Haskell

List comprehensions

Set Comprehensions

In mathematics, the comprehension notation can
be used to construct new sets from old sets.

{2] x e {1..5}}

The set {1, 4,9, 16, 25} of all numbers x2 such
that x is an element of the set {1...5}.

Lists Comprehensions

In Haskell, a similar comprehension notation can
be used to construct new lists from old lists.

[[x*2 | x < [1..5]]]

‘ The list [1,4,9,16,25] of all numbers x*2 such
that x is an element of the list [1..5].

* The expression x < [1..5] is called a generator,
as it states how to generate values for x.

» Comprehensions can have multiple generators,
separated by commas. For example:

> [(x,y) | x < [1,2,3], y < [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)1

> [adj ++ " " ++ noun | adj <- ["red","blue","lazy"],
noun <- ["frog","flower"]]

["red frog","red flower", "blue frog","blue
flower","lazy frog","lazy flower"]

« Changing the order of the generators changes
the order of the elements in the final list:

> [(x,y) | ¥y < [4,5], x «< [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]1

* Multiple generators are like nested loops, with
later generators as more deeply nested loops
whose variables change value more frequently.

For example:

> [(x,y) | ¥y < [4,5], x « [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)1

T |

X « [1,2,3] is the last generator, so the
value of the x component of each pair
changes most frequently.

Example

* Another version of length:

‘length' xs = sum [1 | _ <- xs]

Dependant Generators

Later generators can depend on the variables that
are introduced by earlier generators.

[[(x,y) | x « [1..3], y « [x..311]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are
elements of the list [1..3] and y > x.

Using a dependant generator we can define the
library function that concatenates a list of lists:

concat i [[al]l — [al]

concat xss = [x | XS < XSs, X ¢« Xxs]

For example:

> concat [[1,2,3],[4,5],[61]

[1,2,3,4,5,6]

Guards

List comprehensions can use guards to restrict the
values produced by earlier generators.

‘[x | x « [1..10], even x]‘

The list [2,4,6,8,10] of all numbers x
such that x is an element of the list
[1..10] and x is even.

Using a guard we can define a function that maps
a positive integer to its list of factors:

factors :: Int — [Int]
factors n =
[x | x « [1..n], n 'mod” x == 0]
For example:

> factors 15

[1,3,5,15]

A positive integer is prime if its only factors are 1
and itself. Hence, using factors we can define a
function that decides if a number is prime:

prime :: Int — Bool

prime n = factors n == [1,n]
For example:

> prime 15

False

> prime 7
True

Using a guard we can now define a function that
returns the list of all primes up to a given limit:

primes :: Int — [Int]
primes n = [x | x « [2..n], prime x]
For example:

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

12

Multiple guards

> [(x,y)| x <- [1..10], odd x, y <- [1..x], even (x*y)]

[(3,2),(5,2),(5,4),(7,2),(7,4),(7,6),(9,2),(9,4),(9,6),
(9,8)]

Order matters:

> [(x,y)| odd x, x <- [1..10], y <- [1..x], even (x*y)]

<interactive>:16:15: Not in scope: ‘x’

Local variables

* Local variables can be introduced (also in list
comprehensions) through let bindings

+ E.g.: compute list of all possible products of two
numbers taken from [1,2,3]
[x*y | x <- [1,2,3], yv <- [1,2,3]]
+ If we want to introduce a new variable
[p | x<-1[1,2,3], v <- [1,2,3], let p=x*y]
* Question: can we write instead:
[p | x<-1[1,2,3], v <- [1,2,3], p<-x+y]
* Question: can we write:
[p | x<-11,2,3], y <- [1,2,3], p<-I[x+y]]

14

Esercizio

 Scrivere una funzione pitagorica che,
dato un valore n, fornisce una lista di liste

+ La lista di liste rappresenta una matrice
che contiene la tavola pitagoricafinoa n

* Es:

> pitagorica 5

[f1,2,3,4,51,[2,4,6,8,10],[3,6,9
,12,151,14,8,12,16,20],[5,10,15
,20,25]]

The Zip Function

A useful library function is zip, which maps two
lists to a list of pairs of their corresponding
elements.

|zip :: [a] = [b] — [(a,b)]|

For example:

> zip ['a’,’'b’,’c’] [1,2,3,4]

[("a’,1),('b",2),("c",3)]

16

Using zip we can define a function that returns
the list of all pairs of adjacent elements from a list:

pairs :: [a] & [(a,a)]

pairs xs = zip xs (tail xs)

For example:

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]

Using pairs we can define a function that
decides if the elements in a list are sorted:

sorted :: Ord a = [a] — Bool
sorted xs =
and [x <y | (x,y) < pairs xs]

For example:

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False

18

Using zip we can define a function that returns the
list of all positions of a value in a list:

positions :: Eq a = a — [a] — [Int]
positions x xs =

[1 | (x",1) « zip xs [0..], x == x']

For example:

> positions O [1,0,0,1,0,1,1,0]
[1,2,4,7]

String Comprehensions

A string is a sequence of characters enclosed in
double quotes. Internally, however, strings are
represented as lists of characters.

"abc" :: String‘

[Means ['a@’, ’b’, 'c’] :: [Char].]

20

Because strings are just special kinds of lists, any
polymorphic function that operates on lists can
also be applied to strings. For example:

> length "abcde"
5

> take 3 "abcde"
" abc "

> zip "abe" [1,2,3,4]
[("a’,1),('b",2),("c’,3)]

21

Similarly, list comprehensions can also be used to
define functions on strings, such counting how
many times a character occurs in a string:

count :: Char — String — Int
count x xs =
length [x’ | x’' < xs, x == x']
For example:

> count ’'s’ "Mississippi"
4

22

Quicksort

The quicksort algorithm for sorting a list of values
can be specified by the following two rules:

#The empty list is already sorted;

FNon-empty lists can be sorted by sorting the tail
values < the head, sorting the tail values > the
head, and then appending the resulting lists on
either side of the head value.

23

Using recursion, this specification can be
translated directly into an implementation:

gsort :: 0rd a = [a] — [a]
gsort [] = [1
gsort (x:xs) =

gsort smaller ++ [x] ++ gsort larger

where
smaller = [a | a <« xs, a < x]
larger = [b | b < xs, b > x]

Note:

F This is probably the simplest implementation of
quicksort in any programming language!

24

Exercises

(1) Atriple (x,y,2) of positive integers is called

pythagorean if x2 + y2 = z2. Using a list
comprehension, define a function

|pyths :: Int - [(Int,Int,Int)] |

that maps an integer n to all such triples with
components in [1..n]. For example:

> pyths 5
[(3,4,5),(4,3,5)]

25

(2) Apositive integer is perfect if it equals the sum
of all of its factors, excluding the number itself.
Using a list comprehension, define a function

|perfects :: Int > [Int] ‘

that returns the list of all perfect numbers up to
a given limit. For example:

> perfects 500

[6,28,496]

26

(3) The scalar product of two lists of integers xs

and ys of length n is given by the sum of the
products of the corresponding integers:

n-1
Z(xsi'ysi)
i=0

Using a list comprehension, define a function
that returns the scalar product of two lists.

27

(4) When the great Indian mathematician Srinivasan
Ramanujan was ill in a London hospital, he was
visited by the English mathematician G.H. Hardy.
Trying to find a subject of conversation, Hardy
remarked that he had arrived in a taxi with the
number 1729, a rather boring number it seemed to
him. Not at all, Ramanujan instantly replied, it is
the first number that can be expressed as two
cubes in essentially different ways:

13+ 123 =93 + 103 = 1729.
* Write a function that, given a number n, finds the
list of all the numbers <n having the same
property

28

These slides were adapted from the material of
the book

Graham Hutton, Programmingin Haskell,
Cambridge University Press, 2™ edition, 2016

B

Pro;

ir’l,-\‘ askeﬂ

[jutton
B

