Organization of Records In
Blocks

Read Sec. 4.2 Riguzzi et al. Sistemi Informativi

Slides derived from those by Hector Garcia-Molina

Topic

e How to lay out records on blocks

To represent:

o Integer (short): 2 bytes
e.g., 351s

00000000 | | 00100011

e Real, floating point
n bits for mantissa, m for exponent....

To represent:

e Characters

— various coding schemes suggested,
most popular is ascii

Example:

A: 1000001
a. 1100001
5: 0110101

LF: 0001010

To represent:

e Boolean
e.g., TRUE [1111 1111
FALSE [0000 0000

e Application specific
e.g, RED -1 GREEN — 3
BLUE > 2 YELLOW — 4 ...

—> Can we use less than 1 byte/code?

Yes, but only if desperate...

To represent:

e Dates
e.g.: - Integer, # days since Jan 1, 1900
- 8 characters, YYYYMMDD
- 7 characters, YYYYDDD
(not YYMMDD! Why?)
e Time
e.g. - Integer, seconds since midnight
- characters, HHMMSSFF

To represent:

e Fixed length characters strings
(CHAR(N)):
—n bytes

— If the value is shorter, fill the array with a
pad charater, whose 8-bit code is not one
of the legal characters for SQL strings

cla |t | X|X|X

To represent:

e Variable-length characters strings
(CHAR VARYING(n)): n+1 bytes max

— Null terminated

e.g., clalt

— Length given
e.g., 3|cla|t

To represent:

e BINARY VARYING(n)

3l #]~

|

Length

Key Point

e Fixed length items

e Variable length items
- usually length given at beginning

10

Overview

Data Items

|

Records

|

Blocks

|

Fi_Ies

Memory

11

Types of records:

e Main choices:
— FIXED vs VARIABLE LENGTH

12

A SCHEMA (not record) contains
following information
- # fields
- type of each field
- order in record
- name of each field

13

Example: fixed length

Employee record

(1) E#, 2 byte integer
(2) E.name, 10 char.
(3) Dept, 2 byte code

" Schema

55

smit h

02

83

1T 1T 1T 1
jon e s

01

. Records

14

Record header - data at beginning
that describes record

May contain:
- record type
- record length
- time stamp

15

Next: placing records into blocks

MAUMDMN assume fixed
f length blocks
blocks
N —~ —

a file ——assume a single file (for now)

16

Options for storing records in blocks:

(1) separating records

(2) spanned vs. unspanned

(3) mixed record types — clustering
(4) split records

(5) indirection

17

(1) Separating records

Block 32 . R

(@) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)

- within each record

- in block header

(2) Spanned vs. Unspanned

e Unspanned: records must be within one
block

block 1 block 2
7, 7
R1 R2 7| R3 |R4|R5 .
e Spanned
block 1 block 2
R3| [R3 R7| ...
R1 R2) o) R4 R5 | R6 |y

19

With spanned records:

R1

R2

R3
(a)

R3
(b)

R5

R6

R7
(a)

- \

need indication
of partial record

“pointer” to rest

need indication
of continuation

(+ from where?)

20

Spanned vs. unspanned:

e Unspanned is much simpler, but may
waste space...

e Spanned essential if
record size > block size

21

Example

10° records
each of size 2,050 bytes (fixed)
block size = 4096 bytes

block 1 block 2

R1 %/////% R2 %/////%

2050 bytes wasted 2046 2050 bytes wasted 2046

e Total wasted = 2 x 10° Utiliz = 50%
e Total space =4 x 10°

22

(3) Mixed record types

e Mixed - records of different types
(e.g. EMPLOYEE, DEPT)
allowed in same block

e.g., a block

EMP| el |DEPT d1 |PEPT d2

23

Why do we want to mix?

Records that are frequently

accessed together should be

in the same block
CLUSTERING

24

Compromise:

No mixing, but keep related
records in same cylinder ...

25

Example

Q1: select A#, C_NAME, C_CITY, ...
from DEPOSIT, CUSTOMER
where DEPOSIT.C_NAME =

CUSTOMER.NAME

CUSTOMER,NAME=SMITH

DEPOSIT,C_NAME=SMITH
DEPOSIT,C_NAME=SMITH

a block

26

o If Q1 frequent, clustering good
e But if Q2 frequent
Q2: SELECT *
FROM CUSTOMER

CLUSTERING IS COUNTER PRODUCTIVE

27

(4) Split records

Fixed part in
one block

Typically for /

Variable length

records \
Variable part in

another block

Block with fixed parts Block with variable parts
RL ()T T
R2 (a) |,

N

R1 (b)

R2 (b) Block with

KJ variable
parts

29

(5) Indirection

e How does one refer to records?

Many options:
Physical

RX

)

Indirect

30

v¢ Purely Physical

Device ID
E.g., Record Cylinder # | _ .
Address =< Track #
or ID Block #

Offset in block
N

Y Fully Indirect
E.g., Record ID is arbitrary bit string

rec ID

map

Rec ID

Physical
a%ldr.

I

address
a

32

Tipical Use logical block #'s
understood by file system

— File ID
Block #
Offset in block

File ID, __ / File Syst. Physical
Block # Map Block ID

33

Block header - data at beginning that
describes block

May contain:
- File ID (or RELATION or DB ID)
- This block ID
- Record directory
- Pointer to free space
- Type of block (e.g. contains recs type 4;
is overflow, ...)
- Pointer to other blocks "“like it”
- Timestamp ...

34

Other Topic

Insertion/Deletion

35

Options for deletion:

(a) Immediately reclaim space

(b) Mark deleted
— May need chain of deleted records

(for re-use)

— Need a way to mark:
e special characters
e delete field
e iINn Map

36

¥ As usual, many tradeoffs...

e How expensive is to move valid records
to free space for immediate reclaim?

e How much space is wasted?
— delete fields, free space chains,...

37

