
1

Capitolo 4.5
Haskell

Guarded equations
let e where

Prof. MARCO GAVANELLI

Corso di Laurea Magistrale in Ingegneria Informatica e
dell’Automazione

Anno accademico 2019/2020

QUESTO MATERIALE DIDATTICO È PER USO
PERSONALE DELLO STUDENTE ED È COPERTO
DA COPYRIGHT. NE È SEVERAMENTE VIETATA

LA RIPRODUZIONE O IL RIUTILIZZO ANCHE
PARZIALE, AI SENSI E PER GLI EFFETTI DELLA

LEGGE SUL DIRITTO D’AUTORE.

Part of these slides were adapted
from the material of the book
Graham Hutton, Programming in
Haskell, Cambridge University
Press, 2nd edition, 2016

Guarded Equations

24

As an alternative to conditionals, functions can also
be defined using guarded equations.

abs n | n >= 0 = n
 | otherwise = -n abs n = n ≥ 0 = n

otherwise = -n

Guards
• Guards are clean if statements.
• Just like with pattern matching, order matters.
• A guard is introduced by the | symbol.
• And it's followed by a Bool expression.
• Then followed by the function body

25

guessMyNumber x
 | x > 27 = "Too high!"
 | x < 27 = "Too low!"
 | otherwise = "Correct!"

26

Guarded equations can be used to make
definitions involving multiple conditions easier to
read:

otherwise is just a fancy word for True

signum n | n < 0 = -1
 | n == 0 = 0
 | otherwise = 1

Variables
• These are not like your typical Java variables
• In Java or C++, you can redefine variables:

x = 1;
...

x = 2;

• Mathematically, this makes no sense.
• It implies 1=2 Preposterous!

27

Variables
• Haskell variables are immutable.
• Once defined, they can't change.
• They can be used with the let keyword.

Or with the where keyword.

28

slope (x1,y1) (x2,y2) = let dy = y2-y1
 dx = x2-x1
 in dy/dx

slope (x1,y1) (x2,y2) = dy/dx
 where dy = y2-y1
 dx = x2-x1

2

where
• where bindings can span to multiple

guards

29

bmiTell weight height
| bmi <= 18.5 = “underweight"
| bmi <= 25.0 = “normal"
| bmi <= 30.0 = “fat"
| otherwise = “whale"
where bmi = weight / height ^ 2

let
• let bindings are expressions themselves

• They can also be used to introduce
functions in a local scope:

30

> 4 * (let a = 9 in a + 1) + 2
42

>[let square x = x * x in (square 5, square 3)]
[(25,9)]

31

The Layout Rule
In a sequence of definitions, each definition must
begin in precisely the same column:

a = 10
b = 20
c = 30

a = 10
 b = 20
c = 30

 a = 10
b = 20
 c = 30

32

means

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

a = b + c
 where
 b = 1
 c = 2
d = a * 2

{a = b + c
 where
 {b = 1;
 c = 2}
 d = a * 2}

implicit grouping explicit grouping

Don't use tab. Use spaces ' '.
33

Exercises

N = a ’div’ length xs
 where
 a = 10
 xs = [1,2,3,4,5]

Fix the syntax errors in the program below,
and test your solution using GHCi.

Exercises

34

Consider a function safetail that behaves in
the same way as tail, except that safetail
maps the empty list to the empty list, whereas tail
gives an error in this case. Define safetail
using:

 (a) a conditional expression;
 (b) guarded equations;
 (c) pattern matching.

Hint: the library function null::[a]  Bool
can be used to test if a list is empty.

(1)

3

35

Give three possible definitions for the logical
or operator (||) using pattern matching.

(2)

Redefine (&&) using conditionals rather than
patterns:

(3)

Exercises

• Write a Caesar Cipher function called
cipher

• Suggestion:
– pred and succ can be used to get the

previous and following character

36

Prelude> cipher "hello" 13
"uryyb"

