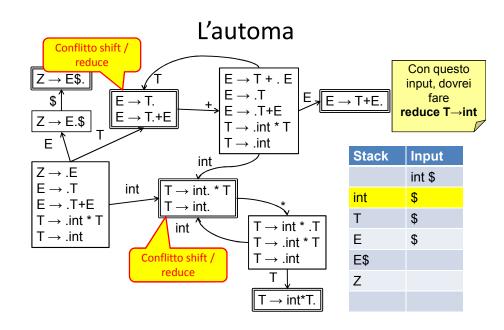
Dipartimento di Ingegneria Corso di laurea magistrale "Ingegneria Informatica e dell'Automazione"

Riconoscitori LR(1)

Linguaggi e traduttori A.A. 2017/18 Prof. Marco Gavanelli



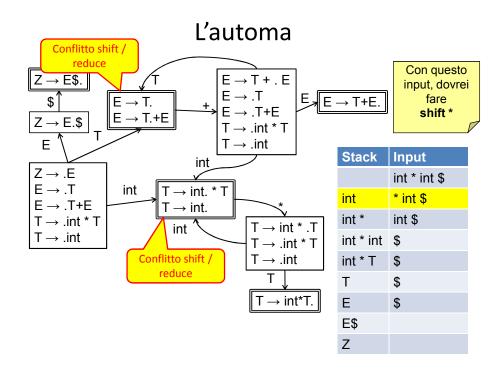
Esercizio

• Si scriva l'automa LR(0) per la grammatica:

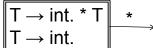
$$E \rightarrow T + E \mid T$$

 $T \rightarrow int * T \mid int$

- Ci sono dei conflitti?
- Si mostri il comportamento dell'automa con input
 - int
 - int * int



Conflitti



- Se c'è uno stato finale (di riduzione) che ha degli archi uscenti etichettati con un simbolo terminale, non sappiamo scegliere se fare shift o reduce. Si dice che c'è un conflitto shift/reduce. Questo avviene se in uno stato ci sono un item di riduzione e uno di shift:
 - $-X \rightarrow \alpha$. e $Y \rightarrow \beta.t\omega$
- Si ha un conflitto reduce/reduce se in uno stato ci sono due diversi item reduce:
 - $-X \rightarrow \alpha$. e $Y \rightarrow \beta$.
- Se ci sono conflitti, la grammatica non è LR(0).
- Un parser LR(0) non utilizza l'input per decidere quale mossa fare: usa solo lo stack
- Per migliorare il parser, si può cercare di distinguere in base al prossimo simbolo di input: analisi LR(1)

CONTESTI LR(k) e AUTOMA CARATTERISTICO

In linea di principio, si procede come nel caso LR(0):

- si calcolano le espressioni regolari per i contesti LR(k)
- e si usano per costruire l'automa caratteristico.

Tuttavia tale approccio, già non banale nel caso k=0, diviene ancora più lungo e complesso quando k>0.

- Una grammatica G con n metasimboli e t terminali comporta una grammatica dei contesti sinistri LR(k) avente potenzialmente (n-1)tk+1 metasimboli: nel caso LR(0) sarebbero stati al più n.
- Per un tipico linguaggio con 50–100 terminali, ciò significa una grammatica dei contesti sinistri LR(1) 50-100 volte più grande del caso LR(0): praticamente intrattabile.
- Per questo, l'approccio LR(1) "completo" è spesso sostituito da versioni semplificate, più trattabili.

ANALISI LR(1)

La maggior parte dei linguaggi di interesse è descrivibile con grammatiche LR(1), che richiedono

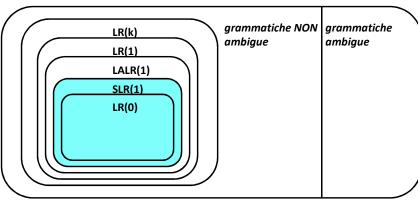
- i contesti LR(0)
- · il simbolo successivo

per "guidare a colpo sicuro" il processo di riduzione, risolvendo i conflitti.

In generale, l'analisi di una grammatica LR(k) si basa su un algoritmo analogo a quello del caso LR(0), <u>tranne</u> per il fatto che *tutte le riduzioni sono ritardate di k simboli.*

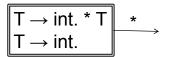
Le definizioni di <u>contesto</u> e <u>contesto sinistro</u> si estendono analogamente al caso K>0, come pure il procedimento operativo, che diventa però assai più complesso sia computazionalmente, sia strutturalmente, per l'elevato numero di configurazioni di cui occorre tenere conto.

Simple LR(1) o SLR(1)



Grammatiche di tipo 2 (context free)

Conflitti



- Conflitto shift/reduce: in uno stato ci sono un item di riduzione e uno di shift:
 - $-X \rightarrow \alpha$. e
 - e $Y \rightarrow \beta.t\omega$
- Conflitto reduce/reduce: in uno stato ci sono due diversi item reduce:
 - $-X \rightarrow \alpha$.
- e
- $Y \rightarrow \beta$.
- Per migliorare il parser, si può cercare di distinguere in base al prossimo simbolo di input
 - Chiaramente, lo shift viene scelto se il prossimo simbolo è quello indicato sull'arco
 - In quali casi si applica reduce?

LR(0) parsing

- Se
 - lo stack contiene $\alpha\beta$
 - il prossimo input è t
 - l'automa con input αβ termina nello stato s
- riduci con $X \rightarrow \beta$ se
 - s contiene l'item X \rightarrow β.
- effettua uno shift se
 - s contiene l'item $X \rightarrow \beta.t\omega$

SLR(1) parsing

stack | input • Se

 $\alpha\beta|tx$

 $X \rightarrow \beta$.

 $X \rightarrow \beta.t\omega$

- lo stack contiene $\alpha\beta$
- il prossimo input è t
- l'automa con input $\alpha\beta$ termina nello stato s
- riduci con $X \rightarrow \beta$ se
 - s contiene l'item X \rightarrow β.
 - t ∈FOLLOW(X)
- effettua uno shift se
 - s contiene l'item $X \rightarrow \beta.tω$

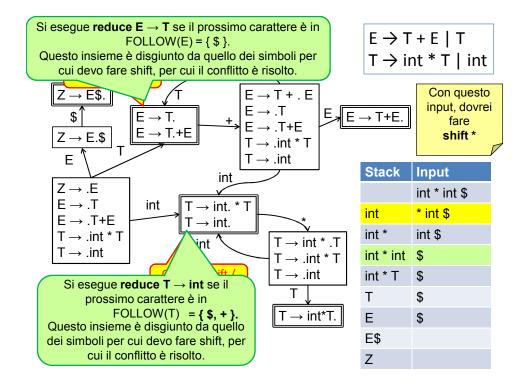
Simple LR(1)

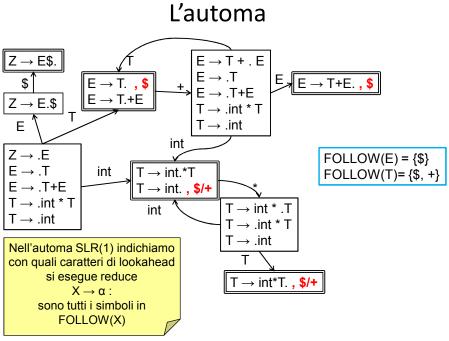
- Idea semplice per decidere quando applicare reduce basandosi sul simbolo successivo in input:
- Se faccio una reduce con una regola $A \rightarrow \alpha$, significa che da una situazione

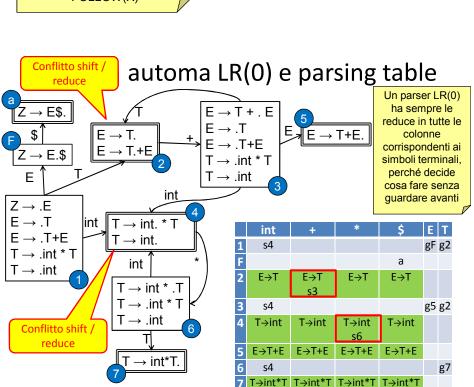
$$\beta \alpha \mid xwzy$$

passo a

 Questo significa che il primo simbolo x nell'input deve seguire il nonterminale A, ovvero deve appartenere al FOLLOW(A)







Conflitti e SLR(1)

- Se con l'algoritmo precedente non ci sono conflitti, allora la grammatica è SLR(1).
- Altrimenti, se c'è almeno uno stato che contiene:
 - $X \rightarrow \alpha.y\omega$ (ovvero, si può fare shift y)
 - $Y \rightarrow \alpha$. (ovvero, uno stato di riduzione)
 - $y \in FOLLOW(Y)$

allora c'è un conflitto shift-reduce e la grammatica non è SLR(1).

- Se c'è almeno uno stato che contiene
 - $-X \rightarrow \alpha$.
 - $-\ Y\to \beta.$
 - FOLLOW(X) \cap FOLLOW(Y) $\neq \emptyset$

allora c'è un conflitto reduce-reduce e la grammatica non è SLR(1).

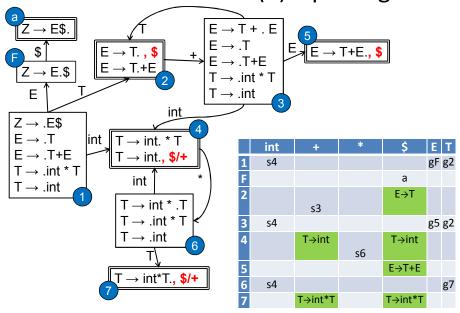
automa SLR(1) e parsing table

 $X \rightarrow \alpha.y\omega$

 $Y \rightarrow \alpha$., y

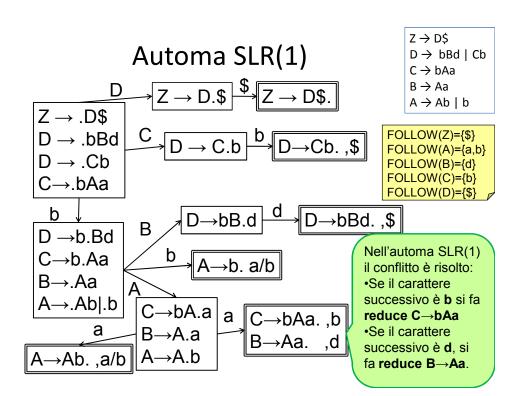
 $X \rightarrow \alpha$., y

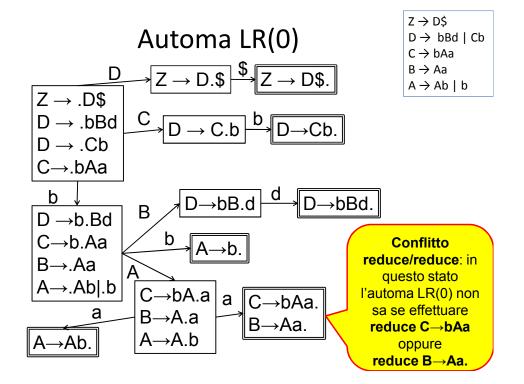
 $Y \rightarrow \beta$., y



Esempio

- Sia data la grammatica
 - $D \rightarrow bBd \mid Cb$
 - $C \rightarrow bAa$
 - $B \rightarrow Aa$
 - $A \rightarrow Ab \mid b$
- Si scriva l'automa LR(0) e si mostrino eventuali conflitti.
- Passando a SLR(1) i conflitti vengono risolti?





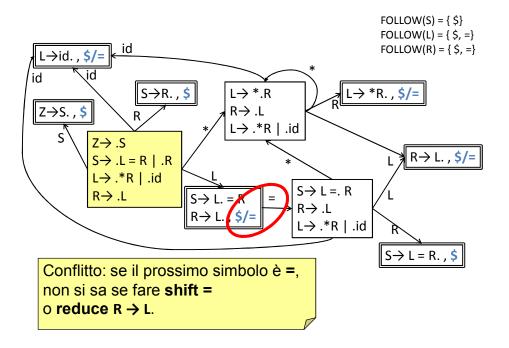
Esempio

• Sia data la grammatica:

$$S \rightarrow L = R \mid R$$

 $L \rightarrow *R \mid id$
 $R \rightarrow L$

 Si scriva l'automa SLR(1) e si indichino eventuali conflitti



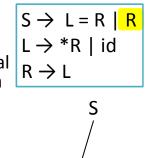
Ragionando sulla grammatica ...

 Nel linguaggio generato dalla grammatica, il simbolo = può comparire 0 o 1 volta.

 La riduzione R → L significa che, al livello superiore, si può arrivare a S in due modi

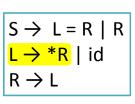
• Modo 1: riducendo S → R

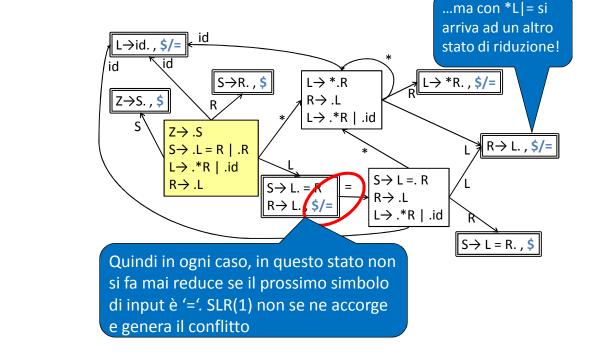
In questo caso, l'= non compare.
 Ma allora perché fare
 reduce R → L in corrispondenza del simbolo = ?

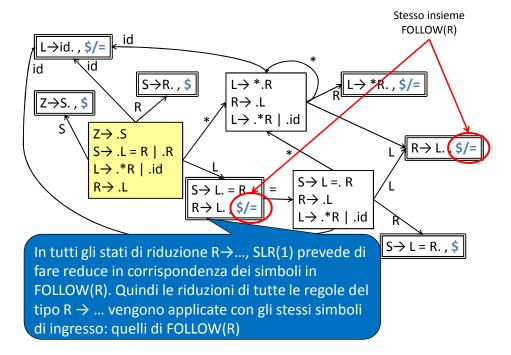


- Nel linguaggio generato dalla grammatica, il simbolo = può comparire 0 o 1 volta.
- La riduzione R → L significa che, al livello superiore, si può arrivare a S in due modi
- Modo 2: con un primo passaggio di reduce L → *R
- In questo caso, prima ci deve essere stato un *, ma allora sarei arrivato in un altro stato!

Qui la forma di frase comincia con *L|= ...



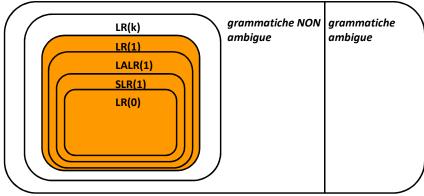




LR(1)

- SLR(1) prescrive di fare reduce X→α se il prossimo simbolo di input è nel FOLLOW(X).
 Quindi le riduzioni per regole X → ... sono tutte applicate con lo stesso insieme FOLLOW(X)
- SLR(1) è una semplificazione di LR(1)
 - Quindi le grammatiche SLR(1) sono un sottoinsieme delle grammatiche LR(1)
- Invece di indicare (come in SLR(1)) solo negli item di riduzione quali sono i simboli successivi (A → α., x)
- in LR(1) si indica in tutti gli item (anche quelli non di riduzione) quali saranno i simboli successivi (A → α.β, x)

Canonical LR(1) o LR(1)



Grammatiche di tipo 2 (context free)

LR(1): procedimento operativo

- Invece di indicare (come in SLR(1)) solo negli item di riduzione quali sono i simboli successivi accettabili per quella regola $(A \rightarrow \alpha., x)$
- si indica in tutti gli item (anche quelli non di riduzione) quali saranno i simboli successivi
 (A → α.β, x)

Α

αβχ

- Un item RL(1) è quindi costituito da
 - un item LR(0) $A \rightarrow \alpha \cdot \beta$
 - un simbolo \mathbf{x} , che rappresenta il simbolo che può seguire \mathbf{A} e $\mathbf{\alpha}\mathbf{\beta}$ in una derivazione canonica destra
- In generale, un item RL(k) è costituito da
 - un item LR(0)
 - una sequenza di k simboli, che rappresenta una sequenza di simboli che può seguire \mathbf{A} e $\alpha \mathbf{\beta}$ in una derivazione canonica destra

Item RL(1)

• Un item RL(1)

$$A \rightarrow \alpha.\beta$$
, a

 rappresenta il fatto che è possibile avere una derivazione canonica destra:

$$S \rightarrow^* \delta Aw \rightarrow \delta \alpha \beta w$$

in cui il primo carattere di w è a
 (a potrebbe anche essere il terminatore \$)

Automa RL(1)

Per costruire l'automa RL(1), si procede aggiungendo stati all'automa in maniera analoga al caso RL(0) (la differenza principale è nella costruzione degli stati, come visto prima)

- si parte dallo stato iniziale (costruito con la chiusura a partire dall'item [Z → .\$\$, ?]),
- per ogni stato I che contiene un item

$$[A\rightarrow\alpha.X\beta,a]$$

 $A \rightarrow \alpha.XB$. a

 $C \rightarrow \alpha.X\gamma$, b

 $C \rightarrow \alpha X. \gamma$, b

dove ${\bf X}$ può essere un terminale o un nonterminale

- Si aggiunge un arco etichettato con X verso un altro stato J.
- Per ogni item in *I* del tipo:

$$[A \rightarrow \alpha.X\beta, a]$$

lo stato J contiene l'item

[
$$A \rightarrow \alpha X.\beta$$
, a]

e vi si applica quindi la chiusura

Stati RL(1)

• Uno stato RL(1) è costituito da un insieme di item RL(1).

 $A \rightarrow \alpha.B\beta$, a $B \rightarrow .\gamma$, b

Per costruire lo stato *s* si effettua la seguente operazione di **chiusura**:

per ogni item [
$$A \rightarrow \alpha.B\beta$$
 , a] in s per ogni produzione $B \rightarrow \gamma$ in G' per ogni terminale b in FIRST(β a) aggiungi [$B \rightarrow . \gamma$, b] ad s

Le parti in nero sono uguali anche per la costruzione degli stati LR(0) Le parti in azzurro sono specifiche per LR(1)

G' è la grammatica aumentata con la produzione $Z \rightarrow S$ \$

PROCEDIMENTO OPERATIVO

Per <u>adattare il procedimento operativo</u>, in ogni stato si dovrà ora tenere conto anche del simbolo successivo (lookahead symbol)

NOTAZIONE: in ogni stato, si specifica anche il simbolo successivo che rende valida l'azione.

Solitamente, si adotta anche un *simbolo jolly* (? o *) per denotare il caso "ANYTHING".

$Z \rightarrow .S$$ $S \rightarrow .aSAB$ $S \rightarrow .BA$ $B \rightarrow .b$?
S o .aSAB	а
S o .BA	a,=
B o .b	\$

La costruzione degli stati diventa più complessa del caso LR(0), perché ora, a ogni passaggio, bisogna anche computare *il nuovo insieme di caratteri di lookahead*, svolgendo in pratica passo per passo le stesse elaborazioni che portano alla costruzione dei contesti LR(1).

Lo vediamo direttamente sull'esempio.

PROCEDIMENTO OPERATIVO (1/9)

Si consideri la seguente grammatica:

 $Z \rightarrow S$ \$ $S \rightarrow CbBA$ $A \rightarrow ab \mid Aab$ $B \rightarrow C \mid Db$ $C \rightarrow a$ $D \rightarrow a$

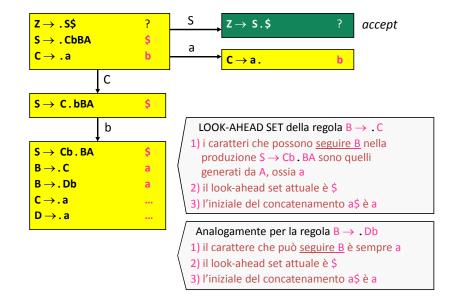
Si parte come sempre dalla regola di top-level: lì <u>per ipotesi</u> il set di caratteri di look-ahead è *ANYTHING*, in quanto in realtà non si andrà mai oltre il terminatore \$.

Si mette poi in gioco la regola $S \rightarrow .CbBA$

Come si calcola il suo lookahead set?

Inoltre, poiché dopo il cursore c'è \mathbb{C} , occorre mettere in gioco anche la produzione $\mathbb{C} \to \mathbb{A}$ a e anche qui c'è da calcolare il lookahead set.

PROCEDIMENTO OPERATIVO (3/9)



PROCEDIMENTO OPERATIVO (2/9)

Si consideri la seguente grammatica: $Z \to S \$ \qquad S \to CbBA \qquad A \to ab \mid Aab \\ B \to C \mid Db \qquad C \to a \qquad D \to a$

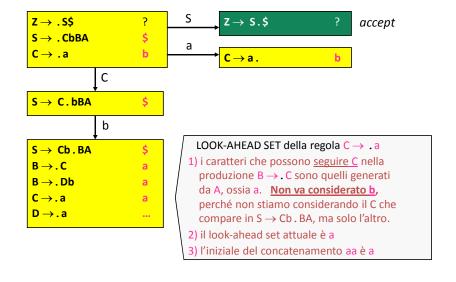
CALCOLO DEL LOOK-AHEAD SET della produzione S → . CbBA

- 1) si guarda quali caratteri possono seguire S nella produzione di livello superiore qui usata, che è Z \rightarrow S\$; il solo possibile è \$
- 2) si concatena con il look-ahead set attuale, ottenendo \$?
- 3) si prende <u>l'iniziale</u> della stringa appena ottenuta: quindi, \$

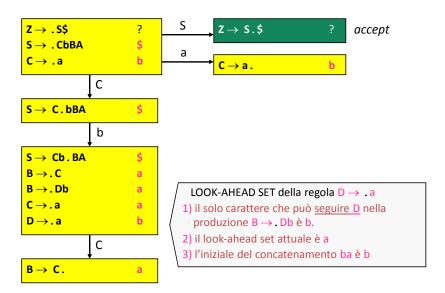
CALCOLO DEL LOOK-AHEAD SET della produzione C ightarrow .a

- 1) si guarda quali caratteri possono <u>seguire C</u> nella produzione di livello superiore qui usata, che è S → . CbBA : qui, il solo possibile è b
- 2) si concatena con il look-ahead set attuale (\$), ottenendo b\$
- 3) si prende l'iniziale, che è b

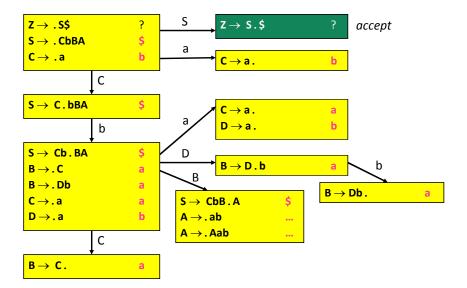
PROCEDIMENTO OPERATIVO (4/9)



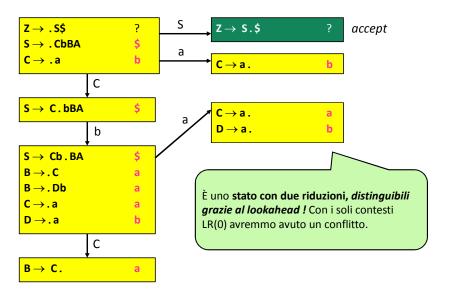
PROCEDIMENTO OPERATIVO (5/9)



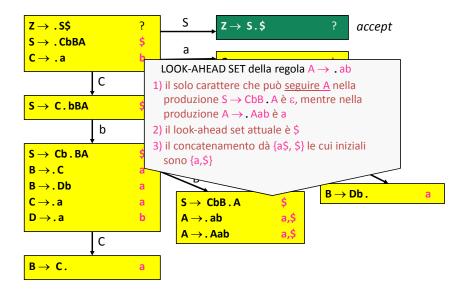
PROCEDIMENTO OPERATIVO (7/9)



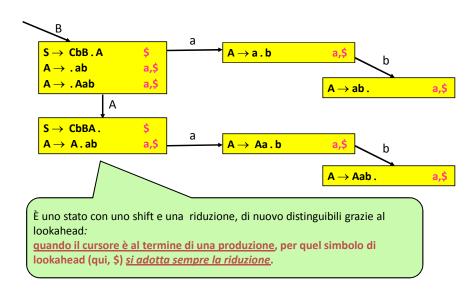
PROCEDIMENTO OPERATIVO (6/9)

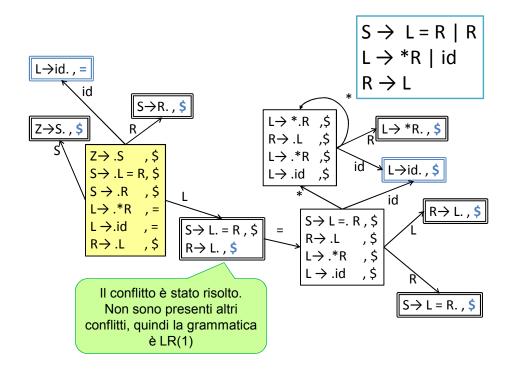


PROCEDIMENTO OPERATIVO (8/9)



PROCEDIMENTO OPERATIVO (9/9)





Riprendendo la grammatica

Riprendiamo ora la grammatica lasciata in sospeso:

$$S \rightarrow L = R \mid R$$

 $L \rightarrow *R \mid id$
 $R \rightarrow L$

• e costruiamo l'automa LR(1)

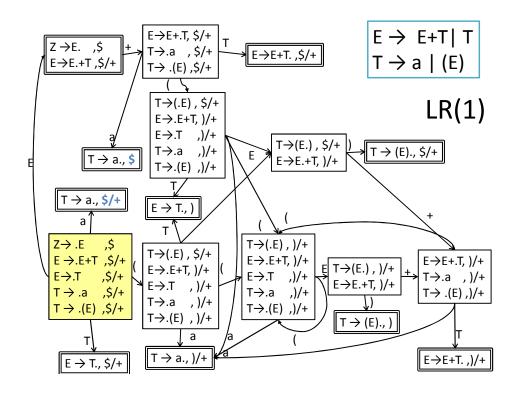
Grammatica delle espressioni

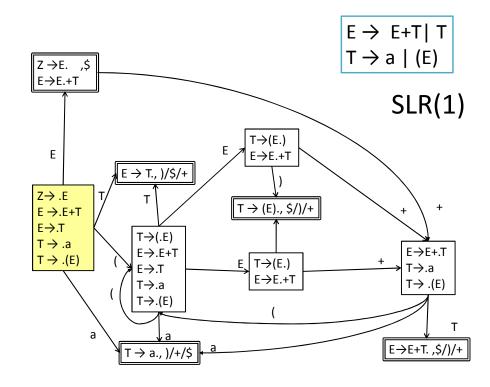
 Consideriamo ora un sottoinsieme della grammatica delle espressioni:

$$E \rightarrow E+T \mid T$$

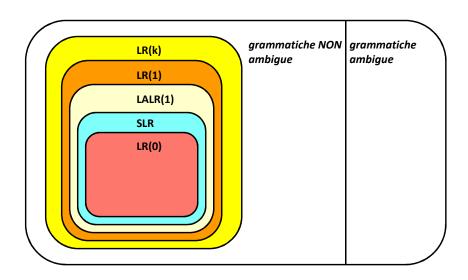
T \rightarrow a \rightarrow (E)

• Mostriamo gli automi LR(1) e SLR(1).

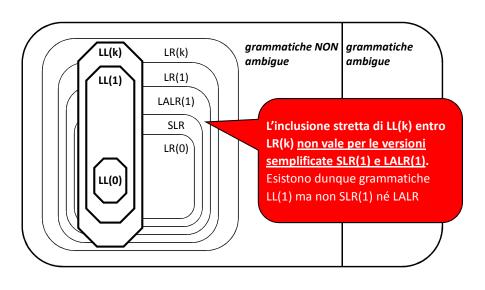




PARSING LR: RIEPILOGO (1/4)



PARSING LR: RIEPILOGO (2/4)



PARSING LR: RIEPILOGO (3/4)

RISULTATI "NEGATIVI"

• Esistono grammatiche LR(1) che però <u>non sono SLR(k) per</u> nessun valore di k. Un esempio è la nota grammatica:

• Esistono grammatiche LL(1) che però non sono SLR(1). Un esempio è dato dalla grammatica:

$${\bf Z} \rightarrow {\bf S}$$
 ${\bf S} \rightarrow {\bf AaAb}$ | BbBa
$${\bf A} \rightarrow \epsilon$$

$${\bf B} \rightarrow \epsilon$$

che è palesemente LL(1), ma non SLR(1).

PARSING LR: RIEPILOGO (4/4)

RISULTATI "POSITIVI"

- Ogni grammatica SLR(k) è anche LR(k). È conseguenza dell'inclusione dei contesti LR(k) nei contesti SLR(k).
- Ogni grammatica LL(k) <u>priva di produzioni inutili</u> e <u>aumentata</u> <u>della produzione Z → S\$</u> è anche <u>LR(k)</u>.