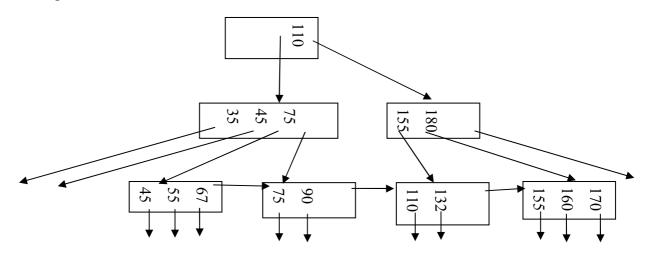
COMPITO DI SISTEMI INFORMATIVI

9 gennaio 2006 (Tot. 16) Tempo: 2h

Esercizio 1 (punti 3)

Si consideri il seguente log:

1. B(T1)	14. U(T2,O5,B6,A6)
2. B(T3)	15. B(T5)
3. I(T3,O1,A1)	16. U(T5,O6,B7,A7)
4. U(T1,O2,B1,A2)	17. U(T4,O6,B8,A8)
5. D(T3,O3,B2)	18. C(T4)
6. I(T3,O4,A3)	19. B(T6)
7. B(T4)	20. D(T6,O6,B9)
8. U(T4,O4,B3,A4)	21. C(T1)
9. D(T4,O4,B4)	22. I(T2,O7,A9)
10. CK(T1,T3,T4)	23. C(T2)
11. I(T3,O5,A5)	24. I(T5,O8,A10)
12. D(T1,O1,B5)	25. I(T6,O9,A11)
13. B(T2)	26. D(T5,O7,B10)


si mostrino le operazioni di recovery da effettuare supponendo che il guasto avvenga subito dopo l'ultimo record del log.

Esercizio 2 (punti 4)

Dato il seguente schedule: r1(x) w3(z) w4(y) w2(x) r2(y) r3(x) w5(x) r3(y) r1(z) si dica se è conflict serializzabile.

Esercizio 3 (punti 3)

Sia dato il seguente B+ tree di ordine 4.

Si mostri come si modifica l'albero nel caso di cancellazione della chiave 110.

Esercizio 4 (punti 6)

Siano date le relazioni

Impiegato(CodImp,Nome,Cognome,DataDiNascita,Dipartimento,Stipendio) Consulente(CodCons,Nome,Cognome,Dipartimento,Stipendio,Indirizzo)

la query

SELECT I.*, C.*

FROM Impiegato AS I, Consulente AS C

WHERE I.Dipartimento=C.Dipartimento AND I.Nome="Francesco"

e i parametri:

buffer di memoria centrale disponibili: M=100

dimensione del buffer: B=500 bytes

numero di tuple: T(Impiegato)=250.000, T(Consulente)=800,

dimensione delle tuple: S(Impiegato)=160 bytes, S(Consulente)=250, S(Dipartimento)=50 numero di valori: V(Impiegato,Dipartimento)=2.000, V(Consulente,Dipartimento)=500,

V(Impiegato, Nome)=400

Si stabilisca qual'è l'ordine migliore con cui eseguire le operazioni supponendo di utilizzare l'Hash Join Ibrido. In particolare, occorrerà calcolare il costo delle due sequenze:

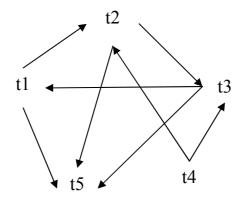
 $(\sigma_{\text{Impiegato.Nome='Francesco'}} \text{Impiegato}) \triangleright \triangleleft \text{Consulente e}$

 $\sigma_{\text{Impiegato.Nome='Francesco'}}(Impiegato \rhd \lhd Consulente).$

Si supponga che i record siano impaccati nei buffer e che tutto lo spazio nei buffer sia occupato dai record. Si supponga inoltre che ci sia un indice secondario su Impiegato.Nome. Si supponga che non vengano costruiti indici su Impiegato>

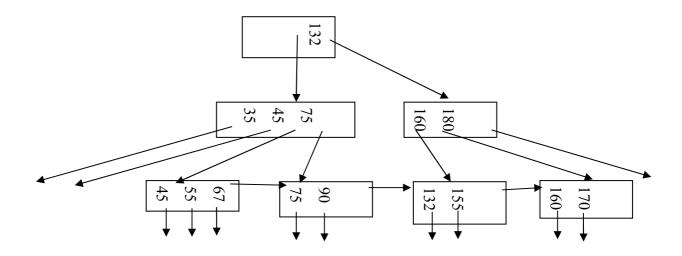
SOLUZIONE

Esercizio 1


27. B(T1) 28. B(T3) 29. I(T3,O1,A1) 30. U(T1,O2,B1,A2) 31. D(T3,O3,B2) 32. I(T3,O4,A3) 33. B(T4) 34. U(T4,O4,B3,A4) 35. D(T4,O4,B4) 36. CK(T1,T3,T4) 37. I(T3,O5,A5) 38. D(T1,O1,B5) 39. B(T2) 40. U(T2,O5,B6,A6) 41. B(T5) 42. U(T5,O6,B7,A7) 43. U(T4,O6,B8,A8) 44. C(T4) 45. B(T6) 46. D(T6,O6,B9) 47. C(T1) 48. I(T2,O7,A9) 49. C(T2) 50. I(T5,O8,A10) 51. I(T6,O9,A11)

52. D(T5,O7,B10)

10 UNDO={T1,T3,T4} REDO={} 13 UNDO={T1,T2,T3,T4} REDO={} 15 UNDO={T1,T2,T3,T4,T5} REDO={} 18 UNDO={T1,T2,T3,T5} REDO={T4} 19 UNDO={T1,T2,T3,T5,T6} REDO={T4} 21 UNDO={T2,T3,T5,T6} REDO={T1,T4} 23 UNDO={T3,T5,T6} REDO={T1,T2,T4} **UNDO** 26 I(O7,B10) 25 D(O9) 24 D(O8) 20 I(O6,B9) 16 O6=B7 11 D(O5) 6 D(O4) 5 I(O3,B2) 3 D(O1) **REDO** 4 O2 = A28 O4=A4 9 D(O4) 12 D(O1) 14 O5=A6 17 O6=A8 22 I(O7,A9)


Esercizio 2

r1(x) w3(z) w4(y) w2(x) r2(y) r3(x) w5(x) r3(y) r1(z)

C'è un ciclo quindi non è conflict serializzabile.

Esercizio 3Cancellazione di 110

La radice può cambiare o rimanere uguale, l'albero e' ugualmente corretto.

Esercizio 4

buffer di memoria centrale disponibili: M=100

dimensione del buffer: B=500 bytes

numero di tuple: T(Impiegato)=250.000, T(Consulente)=800,

dimensione delle tuple: S(Impiegato)=160 bytes, S(Consulente)=250, S(Dipartimento)=50 numero di valori: V(Impiegato,Dipartimento)=2.000, V(Consulente,Dipartimento)=500,

V(Impiegato, Nome)=400

Calcoliamo innanzitutto il numero di blocchi occupati da ciascuna relazione: B(Impiegato)=T(Impiegato)*S(Impiegato)/B =250.000*160/500=80.000 B(Consulente)=800*250/500=400

Prima sequenza: $(\sigma_{\text{Impiegato.Nome='Francesco'}}$ Impiegato) \triangleright \triangleleft Consulente

Sia $X = \sigma_{Impiegato.Nome='Francesco'}Impiegato$

 $Costo(X) = 3 + \lceil T(Impiegato) / V(Impiegato, Nome) \rceil = 3 + \lceil 250.000 / 400 \rceil = 3 + 625 = 628.$

T(X)=250.000/400=625

B(X)=625*160/500=200

 $Costo(X \triangleright \triangleleft Consulente) = (3-2*100/200)*(200+400)=1.200$

Sia Y = Impiegato $\triangleright \triangleleft$ Consulente

Costo(Y) = (3-2*100/400)*(80.000+400)=201.000

S(Y)=S(Impiegato)+S(Consulente)-S(Dipartimento)=160+250-50=360

T(Y)=T(Impiegato)*T(Consulente)/max(V(Impiegato,Dipartimento),V(Consulente,Dipartimento))

= 250.000*800/2.000= 100.000

B(Y)=100.000*360/500=72.000

 $Costo(\sigma_{Impiegato.Nome='Francesco'}Y)=B(Y)=72.000$

 $Costo(\mathbf{\sigma}_{Impiegato.Nome='Francesco'}(Impiegato) \leq Consulente)) = 72.000 + 201.000 = 273.000$

La sequenza migliore per realizzare l'operazione è la prima.