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Declaring types and classes

Type Declarations
or Type Synonyms

In Haskell, a new name for an existing type can be
defined using a type declaration.

‘type String = [Char]‘

[ String is a synonym for the type [Char]. J

Type declarations can be used to make other types
easier to read. For example, given

‘type Pos = (Int,Int)‘

we can define:

origin :: Pos
origin = (0,0)
left :: Pos — Pos
left (x,y) = (x-1,y)

Like function definitions, type declarations can also
have parameters. For example, given

‘type Pair a = (a,a)‘

we can define:

mult :: Pair Int —» Int
mult (m,n) = m*n
copy :: a > Pair a

copy X (x,x)




Type declarations can be nested:

type Pos = (Int,Int)

v

type Trans = Pos — Pos

However, they cannot be recursive:

type Tree = (Int, [Tree]) ‘ x

Data Declarations
or Algebraic Data Types

A completely new type can be defined by specifying
its values using a data declaration.

‘data Bool = False | True‘

’ Bool is a new type, with two ’
new values False and True.

Note:

# The two values False and True are called the
constructors for the type Bool.

# Type and constructor names must begin with
an upper-case letter.

Values of new types can be used in the same ways
as those of builtin types. For example, given

‘data Answer = Yes | No | Unknown‘

we can define:

answers :: [Answer]

answers = [Yes,No,Unknown]
flipAns :: Answer — Answer
flipAns Yes = No

flipAns No = Yes

flipAns Unknown = Unknown




The constructors in a data declaration can also have

parameters. For example, given

data Shape = Circle Float
| Rect Float Float

we can define:

square :: Float — Shape
square n = Rect nn

area :: Shape — Float
area (Circle r) = pi * r*2

area (Rect x y) =x * y

Note:

¥ Shape has values of the form Circle r
where r is a float, and Rect x y where x and
y are floats.

¥ Circle and Rect can be viewed as functions
that construct values of type Shape:

Circle :: Float — Shape

Rect :: Float - Float — Shape

data Shape = Circle Float
| Rect Float Float

However:

(

Prelude> Circle 3

print only works for
things that derive Show

<interactive>:10:1:
No instance for (Show Shape) arising
from a use of ‘print’

In a stmt of interactive GHCi
command: print i

GHC i is trying to call the
print function

data Shape = Circle Float
| Rect Float Float
deriving (Show)

Prelude> Circle 3

Circle 3.0




data Shape = Circle Float
| Rect Float Float
deriving (Show)

Prelude> Circle 3 == Circle 4 for things that
derive Eq

(== only works )

/

<interactive>:6:10:
No instance for (Eq Shape) arising from

a use of ‘==’

pression: Circle 3 == Circle 4

tion for ‘it’: it = Circle 3

GHC i is trying to call the J

== function
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data Shape = Circle Float
| Rect Float Float
deriving (Show,Eq)

Prelude> Circle 3 == Circle 4

False

What if | want to change the default behavior,
saying, for example, that | want Rectangle 1 2
to be equal to Rectangle 2 17?

data Answer = Yes | No | Unknown
deriving (Show)

flipAns Yes = No
flipAns No = Yes No instance for
flipAns Unknown = Unkno (Eq Answer)
Prelude> flip Yes arising Ir‘(zT,a use
No ol ==
In the
expression: a ==

flipAns a

but: P S _ — Yes

| a == = No

| a == No = Yes

| otherwise = Unknown

Typeclasses

* typeclass Eq is defined as follows:

class Eq a where

(==) :: a -=> a -> Bool
(/=) :: a -> a -> Bool
X ==y =not (x /=y)
x /=y = not (x ==y)




data Shape = Circle Float
| Rect Float Float
deriving (Show-Eg)

instance Eq Shape where

Circle x == Circle y = x==
Rect x y == Rect a b =
((x==a) && (y==b)) || ((x==b) && y==a)
> Rect 1 == Rect 2 1
True
>Rect 1 2 /=Rect 1 2
False
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Standard Haskell Classes

Egq
Allexept 10, (=)

ord
Allexsept (=)
10, 10Emer

Int, Integex, Flost,

Double
Integral
Int, Integer
Monad
10, 1, Maybe

MonadPlus
10, 1, Maybe

Read
Allexcept
10, (=)

Bounded
Int, Char, Boal, )
Ordering, tuples

Fractional
1ot Dedls Float, Double
RealFrac Floating
Float, Doubls Float, Dovhle
RealFloat
Float, Donble
Functor
10, [I, Magbe

Num
Int, Integer,
Float, Doble

Int, Integer,

Standard Typeclasses

» Eqis used for types that support equality testing
— ==and /=

+ ordis for types that have an ordering
— > <, >=and <=

* Members of Show can be presented as strings

— The most used function that deals with the Show typeclass is
show

« Enum members are sequentially ordered types. The main
advantage is that we can use its types in list ranges
* Bounded members have an upper and a lower bound.

* Numis a numeric typeclass.
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Not surprisingly, data declarations themselves can

also have parameters.

For example, given

‘data Maybe a

= Nothing | Just a

we can define:

safediv
safediv _ 0 =
safedivm n =

safehead
safehead [] =
safehead xs =

Int - Int —» Maybe Int
Nothing
Just (m “div’ n)

[a] — Maybe a
Nothing
Just (head xs)




‘data Point = Poirgt Float Float ‘

Data type I [VJaIue constructor J

* We can also have the same name for the
data type and for the value constructor
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Recursive Types

In Haskell, new types can be declared in terms of
themselves. Thatis, types can be recursive.

data Nat = Zero | Succ Nat‘

Nat is a new type, with constructors
Zero :: Nat and
Succ :: Nat — Nat.
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Note:

+ Avalue of type Nat is either Zero, or of the form
Succ nwheren :: Nat. Thatis, Nat
contains the following infinite sequence of
values:

Succ Zero

‘Succ (Succ Zero)‘
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3 We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+.

¥ For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1+(1+(1+0)

Il
w
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Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat — Int
nat2int Zero =0

nat2int (Succ n) = 1 + nat2int n
int2nat :: Int — Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))
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Two naturals can be added by converting them to
integers, adding, and then converting back:

add :: Nat > Nat — Nat

add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be
defined without the need for conversions:

add Zero n=n

add (Succ m) n Succ (add m n)
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For example:

| add (Succ (Succ Zero)) (Succ Zero) |

[ Succ (add (Succ Zero) (Succ Zero)) |

[ Succ (Succ (add Zero (Succ Zero)) |

| Succ (Succ (Succ Zero)) |

Note:

¥ The recursive definition for add corresponds to
the laws 0+n = n and (1+m)+n = 1+(m+n).
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Arithmetic Expressions

Consider a simple form of expressions built up from
integers using addition and multiplication.

7\
7N\
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Using recursion, a suitable new type to represent
such expressions can be declared by:

= Val Int
| Add Expr Expr
| Mul Expr Expr

data Expr

For example, the expression on the previous slide
would be represented as follows:

‘Add (Val 1) (Mul (Val 2) (Val 3)) \
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Using recursion, it is now easy to define functions
that process expressions. For example:

Note:

* The three constructors have types:

Val :: Int - Expr
Add :: Expr — Expr — Expr
Mul :: Expr — Expr — Expr

+ Many functions on expressions can be defined
by replacing the constructors by other functions
using a suitable foldExpr function. For
example:

eval = foldExpr id (+) (*)
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size :: Expr — Int

size (Val n) =1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr — Int

eval (Val n) =n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y
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Binary Trees

In computing, it is often useful to store data in a
two-way branching structure or binary tree.

/\

/\ /\
4 8] g




Using recursion, a suitable new type to represent
such binary trees can be declared by:

data Tree a = Leaf a
| Node (Tree a) a (Tree a)

For example, the tree on the previous slide would
be represented as follows:

t :: Tree Int
t = Node (Node (Leaf 1) 3 (Leaf 4)) 5
(Node (Leaf 6) 7 (Leaf 9))
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We can now define a function that decides if a given
value occurs in a binary tree:

occurs :: Ord a = a — Tree a — Bool
occurs x (Leaf y) =x ==y
occurs x (Node 1 y r) = =y

|| occurs x 1

|| occurs x r

But... in the worst case, when the value does not
occur, this function traverses the entire tree.
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Now consider the function £latten that returns the
list of all the values contained in a tree:

flatten :: Tree a — [a]
flatten (Leaf x) = [x]
flatten (Node 1 x r) = flatten 1

++ [x]

++ flatten r

A tree is a search tree if it flattens to a list that is
ordered. Our example tree is a search tree, as it
flattens to the ordered list [1,3,4,5,6,7,9].

Search trees have the important property that when
trying to find a value in a tree we can always decide
which of the two sub-trees it may occur in:

occurs x (Leaf y) =x ==y
occurs x (Node 1 y r) | x ==y = True
| x <y = occurs x 1
| x >y = occurs x r

This new definition is more efficient, because it only
traverses one path down the tree.
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Getter functions

* How do | get the components?

data Point = Point Double Double

xval :: Point -> Double
xval (Point x _) = x

yval :: Point -> Double
yval (Point _y) =y
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Record Syntax

data Point = Point {xval::Double, yval: :Double}

> let p = Point 1 2
> xval p
1.0

* Makes code more readable

‘let b = Point {xval = 2, yval = 3}

Exercises

(1) Using recursion and the function add, define a
function that multiplies two natural numbers.

(2) Abinary tree is complete if the two sub-trees of
every node are of equal size. Define a function
that decides if a binary tree is complete.
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Esercizio

+ Definire una funzione di ordine superiore
foldExpr per le espressioni con la quale si
possano definire le funzioni size e eval

+ Grazie alla foldExpr, invece di definire
eval (Val n) =n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
si potra scrivere:
eval expr = foldExpr (+) (*) id

+ Definire poi la funzione size tramite la
foldExpr
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These slides were adapted from the material of
the book

Graham Hutton, Programming in Haskell,
Cambridge University Press, 2™ edition, 2016
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