Haskell

Types and Classes

What is a Type?

Atype is a name for a collection of related values.
For example, in Haskell the basic type

contains the two logical values:

Type Errors

Applying a function to one or more arguments of
the wrong type is called a type error.

> 1 + False > True && 1
ERROR ERROR

1 is a number and False is a logical
value, but + requires two numbers.

False True
> (True && False) || False
False

> 30 < 31

True

> 30 == 31

False

> 30 /= 31 #

True




If then else

« if then else is also a function

‘fact n = if n==0 then 1 else n*fact (n-1)

> 3 * if 2>3 then 5 else 3
9

> 3 * if 2<3 then 5/ gjnceitis a function it
ERROR! must always return a
value!
The else is necessary!

/

Types in Haskell

* If evaluating an expression e would
produce a value of type t, then e has type
t, written

+ Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

+ All type errors are found at compile time, which
makes programs safer and faster by removing
the need for type checks at run time.

* In GHCi, the : type command calculates the
type of an expression, without evaluating it:

> not False
True

> :type not False
not False :: Bool

Basic Types

Haskell has a number of basic types, including:

logical values

single characters

String strings of characters

In fixed-precision integers

Integer

arbitrary-precision integers

Float
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floating-point numbers




Everything has a Type

» Haskell secretly infers that True is a Bool.

Prelude> :type True
True :: Bool

You can also explicitly use a type.

Lists

» The most common data type in Haskell
[©,8, @]

+ elements are comma-separated

« surrounded by square brackets [ ... ]

* anempty listis simply [1]

> [3,1,5,3]
[3,1,5,3]

> ["1list","of","strings"]
["list","of","strings"]

Prelude> 3 :: Int
3
Prelude> 3 :: Double
3.0
List Types
Alist is sequence of values of the same type:
[False,True,False] :: [Bool]
["a’,’b’,"c’,’d’"] :: [Char]

> [1,2 ,3, ng" , "bb" , ncccn]
ERROR!

In general:
[t] is the type of lists with elements of type t.

Note:

+ The type of a list says nothing about its length:

[False, True] :: [Bool]

[False,True,False] :: [Bool]

+ The type of the elements is unrestricted. For
example, we can have lists of lists:

[["a’],['b’,’c’]1] :: [[Char]]




Enumeration

» Startat 1, end at 10

> [1..10]
[11213141516171819110]

 Start at 1, count up by 0.25, end at 2

> [1, 1.25 .. 3.0]
[1.0,1.25,1.5,1.75,2.0]

* Count down
>[10,9..0]
[1019181716151413121110]
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Enumeration

* Also in functions

‘zeroto n = [0..n]‘

> zeroto 6
[0111213141516]

List operators

Concatenation (++)

> [1,2,3] ++ [4,5,6] > (++) [1,2,3] [4,5,6]

[1,2,3,4,5,6] [1,2,3,4,5,6]

Construct (:)

>0 : [1,2,3] > (:) 0 [1,2,3]
[0,1,2,3] [0,1,2,3]

Most Efficient

In fact, a listis formally defined like this

>[1,2,3] == (:) 1 ((:) 2 ((:) 3 1[1))
True

String

A String is just a list of characters.

> llwahooll = ['w', 'a', 'h', 'o',

True

'o']

» So (++) and (:) work on strings too.




Esercizi

» Scrivere una funzione isPositiwve che restituisce True
se tutti gli elementi della lista sono positivi

> isPositive [3,2,4]
True

« Scrivere una funzione elemento che, dati una lista xs e
un intero n, fornisce I'elemento n della lista (partendo da
1) (senza usare !!)

> elemento 2 [3,2,4]

2

« Scrivere una funzione inverti che, data una lista,
fornisce la lista invertita

> inverti “abc”
“cba

”
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True or False?

> mn — []
> 'aV:Ilbcll = ['a', 'b', 'c']
Prelude> 6:"789" == "6789"

Tuple Types

Atuple is a sequence of values of different types:

(False, True) :: (Bool,Bool)
(False,’a’ ,True) :: (Bool,Char,Bool)
In general:

(t;,L,...,t,) is the type of n-tuples whose i-th
components have type ¢, foranyiin 1...n.
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Note:

+ The type of a tuple encodes its size:

(False, True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

+ The type of the components is unrestricted:

("a’, (False,’b’)) :: (Char, (Bool,Char))

(True,['a’,’'b']) :: (Bool, [Char])




Accessing Tuple Elements

fst retrieves the first element

Prelude> fst (1,2)
1

Only for

2-tuples!
Work only

snd retrieves the second element | for tuples of

Prelude> snd (1,2)
2

exactly 2

elements
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Function Types

A function is a mapping from values of one type
to values of another type:

not :: Bool — Bool
even :: Int — Bool
In general:

tl - t2 isthe type of functions that map
values of type t1 to values to type t2.
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Function types

Prelude> head [1,2,3,4]
1

Prelude> :type head
head :: [a] -> a

head has
the type
List of a's
to just a

Prelude> fst ("left", "right")
"left"

Prelude> :type fst
fst :: (a, b) -> a

fst has
the type
tuple of a
and b to
just a
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Note:

The arrow — is typed at the keyboard as ->.

The argument and result types are unrestricted.
For example, functions with multiple arguments
or results are possible using lists or tuples:

add :: (Int,Int) -> Int
add (x,y) = xty

zeroto :: Int -> [Int]
zeroto n = [0..n]
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Esercizio

+ Dire quali sono i tipi delle seguenti
funzioni:
‘fac n = product [1..n]‘

(&&)

Prelude> 0:[1,2, 3]
[0,1,2,3]

Prelude> :type (:)
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Curried Functions

Functions with multiple arguments are also possible
by returning functions as results:

add’ :: Int > (Int — Int)
add’ x y = x+y

add’ takes an integer x and returns a
function add’” x. In turn, this function
takes an integer y and returns the result
xX+y. P

Note:

add and add’ produce the same final result, but
add takes its two arguments at the same time,
whereas add’ takes them one at a time:

add :: (Int,Int) — Int

add’ :: Int —» (Int — Int)

Functions that take their arguments
one at a time are called curried
functions, celebrating the work of
H.B. Curry on such functions.

Functions with more than two arguments can be
curried by returning nested functions:

mult :: Int > (Int > (Int —» Int))

mult x y z = x*y*z

mult takes an integer x and returns a function
mult x, which in turn takes an integer y and
returns a function mult x y, which finally takes an
integer z and returns the result x*y*z.

28




Why is Currying Useful?

Curried functions are more flexible than functions
on tuples, because useful functions can often be
made by partially applying a curried function.

For example:

add’ 1 :: Int —» Int
take 5 :: [Int] — [Int]

drop 5 :: [Int] — [Int]
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Currying Conventions

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

» The arrow — associates to the right.

|Int > Int > Int - Int |

[ Means Int > (Int - (Int - Int)). |

As a consequence, it is then natural for function
application to associate to the left.

Means ((mult x) y) =z ]

Unless tupling is explicitly required, all functions in
Haskell are normally defined in curried form.
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Exercise
+ Write the function gravity that, given a mass
m,, a distance d, and a mass m,, computes the
gravitational force ‘ G=6.7 10" mlkgls’

* Write the function earthGravity that, given a
mass and a distance, computes the gravitational
force of the Earth on the mass

‘Earth mass = 5.96 10* kg ‘

* Write a function earthGravitySurface that

computes the weight of a mass on the surface of
the Earth

‘Earth radius = 6.37 10°m ‘
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Exercise

* Function logBase b x computes the
logarithm in base b of x

» Write function 1og2 that computes the
logarithm in base 2 of a number
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Polymorphic Functions

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables.

|length :: [a]l —» Int‘

For any type a, length takes a list of
values of type a and returns an integer.
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Note:

Type variables can be instantiated to different
types in different circumstances:

> length [False,True]
2

a = Bool

4

> length [1,2,3,4]

Type variables must begin with a lower-case letter,
and are usually named a, b, c,etc.
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Many of the functions defined in the standard
prelude are polymorphic. For example:

fst :: (a,b) > a

head :: [a] — a

take :: Int —» [a] — [a]
zip :: [a] — [b] — [(a,b)]
id 1 a > a

36




Overloaded Functions

A polymorphic function is called overloaded if its
type contains one or more class constraints.

‘(+) ::Numa:a—>a—>a‘

For any numeric type a, (+) takes two
values of type a and returns a value of type
a.
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Note:

Constrained type variables can be instantiated to
any types that satisfy the constraints:

S
3

>1.0 + 2.0
3.0

>'a’ + b’ Char is not a
ERROR numeric type
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Haskell has a number of type classes, including:

@ - Numeric types
- Equality types
- Ordered types

For example:
(+) :: Numa =>a »>a—> a
(==) :: Egqa = a > a — Bool
(<) :: 0rd a > a > a — Bool
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Hints and Tips

* When defining a new function in Haskell, it is
useful to begin by writing down its type;

« Within a script, it is good practice to state the
type of every new function defined,;

* When stating the types of polymorphic
functions that use numbers, equality or
orderings, take care to include the necessary
class constraints.
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Exercises

(1) What are the types of the following values?

["a’,’b’,'c’]
("a’,'b’,’c’")
[ (False,’0’), (True,’1’)]
([False,True],[’0’,'1"])

[tail,init,reverse]
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(2) What are the types of the following functions?

second xs = head (tail xs)
swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse Xs == XS
twice £ x = £ (f x)

(3) Check your answers using GHCi.

42

These slides were adapted from the material of
the book

Graham Hutton, Programmingin Haskell,
Cambridge University Press, 2™ edition, 2016
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