Haskell

Higher Order Functions

Introduction

A function is called higher-order if it takes a function
as an argument or returns a function as a result.

twice :: (a—> a) > a—> a
twice £ x = £ (f x)

twice is higher-order because it
takes a function as its first argument.

Why Are They Useful?

¥ Common programming idioms can be encoded
as functions within the language itself.

¥ Domain specific languages can be defined as
collections of higher-order functions.

¥ Algebraic properties of higher-order functions
can be used to reason about programs.

The Map Function

The higher-order library function called map applies
a function to every element of a list.

‘map :: (@ > b) > [a] > [b]|

Examples

> map even [1..4]
[False,True,False, True]

> wap onl 11,357

[2,4,6,8]

The map function can be defined in a particularly
simple manner using a list comprehension:

|map f xs = [£f x | x « xs]|

Alternatively, for the purposes of proofs, the map
function can also be defined using recursion:

[1

map £ (x:xs) = £ x : map £ xs

map £ []

Esercizio
« Si consideri una matrice di interi data da una
lista di liste
» Si scriva la funzione matQuad che eleva al
quadrato ogni elemento della matrice:

>matQuad [[1,2,3],
[4,3,6],
[8,1,1]1]

[[1,4, 9],

[16,9,36],

[64,1, 111

The Filter Function

The higher-order library function filter selects every
element from a list that satisfies a predicate.

|filter :: (a - Bool) — [a] — [a] |

For example:

> filter even [1..10]

[2,4,6,8,10]

filter can be defined using a list comprehension:

|filter PxXxs =[x | x < xs, P x]|

Alternatively, it can be defined using recursion:

filter p []

[]
filter p (x:xs)

| px
| otherwise

x : filter p xs

filter p xs

The Foldr Function

A number of functions on lists can be defined using
the following simple pattern of recursion:

£f [1] =v
x @ £ xs

f (x:xs)

£ maps the empty list to some value v,
and any non-empty list to some function ®
applied to its head and £ of its tail.

For example:

sum [] =0 v=20

sum (X:Xs) = X + sum Xs ® =+
product [] =1 V =
product (x:xs) = x * product xs @ ="*

and []

and (x:xs)

True v = True
x && and xs ® = &&

The higher-order library function £o1dr (fold right)
encapsulates this simple pattern of recursion, with
the function @ and the value v as arguments.

For example:
sum = foldr (+) O
product = foldr (*) 1
or = foldr (||) False
and = foldr (&&) True

Foldr itself can be defined using recursion:

foldr :: (a > b > b) > b > [a] > b
foldr £ v [] =v

foldr £ v (x:xs) = £ x (foldr £ v xs)

However, it is best to think of foldr non-
recursively, as simultaneously replacing each (:)
in a list by a given function, and [] by a given
value.

For example:

sum [1,2,3]

- [foldr (+) 0[1,2,3] |

[foldr (+) 0 (1:(2:(3:11)))

1+(2+(3+0))

6

Replace each (:)
by (+) and [] by 0.

13

For example:

 product[1,2,3] |

- [foldr (*) 1[1,2,3] |

[foldr (*) 1 (1:(2:(3:11)))

1%(2*(3*1))

6

Replace each (:)
by (*) and [] by 1.

14

Other Foldr Examples

Even though foldr encapsulates a simple pattern
of recursion, it can be used to define many more
functions than might first be expected.

Recall the length function:

length :: [a] — Int
length [] 0
length (_:xs) 1 + length xs

15

For example:

[length [1,2,3] |

[length (1:(2:(3:01)))

1+{1+(1+0))

Hence, we have:

Replace each (:)
by A_n - 1+n
and [] by 0.

| length = foldr (A_n — 1+n) 0 |

Now recall the reverse function:

reverse [] =[]
reverse (x:xXs) = reverse xs ++ [x]
For example:

reverse [1,2,3] |

- reverse (1:(2:(3:[]))) \

and [] by [].

(0 ++ [3]) ++ [2]) ++ [1] |
)

Replace each (:) by
AX XS = XS ++ [x]

Hence, we have:

reverse =

foldr (Ax xs — xs ++ [x]) []

Finally, we note that the append function (++) has a
particularly compact definition using foldr:

Replace each
(:) by (:) and
[1 by ys.

‘(++ ys) = foldr (:) ys|

Why Is Foldr Useful?

¥ Some recursive functions on lists, such as sum,
are simpler to define using foldr.

¥ Properties of functions defined using foldr can
be proved using algebraic properties of foldr,
such as fusion and the banana split rule.

¥ Advanced program optimisations can be simpler
if foldr is used in place of explicit recursion.

Left Fold

* There is also a left fold:

\foldl :: (a->b ->a) ->a -> [b] -> a \

The difference is thatin £oldl the value
is accumulated “on the left”.

foldr ® a [x,,..,%,]

XD (x,®D(.. (x,@Pa)))

foldl ® a [x,,..,%,]

(((a®@x;) ©x,) .. ®x,)

20

Exercise

» Count the number of vowels in a string
using folds

» Useful function: elem x xs checks if x is
in list xs

> vocali "Haskell"
2

21

Function composition

The library function (.) returns the composition of
two functions as a single function.

(.) . b >c¢c) > (a > Db) > (a > c)
f.g =& > f (g x)

For example:

odd :: Int — Bool
odd = not . even

22

Function composition

+ It composes functions in a readable manner
f(g(h(k(x))))
VS
(f.g.h.k) (x)
* Note that usually functions associate to the left

>not even 2
ERROR

>(not.even) 2
False

23

Example

* Given a list of numbers, create a list of all
negated absolute values using map

>f [1,-2,-5,0,3]
[_11_21_5101_3]

» Useful functions: abs and negate

24

The library function all decides if every element of
a list satisfies a given predicate.

all (a > Bool) —» [a] — Bool
all p xs = and [p x | x < xs]
For example:

> all even [2,4,6,8,10]

True

25

Lually, the library function any decides if at least
one element of a list satisfies a predicate.

any (a > Bool) —» [a] — Bool
any p xs = or [p x | x < xs]
For example:
> any (== ' ') "abc def"
True

26

The library function takeWhile selects elements from
a list while a predicate holds of all the elements.

takeWhile :: (a —
takeWhile p []
takeWhile p (x:xs)
| px
| otherwise

Bool) —» [a] — [a]

= [

= x : takeWhile p xs
=[]

For example:

> takeWhile (/= '"') "abc def"

"abe"

27

Rually, the function dropWhile removes elements
while a predicate holds of all the elements.

dropWhile :: (a —
dropWhile p []
dropWhile p (x:xs)

Bool) —» [a] — [a]

= [

| p x = dropWhile p xs
| otherwise = X:XS
For example:
> dropWhile (=="") " abc"

"abe"

28

Exercises
» Express the comprehension
[f x | x < xs, p x]
using the functions map and filter.

» Write a function zipWith’

|zipWith’ :: (a -> b -> c) -> [a] -> [b] -> [c]

with the following behavior

>zipWith' (+) [4,2,5,6] [2,6,2,3]
[6,8,7,9]

29

Esercizio (estratto dal compito

29 giu 2016)
* si scriva una funzione di ordine superiore
maxf :: Ord a => (t -> a) -> [t] > t

» che prende come parametri una funzione f
e una lista xs e fornisce I'elemento x della
lista xs che massimizza la funzione f
(ossia il valore x per cui f(x) € massimo).

Create a password strength
checker

* Create a password strength checker using
higher-order functions
+ Astrong password has
— at least 15 characters
— uppercase letters
— lowercase letters

— numbers
Prelude> :t strong
strong :: String -> Bool

Prelude> strong "sup3rL33TpasswOrd"
True

31

* The function remdups removes adjacent
duplicates from a list. For example,

>remdups [1, 2, 2, 3, 3, 3, 1, 1]

[x, 2, 3, 1]

* Define remdups using foldr . Give
another definition using foldl .

32

Un po’ piu difficili ...

* Redefinemap f and filter p using
foldr.

33

These slides were adapted from the material of
the book

Graham Hutton, Programming in Haskell,
Cambridge University Press, 2" edition, 2016

