query plan; therefore, this
makes the query more efficient.

9

Sort Order Example

• The buyers in the Adventure Works Cycles

purchasing department have to evaluate the quality

of products they purchase from vendors. The buyers

are most interested in finding products sent by these

vendors with a high rejection rate.

• Retrieving the data to meet this criteria requires the

RejectedQty column in the

Purchasing.PurchaseOrderDetail table to be sorted in

descending order (large to small) and the ProductID

column to be sorted in ascending order (small to

large).

10

Sort Order Example

USE AdventureWorks;

SELECT RejectedQty, ((RejectedQty/OrderQty)*100)

AS RejectionRate, ProductID, DueDate

FROM Purchasing.PurchaseOrderDetail

ORDER BY RejectedQty DESC, ProductID ASC;

11

Sort Order Example

• The following execution plan for this query shows that

the query optimizer used a SORT operator to return

the result set in the order specified by the ORDER

BY clause.

Try it

• Launch Visual Studio

• Add a new Data connection

• Create a New query

• Press button “Include Actual Execution Plan”

• Run the query

12

13

Sort Order Example

• If an index is created with key columns that match

those in the ORDER BY clause in the query, the

SORT operator can be eliminated in the query plan

and the query plan is more efficient:

CREATE NONCLUSTERED INDEX

IX_PurchaseOrderDetail_RejectedQty

ON Purchasing.PurchaseOrderDetail

(RejectedQty DESC, ProductID ASC);

14

Sort Order Example

• After the query is executed again, the following

execution plan shows that the SORT operator has

been eliminated and the newly created nonclustered

index is used.

15

Sort Order

• SQL Server can move equally efficiently in either

direction. An index defined as (RejectedQty DESC,

ProductID ASC) can still be used for a query in which

the sort direction of the columns in the ORDER BY

clause are reversed.

• For example, a query with the ORDER BY clause

ORDER BY RejectedQty ASC, ProductID DESC can

use the index.

• A query with the ORDER BY clause ORDER BY

RejectedQty ASC, ProductID ASC can not use the

index.

16

Showing the Execution Plan of a Query

SET SHOWPLAN_TEXT ON

After this SET statement is executed, SQL Server

returns the execution plan information for each query

in text. The Transact-SQL statements or batches are

not executed.

17

Oracle Physical Structures

• Primary structures

– Heap

– Ordered with sparse B+-tree

– Hash

– Multitable clusters

• Secondary indexes:

– dense B+-tree

– bit-map

18

Ordered with sparse B+-tree

• Also called index-organized table.

• Oracle Database maintains the table rows, both

primary key column values and nonkey column

values, in an index built on the primary key.

• Index-organized tables are therefore best suited for

primary key-based access and manipulation.

• You must specify a primary key for an index-

organized table, because the primary key uniquely

identifies a row.

• Similar to SQL server

19

Indexes

• Type of indexes:

– B+-tree indexes

– B+-tree cluster indexes (for multitable clusters)

– Bitmap indexes

– Bitmap join indexes:

• Bitmap index for the join of two or more tables

• Useful for datawarehousing

20

Unique and Nonunique Indexes

• Unique indexes guarantee that no two rows of a table

have duplicate values in the key column (or

columns).

• Oracle recommends that unique indexes be created

explicitly, using CREATE UNIQUE INDEX.

21

CREATE INDEX

CREATE [UNIQUE | BITMAP] INDEX [schema.]index

ON [schema.]table

(column [ASC | DESC]

[, column [ASC | DESC]]...);

• By default, Oracle Database creates B+-tree indexes.

22

DB2 Physical Structures

• Primary structure:

– Heap

– Array (Range-clustered tables)

• Indexes:

– dense B+-trees

• Indexes are bidirectional by default: they allow

forward and reverse scans

23

Range-clustered tables

• Array primary structure

• The table should have an integer key that is tightly

clustered (dense) over the range of possible values.

• The columns of this integer key must not be nullable,

and the key should logically be the primary key of the

table.

• The allocation of all the space for the complete set of

rows in the defined key sequence range is done

during table creation

24

Secondary indexes

• Secondary indexes contain only keys and record IDs

in the index structure.

• The record IDs always point to rows in the data

pages.

• Dense indexes

25

Indexes

• Only B+trees

CREATE [UNIQUE] INDEX index

ON table

(column [ASC | DESC]

[, column [ASC | DESC]]...)

26

Views

CREATE VIEW [schema_name .] view_name [

(column [,...n])]

AS select_statement [;]

[WITH CHECK OPTION]

27

column

• column

– If column is not specified, the view columns

acquire the same names as the columns in the

SELECT statement.

– If it is specified, it is the name to be used for a

column in a view.

28

Updatable Views

• You can modify the data of an underlying base table through a

view, as long as the following conditions are true:

– Any modifications, including UPDATE, INSERT, and

DELETE statements, must reference columns from only one

base table.

– The columns being modified in the view must directly

reference the underlying data in the table columns. The

columns cannot be derived in any other way

29

WITH CHECK OPTION

• Forces all data modification statements executed

against the view to satisfy the criteria set within

select_statement. When a row is modified through a

view, the WITH CHECK OPTION makes sure the

data remains visible through the view after the

modification is committed.

30

View Example (SQL Server)

USE AdventureWorks ;

GO

CREATE VIEW hiredate_view

AS

SELECT c.FirstName, c.LastName, e.EmployeeID,
e.HireDate

FROM HumanResources.Employee e JOIN
Person.Contact c on e.ContactID = c.ContactID ;

GO

An UPDATE that modifies an employee LastName and
HireDate returns an error

31

View Example (SQL Server)

USE AdventureWorks ;

GO

CREATE VIEW SeattleOnly

AS

SELECT p.LastName, p.FirstName, p.City,

FROM Person p WHERE p.City = 'Seattle'

WITH CHECK OPTION ;

GO

An UPDATE that changes the city of a Person returns
an error.

