Haskell

List comprehensions

Lists Comprehensions

In Haskell, a similar comprehension notation can be used to construct new <u>lists</u> from old lists.

$$[x^2 \mid x \leftarrow [1..5]]$$

The list [1,4,9,16,25] of all numbers x^2 such that x is an element of the list [1..5].

Set Comprehensions

In mathematics, the <u>comprehension</u> notation can be used to construct new sets from old sets.

$${x^2 \mid x \in \{1...5\}}$$

The set $\{1, 4, 9, 16, 25\}$ of all numbers x^2 such that x is an element of the set $\{1...5\}$.

1

- The expression x ← [1..5] is called a generator, as it states how to generate values for x.
- Comprehensions can have <u>multiple</u> generators, separated by commas. For example:

>
$$[(x,y) | x \leftarrow [1,2,3], y \leftarrow [4,5]]$$

 $[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]$

```
> [ adj ++ " " ++ noun | adj <- ["red","blue","lazy"],
noun <- ["frog","flower"] ]

["red frog","red flower","blue frog","blue
flower","lazy frog","lazy flower"]</pre>
```

• Changing the <u>order</u> of the generators changes the order of the elements in the final list:

>
$$[(x,y) | y \leftarrow [4,5], x \leftarrow [1,2,3]]$$

 $[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]$

 Multiple generators are like <u>nested loops</u>, with later generators as more deeply nested loops whose variables change value more frequently.

.

For example:

x ← [1,2,3] is the last generator, so the value of the x component of each pair changes most frequently.

5

Example

• Another version of length:

6

Dependant Generators

Later generators can <u>depend</u> on the variables that are introduced by earlier generators.

$$[(x,y) \mid x \leftarrow [1..3], y \leftarrow [x..3]]$$

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)] of all pairs of numbers (x,y) such that x,y are elements of the list [1..3] and $y \ge x$.

Using a dependant generator we can define the library function that concatenates a list of lists:

```
concat :: [[a]] \rightarrow [a] concat xss = [x | xs \leftarrow xss, x \leftarrow xs]
```

For example:

```
> concat [[1,2,3],[4,5],[6]]
[1,2,3,4,5,6]
```

Using a guard we can define a function that maps a positive integer to its list of <u>factors</u>:

```
factors :: Int → [Int]
factors n =
    [x | x ← [1..n], n `mod` x == 0]
```

10

For example:

```
> factors 15
[1,3,5,15]
```

Guards

List comprehensions can use <u>guards</u> to restrict the values produced by earlier generators.

```
[x \mid x \leftarrow [1..10], \text{ even } x]
```

The list [2,4,6,8,10] of all numbers x such that x is an element of the list [1..10] and x is even.

9

A positive integer is <u>prime</u> if its only factors are 1 and itself. Hence, using factors we can define a function that decides if a number is prime:

```
prime :: Int → Bool
prime n = factors n == [1,n]
```

For example:

```
> prime 15
False
> prime 7
True
```

Using a guard we can now define a function that returns the list of all primes up to a given limit:

```
primes :: Int \rightarrow [Int]
primes n = [x | x \leftarrow [2..n], prime x]
```

For example:

```
> primes 40
[2,3,5,7,11,13,17,19,23,29,31,37]
```

12

Local variables

- Local variables can be introduced (also in list comprehensions) through let bindings
- E.g.: compute list of all possible products of two numbers taken from [1,2,3]

$$[x*y | x < [1,2,3], y < [1,2,3]]$$

If we want to introduce a new variable

$$[p \mid x \leftarrow [1,2,3], y \leftarrow [1,2,3], let p=x*y]$$

Question: can we write instead:

$$[p \mid x \leftarrow [1,2,3], y \leftarrow [1,2,3], p \leftarrow x+y]$$

Question: can we write:

```
[p \mid x \leftarrow [1,2,3], y \leftarrow [1,2,3], p \leftarrow [x+y]]
```

Multiple guards

```
> [(x,y)| x <- [1..10], odd x, y <- [1..x], even (x*y)]
[(3,2),(5,2),(5,4),(7,2),(7,4),(7,6),(9,2),(9,4),(9,6),
(9,8)]
```

Order matters:

```
> [(x,y)| odd x, x <- [1..10], y <- [1..x], even (x*y)] <interactive>:16:15: Not in scope: 'x'
```

13

Esercizio

- Scrivere una funzione pitagorica che, dato un valore *n*, fornisce una lista di liste
- La lista di liste rappresenta una matrice che contiene la tavola pitagorica fino a n
- Es:

```
> pitagorica 5
[[1,2,3,4,5],[2,4,6,8,10],[3,6,9
,12,15],[4,8,12,16,20],[5,10,15
,20,25]]
```

The Zip Function

A useful library function is <u>zip</u>, which maps two lists to a list of pairs of their corresponding elements.

$$\texttt{zip} :: [a] \rightarrow [b] \rightarrow [(a,b)]$$

For example:

```
> zip ['a','b','c'] [1,2,3,4]
[('a',1),('b',2),('c',3)]
```

16

Using pairs we can define a function that decides if the elements in a list are <u>sorted</u>:

```
sorted :: Ord a ⇒ [a] → Bool
sorted xs =
and [x ≤ y | (x,y) ← pairs xs]
```

For example:

```
> sorted [1,2,3,4]
True
> sorted [1,3,2,4]
False
```

18

Using **zip** we can define a function that returns the list of all <u>pairs</u> of adjacent elements from a list:

```
pairs :: [a] → [(a,a)]
pairs xs = zip xs (tail xs)
```

For example:

```
> pairs [1,2,3,4]
[(1,2),(2,3),(3,4)]
```

17

Using **zip** we can define a function that returns the list of all positions of a value in a list:

```
positions :: Eq a \Rightarrow a \rightarrow [a] \rightarrow [Int]
positions x xs =
[i | (x',i) \leftarrow zip xs [0..], x == x']
```

For example:

```
> positions 0 [1,0,0,1,0,1,1,0]
[1,2,4,7]
```

String Comprehensions

A <u>string</u> is a sequence of characters enclosed in double quotes. Internally, however, strings are represented as lists of characters.

```
"abc" :: String

Means ['a', 'b', 'c'] :: [Char].
```

20

Similarly, list comprehensions can also be used to define functions on strings, such counting how many times a character occurs in a string:

```
count :: Char \rightarrow String \rightarrow Int count x xs =

length [x' | x' \leftarrow xs, x == x']
```

For example:

```
> count 's' "Mississippi"
4
```

Because strings are just special kinds of lists, any polymorphic function that operates on lists can also be applied to strings. For example:

```
> length "abcde"
5
> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]
[('a',1),('b',2),('c',3)]
```

21

Quicksort

The <u>quicksort</u> algorithm for sorting a list of values can be specified by the following two rules:

器The empty list is already sorted;

#Non-empty lists can be sorted by sorting the tail values ≤ the head, sorting the tail values > the head, and then appending the resulting lists on either side of the head value.

Using recursion, this specification can be translated directly into an implementation:

```
\begin{array}{lll} \textbf{qsort} & :: \texttt{Ord } \textbf{a} \Rightarrow [\textbf{a}] \rightarrow [\textbf{a}] \\ \textbf{qsort } [] & = [] \\ \textbf{qsort } (\textbf{x} : \textbf{xs}) = \\ & \texttt{qsort smaller } ++ [\textbf{x}] ++ \texttt{qsort larger} \\ & \texttt{where} \\ & \texttt{smaller } = [\textbf{a} \mid \textbf{a} \leftarrow \textbf{xs}, \ \textbf{a} \leq \textbf{x}] \\ & \texttt{larger } = [\textbf{b} \mid \textbf{b} \leftarrow \textbf{xs}, \ \textbf{b} > \textbf{x}] \end{array}
```

Note:

(2) A positive integer is <u>perfect</u> if it equals the sum of all of its factors, excluding the number itself. Using a list comprehension, define a function

$$\texttt{perfects} \; :: \; \texttt{Int} \; \rightarrow \; \texttt{[Int]}$$

that returns the list of all perfect numbers up to a given limit. For example:

26

Exercises

(1) A triple (x, y, z) of positive integers is called <u>pythagorean</u> if $x^2 + y^2 = z^2$. Using a list comprehension, define a function

that maps an integer n to all such triples with components in [1..n]. For example:

25

(3) The <u>scalar product</u> of two lists of integers *xs* and *ys* of length *n* is given by the sum of the products of the corresponding integers:

$$\sum_{i=0}^{n-1} (xs_i \cdot ys_i)$$

Using a list comprehension, define a function that returns the scalar product of two lists.

(4) When the great Indian mathematician Srinivasan Ramanujan was ill in a London hospital, he was visited by the English mathematician G.H. Hardy. Trying to find a subject of conversation, Hardy remarked that he had arrived in a taxi with the number 1729, a rather boring number it seemed to him. Not at all, Ramanujan instantly replied, it is the first number that can be expressed as two cubes in essentially different ways:

$$1^3 + 12^3 = 9^3 + 10^3 = 1729$$
.

 Write a function that, given a number n, finds the list of all the numbers ≤n having the same property These slides were adapted from the material of the book

Graham Hutton, Programming in Haskell, Cambridge University Press, 2nd edition, 2016

