Haskell - part 8

Input/output

Beauty...

Functional programming is beautiful:

— Concise and powerful abstractions
* higher-order functions, algebraic data types, parametric
polymorphism, principled overloading, ...
— Close correspondence with mathematics
» Semantics of a code function is the math function
+ Equational reasoning: if x =y, then fx = fy
+ Independence of order-of-evaluation (Church-Rosser)

The compiler can
choose the best
order in which to do

evaluation, including
skipping a term if it is
not needed.

result

...and the Beast

» But to be useful as well as beautiful, a
language must manage:
— Input/Output
— Imperative update

— Error recovery (eg, timing out, catching divide
by zero, etc.)

— Foreign-language interfaces
— Concurrency

The whole point of a running a program is to
affect the real world, an “update in place.”

Introduction

To date, we have seen how Haskell can be used to
write batch programs that take all their inputs at the
start and give all their outputs at the end.

inputs batch outputs
—— program ——)

However, we would also like to use Haskell to write
interactive programs that read from the keyboard and

write to the screen, as they are running.

keyboard

y

inputs interactive outputs
) [NCCCICUTE —)

screen

The Problem

Haskell programs are pure mathematical functions:

1 Haskell programs have no side effects.

However, reading from the keyboard and writing
to the screen are side effects:

1 Interactive programs have side effects.

lazyness

In a lazy functional language, like
Haskell, order of evaluation is
deliberately undefined.

= putchar ‘x’ + putchar ‘y’
Output depends on evaluation order of (+)

= [putchar ‘x’, putchar ‘y]
Output (if any) depends on how the consumer

evaluates the list
e.g. length does not evaluate the elements!
6

The Solution

Interactive programs can be written in Haskell by
using types to distinguish pure expressions from
impure actions that may involve side effects.

IO t

The type of actions that
return a value of type t.

A Helpful Picture

Avalue of type (I0 t)is an “action.” When

performed, it may do some input/output before
delivering a result of type t.

type IO t = World -> (t, World)

result :: t

®

<5 PEEEN

Actions are first class

A value of type (I0 t)is an “action” that, when
performed, may do some input/output before delivering a
result of type t.

type IO t = World -> (t, World)

= "Actions" sometimes called
“"computations”

= Anaction is a first class value

= Evaluating an action has no effect;
performing the action has an effect

For example:
10 Char The type of actions that
return a character.

The type of purely side
0 O effecting actions that
return no result value.

Note:

1 () is the type of tuples with no components.

Simple /O

Char Char 0

getChar :: IO Char
putChar :: Char -> IO ()

11

Basic Actions

0 The action getChar reads a character from

the keyboard, and returns the character as its
result value, as an I0 char:

getChar :: IO Char

[The action putChar c writes the character c to
the screen, and returns no result value:

putChar :: Char — IO ()

How to execute an action?

» A special function main is an action of
type IO ()

Main.hs
main :: IO ()
main = putChar ‘x’

$ ghci $ runhaskell Main.hs
Prelude> :load Main.hs X
*Main> main
o $ ghc --make Main.hs
$./Main
x

Connecting actions up

0
Char

Goal: read a character and then write it
back out

The (>>=) combinator
>=) ::10a->(a->10b) >I0b

j)

= We have connected two actions to make a
new, bigger action.

echo :: IO ()
echo = getChar >>= putChar 17

The (>>=) combinator

Char

echo :: IO ()
echo = getChar >>= putChar

or

echo = getChar >>= (\c¢ -> putChar c)

18

The (>>=) Combinator

» Operator is called bind because it binds the
result of the left-hand action in the action on
the right.

* Performing compound action a >>= \x->b:
— performs action a, to yield value r
— applies function \x->b to r
— performs the resulting action b {x<- r}

— returns the resulting value v

B
= —>

Printing a character twice

echoDup :: IO ()
echoDup = getChar >>=
(\c -> putChar c >>=
(\() -> putChar c
)
)

= The parentheses are optional

echoDup :: IO ()

echoDup = getChar >>= (\c¢ ->
putChar c >>= (\() ->
putChar c))

20

The (>>) combinator

* The “then” combinator (>>) does sequencing
when there is no value to pass:

echoDup :: IO ()

echoDup = getChar>>= \c ->
putChar c >>
putChar c

echoTwice:: IO ()
echoTwice = echo >> echo

21

Getting two characters

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \cl ->

getChar >>= \c2 ->
7?27

* Wewant to return (cl1,c2).
—But, (¢1,c2) :: (Char, Char)

— And we need to return something of type
IO (Char, Char)

* We need to have some way to convert values
of “plain” type into the I/O Monad.

22

The return combinator

* The action (return v) does no IO and
immediately returns v:

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \cl ->
getChar >>= \c2 ->
return (cl,c2)

23

Notational convenience

getTwoChars :: IO (Char,Char)

getTwoChars = getChar >>= \cl ->
getChar >>= \c2 ->
return (cl,c2)

= By design, the layout looks imperative
cl = getchar();
c2 = getchar();
return (cl,c2);

24

Notational convenience

getTwoChars :: IO (Char,Char)

getTwoChars = do { cl <- getChar ;
c2 <- getChar ;
return (cl,c2) }

"do" notation adds only syntactic sugar

25

The “do” Notation

» The “do” notation adds syntactic sugar to make monadic

code easier to read.

-- Plain Syntax

getTwoChars:: IO (Char,Char)

getTwoChars = getChar>>= \cl ->
getChar>>= \c2 ->
return (cl,c2)

-- Do Notation

getTwoCharsDo :: IO (Char,Char)

getTwoCharsDo = do { cl <-getChar;
c2 <-getChar;
return (cl,c2) }

» Do syntax designed to look imperative.

Desugaring “do” Notation

» The “do” notation only adds syntactic

sugar:

do { x<-e;es} e>>= \x -> do {es}

do { e;es} e>> do {es}
do { e } e
do {let ds; es} = 1let ds in do {es}

The scope of variables bound in a generator is the rest of the
“do” expression.

The last item in a “do” expression must be an expression.

Syntactic Variations

 The following are equivalent:

|do{x1<—p1; ...; xn<- pn; q } |
|do x1 <- pl; ...; xn<- pn; q
do x1 <- pl

xn<- pn

q

Getting a line

getLine :: IO String
getLine = do x <- getChar
if x == '\n' then
return []
else
do xs <- getLine
return (x:xs)

Note the “regular”’ code mixed with the monadic

operations and the nested “do” expression.

30

<-
* We have seen the <- symbol before:

[x | x <- [1..10], even x]
» The symbol is pronounced "drawn from"

main = do
input <- getLine
putStrLn ("you wrote: " ++ input)

* “inputis drawn from getLine”
* “type stringis drawn from I0 String”

getLine :: IO String

[Writing a string to the screen:

putStr :: String —> IO ()
putStr []
putStr (x:xs)

return ()

do putChar x
putStr xs

1 Writing a string and moving to a new line:

putStrln :: String —> IO ()
putStrLn xs = do putStr xs
putChar '\n'

Example

We can now define an action that prompts for a
string to be entered and displays its length:

strlen :: IO ()

strlen = do putStr "Enter a string: "
xs <- getLine
putStr "The string has "
putStr (show (length xs))
putStrLn " characters"

For example:

> strlen

Enter a string: abcde
The string has 5 characters

Note:

Evaluating an action executes its side effects,
with the final result value being discarded.

Control structures

Values of type (IO t) are first class
So we can define our own “control structures”

forever :: IO () -> IO ()
forever a = a >> forever a

repeatN :: Int -> IO () -> IO ()
repeatN 0 a = return ()
repeatN n a = a >> repeatN (n-1) a

e.g. repeatN 10 (putChar ‘x’)

35

Loops

Values of type (IO t) are first class
So we can define our own “control structures”

for :: [a] -> (a -> IO b) -> IO ()
for [] fa = return ()
for (x:xs) fa = fa x >> for xs fa

e.g.
for [1..10] (\x -> putStr (show x))

36

A list of An IO action
IO actions returning a
list
sequence :: [IO a] -> IO [a]
sequence [] = return []

sequence (a:as) = do { r <- a;
rs <- sequence as;
return (r:rs)

}

for :: [a] -> (a -> IO b) -> IO ()
for xs fa = sequence (map fa xs) >>
return ()

37

sequence

* sequenceis pre-defined. Evaluates each |0 action from
a list of actions and returns a list of 1O outputs

Prelude> sequence [getLine, getLine]
hello

world

["hello", "world"]

* printis equivalent to putStrLn. show

Prelude> sequence (map print [1,2])
1

2
PP
e -

GHCi GHC
* prints the result of any « compiled code prints only
expression what is explicitly printed
Prelude> 3+2 Main.hs
5 main = sequence (map
* ...unlessitisIO () print [1,2])
Prelude> print (3+2)
5
$ ghc -make Main
Prelude> () $./Main

() 1
2
Prelude> return ()

39

Example

» Write a program that asks if the user
wants to quit and, if the answer is not ‘y’,
loops

main = do
putStrln "quit the program? y/n"
ans <- getLine
if ans /= "y" then do
putStrLn "not quitting"
main
else ?7?°?

40

return and <-
* returnis a function that "makes an 1/0 action out
of a pure value®
* resembles the opposite of the <- syntax.
main = do
input <- return "hello"
putStrLn input

* return packs up a value into an IO box.
» <- extracts the value out of an 10 box.

* but rememberthat return is a function,
while <- is just a syntactic sugar: you can NEVER
extract something from an IO action!

* real meaning:

do { x<-e;es} = e >>= \x -> do {es}

41

|O Provides Access to Files

+ The 10 Monad provides a large collection of operations
for interacting with the “World.”

» For example, it provides a direct analogy to the Standard
C library functions for files, using the library System.IO

openFile :: FilePath ->IOMode -> IO Handle
hPutStr :: Handle -> String -> IO ()
hGetLine :: Handle -> IO String

hClose :: Handle -> IO ()

Prelude> :type hPutStr

Not in scope: ‘hPutStr’

Prelude> import System.IO

Prelude System.IO> :type hPutStr
hPutStr :: Handle -> String -> IO ()

10

openFile

openFile :: FilePath ->IOMode -> IO Handle
type FilePath = String

IOMode Can | Can Starting
read? | write? | position

ReadMode Beginning File must exist already
of file
WriteMode no yes Beginning File is truncated (completely
of file emptied) if it already
existed.
ReadWriteMode yes yes Beginning File is created if it didn’t exist;
of file otherwise, existing

data is left intact.

AppendMode no yes End of file File is created if it didn’t exist;
otherwise, existing

data is left intact. 5

Lazy I/O

hGetContents :: Handle -> IO String
* logically, reads the whole file to RAM
* in practice, reads it lazily, only when needed

“At the moment you call hGetContents, nothing is
actually read. Data is only read from the Handle as
the elements (characters) of the list are processed.
As elements of the String are no longer used,
Haskell's garbage collector automatically frees that
memory.

All of this happens completely transparently to you.

And since you have what looks like (and, really, is) a

pure String, you can pass it to pure (non- 10) code.”
from “Real World Haskell” by B. O'Sullivan, D. Stewart, and J. Goerzen

.. but if the elements are used later on, the
memory cannot be garbage collected! 44

Convert a file to uppercase

import System.IO

import Data.Char

main = do
inh <- openFile "input.txt" ReadMode
outh <- openFile "output.txt" WriteMode
inpStr <- hGetContents inh
let result = processData inpStr

hPutStr outh result If we had used inpsStr past the place
. where it was used (the call to
hClose inh processData), the program would have
hClose outh lost its memory efficiency. That’s because
the compiler would have been forced to
processData = map toUpPer|yeep inpstr’s value in memory for
future use. Here it knows that inpStr
will never be reused and frees the
memory as soon as it is done with it.

hGetContents

* You are not required to consume all the data from the
input file when using hGetContents.

* Whenever the Haskell system determines that the
entire string hGetContents returned can be garbage
collected, the out file is closed automatically.

« The same principle applies to data read from the file.
Whenever a given piece of data will never again be
needed, the Haskell environment releases the memory
it was stored within.

« Strictly speaking, we wouldn’t have to call hClose at
all in this example program. However, it is still a good
practice, as later changes to a program could make
the call to hClose important.

46

11

readFile and writeFile

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

* readFileand writeFile are shortcuts for working
with files as strings. They handle all the details of
opening files, closing files, reading data, and writing
data.

* readFileuses hGetContentsinternally.

import Data.Char (toUpper)
main = do
inpStr <- readFile "input.txt"

writeFile "output.txt" (map toUpper inpStr)

47

readFile and writeFile

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

* readFile and writeFile do not provide a
Handle = nothing to hClose.

* readFile uses hGetContents internally. The
underlying Handle is closed when the returned
String is garbage-collected or all the input has
been consumed.

* writeFile closes its underlying Handle when
the entire String supplied to it has been written.

48

The IO Monad as ADT

return :: a ->I0 a
(>>=) :: I0 a -> (a ->I0 b) ->I0O b

getChar :: IO Char
putChar :: Char ->IO ()
. more operations on characters ...

openFile :: [Char] ->IOMode ->IO Handle
. more operations on files ...

+ All operations return an 10 action, but only bind (>>=)
takes one as an argument.

+ Bind is the only operation that combines |10 actions,
which forces sequentiality.

« Within the program, there is no way out!

Useful functions when dealing with
text files

* These are not functions in the 10 monad, but they are useful
toread data from text files
* lines :: String -> [String]

>lines "This is a\nlong text\nindeed!"
["This is a","long text","indeed!"]

* unlines :: [String] -> String
>unlines ["various", "words", "together"]
"various\nwords\ntogether\n"

* words :: String -> [String]
> words "This is a\nlong text,indeed!"
["This" ,"is" ,"a","long","text,indeed!"]

12

Converting from string

* Show is the typeclass of the types that can be
converted to String

* members implements function show

+ Read is the typeclass of the types that can be read
from String

* There is an indirect function read (cannot be
reimplemented directly; one should reimplement
readsPrec, which is a parser)

type can
be
inferred

>T+read "20" >read "20"@EIWPNENINC
27 AL be inferred

>read "20" :: Int
20

converting numeric formats

ceiling :: (RealFrac a, Integral b) => a -> b
floor :: (RealFrac a, Integral b) => a -> b
truncate :: (RealFrac a, Integral b) => a ->b
round :: (RealFrac a, Integral b) => a -> b

ERROR

Integral
>(sqgrt 2) + floor (3/2)

No automatic conversion! Either they can be

interpreted as the same type, or it does not
compile

52

converting numeric formats

* Int and Integer are Integral
fromIntegral :: (Num b, Integral a) => a -> b

>(sqgrt 2) + fromIntegral (floor (3/2))
2.414213562373095

‘
RealFloat

Hangman
Consider the following version of hangman:

0 One player secretly types in a word.

0 The other player tries to deduce the word, by
entering a sequence of guesses.

0 For each guess, the computer indicates which
letters in the secret word occur in the guess.

54

13

1 The game ends when the guess is correct.

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

hangman :: IO ()
hangman =
do putStrLn "Think of a word: "
word < sgetLine
putStrLn "Try to guess it:"
play word

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetline :: IO String
sgetlLine = do x <« getCh
if x == '\n' then
do putChar x
return []
else
do putChar '-'
Xs < sgetLine
return (x:xs)

56

The action getCh reads a single character from the
keyboard, without echoing it to the screen:

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False
x <- getChar
hSetEcho stdin True

return x

The function play is the main loop, which requests
and processes guesses until the game ends.

play :: String —»> IO ()
play word =
do putStr "? "
guess <- getline

if guess == word then
putStrLn "You got it!"
else

do putStrLn (match word guess)
play word

14

The function match indicates which characters in
one string occur in a second string:

match :: String —» String — String
match xs ys =

[if elem x ys then x else '-' | x <« xs]

For example:

> match "haskell" "pascal"

"-as--11"

Summary

* Acomplete Haskell program is a single 10 action
calledmain. Inside O, code is single-threaded.

* Big IO actions are built by gluing together smaller
ones with bind () and by converting pure code
into actions with .

* |10 actions are first-class.

— They can be passed to functions, returned from
functions, and stored in data structures.

— Soitis easy to define new “glue” combinators.
+ The 10 Monad allows Haskell to be pure while
efficiently supporting side effects.
* The type system separates the pure from the
effectful code.

A Monadic Skin

* Inlanguages like ML or Java, the fact that the
language s in the 10 monad is baked in to the
language. There is no need to mark anything in
the type system because it is everywhere.

* In Haskell, the programmer can choose when to
live in the |O monad and when to live in the realm
of pure functional programming.

» Soitis not Haskell that lacks imperative features,
but rather the other languages that lack the ability
to have a statically distinguishable pure subset.

Exercise

Implement the game of nim in Haskell, where the
rules of the game are as follows:

I The board comprises five rows of stars:

62

15

[Two players take it turn about to remove one
or more stars from the end of a single row.

[The winner is the player who removes the last
star or stars from the board.

Hint:

Represent the board as a list of five integers that
give the number of stars remaining on each row.
For example, the initial board is [5,4,3,2,1].

63

|O programs that reverse text

* given a file containing some text, create an
output file with everything in reverse

input. txt output. txt

hello world dlrow olleh

* given a file containing some text, create an

output file with every word in reverse
input. txt output. txt

hello world olleh dlrow

Esercizio

Un programma Haskell deve controllare le
collisioni fra quadrati nel piano. Ogni quadrato
€ rappresentato da:

« identificatore: Int
+ colore: stringa (senza spazi)
« XY, lato: Int ve

Il programma deve leggere un file "~

di testo e visualizzare il numero di
collisioni che ci sono fra i

quadrati, ossia il numero di coppie Ssztzii'Lzrﬁig‘i’
di quadrati che hanno ordine

intersezione non nulla superiore

http://www.unife.it/ing/informazione/fondamenti-info-
1/materiale-didattico/testi-dei-compiti/quadrati.txt

PO|IgOﬂO poligono.txt

Un file di testo poligono.txt contiene
le coordinate dei punti che

d
OX

rappresentano i vertici di un poligono;

per ogni punto si hanno due
coordinate intere: x e y. Nel file,

| /
|/

Scrivere un programma che legge da

tastiera le coordinate di un ulteriore
punto e comunica all'utente se &
interno o esterno al poligono.
Per verificare se un punto P ¢ interno al poligono:
— sitraccia una semiretta a partire dal punto P
— sicalcola quanti lati del poligono intersecano tale semiretta
— se il numero delle intersezioni & pari,

« allora il punto € esterno al poligono,

« altrimenti (se & dispari) € interno

RoOWwmhmOUouDdNdDHRH

0
6
I'ultimo punto coincide con il primo 3
7
1

http://www.unife.it/ing/informazione/fondamenti-info-

1/materiale-didattico/testi-dei-compiti/poligono. txt
66

16

