

Guarded Equations

As an alternative to conditionals, functions can also be defined using guarded equations

```
\[
\text { abs } \mathrm{n} \left\lvert\, \begin{array}{ll}
\mathrm{n}>=0 & =\mathrm{n} \\
& \mid \text { otherwise }=-\mathrm{n}
\end{array} \quad\right. \text { abs } n=\left\{\begin{array}{l}
n \geq 0=n \\
\text { otherwise }=-n
\end{array}\right.
\]
```


Guards

- Guards are clean if statements.
- Just like with pattern matching, order matters
- A guard is introduced by thel symbol.
- And it's followed by aBool expression.
- Then followed by the function body

```
guessMyNumber x
    | x>27 = "Too high!"
    | otherwise = "Correct!"
```

Guarded equations can be used to make definitions involving multiple conditions easier to read:

```
signum n | n < 0 = - 
    n=0}=
    otherwise = 1
```

otherwise is just a fancy word forTrue

Variables

- These are not like your typical Java variables - In Java or C++, you can redefine variables:

$$
\begin{gathered}
x=1 ; \\
\ldots \\
x=2 ;
\end{gathered}
$$

- Mathematically, this makes no sense.
- It implies 1=2 Preposterous!

Variables

- Haskell variables are immutable.
- Once defined, they can't change.
- They can be used with thelet keyword.
slope $(x 1, y 1)\left(x 2, y^{2}\right)=$ let $d y=y^{2}-y^{1}$
$d x=x 2-x 1$
in $d y / d x$
Or with the where keyword
slope $\left(x 1, y^{1}\right)\left(x 2, y^{2}\right)=d y / d x$
where $d y=y^{2}-y$ $d x=x 2-x 1$

where

- where bindings can span to multiple guards
bmiTell weight height
| bmi <= 18.5 = "underweight"
$\mid \mathrm{bmi}<=25.0=$ "normal
| bmi <= 30.0 = "fat
| otherwise $=$ "whale
where bmi = weight / height ^ 2

let

- let bindings are expressions themselves >4 * (let $a=9$ in $a+1)+2$ 42
- They can also be used to introduce functions in a local scope:
$>$ [1et square $x=x$ * x in (square 5, square 3)] $[(25,9)]$

The Layout Rule

In a sequence of definitions, each definition must begin in precisely the same column:

$a=10$	$a=10$	$a=10$
$b=20$	$b=20$	$b=20$
$c=30$	$c=30$	$c=30$

-

Exercises

(1) Consider a functionsafetail that behaves in the same way as tail, except thatsafetail maps the empty list to the empty list, whereas tail gives an error in this case. Definesafetail using
(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library functionnull: : [a] Bool can be used to test if a list is empty.
(2) Give three possible definitions for the logical or operator (II) using pattern matching
(3) Redefine (\&\&) using conditionals rather than patterns:

Exercises

- Write a Caesar Cipher function called cipher

Prelude> cipher "hello" 13 "uryyb"

- Suggestion:
- pred and succ can be used to get the previous and following character

