Haskell — Definire funzioni

Conditional Expressions

As in most programming languages, functions can
be defined using conditional expressions.

abs :: Int —» Int
abs n = if n 2 0 then n else -n

abs takes an integer n and returns n if it
is non-negative and -n otherwise.

Conditional expressions can be nested:

signum :: Int — Int
signum n = if n < 0 then -1 else
if n == 0 then 0 else 1

Note:

In Haskell, conditional expressions must always
have an else branch, which avoids any possible
ambiguity problems with nested conditionals.

Pattern Matching

Many functions have a particularly clear definition
using pattern matching on their arguments.

not :: Bool — Bool
not False = True
not True = False

not maps False to True,
and True to False.

Functions can often be defined in many different
ways using pattern matching. For example

(&&) :: Bool —» Bool — Bool
True && True = True

True && False = False

False && True = False

False && False = False

can be defined more compactly by

True
False

True && True
&&

However, the following definition is more efficient,
because it avoids evaluating the second argument
if the first argument is False:

True && b =D
False && _ False

Note:

The underscore symbol _is a wildcard pattern that
matches any argument value.

Patterns are matched in order. For example, the
following definition always returns False:

False
True

True && True

Patterns may not repeat variables. For example,
the following definition gives an error:

Bi-directional pattern
matchingis called

b & b ‘unification’; it is used in

_ && _ = False Prolog, not in Haskell

Il
o

Numeric patterns

+ Pattern-matching can also be used with
functions with numbers

fact O 1
fact n = n*fact (n-1)

Non-exhaustive patterns

charName 'a' = "Albert"
charName 'b' = "Broseph"
charName 'c' = "Cecil"

* If no pattern matches, an error is raised

ghci> charName 'h'

"*** Exception: Non-exhaustive
patterns in function charName

List Patterns

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons”
that adds an element to the start of a list.

[1,2,3,4]

Means 1:(2:(3:(4:[])))-

Functions on lists can be defined using x:xs patterns.

head :: [a] > a
head (x:_) =x

tail i [a] > [a]
tail (_:xs) = xs

head and tail map any non-empty list to
its first and remaining elements.

Note:

x:xs patterns only match non-empty lists:

> head []
ERROR

x:xs patterns must be parenthesised, because
application has priority over (:). For example,

the following definition gives an error:

head x:_ = x

» The pattern x:y: xs matches all lists
containing at least 2 elements
(= 2 elements)

* The pattern a:b:c: [] matches all lists of
exactly three elements (= 3 elements). It
can also be written as [a,b,c] (syntactic
sugar)

12

Pattern matching on tuples

* Sum of two vectors:

addVectors (x1, yl) (x2, y2) =
(x1 + x2, yl + y2)

+ extract the elements from a 3-tuple
first (x, _,) =x
second (_, vy,) =Yy
third (_, _, 2) =z

Guarded Equations

As an alternative to conditionals, functions can also
be defined using guarded equations.

absn | n20
| otherwise

n>0 =n
n absn = .
-n otherwise = -n

Guards

+ Guards are clean if statements.

+ Justlike with pattern matching, order matters.
* Aguard is introduced by the | symbol.

* And it's followed by a Bool expression.

+ Then followed by the function body

guessMyNumber x
| x > 27 = "Too high!"
| x < 27 = "Too low!"
| otherwise = "Correct!"

Guarded equations can be used to make
definitions involving multiple conditions easier to
read:

signumn | n< 0 = -1
| n == =0

Il
'—l

| otherwise

otherwise is just a fancy word for True

16

Variables

» These are not like your typical Java variables
In Java or C++, you can redefine variables:
x =1;

X = 2;

Mathematically, this makes no sense.
It implies 1=2 Preposterous!

Variables
» Haskell variables are immutable.
* Once defined, they can't change.
* They can be used with the 1et keyword.

slope (x1,yl) (x2,y2) = let dy = y2-yl
dx = x2-x1
in dy/dx

Or with the where keyword.

slope (x1,yl) (x2,y2) = dy/dx
where dy
dx

y2-yl
x2-x1

where

* where bindings can span to multiple
guards

bmiTell weight height
| bmi <= 18.5 = “underweight"

| bmi <= 25.0 = “normal"
| bmi <= 30.0 = “fat"
| otherwise = “whale"

where bmi = weight / height ~ 2

let

* let bindings are expressions themselves

>4 * (leta=9 ina + 1) + 2
42

* They can also be used to introduce
functions in a local scope:

>[let square x = x * x in (square 5, square 3)]
[(25,9)]

20

The Layout Rule

In a sequence of definitions, each definition must
begin in precisely the same column:

a=10 a=10 a=10
b =20 b =20 b =20
c = 30 c = 30 c = 30

v X X

21

The layout rule avoids the need for explicit syntax
to indicate the grouping of definitions.

a=b+c {a=Db +c
where where
b=1 (b =1;
c =2 c = 2}
d=a * 2 d=a* 2}

implicit grouping explicit grouping

Don't use tab. Use spaces ' .

22

Exercises

Fix the syntax errors in the program below,
and test your solution using GHCi.

N = a 'div’ length xs
where
a =10
xs = [1,2,3,4,5]

23

Lambda Expressions

Functions can be constructed without naming the
functions by using lambda expressions.

AX —> X + X

the nameless function that takes a
number x and returns the result x + x.

24

Note:

+ The symbol A is the Greek letter lambda, and is
typed at the keyboard as a backslash \.

+ In mathematics, nameless functions are usually
denoted using the » symbol, as in x » x + x.

* In Haskell, the use of the A symbol for nameless
functions comes from the lambda calculus, the
theory of functions on which Haskell is based.

25

Why Are Lambda's Useful?

Lambda expressions can be used to give a formal
meaning to functions defined using currying.

For example:

|addxy=x+y

means

add = x > (Ay > x + y)

26

Lambda expressions are also useful when defining
functions that return functions as results.

For example:
const ' a—>b > a
const x _ = x

is more naturally defined by

const :: a > (b » a)
const x = A_ — x

27

Lambda expressions can be used to avoid naming
functions that are only referenced once.

For example:

odds n = map £ [0..n-1]
where
fx=x*2 +1

can be simplified to

lodds n = map (Ax — x*2 + 1) [0..n-1]

28

Sections

An operator written between its two arguments can
be converted into a curried function written before
its two arguments by using parentheses.

For example:

> 142
3

> (+) 1 2
3

29

This convention also allows one of the arguments
of the operator to be included in the parentheses.

For example:

> (1+) 2
3

> (+2) 1
3

In general, if ® is an operator then functions of the
form (®), (x®) and (®y) are called sections.

30

Why Are Sections Useful?

Useful functions can sometimes be constructed in
a simple way using sections. For example:

—~
[
+

~

1

successor function

—~

[

~

~
1

reciprocation function

—~

*

N

~
1

doubling function

—~

~

N

~
1

halving function

Exercises
(1) Consider a function safetail that behaves in
the same way as tail, except that safetail

maps the empty list to the empty list, whereas tail
gives an error in this case. Define safetail

using:

(a) a conditional expression;
(b) guarded equations;
(c) pattern matching.

Hint: the library function null:: [a] — Bool
can be used to test if a list is empty.

32

(2) Give three possible definitions for the logical
or operator (| |) using pattern matching.

(3) Redefine (&&) using conditionals rather than
patterns:

33

Exercises

» Write a Caesar Cipher function called
cipher

Prelude> cipher "hello" 13
Iluryybll

+ Suggestion:
—pred and succ can be used to get the
previous and following character

B
These slides were adapted from the material of
the book Pro
Cambridge University Press, 2™ edition, 2016

-

Graham Hutton, Programmingin Haskell, ‘ln askell

/ 4 !

