Haskell

Types and Classes

What is a Type?

Atype is a name for a collection of related values.
For example, in Haskell the basic type

contains the two logical values:

Type Errors

Applying a function to one or more arguments of
the wrong type is called a type error.

> 1 + False > True && 1
ERROR ERROR

1 is a number and False is a logical
value, but + requires two numbers.

False True
> (True && False) || False
False

> 30 < 31

True

> 30 == 31

False

> 30 /= 31 #

True

If then else

« if then else is also a function

‘fact n = if n==0 then 1 else n*fact (n-1)

> 3 * if 2>3 then 5 else 3
9

> 3 * if 2<3 then 5/ gjnceitis a function it
ERROR! must always return a
value!
The else is necessary!

/

Types in Haskell

* If evaluating an expression e would
produce a value of type t, then e has type
t, written

+ Every well formed expression has a type, which
can be automatically calculated at compile time
using a process called type inference.

+ All type errors are found at compile time, which
makes programs safer and faster by removing
the need for type checks at run time.

* In GHCi, the : type command calculates the
type of an expression, without evaluating it:

> not False
True

> :type not False
not False :: Bool

Basic Types

Haskell has a number of basic types, including:

logical values

single characters

String strings of characters

In fixed-precision integers

Integer

arbitrary-precision integers

Float

Q w

=2 (o]
ct [(o]

H =
1

floating-point numbers

Everything has a Type

» Haskell secretly infers that True is a Bool.

Prelude> :type True
True :: Bool

You can also explicitly use a type.

Lists

» The most common data type in Haskell
[©,8, @]

+ elements are comma-separated

« surrounded by square brackets [...]

* anempty listis simply [1]

> [3,1,5,3]
[3,1,5,3]

> ["1list","of","strings"]
["list","of","strings"]

Prelude> 3 :: Int
3
Prelude> 3 :: Double
3.0
List Types
Alist is sequence of values of the same type:
[False,True,False] :: [Bool]
["a’,’b’,"c’,’d’"] :: [Char]

> [1,2 ,3, ng" , "bb" , ncccn]
ERROR!

In general:
[t] is the type of lists with elements of type t.

Note:

+ The type of a list says nothing about its length:

[False, True] :: [Bool]

[False,True,False] :: [Bool]

+ The type of the elements is unrestricted. For
example, we can have lists of lists:

[["a’],['b’,’c’]1] :: [[Char]]

Enumeration

» Startat 1, end at 10

> [1..10]
[11213141516171819110]

 Start at 1, count up by 0.25, end at 2

> [1, 1.25 .. 3.0]
[1.0,1.25,1.5,1.75,2.0]

* Count down
>[10,9..0]
[1019181716151413121110]

12

Enumeration

* Also in functions

‘zeroto n = [0..n]‘

> zeroto 6
[0111213141516]

List operators

Concatenation (++)

> [1,2,3] ++ [4,5,6] > (++) [1,2,3] [4,5,6]

[1,2,3,4,5,6] [1,2,3,4,5,6]

Construct (:)

>0 : [1,2,3] > (:) 0 [1,2,3]
[0,1,2,3] [0,1,2,3]

Most Efficient

In fact, a listis formally defined like this

>[1,2,3] == (:) 1 ((:) 2 ((:) 3 1[1))
True

String

A String is just a list of characters.

> llwahooll = ['w', 'a', 'h', 'o',

True

'o']

» So (++) and (:) work on strings too.

Esercizi

» Scrivere una funzione isPositiwve che restituisce True
se tutti gli elementi della lista sono positivi

> isPositive [3,2,4]
True

« Scrivere una funzione elemento che, dati una lista xs e
un intero n, fornisce I'elemento n della lista (partendo da
1) (senza usare !!)

> elemento 2 [3,2,4]

2

« Scrivere una funzione inverti che, data una lista,
fornisce la lista invertita

> inverti “abc”
“cba

”

16

True or False?

> mn — []
> 'aV:Ilbcll = ['a', 'b', 'c']
Prelude> 6:"789" == "6789"

Tuple Types

Atuple is a sequence of values of different types:

(False, True) :: (Bool,Bool)
(False,’a’ ,True) :: (Bool,Char,Bool)
In general:

(t;,L,...,t,) is the type of n-tuples whose i-th
components have type ¢, foranyiin 1...n.

18

Note:

+ The type of a tuple encodes its size:

(False, True) :: (Bool,Bool)

(False,True,False) :: (Bool,Bool,Bool)

+ The type of the components is unrestricted:

("a’, (False,’b’)) :: (Char, (Bool,Char))

(True,['a’,’'b']) :: (Bool, [Char])

Accessing Tuple Elements

fst retrieves the first element

Prelude> fst (1,2)
1

Only for

2-tuples!
Work only

snd retrieves the second element | for tuples of

Prelude> snd (1,2)
2

exactly 2

elements

20

Function Types

A function is a mapping from values of one type
to values of another type:

not :: Bool — Bool
even :: Int — Bool
In general:

tl - t2 isthe type of functions that map
values of type t1 to values to type t2.

21

Function types

Prelude> head [1,2,3,4]
1

Prelude> :type head
head :: [a] -> a

head has
the type
List of a's
to just a

Prelude> fst ("left", "right")
"left"

Prelude> :type fst
fst :: (a, b) -> a

fst has
the type
tuple of a
and b to
just a

22

Note:

The arrow — is typed at the keyboard as ->.

The argument and result types are unrestricted.
For example, functions with multiple arguments
or results are possible using lists or tuples:

add :: (Int,Int) -> Int
add (x,y) = xty

zeroto :: Int -> [Int]
zeroto n = [0..n]

23

Esercizio

+ Dire quali sono i tipi delle seguenti
funzioni:
‘fac n = product [1..n]‘

(&&)

Prelude> 0:[1,2, 3]
[0,1,2,3]

Prelude> :type (:)

24

Curried Functions

Functions with multiple arguments are also possible
by returning functions as results:

add’ :: Int > (Int — Int)
add’ x y = x+y

add’ takes an integer x and returns a
function add’” x. In turn, this function
takes an integer y and returns the result
xX+y. P

Note:

add and add’ produce the same final result, but
add takes its two arguments at the same time,
whereas add’ takes them one at a time:

add :: (Int,Int) — Int

add’ :: Int —» (Int — Int)

Functions that take their arguments
one at a time are called curried
functions, celebrating the work of
H.B. Curry on such functions.

Functions with more than two arguments can be
curried by returning nested functions:

mult :: Int > (Int > (Int —» Int))

mult x y z = x*y*z

mult takes an integer x and returns a function
mult x, which in turn takes an integer y and
returns a function mult x y, which finally takes an
integer z and returns the result x*y*z.

28

Why is Currying Useful?

Curried functions are more flexible than functions
on tuples, because useful functions can often be
made by partially applying a curried function.

For example:

add’ 1 :: Int —» Int
take 5 :: [Int] — [Int]

drop 5 :: [Int] — [Int]

29

Currying Conventions

To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

» The arrow — associates to the right.

|Int > Int > Int - Int |

[Means Int > (Int - (Int - Int)). |

As a consequence, it is then natural for function
application to associate to the left.

Means ((mult x) y) =z]

Unless tupling is explicitly required, all functions in
Haskell are normally defined in curried form.

31

Exercise
+ Write the function gravity that, given a mass
m,, a distance d, and a mass m,, computes the
gravitational force ‘ G=6.7 10" mlkgls’

* Write the function earthGravity that, given a
mass and a distance, computes the gravitational
force of the Earth on the mass

‘Earth mass = 5.96 10* kg ‘

* Write a function earthGravitySurface that

computes the weight of a mass on the surface of
the Earth

‘Earth radius = 6.37 10°m ‘

32

Exercise

* Function logBase b x computes the
logarithm in base b of x

» Write function 1og2 that computes the
logarithm in base 2 of a number

33

Polymorphic Functions

A function is called polymorphic (“of many forms”)
if its type contains one or more type variables.

|length :: [a]l —» Int‘

For any type a, length takes a list of
values of type a and returns an integer.

34

Note:

Type variables can be instantiated to different
types in different circumstances:

> length [False,True]
2

a = Bool

4

> length [1,2,3,4]

Type variables must begin with a lower-case letter,
and are usually named a, b, c,etc.

35

Many of the functions defined in the standard
prelude are polymorphic. For example:

fst :: (a,b) > a

head :: [a] — a

take :: Int —» [a] — [a]
zip :: [a] — [b] — [(a,b)]
id 1 a > a

36

Overloaded Functions

A polymorphic function is called overloaded if its
type contains one or more class constraints.

‘(+) ::Numa:a—>a—>a‘

For any numeric type a, (+) takes two
values of type a and returns a value of type
a.

37

Note:

Constrained type variables can be instantiated to
any types that satisfy the constraints:

S
3

>1.0 + 2.0
3.0

>'a’ + b’ Char is not a
ERROR numeric type

38

Haskell has a number of type classes, including:

@ - Numeric types
- Equality types
- Ordered types

For example:
(+) :: Numa =>a »>a—> a
(==) :: Egqa = a > a — Bool
(<) :: 0rd a > a > a — Bool

39

Hints and Tips

* When defining a new function in Haskell, it is
useful to begin by writing down its type;

« Within a script, it is good practice to state the
type of every new function defined,;

* When stating the types of polymorphic
functions that use numbers, equality or
orderings, take care to include the necessary
class constraints.

40

10

Exercises

(1) What are the types of the following values?

["a’,’b’,'c’]
("a’,'b’,’c’")
[(False,’0’), (True,’1’)]
([False,True],[’0’,'1"])

[tail,init,reverse]

41

(2) What are the types of the following functions?

second xs = head (tail xs)
swap (x,y) = (y,x)

pair x y = (x,y)

double x = x*2

palindrome xs = reverse Xs == XS
twice £ x = £ (f x)

(3) Check your answers using GHCi.

42

These slides were adapted from the material of
the book

Graham Hutton, Programmingin Haskell,
Cambridge University Press, 2™ edition, 2016

43

11

