Haskell 7

Declaring types and classes

Type Declarations
or Type Synonyms

In Haskell, a new name for an existing type can be
defined using a type declaration.

‘type String = [Char]‘

[ String is a synonym for the type [Char]. J

Type declarations can be used to make other types
easier to read. For example, given

‘type Pos = (Int,Int)‘

we can define:

origin :: Pos
origin = (0,0)
left :: Pos — Pos
left (x,y) = (x-1,y)

Like function definitions, type declarations can also
have parameters. For example, given

‘type Pair a = (a,a)‘

we can define:

mult :: Pair Int —» Int
mult (m,n) = m*n
copy :: a > Pair a

copy X (x,x)




Type declarations can be nested:

type Pos = (Int,Int)

v

type Trans = Pos — Pos

However, they cannot be recursive:

type Tree = (Int, [Tree]) ‘ x

Data Declarations
or Algebraic Data Types

A completely new type can be defined by specifying
its values using a data declaration.

‘data Bool = False | True‘

’ Bool is a new type, with two ’
new values False and True.

Note:

# The two values False and True are called the
constructors for the type Bool.

# Type and constructor names must begin with
an upper-case letter.

Values of new types can be used in the same ways
as those of builtin types. For example, given

‘data Answer = Yes | No | Unknown‘

we can define:

answers :: [Answer]

answers = [Yes,No,Unknown]
flipAns :: Answer — Answer
flipAns Yes = No

flipAns No = Yes

flipAns Unknown = Unknown




The constructors in a data declaration can also have

parameters. For example, given

data Shape = Circle Float
| Rect Float Float

we can define:

square :: Float — Shape
square n = Rect nn

area :: Shape — Float
area (Circle r) = pi * r*2

area (Rect x y) =x * y

Note:

¥ Shape has values of the form Circle r
where r is a float, and Rect x y where x and
y are floats.

¥ Circle and Rect can be viewed as functions
that construct values of type Shape:

Circle :: Float — Shape

Rect :: Float - Float — Shape

data Shape = Circle Float
| Rect Float Float

However:

(

Prelude> Circle 3

print only works for
things that derive Show

<interactive>:10:1:
No instance for (Show Shape) arising
from a use of ‘print’

In a stmt of interactive GHCi
command: print i

GHC i is trying to call the
print function

data Shape = Circle Float
| Rect Float Float
deriving (Show)

Prelude> Circle 3

Circle 3.0




data Shape = Circle Float
| Rect Float Float
deriving (Show)

Prelude> Circle 3 == Circle 4 for things that
derive Eq

(== only works )

/

<interactive>:6:10:
No instance for (Eq Shape) arising from

a use of ‘==’

pression: Circle 3 == Circle 4

tion for ‘it’: it = Circle 3

GHC i is trying to call the J

== function

12

data Shape = Circle Float
| Rect Float Float
deriving (Show,Eq)

Prelude> Circle 3 == Circle 4

False

What if | want to change the default behavior,
saying, for example, that | want Rectangle 1 2
to be equal to Rectangle 2 17?

data Answer = Yes | No | Unknown
deriving (Show)

flipAns Yes = No
flipAns No = Yes No instance for
flipAns Unknown = Unkno (Eq Answer)
Prelude> flip Yes arising Ir‘(zT,a use
No ol ==
In the
expression: a ==

flipAns a

but: P S _ — Yes

| a == = No

| a == No = Yes

| otherwise = Unknown

Typeclasses

* typeclass Eq is defined as follows:

class Eq a where

(==) :: a -=> a -> Bool
(/=) :: a -> a -> Bool
X ==y =not (x /=y)
x /=y = not (x ==y)




data Shape = Circle Float
| Rect Float Float
deriving (Show-Eg)

instance Eq Shape where

Circle x == Circle y = x==
Rect x y == Rect a b =
((x==a) && (y==b)) || ((x==b) && y==a)
> Rect 1 == Rect 2 1
True
>Rect 1 2 /=Rect 1 2
False
16

Standard Haskell Classes

Egq
Allexept 10, (=)

ord
Allexsept (=)
10, 10Emer

Int, Integex, Flost,

Double
Integral
Int, Integer
Monad
10, 1, Maybe

MonadPlus
10, 1, Maybe

Read
Allexcept
10, (=)

Bounded
Int, Char, Boal, )
Ordering, tuples

Fractional
1ot Dedls Float, Double
RealFrac Floating
Float, Doubls Float, Dovhle
RealFloat
Float, Donble
Functor
10, [I, Magbe

Num
Int, Integer,
Float, Doble

Int, Integer,

Standard Typeclasses

» Eqis used for types that support equality testing
— ==and /=

+ ordis for types that have an ordering
— > <, >=and <=

* Members of Show can be presented as strings

— The most used function that deals with the Show typeclass is
show

« Enum members are sequentially ordered types. The main
advantage is that we can use its types in list ranges
* Bounded members have an upper and a lower bound.

* Numis a numeric typeclass.

18

Not surprisingly, data declarations themselves can

also have parameters.

For example, given

‘data Maybe a

= Nothing | Just a

we can define:

safediv
safediv _ 0 =
safedivm n =

safehead
safehead [] =
safehead xs =

Int - Int —» Maybe Int
Nothing
Just (m “div’ n)

[a] — Maybe a
Nothing
Just (head xs)




‘data Point = Poirgt Float Float ‘

Data type I [VJaIue constructor J

* We can also have the same name for the
data type and for the value constructor

20

Recursive Types

In Haskell, new types can be declared in terms of
themselves. Thatis, types can be recursive.

data Nat = Zero | Succ Nat‘

Nat is a new type, with constructors
Zero :: Nat and
Succ :: Nat — Nat.

21

Note:

+ Avalue of type Nat is either Zero, or of the form
Succ nwheren :: Nat. Thatis, Nat
contains the following infinite sequence of
values:

Succ Zero

‘Succ (Succ Zero)‘

22

3 We can think of values of type Nat as natural
numbers, where Zero represents 0, and Succ
represents the successor function 1+.

¥ For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1+(1+(1+0)

Il
w

23




Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat — Int
nat2int Zero =0

nat2int (Succ n) = 1 + nat2int n
int2nat :: Int — Nat

int2nat 0 = Zero

int2nat n = Succ (int2nat (n-1))

24

Two naturals can be added by converting them to
integers, adding, and then converting back:

add :: Nat > Nat — Nat

add m n = int2nat (nat2int m + nat2int n)

However, using recursion the function add can be
defined without the need for conversions:

add Zero n=n

add (Succ m) n Succ (add m n)

25

For example:

| add (Succ (Succ Zero)) (Succ Zero) |

[ Succ (add (Succ Zero) (Succ Zero)) |

[ Succ (Succ (add Zero (Succ Zero)) |

| Succ (Succ (Succ Zero)) |

Note:

¥ The recursive definition for add corresponds to
the laws 0+n = n and (1+m)+n = 1+(m+n).

26

Arithmetic Expressions

Consider a simple form of expressions built up from
integers using addition and multiplication.

7\
7N\

27




Using recursion, a suitable new type to represent
such expressions can be declared by:

= Val Int
| Add Expr Expr
| Mul Expr Expr

data Expr

For example, the expression on the previous slide
would be represented as follows:

‘Add (Val 1) (Mul (Val 2) (Val 3)) \

28

Using recursion, it is now easy to define functions
that process expressions. For example:

Note:

* The three constructors have types:

Val :: Int - Expr
Add :: Expr — Expr — Expr
Mul :: Expr — Expr — Expr

+ Many functions on expressions can be defined
by replacing the constructors by other functions
using a suitable foldExpr function. For
example:

eval = foldExpr id (+) (*)

30

size :: Expr — Int

size (Val n) =1

size (Add x y) = size x + size y

size (Mul x y) = size x + size y

eval :: Expr — Int

eval (Val n) =n

eval (Add x y) = eval x + eval y

eval (Mul x y) = eval x * eval y

29
Binary Trees

In computing, it is often useful to store data in a
two-way branching structure or binary tree.

/\

/\ /\
4 8] g




Using recursion, a suitable new type to represent
such binary trees can be declared by:

data Tree a = Leaf a
| Node (Tree a) a (Tree a)

For example, the tree on the previous slide would
be represented as follows:

t :: Tree Int
t = Node (Node (Leaf 1) 3 (Leaf 4)) 5
(Node (Leaf 6) 7 (Leaf 9))

32

We can now define a function that decides if a given
value occurs in a binary tree:

occurs :: Ord a = a — Tree a — Bool
occurs x (Leaf y) =x ==y
occurs x (Node 1 y r) = =y

|| occurs x 1

|| occurs x r

But... in the worst case, when the value does not
occur, this function traverses the entire tree.

33

Now consider the function £latten that returns the
list of all the values contained in a tree:

flatten :: Tree a — [a]
flatten (Leaf x) = [x]
flatten (Node 1 x r) = flatten 1

++ [x]

++ flatten r

A tree is a search tree if it flattens to a list that is
ordered. Our example tree is a search tree, as it
flattens to the ordered list [1,3,4,5,6,7,9].

Search trees have the important property that when
trying to find a value in a tree we can always decide
which of the two sub-trees it may occur in:

occurs x (Leaf y) =x ==y
occurs x (Node 1 y r) | x ==y = True
| x <y = occurs x 1
| x >y = occurs x r

This new definition is more efficient, because it only
traverses one path down the tree.

35




Getter functions

* How do | get the components?

data Point = Point Double Double

xval :: Point -> Double
xval (Point x _) = x

yval :: Point -> Double
yval (Point _y) =y

36

Record Syntax

data Point = Point {xval::Double, yval: :Double}

> let p = Point 1 2
> xval p
1.0

* Makes code more readable

‘let b = Point {xval = 2, yval = 3}

Exercises

(1) Using recursion and the function add, define a
function that multiplies two natural numbers.

(2) Abinary tree is complete if the two sub-trees of
every node are of equal size. Define a function
that decides if a binary tree is complete.

38

Esercizio

+ Definire una funzione di ordine superiore
foldExpr per le espressioni con la quale si
possano definire le funzioni size e eval

+ Grazie alla foldExpr, invece di definire
eval (Val n) =n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
si potra scrivere:
eval expr = foldExpr (+) (*) id

+ Definire poi la funzione size tramite la
foldExpr

10



These slides were adapted from the material of
the book

Graham Hutton, Programming in Haskell,
Cambridge University Press, 2™ edition, 2016

11



