
JDBC

Taken from

http://docs.oracle.com/javase/tutorial/jdbc/basics/

index.html

see also the book: Fisher, Ellis, Bruce, “JDBC

API Tutorial and Reference”, Third Edition,

Addison Wesley

http://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

2

Getting Started

• Install Java on your machine: The JDBC library is

included in the J2SE distribution

• Install a driver on your machine: the driver is

provided by the database vendor or by a third party.

– the installation consists of just copying the driver

onto your machine; there is no special

configuration needed.

3

Types of JDBC Drivers

• According to the JDBC specification, there are four types of
JDBC driver architectures:

• Type 1

– Drivers that implement the JDBC API as a mapping to
another data access API, such as Open Database
Connectivity (ODBC). Drivers of this type are generally
dependent on a native library, which limits their portability.

– If you download either the Solaris or Windows versions of
JDK1.1 or higher, you will automatically get the JDBC-ODBC
Bridge driver, which does not itself require any special
configuration.

• Type 2

– Drivers that are written partly in the Java™ programming
language and partly in native code. The drivers use a native
client library specific to the data source to which they
connect. Because of the native code, their portability is
limited.

4

Types of JDBC Drivers

• Type 3

– Drivers that use a pure Java client and

communicate with a database using a database-

independent protocol. The database then

communicates the client's requests to the data

source.

• Type 4

– Drivers that are pure Java and implement the

network protocol for a specific data source. The

client connects directly to the data source.

5

Scenario

• Small coffee house called The Coffee Break, where

coffee beans are sold by the pound

• The database contains only two tables, one for types

of coffee and one for coffee suppliers.

6

JDBC API

• To use the JDBC API include in your file the
command

import java.sql.*;

• For some functionalities you need to include also the

JDBC Optional Package

import javax.sql.*;

• Make sure the .jar files containing the JDBC driver

are in the classpath or use an IDE such as Eclipse

7

Establishing a Connection

• Two steps:

1. loading the driver

2. making the connection.

8

Loading the Driver

• Your driver documentation will give you the class

name to use. For instance, if the class name is

jdbc.DriverXYZ, you would load the driver with the

following line of code:

– Class.forName("jdbc.DriverXYZ");

• Calling Class.forName locates the driver class, loads,

links it, and registers it with the DriverManager

9

Loading the Driver

• For the JDBC-ODBC Bridge driver

– Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

• For the SQL Server driver

– Class.forName("com.microsoft.sqlserver.jdbc.SQL

ServerDriver");

• For the DB2 driver

Class.forName("com.ibm.db2.jcc.DB2Driver");

10

Making the Connection

Connection con = DriverManager.getConnection(url);

Connection con = DriverManager.getConnection(url, "myLogin",

"myPassword");

• The url follows the syntax specified by the driver.

• JDBC-ODBC Bridge driver: the JDBC URL will start with

jdbc:odbc:. The rest of the URL is the ODBC data source name.

• If you are using ODBC to access an ODBC data source called

"Fred“ with username “Fernanda” and password “J8”, for

example, the code would be

String url = "jdbc:odbc:Fred";

Connection con = DriverManager.getConnection(url, "Fernanda",

"J8");

11

SQL Server Driver Url

Type 4 driver:

jdbc:sqlserver://serverName\instance:port;property=value

[;property=value]

• jdbc:sqlserver:// (Required) is the protocol and the sub-
protocol and is constant.

• serverName (Optional) is the address of the server to connect
to. This could be a DNS or IP address, or it could be localhost or
127.0.0.1 for the local computer. If not specified in the
connection URL, the server name must be specified in the
properties collection.

• instanceName (Optional) is the instance to connect to on
serverName. If not specified, a connection to the default
instance is made.

• port (Optional) is the port to connect to on serverName. The
default is 1433. If you are using the default, you do not have to
specify the port, nor its preceding ':', in the URL.

12

SQL Server driver Url

• property (Optional) is one or more connection

properties. Any property from a list can be specified.

Properties can only be delimited by using the semi-

colon (';'), and they cannot be duplicated.

• Most important properties:

– user or userName: the username of the user

connecting to the database

– password: the password

13

SQL Server Driver Url Examples

• Connect to the default database on the local

computer:

jdbc:sqlserver://localhost;user=MyUserName;password

=prova

• Connect to a named instance on the local machine:

jdbc:sqlserver://localhost\si2006;user=MyUserName;pa

ssword=prova

• Connect on the non-default port 4000 to the local

machine:

jdbc:sqlserver://localhost:4000;user=MyUserName;pass

word=prova

14

SQL Server Driver Connection Examples

• Note that if you specify an instance name, you should

use double \ in the url

Connection con = DriverManager.getConnection(

“jdbc:sqlserver://localhost\\si2006”, "myLogin",

"myPassword");

Connection con = DriverManager.getConnection(

“jdbc:sqlserver://10.17.2.91”, “utente", “Infonew1");

15

DB2 Driver URLs

Type 4 Driver

jdbc:db2://serverName[:port]/database:property=value;[
…n]

• jdbc:db2:// (Required) is the protocol and the sub-
protocol and is constant.

• serverName is the address of the server to connect
to. This could be a DNS or IP address, (in our case
10.17.2.91).

• port is the port to connect to on serverName. In our
case 50000

• database is the database to connect to on
serverName. In our case PROVA

16

DB2 Driver URLs

• property (Optional) is one or more connection

properties. Any property from a list can be specified.

Properties can only be delimited by using the semi-

colon (';'), and they cannot be duplicated.

• Most important properties:

– user: the username of the user connecting to the

database

– password: the password

17

DB2 Driver URLs Examples

• jdbc:db2://10.17.2.91:50000/PROVA

18

DriverManager.getConnection

• Making the Connection

• Connection con = DriverManager.getConnection(url,

“utente", “Infonew1");

• The connection returned by the method

DriverManager.getConnection is an open connection

you can use to create JDBC statements that pass

your SQL statements to the DBMS.

• In the previous example, con is an open connection,

and we will use it in the examples that follow.

19

COFFES Table

• It contains the essential information about the coffees

sold at The Coffee Break, including the coffee

names, the ID of their supplier, their prices, the

number of pounds sold the current week, and the

number of pounds sold to date.

COF_NAME SUP_ID PRICE SALES TOTAL

Colombian 101 7.99 0 0

French_Roast 49 8.99 0 0

Espresso 150 9.99 0 0

Colombian_Decaf 101 8.99 0 0

French_Roast_Decaf 49 9.99 0 0

20

SUPPLIERS Table

• SUPPLIERS gives information about each of the

suppliers:

SUP_ID SUP_NA

ME

STREET CITY STATE ZIP

101 Acme, Inc. 99 Market

Street

Groundsville CA 95199

49 Superior

Coffee

1 Party

Place

Mendocino CA 95460

150 The High

Ground

100 Coffee

Lane

Meadows CA 93966

21

CREATE TABLE COFFES

CREATE TABLE COFFEES<mat>

(COF_NAME VARCHAR(32),

SUP_ID INTEGER,

PRICE FLOAT,

SALES INTEGER,

TOTAL INTEGER)

22

Table Creation

String createTableCoffees = "CREATE TABLE ”+

“ COFFEES<mat> (COF_NAME VARCHAR(32), “+

“SUP_ID INTEGER, PRICE FLOAT, " +

"SALES INTEGER, TOTAL INTEGER)";

23

Creating JDBC Statements

• A Statement object is what sends your SQL

statement to the DBMS.

• You simply create a Statement object and then

execute it, supplying the appropriate execute method

together with the SQL statement you want to send.

• For a SELECT statement, the method to use is

executeQuery. For statements that create or modify

tables, the method to use is executeUpdate.

24

Creating JDBC Statements

• It takes an instance of an active connection to create

a Statement object. In the following example, we use

our Connection object con to create the Statement

object stmt :

Statement stmt = con.createStatement();

25

Executing Statements

• At this point stmt exists, but it does not have an SQL

statement to pass on to the DBMS. We need to

supply that to the method we use to execute stmt.

For example, in the following code fragment, we

supply executeUpdate with the SQL statement from

the example above:

stmt.executeUpdate(createTableCoffees);

• We used the method executeUpdate because the

SQL statement contained in createTableCoffees is a

DDL (data definition language) statement.

executeUpdate is also used to execute SQL

statements that update a table.

26

Inserting Data in COFFEES

Statement stmt = con.createStatement();

stmt.executeUpdate("INSERT INTO

COFFEES<mat> " + "VALUES ('Colombian', 101,

7.99, 0, 0)");

• The code that follows inserts a second row into the

table COFFEES. Note that we can just reuse the

Statement object stmt rather than having to create a

new one for each execution.

stmt.executeUpdate("INSERT INTO COFFEES<mat> "

+ "VALUES ('French_Roast', 49, 8.99, 0, 0)");

27

Inserting the Remaining Data in COFFEES

stmt.executeUpdate("INSERT INTO COFFEES<mat> "

+

"VALUES ('Espresso', 150, 9.99, 0, 0)");

stmt.executeUpdate("INSERT INTO COFFEES<mat> "

+

"VALUES ('Colombian_Decaf', 101, 8.99, 0, 0)");

stmt.executeUpdate("INSERT INTO COFFEES<mat> "

+

"VALUES ('French_Roast_Decaf', 49, 9.99, 0, 0)");

28

Selecting Data from COFFEES

ResultSet rs = stmt.executeQuery("SELECT“ +

” COF_NAME, PRICE FROM COFFEES<mat>");

• JDBC returns results in a ResultSet object, so we

need to declare a ResultSet variable to hold our

results.

29

Retrieving Results

• The variable rs, which is an instance of ResultSet,
contains the rows of coffees and prices shown above.

• In order to access the names and prices, we will go
to each row and retrieve the values according to their
types. The method next moves what is called a
cursor to the next row and makes that row (called
the current row) the one upon which we can operate.

• Since the cursor is initially positioned just above the
first row of a ResultSet object, the first call to the
method next moves the cursor to the first row and
makes it the current row.

• Successive invocations of the method next move the
cursor down one row at a time from top to bottom.

30

next

• next returns true if the successive row is a valid row

otherwise it returns false

• If it is called when the cursor is on the last row it

returns false

• It can be used for cycles

31

Retrieving Results

• We use the getXXX method of the appropriate type to

retrieve the value in each column. For example, the

first column in each row of rs is COF_NAME, which

stores a value of SQL type VARCHAR.

• The method for retrieving a value of SQL type

VARCHAR is getString.

• The second column in each row stores a value of

SQL type FLOAT, and the method for retrieving

values of that type is getFloat.

32

Retrieving Results

String query = "SELECT COF_NAME, PRICE “+

“ FROM COFFEES<mat>";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("COF_NAME");

float n = rs.getFloat("PRICE");

System.out.println(s + " " + n);

}

33

Details

String s = rs.getString("COF_NAME");

• The method getString will retrieve (get) the value

stored in the column COF_NAME in the current row

of rs. The value that getString retrieves has been

converted from an SQL VARCHAR to a String in the

Java programming language, and it is assigned to the

String object s.

• The situation is similar with the method getFloat

except that it retrieves the value stored in the column

PRICE, which is an SQL FLOAT, and converts it to a

Java float before assigning it to the variable n.

34

getXXX

• JDBC offers two ways to identify the column from

which a getXXX method gets a value.

• One way is to give the column name, as was done in

the example above.

• The second way is to give the column index (number

of the column), with 1 indicating the first column, 2,

the second, and so on:

String s = rs.getString(1);

float n = rs.getFloat(2);

35

getXXX

• Using the column number is slightly more efficient,

and there are some cases where the column number

is required.

• In general, though, supplying the column name is

essentially equivalent to supplying the column

number.

36

getXXX

• JDBC allows a lot of latitude as far as which getXXX

methods you can use to retrieve the different SQL

types.

• For example, the method getInt can be used to

retrieve any of the numeric or character types. The

data it retrieves will be converted to an int; that is, if

the SQL type is VARCHAR, JDBC will attempt to

parse an integer out of the VARCHAR.

• The method getInt is recommended for retrieving only

SQL INTEGER types, however, and it cannot be

used for the SQL types BINARY, VARBINARY,

LONGVARBINARY, DATE, TIME, or TIMESTAMP.

37

getXXX

• Although the method getString is recommended for

retrieving the SQL types CHAR and VARCHAR, it is

possible to retrieve any of the basic SQL types with it.

• For instance, if it is used to retrieve a numeric type,

getString will convert the numeric value to a Java

String object.

38

Updating Tables

• Suppose that after a successful first week, the owner

of The Coffee Break wants to update the SALES

column in the table COFFEES by entering the

number of pounds sold for each type of coffee. The

SQL statement to update one row might look like this:

39

Updating Tables

String updateString = "UPDATE COFFEES<mat> " +

"SET SALES = 75 " +

"WHERE COF_NAME LIKE 'Colombian'";

• Using the Statement object stmt, this JDBC code

executes the SQL statement contained in

updateString :

stmt.executeUpdate(updateString);

40

Seeing the Results

String query = "SELECT COF_NAME, SALES FROM ”+

“COFFEES<mat> WHERE COF_NAME LIKE

'Colombian'";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString("COF_NAME");

int n = rs.getInt("SALES");

System.out.println(n + " pounds of " + s +

" sold this week.");

}

41

Seeing the Results

• Prints the following:

75 pounds of Colombian sold this week.

• Since the WHERE clause limited the selection to only

one row, there was just one row in the ResultSet rs

and one line was printed as output. Accordingly, it is

possible to write the code without a while loop:

rs.next();

String s = rs.getString(1);

int n = rs.getInt(2);

System.out.println(n + " pounds of " + s +

" sold this week.");

42

Updating the TOTAL

String updateString = "UPDATE COFFEES<mat> " +

"SET TOTAL = TOTAL + 75 " +

"WHERE COF_NAME LIKE 'Colombian'";

stmt.executeUpdate(updateString);

String query = "SELECT COF_NAME, TOTAL “

+”FROM COFFEES<mat> WHERE COF_NAME LIKE “+

“'Colombian'";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String s = rs.getString(1);

int n = rs.getInt(2);

System.out.println(n + " pounds of " + s + " sold to date.");

}

43

Prepared Statements

• PreparedStatement is a subclass of Statement.

• It is given an SQL statement when it is created.

• Two advantages:

– In most cases, this SQL statement will be sent to

the DBMS right away, where it is compiled. This

means that when the PreparedStatement is

executed, the DBMS can just run the

PreparedStatement 's SQL statement without

having to compile it first.

– The SQL statement can have parameters

44

Creating a PreparedStatement Object

• With the prepareStatement method of a Connection

object

PreparedStatement updateSales =

con.prepareStatement(

"UPDATE COFFEES<mat> SET SALES = ? WHERE “+

“COF_NAME LIKE ?");

• The question marks are placeholders for parameters

45

Supplying Values for PreparedStatement

Parameters

• You will need to supply values to be used in place of

the question mark placeholders, if there are any,

before you can execute a PreparedStatement object.

• You do this by calling one of the setXXX methods

defined in the class PreparedStatement.

• In general, there is a setXXX method for each type in

the Java programming language.

updateSales.setInt(1, 75);

updateSales.setString(2, "Colombian");

• First argument: parameter position

• Second argument: parameter value

46

Executing a Prepared Statement

PreparedStatement updateSales =

con.prepareStatement(

"UPDATE COFFEES<mat> SET SALES = ? WHERE “+

“COF_NAME LIKE ?");

updateSales.setInt(1, 75);

updateSales.setString(2, "Colombian");

updateSales.executeUpdate():

executeUpdate takes no argument because the SQL

statement is already stored in PreparedStatement

47

Changing Parameters

• Once a parameter has been set with a value, it will

retain that value until it is reset to another value or

the method clearParameters is called

48

Changing Parameters

updateSales.setInt(1, 100);

updateSales.setString(2, "French_Roast");

updateSales.executeUpdate();

// changes SALES column of French Roast row to 100

updateSales.setString(2, "Espresso");

updateSales.executeUpdate();

// changes SALES column of Espresso row to 100 (the

// first parameter stayed 100, and the second

// parameter was set to "Espresso")

49

Using a Loop to Set Values

PreparedStatement updateSales;

String updateString = "update COFFEES<mat> " +

"set SALES = ? where COF_NAME like ?";

updateSales = con.prepareStatement(updateString);

int [] salesForWeek = {175, 150, 60, 155, 90};

String [] coffees = {"Colombian", "French_Roast", "Espresso",

"Colombian_Decaf", "French_Roast_Decaf"};

int len = coffees.length;

for(int i = 0; i < len; i++) {

updateSales.setInt(1, salesForWeek[i]);

updateSales.setString(2, coffees[i]);

updateSales.executeUpdate();

}

50

Return Values for the Method

executeUpdate

• The return value for executeUpdate is an int that

indicates how many rows of a table were updated.

updateSales.setInt(1, 50);

updateSales.setString(2, "Espresso");

int n = updateSales.executeUpdate();

// n = 1 because one row had a change in it

• When the method executeUpdate is used to execute

a DDL statement, such as in creating a table, it

returns the int 0.

int n = executeUpdate(createTableCoffees); // n = 0

51

Return Values for the Method

executeUpdate

• When the return value for executeUpdate is 0, it can

mean one of two things:

1. the statement executed was an update statement

that affected zero rows,

2. the statement executed was a DDL statement.

52

Creating SUPPLIERS

• We need to create the table SUPPLIERS and

populate it with values.

String createSUPPLIERS = "create table SUPPLIERS<mat> "+

"(SUP_ID INTEGER, SUP_NAME VARCHAR(40), " +

"STREET VARCHAR(40), CITY VARCHAR(20), " +

"STATE CHAR(2), ZIP CHAR(5))";

stmt.executeUpdate(createSUPPLIERS);

53

Populating SUPPLIERS with Values

stmt.executeUpdate("insert into SUPPLIERS<mat> values (101, " +

"'Acme, Inc.', '99 Market Street', 'Groundsville', " +

"'CA', '95199'");

stmt.executeUpdate("Insert into SUPPLIERS<mat> values (49," +

"'Superior Coffee', '1 Party Place', 'Mendocino', 'CA', '95460'");

stmt.executeUpdate("Insert into SUPPLIERS<mat> values (150, " +

"'The High Ground', '100 Coffee Lane', 'Meadows', 'CA', " +

"'93966'");

ResultSet rs = stmt.executeQuery("select * from SUPPLIERS<mat>");

SUP_ID SUP_NAME STREET CITY STATE ZIP

101 Acme, Inc. 99 Market

Street

Groundsville CA 95199

49 Superior

Coffee

1 Party

Place

Mendocino CA 95460

150 The High

Ground

100 Coffee

Lane

Meadows CA 93966

54

Query with a Join

String query = "SELECT COFFEES<mat>.COF_NAME " +

"FROM COFFEES<mat>, SUPPLIERS<mat> " +

"WHERE SUPPLIERS<mat>.SUP_NAME LIKE 'Acme, Inc.' " +

"and SUPPLIERS<mat>.SUP_ID = COFFEES<mat>.SUP_ID";

ResultSet rs = stmt.executeQuery(query);

System.out.println("Coffees bought from Acme, Inc.: ");

while (rs.next()) {

String coffeeName = rs.getString("COF_NAME");

System.out.println(" " + coffeeName);

}

55

Transactions

• When a connection is created, it is in auto-commit

mode.

• This means that each individual SQL statement is

treated as a transaction and will be automatically

committed right after it is executed.

• To disable auto-commit mode:

con.setAutoCommit(false);

• where con is an active connection

56

Transactions

• To commit a transaction use

con.commit();

• To roll back a transaction use

con.rollback();

• To set a transaction isolation level use the

Connection method setTransactionIsolation that

takes an int

• To find out what transaction isolation level your

DBMS is set to, use the Connection method

getTransactionIsolation that returns an int

57

Isolation Levels

• Five constants defined in the Connection interface:

– TRANSACTION_NONE

– TRANSACTION_READ_UNCOMMITTED

– TRANSACTION_READ_COMMITTED

– TRANSACTION_REPEATABLE_READ

– TRANSACTION_SERIALIZABLE

• Example

con.setTransactionIsolation(

Connection.TRANSACTION_READ_COMMITTED);

58

Isolation Levels

• Even though JDBC allows you to set a transaction

isolation level, doing so will have no effect unless the

driver and DBMS you are using support it.

59

Example

PreparedStatement updateSales;

PreparedStatement updateTotal;

String updateString=“UPDATE COFFEES<mat> SET SALES = ?
WHERE“+“ COF_NAME = ?”;

String updateStatement=“UPDATE COFFEES<mat> SET TOTAL =
TOTAL + ? WHERE COF_NAME = ?”;

String query = "select COF_NAME, SALES, TOTAL from “+
“COFFEES<mat>";

try {

con = DriverManager.getConnection(url,"myLogin", "myPassword");

updateSales = con.prepareStatement(updateString);

updateTotal = con.prepareStatement(updateStatement);

int [] salesForWeek = {175, 150, 60, 155, 90};

String [] coffees = {"Colombian", "French_Roast", "Espresso",
"Colombian_Decaf","French_Roast_Decaf"};

60

Example

int len = coffees.length;

con.setAutoCommit(false);

for (int i = 0; i < len; i++) {

updateSales.setInt(1, salesForWeek[i]);

updateSales.setString(2, coffees[i]);

updateSales.executeUpdate();

updateTotal.setInt(1, salesForWeek[i]);

updateTotal.setString(2, coffees[i]);

updateTotal.executeUpdate();

con.commit();

}

61

Example

con.setAutoCommit(true);

updateSales.close(); updateTotal.close();

stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String c = rs.getString("COF_NAME");

int s = rs.getInt("SALES");

int t = rs.getInt("TOTAL");

System.out.println(c + " " + s + " " + t);

}

stmt.close();

con.close();

}

62

Example

catch(SQLException ex) {

System.err.println("SQLException: " + ex.getMessage());

if (con != null) {

try {

System.err.print("Transaction is being ");

System.err.println("rolled back");

con.rollback();

}

catch(SQLException excep) {

System.err.print("SQLException: ");

System.err.println(excep.getMessage());

}

}

63

Exceptions

try {

Class.forName("myDriverClassName");

} catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");

System.err.println(e.getMessage());

}

64

Exceptions

try {

// Code that could generate an exception goes here.

// If an exception is generated, the catch block below

// will print out information about it.

} catch(SQLException ex) {

System.err.println("SQLException: " +

ex.getMessage());

}

65

Exceptions

• If you were to run CreateCOFFEES.java twice, you

would get an error message similar to this:

SQLException: There is already an object named

'COFFEES' in the database.

Severity 16, State 1, Line 1

• This example illustrates printing out the message

component of an SQLException object, which is

sufficient for most situations.

66

Exceptions

• The SQLException object contains three parts:

– the message (a string that describes the error),

– the SQL state (a string identifying the error

according to the X/Open SQLState conventions),

– the vendor error code (a number that is the driver

vendor's error code number)

67

Example

try {// Code that could generate an exception goes here.

// If an exception is generated, the catch block below

// will print out information about it.

} catch(SQLException ex) {

System.out.println("\n--- SQLException caught ---\n");

while (ex != null) {

System.out.println("Message: "+ ex.getMessage ());

System.out.println("SQLState: "+ ex.getSQLState ());

System.out.println("ErrorCode: "+ ex.getErrorCode ());

ex = ex.getNextException();

System.out.println("");

}

}

68

Example

• If you try to create the table COFFEES twice, you would get the
following printout:

--- SQLException caught ---

Message: There is already an object named 'COFFEES'

in the database. Severity 16, State 1, Line 1

SQLState: 42501

ErrorCode: 2714

• SQLState is a code defined in X/Open and ANSI-92 that
identifies the exception. Two examples of SQLState code
numbers and their meanings follow:

– 08001 -- No suitable driver

– HY011 -- Operation invalid at this time

• The vendor error code is specific to each driver, so you need to
check your driver documentation for a list of error codes and
what they mean.

69

Moving the Cursor in Scrollable Result Set

• Up to now we have seen the features in the JDBC
1.0 API

• One of the new features in the JDBC 2.0 API is the
ability to move a result set's cursor backward as well
as forward.

• There are also methods that let you move the cursor
to a particular row and check the position of the
cursor.

• Scrollable result sets make it possible to create a GUI
(graphical user interface) tool for browsing result
sets.

• Another use is moving to a row in order to update it.

70

Scrollable ResultSet

• The following line of code illustrates one way to

create a scrollable ResultSet object:

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery(

"SELECT COF_NAME, PRICE FROM COFFEES<mat>");

71

Scrollable ResultSet

• Two arguments to the method createStatement.

– The first argument is one of three constants added to the

ResultSet API to indicate the type of a ResultSet object:

TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE,

and TYPE_SCROLL_SENSITIVE.

– The second argument is one of two ResultSet constants for

specifying whether a result set is read-only or updatable:

CONCUR_READ_ONLY and CONCUR_UPDATABLE.

• If you specify a type, you must also specify whether it is read-

only or updatable.

• Also, you must specify the type first, and because both

parameters are of type int, the compiler will not complain if you

switch the order.

72

TYPE_FORWARD_ONLY

• Specifying the constant TYPE_FORWARD_ONLY

creates a nonscrollable result set, that is, one in

which the cursor moves only forward.

• If you do not specify any constants for the type and

updatability of a ResultSet object, you will

automatically get one that is

TYPE_FORWARD_ONLY and

CONCUR_READ_ONLY (as is the case when you

are using only the JDBC 1.0 API).

73

TYPE_SCROLL_INSENSITIVE or

TYPE_SCROLL_SENSITIVE

• You will get a scrollable ResultSet object if you specify one of
the following ResultSet constants:
TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_SENSITIVE
The difference between the two has to do with whether a result
set reflects changes that are made to it while it is open and
whether certain methods can be called to detect these changes.

• Generally speaking,

– a result set that is TYPE_SCROLL_INSENSITIVE does not
reflect changes made by others while it is still open and

– one that is TYPE_SCROLL_SENSITIVE does.

• All three types of result sets will make changes visible if they are
closed and then reopened.

• No matter what type of result set you specify, you are always
limited by what your DBMS and driver actually provide

74

Scrollable ResultSet

• Once you have a scrollable ResultSet object, srs in

the previous example, you can use it to move the

cursor around in the result set.

• Even when a result set is scrollable, the cursor is

initially positioned before the first row.

75

next and previous

• The counterpart to the method next, is the new

method previous, which moves the cursor backward

(one row towards the beginning of the result set).

• next and previous return false when the cursor goes

beyond the result set (to the position after the last

row or before the first row), which makes it possible

to use them in a while loop.

76

Using previous

srs.afterLast();

while (srs.previous()) {

String name = srs.getString("COF_NAME");

float price = srs.getFloat("PRICE");

System.out.println(name + " " + price);

}

afterLast moves the cursor explicitly to the position after

the last row

77

Moving the Cursor

• The methods first, last, beforeFirst, and afterLast

move the cursor to the row indicated in their names.

• The method absolute will move the cursor to the row

number indicated in the argument passed to it.

– If the number is positive, the cursor moves the

given number from the beginning, so calling

absolute(1) puts the cursor on the first row.

– If the number is negative, the cursor moves the

given number from the end, so calling absolute(-1)

puts the cursor on the last row.

78

absolute

• The following line of code moves the cursor to the

fourth row of srs :

srs.absolute(4);

• If srs has 500 rows, the following line of code will

move the cursor to row 497:

srs.absolute(-4);

79

Relative Moves

• Three methods move the cursor to a position relative

to its current position.

– next

– previous

– relative: you can specify how many rows to move

from the current row. A positive number moves the

cursor forward the given number of rows; a

negative number moves the cursor backward the

given number of rows.

80

relative Example

srs.absolute(4); // cursor is on the fourth row

. . .

srs.relative(-3); // cursor is on the first row

. . .

srs.relative(2); // cursor is on the third row

81

getRow

• The method getRow lets you check the number of the

row where the cursor is positioned.

srs.absolute(4);

int rowNum = srs.getRow(); // rowNum should be 4

srs.relative(-3);

int rowNum = srs.getRow(); // rowNum should be 1

srs.relative(2);

int rowNum = srs.getRow(); // rowNum should be 3

82

Position Tests

• Four additional methods let you verify whether the

cursor is at a particular position.

• The position is stated in their names: isFirst, isLast,

isBeforeFirst, isAfterLast.

• These methods all return a boolean and can

therefore be used in a conditional statement.

83

isAfterLast Example

if (!srs.isAfterLast()) {

srs.afterLast();

}

while (srs.previous()) {

String name = srs.getString("COF_NAME");

float price = srs.getFloat("PRICE");

System.out.println(name + " " + price);

}

84

Making Updates to Updatable Result Sets

• With the JDBC 2.0 API it is possible to update rows in

a result set using methods in the Java programming

language rather than having to send an SQL

command.

• You need to create a ResultSet object that is

updatable. In order to do this, you supply the

ResultSet constant CONCUR_UPDATABLE to the

createStatement method.

85

Making Updates to Updatable Result Sets

• An updatable ResultSet object does not necessarily

have to be scrollable, but when you are making

changes to a result set, you generally want to be able

to move around in it.

• With a scrollable result set, you can move to rows

you want to change, and if the type is

TYPE_SCROLL_SENSITIVE, you can get the new

value in a row after you have changed it.

86

Example

Connection con = DriverManager.getConnection(

"jdbc:mySubprotocol:mySubName");

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet uprs = stmt.executeQuery(

"SELECT COF_NAME, PRICE FROM COFFEES<mat>");

87

Notes

• Just specifying that a result set be updatable does

not guarantee that the result set you get is updatable.

• If a driver does not support updatable result sets, it

will return one that is readonly.

• The query you send can also make a difference. In

order to get an updatable result set, the query must

generally specify the primary key as one of the

columns selected, and it should select columns from

only one table.

88

Notes

• The following line of code checks whether the

ResultSet object uprs is updatable.

• int concurrency = uprs.getConcurrency();

• The variable concurrency will be one of the following:

– 1007 to indicate

ResultSet.CONCUR_READ_ONLY

– 1008 to indicate

ResultSet.CONCUR_UPDATABLE

89

uprs Content

COF_NAME PRICE

------------------ -----

Colombian 7.99

French_Roast 8.99

Espresso 9.99

Colombian_Decaf 8.99

French_Roast_Decaf 9.99

90

Updating a Result Set Programmatically

• Suppose that we want to raise the price of French

Roast Decaf coffee to 10.99. Using the JDBC 1.0

API, the update would look something like this:

stmt.executeUpdate(

"UPDATE COFFEES<mat> SET PRICE = 10.99 " +

"WHERE COF_NAME = 'French_Roast_Decaf'");

• In JDBC 2.0

uprs.last();

uprs.updateFloat("PRICE", 10.99f);

91

Update Operations

• Update operations in the JDBC 2.0 API affect column
values in the row where the cursor is positioned,

• All of the update methods you call will operate on that
row until you move the cursor to another row.

• The ResultSet.updateXXX methods generally take
two parameters:

– the column to update, either by column name or
by column number.

– the new value to put in that column.

• There is a different updateXXX method for updating
each data type (updateString, updateBigDecimal,
updateInt, and so on)

92

Update Operations

• At this point, the price in uprs for French Roast Decaf

will be 10.99, but the price in the table COFFEES in

the database will still be 9.99.

• To make the update take effect in the database, we

must call the ResultSet method updateRow.

uprs.updateRow();

• Note that you must call the method updateRow

before moving the cursor. If you move the cursor to

another row before calling updateRow, the updates

are lost, that is, the row will revert to its previous

column values.

93

Update Operations

• Suppose that you realize that the update you made is

incorrect.

• You can restore the previous value by calling the

cancelRowUpdates method if you call it before you

have called the method updateRow.

• Once you have called updateRow, the method

cancelRowUpdates will no longer work.

uprs.last();

uprs.updateFloat("PRICE", 10.99f);

. . .

uprs.cancelRowUpdates();

94

Update Operations

• If you want to update the price for Colombian_Decaf,

you have to move the cursor to the row containing

that variety of coffee.

• Because the row for Colombian_Decaf immediately

precedes the row for French_Roast_Decaf, you can

call the method previous to position the cursor on the

row for Colombian_Decaf.

uprs.previous();

uprs.updateFloat("PRICE", 9.79f);

uprs.updateRow();

95

Notes

• All cursor movements refer to rows in a ResultSet

object, not rows in the underlying database.

• The ordering of the rows in the result set has nothing

at all to do with the order of the rows in the base

table.

• In fact, the order of the rows in a database table is

indeterminate. The driver keeps track of which rows

were selected, and it makes updates to the proper

rows, but they may be located anywhere in the table.

96

Inserting and Deleting Rows

Programmatically

• With the JDBC 1.0 API

stmt.executeUpdate("INSERT INTO COFFEES<mat> "

+

"VALUES ('Kona', 150, 10.99, 0, 0)");

97

Inserting and Deleting Rows

Programmatically

• In the JDBC 2.0 API every ResultSet object has a row called the

insert row, a special row in which you can build a new row.

• Steps:

1. move the cursor to the insert row, which you do by invoking

the method moveToInsertRow.

2. set a value for each column in the row. You do this by

calling the appropriate updateXXX method for each value.

3. call the method insertRow to insert the row you have just

populated with values into the result set. This method

simultaneously inserts the row into both the ResultSet

object and the database table from which the result set was

selected.

98

Example

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet uprs = stmt.executeQuery(

"SELECT * FROM COFFEES<mat>");

99

Example

uprs.moveToInsertRow();

uprs.updateString("COF_NAME", "Kona");

uprs.updateInt("SUP_ID", 150);

uprs.updateFloat("PRICE", 10.99f);

uprs.updateInt("SALES", 0);

uprs.updateInt("TOTAL", 0);

uprs.insertRow();

100

Example (Alternative Solution)

uprs.moveToInsertRow();

uprs.updateString(1, "Kona");

uprs.updateInt(2, 150);

uprs.updateFloat(3, 10.99f);

uprs.updateInt(4, 0);

uprs.updateInt(5, 0);

uprs.insertRow();

101

updateXXX

• In both updates and insertions, calling an updateXXX

method does not affect the underlying database

table.

• The method updateRow must be called to have

updates occur in the database.

• For insertions, the method insertRow inserts the new

row into the result set and the database at the same

time.

102

Inserting

• What happens if you insert a row without supplying a value for

every column in the row?

• If a column has a default value or accepts SQL NULL values,

you can get by with not supplying a value.

• If a column does not have a default value and does not accept

NULL, you will get an SQLException if you fail to set a value for

it.

• You will also get an SQLException if a required table column is

missing in your ResultSet object.

• In the example above, the query was SELECT * FROM

COFFEES<mat>, which produced a result set with all the

columns of all the rows. When you want to insert one or more

rows, your query does not have to select all rows, but you

should generally select all columns.

103

Inserting

• After you have called the method insertRow, you can

start building another row to be inserted,

• Note that you if you move the cursor from the insert

row before calling the method insertRow, you will

lose all of the values you have added to the insert

row.

104

Moving from the Insert Row

• When you call the method moveToInsertRow, the

result set keeps track of which row the cursor is

sitting on, which is, by definition, the current row.

• The method moveToCurrentRow, which you can

invoke only when the cursor is on the insert row,

moves the cursor from the insert row back to the row

that was previously the current row.

• To move the cursor from the insert row back to the

result set, you can also invoke any of the methods

that move the cursor: first, last, beforeFirst, afterLast,

absolute, previous, relative.

105

Deleting a Row Programmatically

• You simply move the cursor to the row you want to

delete and then call the method deleteRow.

• Example:

uprs.absolute(4);

uprs.deleteRow();

• These two lines of code remove the fourth row from

uprs and also from the database.

106

Issue

• With some JDBC drivers, a deleted row is removed
and is no longer visible in a result set.

• Some JDBC drivers use a blank row as a placeholder
(a "hole") where the deleted row used to be.

• If there is a blank row in place of the deleted row, you
can use the method absolute with the original row
positions to move the cursor because the row
numbers in the result set are not changed by the
deletion.

• You can use methods in the DatabaseMetaData
interface to discover the exact behavior of your
driver.

107

Seeing Changes in Result Sets

• Result sets vary greatly in their ability to reflect

changes made in their underlying data.

• If you modify data in a ResultSet object, the change

will always be visible if you close it and then reopen it

during a transaction.

• You will also see changes made by others when you

reopen a result set if your transaction isolation level

makes them visible.

108

Seeing Changes in Result Sets

• So when can you see visible changes you or others made while

the ResultSet object is still open? (Generally, you will be most

interested in the changes made by others because you know

what changes you made yourself.)

• The answer depends on the type of ResultSet object you have.

• With a ResultSet object that is TYPE_SCROLL_SENSITIVE,

you can always see visible updates made by you and others to

existing column values. You may see inserted and deleted rows,

but the only way to be sure is to use DatabaseMetaData

methods that return this information.

109

Seeing Changes in Result Sets

• Visible updates depend on the transaction isolation

level.

• With the isolation level READ COMMITTED, a

TYPE_SCROLL_SENSITIVE result set will not show

any changes before they are committed, but it can

show changes that may have other consistency

problems.

110

Seeing Changes in Result Sets

• In a ResultSet object that is

TYPE_SCROLL_INSENSITIVE, you cannot see

changes made to it by others while it is still open, but

you may be able to see your own changes with some

implementations.

• This is the type of ResultSet object to use if you want

a consistent view of data and do not want to see

changes made by others.

111

Getting the Most Recent Data

• You can do this using the method refreshRow, which

gets the latest values for a row straight from the

database.

• This method can be relatively expensive, especially if

the DBMS returns multiple rows each time you call

refreshRow. Nevertheless, its use can be valuable if

it is critical to have the latest data.

• Even when a result set is sensitive and changes are

visible, an application may not always see the very

latest changes that have been made to a row if the

driver retrieves several rows at a time and caches

them.

112

Getting the Most Recent Data

• Note that the result set should be sensitive; if you use

the method refreshRow with a ResultSet object that

is TYPE_SCROLL_INSENSITIVE, refreshRow does

nothing.

113

Example

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery(“SELECT COF_NAME,

PRICE FROM COFFEES<mat> “);

srs.absolute(4);

float price1 = srs.getFloat("PRICE");

// do something. . .

srs.absolute(4);

srs.refreshRow();

float price2 = srs.getFloat("PRICE");

if (price2 > price1) {

// do something. . .

}

114

Using Data Sources

• Alternative way to connect to a database

• DataSource objects should be used whenever

possible

• Advantages

– code portability

– connection pooling

– distributed transactions.

• This functionality is integral to Enterprise JavaBeans

(EJB) technology.

115

DataSource

• A DataSource object represents a particular DBMS or

some other data source, such as a file.

• The system administrator has to deploy the

DataSource objects so that the programmers can

start using them.

• Deploying a DataSource object consists of three

tasks:

1.Creating an instance of the DataSource class

2.Setting its properties

3.Registering it with a naming service that uses the

Java Naming and Directory Interface (JNDI) API

116

DataSource Advantages

• A DataSource object is a better alternative than the

DriverManager facility for getting a connection.

– Programmers no longer have to hard code the

driver name or JDBC URL in their applications,

which makes them more portable.

117

DataSource Advantages

– DataSource properties make maintaining code

much simpler. If there is a change, the system

administrator can simply update the data source's

properties, and you don't have to worry about

changing every application that makes a

connection to the data source. For example, if the

data source was moved to a different server, all

the system administrator would need to do is set

the serverName property to the new server name.

– Pooled connections.

– Distributed transaction.

