

Capitolo 2 Linguaggi e Grammatiche

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Anno accademico 2019/2020

Prof. MARCO GAVANELLI

Si ringrazia il Prof. Enrico Denti per aver fornito la prima versione di questi lucidi Sono vietate la riproduzione e la distribuzione non autorizzate

LA NOZIONE DI LINGUAGGIO

- Occorre una nozione di linguaggio più precisa
- Linguaggio come sistema formale che consenta di risponde a domande come:
 - quali sono le frasi lecite?
 - si può stabilire se una frase appartiene al linguaggio?
 - come si stabilisce il significato di una frase?
 - quali elementi linguistici primitivi?

COS'È UN LINGUAGGIO?

Dice il dizionario:

"Un linguaggio è un insieme di parole e di metodi di combinazione delle paroleusate e comprese da una comunità di persone."

È una definizione poco precisa:

- non evita le ambiguità dei linguaggi naturali
- non si presta a descrivere processi computazionali meccanizzabili
- non aiuta a stabilire proprietà

SINTASSI & SEMANTICA

- Sintassi: l'insieme di regole formaliper la scrittura di programmi in un linguaggio, che dettano le modalità per costruire frasi corrette nel linguaggio stesso.
- Semantica: l'insieme dei significatida attribuire alle frasi (sintatticamente corrette) costruite nel linguaggio.

Una frase può essere **sintatticamente corretta**e tuttavia *non avere significat*o

SINTASSI & SEMANTICA

- La sintassi è solitamente espressa tramite notazioni formali come
 - BNF. EBNF
 - · diagrammi sintattici
- La semantica è esprimibile:
 - a parole (poco precisa e ambigua)
 - mediante azioni
 - → semantica operazionale
 - · mediante funzioni matematiche
 - → semantica denotazionale
 - · mediante formule logiche
 - → semantica assiomatica

Creazione di un'applicazione (compilatore)

INTERPRETAZIONE vs COMPILAZIONE

Un interprete per un linguaggio L:

- · accetta in ingressole singole frasi di L
- · e le esegue una pervolta.

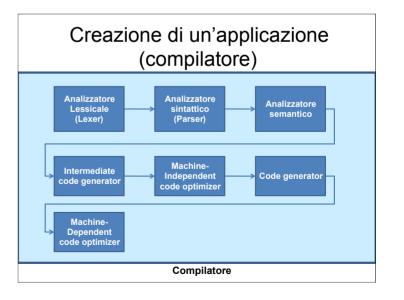
Il risultato è la valutazione della frase.

Un compilatore per un linguaggio L, invece:

- · accetta in ingresso un intero programma scritto in L
- e lo riscrive in un altro linguaggio (più semplice).

Il risultato è dunque una riscrittura della "macro-frase".

A volte la differenza è più sfumata di quel che si può pensare..

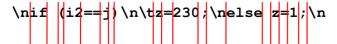


Analisi lessicale

- L'analisi lessicale consiste nella individuazione delle singole parole (token) di una frase
 - L'analizzatore lessicale (detto scanner o lexer), data una sequenza di <u>caratteri</u>, li aggrega in token di opportune <u>categorie</u> (nomi, parole chiave, simboli di punteggiatura, etc.)

Token classes

- Il secondo scopo è classificare i lessemi a seconda del loro ruolo, chiamato token class
- Nei linguaggi naturali le classi potrebbero essere
 - nome, verbo, aggettivo, ...
- Nei linguaggi di programmazione possono essere
 - Whitespace, Keyword, (,), =, Operator, Identifier,;, Number



Analisi Lessicale

 il primo scopo dell'analisi lessicale è dividere il testo nelle unità lessicali: gruppi di caratteri chiamate lessemi (Ingl. lexemes).

```
if (i2==j)
    z=230;
else z=1;

\nif (i2==j)\n\tz=230;\nelse z=1;\n
```

Token classes

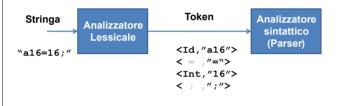
- Le token classes corrispondono a insiemi di stringhe
- Es:
 - Identifier: stringhe costituite da lettere e cifre, che iniziano con una lettera
 - Integer: una sequenza non vuota di cifre
 - Keyword: "if" oppure "while" oppure "else", ...
 - Whitespace: sequenze non vuote di spazi, a capo, tabulazioni, ...

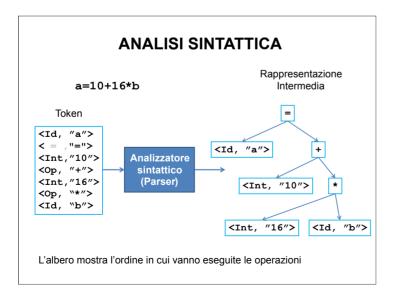
Analisi lessicale

 Il risultato della lexical analysis è una sequenza di coppie

<token class, string>

dette token





ANALISI SINTATTICA

- L'analisi sintattica consiste nella verifica che la frase, intesa come sequenza di token, rispetti le regole grammaticali del linguaggio.
 - L' analizzatore sintattico (detto parser), data la sequenza ditoken prodotta dallo scanner, genera una rappresentazione interna della frase – solitamente sottoforma di opportuno albero.

ANALISI SEMANTICA

- L'analisi semantica consiste nel determinare il significato di una frase
 - L'analizzatore semantico, data la rappresentazione intermedia prodotta dal parser, controlla la coerenza logica della frase
 - · se le variabili sono usate solo dopo essere state definite
 - · se sono rispettate le regole di compatibilitàdi tipo
 - ...
 - Può anche trasformare ulteriormente la rappresentazione delle frasi in una forma più adatta alla generazione finale di codice.
- Già, ma.. cos'è il "significato" di una frase?

SIGNIFICATO DI UNA FRASE

- Chiedersi quale sia il significato di una frase significa associare a quella frase un concettonella nostra mente
 - · Lo facciamo in base alla nostra cultura ed esperienza di vita

Ad esempio.

se siamo italiani la stringa "spaghetti pomodoro e basilico" (frase) verrà probabilmente associata dalla nostra mente al*concetto* di

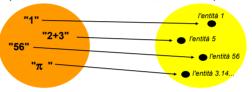
SIGNIFICATO DI UNA FRASE

- Tale funzione deve guindi dare significato:
 - prima a ogni simbolo (carattere dell'alfabeto)
 - · poi a ogni parola (sequenza lecita di caratteri)
 - infine a ogni frase (sequenza lecita di parole).
- Nel caso dell'esempio:
 - I'alfabeto potrebbe consistere nei simboli "0", "1", "2", .. "9"
 se consideriamo la nostra cultura attuale
 ... ma Giulio Cesare avrebbe scelto "I", "V", "X", "L", ...
 - le parole potrebbero essere sequenze di tali simboli, come "51", da intendersi ovviamente secondo la nostra cultura
 - "51" per noi rappresenta il concettocinquantuno...
 - ...ma per Giulio Cesare "VI" avrebbe rappresentato l'entità sei !

SIGNIFICATO DI UNA FRASE

- Per farlo, nella nostra mente deve evidentemente esserci una funzione che associa a ogni frase
 - cioè a ogni stringa di caratteri lecita nel linguaggio
- · un concetto
 - cioè un elemento di un qualche dominio

Ad esempio, se il dominio è la matematica, la funzione potrebbe essere:



DEFINIZIONI

Alfabeto

 un alfabeto A è un insieme finito e non vuoto di simboli atomici. Esempio: A = { a, b }

Stringa

- un stringa è una sequenza di simboli, ossia un elemento del prodotto cartesiano A.
 Esempi: a ab aba bb ...
- Lunghezza di una stringa: il numero di simboli che la compongono.
- Stringa vuota ε: stringa di lunghezza zero.
 ⇒ Si noti che A⁰ = { ε }

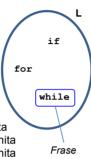
DESCRIZIONE DI UN LINGUAGGIO

Linguaggio L su un alfabeto A

- Un linguaggio L è un insieme di stringhesu
- Frase (sentence) di un linguaggio: una stringa appartenente a quel linguaggio.
- Cardinalità di un linguaggio: il numero delle frasi del linguaggio
 - linguaggio finito: ha cardinalità finita
 - linguaggio infinito: ha cardinalità infinita

Esempi:

L1 = {aa, baa} linguaggio a cardinalità finita L2 = { a^n , n primo} linguaggio a cardinalità infinita L3 = { a^nb^n , n>0} linguaggio a cardinalità infinita



SPECIFICA DI UN LINGUAGGIO

- Problema: come specificare il sottoinsieme di A* che definisce uno specifico linguaggio?
 - per specificare un linguaggiofinito, basta ovviamente elencarne tutte le frasi
 - per specificare un linguaggioinfinito, invece, serve una qualche notazione capace di descrivere in modo finito un insieme infinito di elementi.

Nasce così la nozione digrammatica formale.

DESCRIZIONE DI UN LINGUAGGIO

Chiusura A* di un alfabeto A(Kleene closure o linguaggio universale su A)

• È <u>l'insieme infinito</u> di tutte le stringhe composte con simboli di A:

$$\mathbf{A}^* = \mathbf{A}^0 \cup \mathbf{A}^1 \cup \mathbf{A}^2 \cup \dots$$

a b c d e f g h i j k l : aa ab ac ad ae af ag ah : aaa aab aac aad aae aaf : aaaa aaab aaac aaad aaae

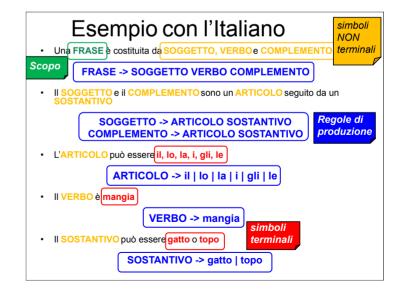
Chiusura positiva A+ di un alfabeto A

• È l'insieme infinito di tutte le stringhe non nulle

composte con simboli di A:

A+ a b c d e f g h i j k l aa ab ac ad ae af ag ah aaa aab aac aad aae aaf

$$A^+ = A^* - \{ \epsilon \}$$



GRAMMATICA FORMALE

Una *Grammatica* è una *notazione formale* con cui esprimere *in modo rigoroso* la *sintassi* di un linguaggio.

Una grammatica è una quadrupla (VT,VN,P,S) dove:

- VT è un insieme finito di simboliterminali
- VN è un insieme finito di simbolinon terminali
- P è un insieme finito di produzioni, ossia di regole di riscrittura α → β dove α e β sono stringhe: α∈ V*, β∈ V*
 - ogni regola esprime una trasformazione lecita che permette di scrivere, nel contesto di una frase data,una stringa β al posto di un'altra stringa α.
- S è un particolare simbolo non-terminale detto simbolo iniziale o scopo della grammatica

GRAMMATICHE: CONVENZIONI

CONVENZIONI SUI SIMBOLI

- i simboli terminali si indicano con lettereminuscole
- i meta-simboli si indicano con lettere MAIUSCOLE
- le lettere greche indicano stringhe mixed di terminali e meta-simboli

CONVENZIONI SULLE PRODUZIONI

 una produzione α -> β riscrive una stringa non nulla α∈ V* sotto forma della nuova stringa (eventualmente anche nulla) β∈ V*

GRAMMATICA FORMALE

Una *Grammatica* è una esprimere *in modo rig* stringhe su un alfabeto A.

Una grammatica è una *quadrupla* (VT,V dove:

- VT è un insieme finito di simboliterminali
- VN è un insieme finito di simbolinon terminali
- ▶ P è un insieme finito dipressioni, ossia di regole di Isimboli non terminali sono dei meta-simboli che rappresentano le diverse categorie sintattiche cita che permette ai convenigne conscione di ana massiona accuritna a stringa β al

Gli insiemi VT e VN devono esseredisgiunti: VT ∩ VN = Ø

• L'unione V = VT ∪ VN si dice vocabolario della grammatica.

FRASI (sentences) vs. FORME DI FRASI (sentential forms)

- Si dice forma di frase (sentential form) una qualsiasi stringa comprendente sia simboli terminali siametasimboli, ottenibile dallo scopo applicando una o più regole di produzione.
 - una sentential form è un prodotto intermedio, in cui alcune parti della (futura) frase sono già finali, mentre altre sono ancora "in itinere", soggette a ulteriori trasformazioni.
- Si dice frase una forma di frase comprendente solo simboli terminali.
 - una sentence è invece un prodotto finale, in cui tutte le parti "in itinere" sono state ormai trasformate e non c'è più nulla di ulteriormente trasformabile.

Esercizio

Data la grammatica G

- VT = {0, 1}
- VN = {S, Z, U}
- P={ S -> ZU Z -> 0 Z -> 0Z U -> 1 U -> U1

Si scrivano 3 forme di frase e 3 frasi che possono essere generate a partire dallo scopo S

SEQUENZA DI DERIVAZIONE

Si dice sequenza di derivazione la sequenza di passi che producono una forma di frase g dallo scopo S.

- $S \Rightarrow \sigma$
- σ deriva da S con <u>una sola</u> applicazione di produzioni (in un solo passo)
- $S \stackrel{+}{\Rightarrow} \sigma$
- σ deriva da S con <u>una o più</u> applicazioni di produzioni (in uno o più passi)
- $S \stackrel{*}{\Rightarrow} \sigma$
- o deriva da S con <u>zero o più</u> applicazioni di produzioni (in zero o più passi)

DERIVAZIONE

Siano α , β due stringhe \in (VN \cup VT)*, $\alpha \neq \epsilon$

Si dice che β deriva direttamente da α ($\alpha \rightarrow \beta$) se

• le stringhe α , β si possono decomporre in $\alpha = n A \delta$ $\beta = n y \delta$

ed esiste la produzione $A \rightarrow \gamma$.

ηΑδ

Si dice che β deriva da α (anche non direttamente)se

 esiste una sequenza di N derivazioni dirette che da α possono infine produrreβ

$$\alpha = \alpha 0 \rightarrow \alpha 1 \rightarrow \alpha 2 \rightarrow ... \rightarrow \alpha N = \beta$$

Esercizio

Data la grammatica G

- $VT = \{0, 1\}$
- VN = {S, Z, U}
- P={ S -> ZU Z -> 0 Z -> 0Z U -> 1 U -> U1

mostrare una derivazione per la frase 0011

GRAMMATICA & LINGUAGGIO

Data una grammatica G, si dice perciò

Linguaggio L_G generato da G

l'insieme delle frasi

- derivabili dal simbolo iniziale S
- applicando le produzioni P

ossia

$$L_G = \{ s \in VT^* \text{ tale che } S \stackrel{*}{\Rightarrow} s \}$$

Esempio

Data la grammatica G:

- $VT = \{0,1\}$
- $VN = \{C, N\}$
- S = C

dire qual è il linguaggio generato da G

ESEMPIO 1

II linguaggio L = $\{a^nb^n, n>0\}$ può essere descritto dalla grammatica G = $\langle VT, VN, P, S \rangle$ dove:

```
    VT = {a, b}
    VN = {F}
    S ∈ VN = F
    P = {
        F → a b
        F → a F b
    }
```

- La prima regola stabilisce che F può essere riscritto come ab: è la frase più corta di L.
- La seconda regola stabilisce che lo scopo F può essere riscritto come aFb; data la presenza di F nella forma di frase, è possibile proseguire con un nuovo passo generativo – di nuovo scegliendouna qualsiasi delle due regole:
- se si sceglie la prima, si avràaabb
- se si sceglie la seconda, si avrà aaFbb, che apre la porta a un terzo passo.. e così via.
- Il linguaggio contiene dunque infinite frasi, tutte della forma aa...bb con equal numero dia e b.

GRAMMATICHE EQUIVALENTI

- Una grammatica G1è equivalente a una grammatica G2 se generano lo stesso linguaggio
 - una grammatica potrebbe però essere preferibile a un'altra ad essa equivalente dal punto di vista dell'analisisintattica
- Purtroppo, stabilirese due grammatiche sono equivalenti è in generale un problema indecidibile
 - le faccenda cambia se ci si restringe atipi particolari di grammatiche, aventi regole di produzione"sufficientemente semplici".

GRAMMATICHE. LINGUAGGI & AUTOMI RICONOSCITORI

Grammatiche di diversa struttura comportano

linguaggi con diverse proprietà

e implicano

automi di diversa "potenza computazionale"

per riconoscere tali linguaggi.

GRAMMATICHE REGOLARI **CASO PARTICOLARE**

Per grammatiche regolari è sempre possibile e spesso convenientetrasformare la grammatica in forma strettamente lineare

• non più σ ∈ VT* (σ è una stringa di caratteri)

lineare a destra lineare a sinistra

 $A \rightarrow \sigma$ $A \rightarrow \sigma B$

 $A \rightarrow \sigma$ $A \rightarrow B \sigma$

bensì a ∈ VT (a è un singolo carattere)

lineare a destra lineare a sinistra

 $X \rightarrow a$ $X \rightarrow a$ $X \rightarrow a Y$ $X \rightarrow Y a$

CLASSIFICAZIONE DI CHOMSKY TIPO 3

Le grammatiche sono classificate in 4tipi in base alla struttura delle produzioni

Tipo 3 (grammatiche regolari):

produzioni vincolate alle forme lineari:

lineare a destra

lineare a sinistra

 $A \rightarrow \sigma$ $A \rightarrow \sigma B$ $A \rightarrow \sigma$

 $A \rightarrow B \sigma$

con A.B∈VN e σ∈VT*

Si intende che le produzioni di una data grammatica devono essere TUTTE o lineari a destra, o lineari a sinistra- non mischiate.

Si noti che σ può essere ϵ .

GRAMMATICHE LINEARI: ESEMPI

 $VT = \{a, +, -\}, VN = \{S\}$

• Grammatica G1 (lineare a sinistra: $A \rightarrow B y$, con $y \in VT^*$)

 $S \rightarrow a$ $S \rightarrow S + a$ $S \rightarrow S - a$

• Grammatica G2 (lineare a destra: $A \rightarrow x B$, con $x \in VT^*$)

 $S \rightarrow a$ $S \rightarrow a + S$ $S \rightarrow a - S$

• Grammatica G3 (G2 resa strettamente lineare a destra)

 $S \rightarrow a$ $S \rightarrow a A$ $A \rightarrow + S$ $A \rightarrow -S$

• Grammatica G4 (lineare a destra e anche a sinistra) S → ciao

• Grammatica G5 (G4 resa strettamente linearea destra)

 $S \rightarrow cT T \rightarrow iU$ $U \rightarrow a V$ $V \rightarrow 0$

CLASSIFICAZIONE DI CHOMSKY TIPO 2

Le grammatiche sono classificate in 4tipi in base alla struttura delle produzioni

• Tipo 2: context free (indipendenti dal contesto):

produzioni vincolate alla forma:

$$A \rightarrow \alpha$$

con $\alpha \in (VT \cup VN)^*$, $A \in VN$

Qui A può <u>sempre</u> essere sostituita daα, indipendentemente dal contesto.

Se α ha la forma u oppure u B v, con u,v \in VT* e B \in VN, la grammatica si dice *lineare*.

ESEMPIO

Esempio (grammatica di tipo 1)

S → aBC | aSBC

 $CB \rightarrow DB$ $DB \rightarrow DC$ $DC \rightarrow BC$

 $aB \rightarrow ab$ $bB \rightarrow bb$ $bC \rightarrow bc$ $cC \rightarrow cc$

Infatti, secondo la definizione β A δ \rightarrow β α δ si può trasformare un metasimbolo per volta (A), lasciando intatto ciò che gli sta intorno

Osserva: la lunghezza del lato destro delle produzioni non è mai inferiore a quella del lato sinistro.

```
S → aBC | aSBC
                                    \beta = \varepsilon \quad \delta = \varepsilon
CB → DB
                                    \beta = \varepsilon \delta = B
DB \rightarrow DC
                                    \beta = D \delta = \varepsilon
DC → BC
                                   \beta = \varepsilon \quad \delta = C
aB → ab
                                    \beta = a \delta = \epsilon
bB → bb
                                   \beta = b \delta = \epsilon
bC → bc
                                   \beta = b \delta = \varepsilon
cC → cc
                                   \beta = c \delta = \epsilon
```

CLASSIFICAZIONE DI CHOMSKY TIPO 1

Le grammatiche sono classificate in 4tipi in base alla struttura delle produzioni

• Tipo 1 (dipendenti dal contesto): produzioni vincolate alla forma:

$$\beta A \delta \rightarrow \beta \alpha \delta$$

con β , $\delta \in V^*$, $\alpha \in V^+$, $A \in VN$

α ≠ ε

Quindi, A può essere sostituita da α solo <u>nel contesto</u> β A δ Le riscritture non accorciano maila forma di frase corrente.

ESEMPIO

Esempio (grammatica di tipo 1)

 $S \rightarrow aBC \mid aSBC$

 $CB \to DB$ $DB \to DC$ $DC \to BC$

aB o ab bB o bb bC o bc cC o cc

S

 \rightarrow aSBC

 \rightarrow aaSBCBC

→ aaaSBCBCBC

→ aaaaSBCBCBCBC

→ aaaaaBCBCBCBCBC

 \rightarrow aaaaaBBBBBCCCCC

.

→ aaaaabbbbbccccc

Riconoscibilità delle grammatiche di tipo 1

- Teorema [Chomsky, 1959] Il linguaggio generato da una grammatica G di tipo 1 è riconoscibile da una macchina di Turing
- Dim: Nelle grammatiche di tipo 1, in una derivazione le forme di frase si allungano sempre

$$S \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha_3 \rightarrow \dots$$

- Supponiamo di dover riconoscere una stringa s, di lunghezza l = |s|
- Bozza di algoritmo:
 partendo dallo scopo S, genera tutte le derivazioni in cui

 non ci sono ripetizioni (loop nella derivazione)
 - la lunghezza massima è al massimo |s| (non appena si arriva ad una forma di frase di lunghezza > |s| ci si può fermare)
- Le stringhe che hanno lunghezza fino a |s| sono in numero finito, quindi l'elenco è di dimensione finita

CLASSIFICAZIONE DI CHOMSKY TIPO 0

Le grammatiche sono classificate in4 tipi in base alla struttura delle produzioni

• Tipo 0:

nessuna restrizione sulle produzioni

In particolare, le regole possono specificare riscritture che accorciano la forma di frase corrente.

Esempio (grammatica di tipo 0)

S \rightarrow aSBC CB \rightarrow BC SB \rightarrow bF FB \rightarrow bF FC \rightarrow cG GC \rightarrow cG G \rightarrow ϵ

Possibile derivazione S → aSBC → abFC → abcG → abc

lung=4 lung=3

Altra definizione

- ... ma se il teorema si basa sul fatto che le forme di frase si allungano solo durante una derivazione, non avrebbe più senso definire il Tipo 1 basandosi sulle lunghezze delle stringhe?
 - Se facessi così, potrei forse includere anche altre grammatiche
 - Sì, ma non potrei generare altri linguaggi, perché si riesce a generare una grammatica equivalente che rispetta la regola del contesto β A δ \rightarrow β α δ

```
G=<\{b,f,g\},
                    G=<\{b,f,g\},
\{A,C,D,E,H,S\},S,P>
                    {A,C,D,E,H,S,B},S,P>
Ρ={
                    P={
S → AbK
                     S → ABK
                                              AbCD → EbCD
K → CD
                     K → CD
                                              EBCD → EfCD
AbCD → EfgH
                     ABCD → EfgH
                                              EfCD → EfaD
Ef → ef
                     Ef → ef
                                              EfqD → EfqH
gH → gh
                     gH → gh
                     B \rightarrow b
```

RELAZIONE GERARCHICA

Le grammatiche sono in relazione gerarchica:

- una grammatica regolare (Tipo 3) è un caso particolare di grammatica contextfree (Tipo 2),
- che a sua volta è un caso particolare di grammatica context-dependent (Tipo 1),
- che a sua volta è ovviamente uncaso particolare di grammatica qualsiasi(Tipo 0).

NB: poiché le grammatiche di tipo 2 (e quindi di tipo 3) possono generare la stringa vuota ε, la relazione di inclusione vale solo se si convienedi ammettere nelle grammatiche tipo 1 anche la produzioneS → ε, dove S non compare a destra in alcuna produzione

Esercizio (29 giugno 2016)

· Si consideri la seguente grammatica

$$S \rightarrow KX$$

 $aX \rightarrow aYb$
 $bX \rightarrow bYa$
 $K \rightarrow a \mid b$
 $Y \rightarrow aYb \mid a$

- · Si classifichi la grammatica secondo Chomsky.
- Si scriva il linguaggio L_S generato dallo scopo S.
- Si scriva una grammatica di tipo 20 di tipo 3 non ambigua ed equivalente alla grammatica data.

$$S \rightarrow KX$$

$$aX \rightarrow aYb$$

$$bX \rightarrow bYa$$

$$K \rightarrow a \mid b$$

$$Y \rightarrow aYb \mid a$$

 Si scriva una grammatica di tipo 2o di tipo 3 non ambigua ed equivalente alla grammatica data.

$$S \rightarrow KX$$

$$aX \rightarrow aYb$$

$$bX \rightarrow bYa$$

$$K \rightarrow a \mid b$$

$$Y \rightarrow aYb \mid a$$

 Si scriva il linguaggio L_S generato dallo scopo S.

CLASSIFICAZIONE DI CHOMSKY IL PROBLEMA DELLA STRINGA VUOTA

Nella classificazione di Chomsky,

• Le grammatiche di Tipo 1 <u>non ammettono</u> la stringa vuota ε sul lato destro delle produzioni:

$$\beta \land \delta \rightarrow \beta \land \delta \quad \alpha \neq \epsilon$$

· Viceversa, le grammatiche di Tipo 2la ammettono:

$$A \rightarrow \alpha$$
 $\alpha \in V^*$ (α può essere ϵ)

• e lo stesso vale per le grammatiche di<u>Tipo 3</u>:

lin. a destra lin. a sinistra

$$A \rightarrow \sigma$$
 $A \rightarrow \sigma$
 $A \rightarrow \sigma B$ $A \rightarrow B \sigma$

 \rightarrow σ B A \rightarrow B σ σ ∈VT* (σ può essere ε)

MA COME? NON C'È CONTRADDIZIONE??

CLASSIFICAZIONE DI CHOMSKY IL PROBLEMA DELLA STRINGA VUOTA

COME È POSSIBILE che

- le grammatiche sianoin relazione gerarchica tra loro
- ma al contempo la stringa vuota non sia ammessa nel Tipo 1 e sia invece ammessa nei Tipi 2 e 3?

L'assenza di contraddizione è dovuta al seguente teorema, secondo il quale le produzioni di grammatiche di Tipo 2 (e quindi anche 3) possono sempre essere riscritte in modo da evitare la stringa vuota:

al più, possono contenere la regola S→ ε

ELIMINAZIONE DELLEε -RULES

· Idea base: se si ha una regola

$$A \rightarrow \alpha | \beta | \epsilon$$

allora si può eliminare la regola $A \rightarrow \varepsilon$ se in tutti i punti in cui compare A sostituisco con $(A \mid \varepsilon)$

A → BC A → B	С	A → BC		A →	ВС]
B → aD ε B → a	(D ε) ε	B → aD	<u>aε</u> ε	В→	aD a ε	
C → DB C → (I) ε) Β	C → DB	εB	C →	DB B	
$D \rightarrow bD \mid \epsilon \mid D \rightarrow b$	(D ε)	D → bD	bε	D→	bD b	
$A \rightarrow (B \epsilon) C$	A → B	C C	A → I	B (C 8	:) (C ε)	
B → aD a	B → al) a	B→a	aD a		
$C \rightarrow D(B \epsilon) (B \epsilon)$	C → D	B D B ε		DB D		
$D \rightarrow bD \mid b$	D → p[) b	D → I	bD b	A → BC	Β С ε
					B → aD	a
					C → DB	DB
					D → bD	b

CLASSIFICAZIONE DI CHOMSKY IL PROBLEMA DELLA STRINGA VUOTA

TEOREMA

Se G è una grammatica context free con produzioni della forma $A \to \alpha$, con $\alpha \in V^*$ (cioè, α può essere ϵ)

allora esiste una grammatica context free G' che genera lo stesso linguaggio L(G)ma le cui produzioni hanno

- o la forma $A \rightarrow \alpha$, con $\alpha \in V^+$ (α non è ϵ)
- oppure la forma $S \rightarrow \varepsilon$,

ed S non compare sulla destra in nessuna produzione

In pratica, il teorema assicura chela sola differenza fra una grammatica context free con ɛ -rules o senza esse è che il linguaggio generato dalla prima include la stringa vuota.

I linguaggi di programmazione (Pascal, C, ...) hanno spesso produzioni che ammettono la stringa vuota, di solito per descrivere partippzionali.

Perché l'idea base non basta

 Partendo da una grammatica G che genera un linguaggio L(G), vogliamo creare una grammatica G', senza ε-rules che che genera lo stesso linguaggio (eventualmente, tolta la stringa vuota).

$$L(G') = L(G) - \{\epsilon\}$$

- Eventualmente, se ci interessa generare esattamente lo stesso linguaggio, accetteremo di aggiungere un'unica ε-rule: S → ε (dove S è lo scopo della grammatica)
- Applicando meccanicamente l'idea base, due cose possono andare storte

1 - Scopo compare a destra

 Se lo scopo S compare sul lato destro di qualche regola, non è più vero che aggiungere o togliere la regola S → ε equivale ad aggiungere o togliere la stringa vuota dal linguaggio

$$S \rightarrow Ub$$

 $U \rightarrow ab \mid S$
 $S \rightarrow Ub \mid \epsilon$
 $U \rightarrow ab \mid S$
 $L(S) = \{abb^*b\} \cup \{\epsilon\} \cup \{b^*b\}$

 Soluzione: in questi casi aggiungiamo un nuovo scopo fittizio S' con la regola S' → S

$$S' \rightarrow S \mid \varepsilon$$

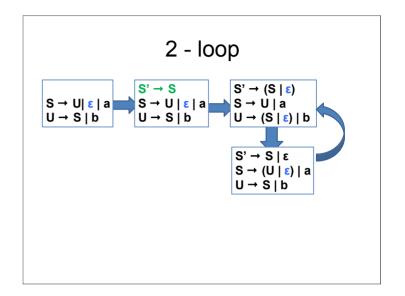
 $S \rightarrow Ub$
 $U \rightarrow ab \mid S$
 $L(S') = \{abb^*b\} \cup \{\epsilon\}$

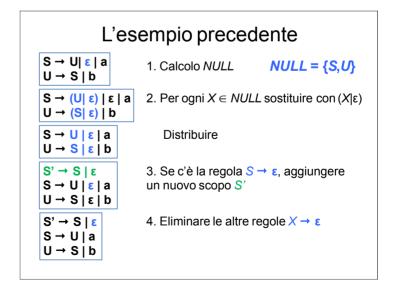
Algoritmo completo

1. calcolo dell'insieme *NULL* dei nonterminali da cui si può derivare la stringa vuota Tutti i *B*, devono essere in

$$NULL \leftarrow \{A \in VN \mid A \rightarrow \epsilon \in P\}$$
 ripeti finché $NULL$ non cambia più $NULL \leftarrow NULL \cup \{A \in VN \mid A \rightarrow B_1 \dots B_k \in P, \forall i, B_i \in NULL\}$

- 2. sostituire nelle regole ogni simbolononterminale $X \in NULL$ con $(X|\varepsilon)$ (e distribuire)
- 3. se è presente la regola che riscrive lo scopoS→ε, aggiungere un nuovo scopoS'→S|ε;
- 4. rimuovere tutte le regole X→ε (esclusa eventualmente quella che riscrive lo scopo inε)





Riassumendo

- Le grammatiche di tipo 1 non ammettono la stringa vuota nelle produzioni, mentre quelle di tipo 0, di tipo 2 e di tipo 3 le ammettono.
- I linguaggi generati dalle grammatiche di tipo N sono comunque un sottoinsieme dei linguaggi generati da grammatiche di tipo N-1 (a parte, eventualmente, la presenza della stringa vuota nel linguaggio generato).
- Infatti, data una grammatica di tipo 2 con ε-rules, è sempre possibile trovare una grammatica equivalente che ha al più una ε-rule, in corrispondenza dello scopo.
- Abbiamo visto un algoritmo che genera la grammatica equivalente

Capitolo 2 Linguaggi e Grammatiche

Gerarchia di Chomsky e Linguaggi

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Anno accademico 2019/2020

Prof. MARCO GAVANELLI

Si ringrazia il Prof. Enrico Denti per aver fornito la prima versione di questi lucidi Sono vietate la riproduzione e la distribuzione non autorizzate

Esercizio (25 lug 2017)

• Si consideri la grammatica G = <{a, b, c, d}, {S, A, B, C}, P, S>, dove:

$$P= \begin{cases} S \rightarrow ABC \\ A \rightarrow aAd \mid E \\ B \rightarrow bBd \mid E \\ C \rightarrow c \mid dA \end{cases}$$

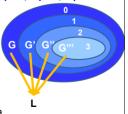
 Se possibile, si scriva una grammatica G' equivalente a G che non abbia produzioni con la stringa vuota.
 Se non è possibile, si motivi il perché.

GRAMMATICHE e LINGUAGGI

Poiché le grammatiche sono in relazionegerarchica, può accadere che un linguaggio possa esseregenerato da più grammatiche, anche di tipo diverso

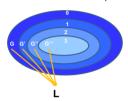
- un linguaggio generato da una grammatica diTipo 3 potrebbe essere generato anche da grammatiche diTipo 2, Tipo 1, Tipo 0
- un linguaggio generato da una grammatica di Tipo 2 potrebbe essere generato anche da grammatiche diTipo 1, Tipo 0
- un linguaggio generato da una grammatica di Tipo 1 potrebbe essere generato anche da grammatiche di Tipo

Non è detto che la prima grammatica che si trova per generare un dato linguaggio sia necessariamente la migliore (più semplice)



CLASSIFICAZIONE DEI LINGUAGGI

- Diremo che un linguaggio è di un certo tipo se quello è il tipo della grammatica più semplicein grado di generarlo
 - per linguaggi dipendenti da contesto(o di Tipo 1) si intendono linguaggi che richiedono come minimo una grammatica di Tipo 1per essere generati
 - analogamente, per linguaggi indipendenti da contesto (o di Tipo 2) si intendono linguaggi cherichiedono come minimo una grammatica di Tipo2...
 - .. e lo stesso vale per i linguaggi regolari (o di Tipo 3)



ESEMPIO aⁿ bⁿ cⁿ (2/3)

Una grammatica ancora più semplice potrebbe essere:

DUBBI & DOMANDE

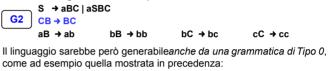
- Ci si potrebbe quindi chiedere se non esista per questo linguaggio una grammatica ancora più semplice,magari di Tipo2
- Più in generale, ci si potrebbe chiederese ci sia un modo generale per capire se una grammatica più semplice esista.. e magari trovarla.

Risponderemo presto a entrambe le domande

ESEMPIO $a^n b^n c^n$ (1/3)

II linguaggio L = {an bn cn, n≥ 0} è (almeno) di Tipo 1 in quanto esiste una grammatica di Tipo 1 che lo genera:

La grammatica diventa più compatta se espressa con la definizione alternativa di grammatica di Tipo 1, che ammette lo scambio:



ESEMPIO $a^n b^n c^n$ (3/3)

Derivazione della frase aabbcc

```
Grammatica G2:
                      Derivazione:
 S → aBC | aSBC
                      S → aSBC → aaBCBC → aaBBCC →
                        → aabBCC → aabbCC → aabbcC
 CB → BC
 aB → ab
                                 S
 bB → bb
                                aSBC
 bC → bc
 cC → cc
                               aaBCBC
                               aaBBC C
                               aabBCC
                               aabb CC
                               aab bcC
                               aabbcc
```

ESEMPIO an bn cn (3/3)

Derivazione della frase aabbcc

```
Grammatica G2:
                        Derivazione:
 S → aBC | aSBC
                        S → aSBC → aaBCBC → aaBBCC →
  CB → BC
                          → aabBCC → aabbCC → aabbcC → aabbcc
  aR → ah
  bB → bb
 bC → bc
 cC → cc
Grammatica G3:
                        Derivazione:
 S → abc | aBSc
                        S → aBSc → aBabcc → aaBbcc → aabbcc
 Ba → aB
 Bb → bb
```

GRAMMATICHE DI TIPO 1 e DI TIPO 2

C'è dunque una caratteristica cruciale che discrimina una grammatica di Tipo 1 da una di Tipo 2?

Dice Chomsky:

```
Tipo 1: produzioni della forma \sigma A \delta \rightarrow \alpha
Tipo 2: produzioni della forma A \rightarrow \alpha
```

In particolare, il Tipo 1 ammette produzioni della forma BC → CB

che scambiano due simboli

- Questa caratteristica è impossibile da esprimere nelTipo 2
- Per esprimerla occorre infatti poter scriveredue elementi sul lato sinistro della produzione, mentre il Tipo 2 ammette in tale posizione un unico metasimbolo!

RAMI DI DERIVAZIONE "MORTI"

- Nelle grammatiche di Tipo 1non è garantito che qualunque sequenza di derivazione porti a unafrase
 - Può succedere di trovarsi in unastrada chiusa, impossibilitati a proseguire perché non ci sono regole di produzione applicabili
 - Questo non succede mai nel Tipo 2 e nel Tipo 3

Esempio	s	S
Grammatica G2:	a <u>S</u> BC	a <u>S</u> BC
S → aBC aSBC CB → BC	aaBCBC	aaBCBC
aB → ab	a <u>aB</u> BC C	a a b C B C
bB → bb	aabBCC	aabc BC
bC → bc cC → cc	aab <u>b C</u> C aab b <u>cC</u>	???
	aabbcc	

GRAMMATICHE DI TIPO2 e DI TIPO 3

Analogamente, c'è una caratteristica che distingue una grammatica di Tipo 2 da una di Tipo 3?

Dice Chomsky:

```
Tipo 2: produzioni della forma A \rightarrow \alpha dove \alpha può contenere più metasimboli, in qualsiasi posizione [ \alpha \in (VT \cup VN)^*, A \in VN ]
```

```
Tipo 3: produzioni lineari, della forma A \to \sigma \text{ o } A \to \sigma \text{ B } \text{ (a destra) oppure} \\ A \to \sigma \text{ o } A \to B \text{ } \sigma \text{ (a sinistra)} \\ \text{dove } \textit{ci può essere un solo metasimbolo, } \textit{o in testa o in coda} \\ \text{[} A,B \in VN, \ \sigma \in VT^*\text{]}
```

GRAMMATICHE DI TIPO2 e DI TIPO 3

Analogamente, c'è una caratteristica che distinque una grammatica di Tipo 2 da una di Tipo 3? Dice Chomsky:

Tipo 2: produzioni della forma $A \rightarrow \alpha$ dove α può contenere più metasimboli, in qualsiasi posizione

Nel Tipo 2, i meta-simboli possono trovarsi Tipo in mezzo alla forma di frase; nel Tipo 3, no. $A \rightarrow \sigma \circ A \rightarrow B \sigma (a sinistra)$

dove ci può essere un solométasimbolo, o in testa o in coda $[A,B \in VN, \sigma \in VT^*]$

SELF-EMBEDDING: ESEMPIO

La grammatica G:

 $S \rightarrow aSc \quad S \rightarrow A$ $A \rightarrow bAc$ $A \rightarrow \epsilon$ presenta self-embedding e genera il linguaggio L(G):

 $L(G) = \{ a^n b^m c^{n+m} \mid n,m \ge 0 \}$

Il ruolo del self-embedding è introdurre una ricorsione in cui si aggiungono contemporaneamente simboli a sinistra e a destra, garantendo di procedere "di pari passo".

È essenziale per definire linguaggi le cui frasi devono contenere simboli bilanciati, come ad esempio le parentesi:

 $S \rightarrow (S)$ $S \rightarrow a$

Questa grammatica genera il linguaggio $L(G) = \{ (n a)^n \mid n \ge 0 \}$

SELF - EMBEDDING

Una grammatica è self-embedding quando esiste un nonterminale A tale che

$$\mathbf{A} \stackrel{*}{\Rightarrow} \mathbf{\alpha}_{1} \mathbf{A} \mathbf{\alpha}_{2} \quad (\operatorname{con} \mathbf{\alpha}_{1}, \mathbf{\alpha}_{2} \in \mathsf{V}^{+})$$

TEOREMA: una grammatica di Tipo 2che non sia selfembedding genera un linguaggio regolare

Dunque, è il self-embedding la caratteristica crucialedi una grammatica di Tipo 2, che la differenzia da una di Tipo 3.

- Se non c'è self-embedding, esiste una grammatica equivalente di Tipo 3, quindi il linguaggio generato è regolare
- Non vale necessariamente il viceversa: unagrammatica con self-embedding potrebbe comunque generare unlinguaggio regolare, se il self-embedding è "finto" (ovvero, "disattivato" da altre regole)

SELF - EMBEDDING

Una grammatica è self-embedding quando esiste un nonterminale A tale che

Nota: Perché il self-embedding sia evidente, possono essere necessari anche più passi di derivazione

Es:

 $S \rightarrow aA$

 $A \rightarrow aB$

 $A \rightarrow aB \rightarrow aAc$

 $B \rightarrow Ac$

 $A \rightarrow \epsilon$

"FINTO" SELF - EMBEDDING (1/4)

Nonostante la presenza di selfembedding, il linguaggio generato può essere regolarese la regola con self-embedding è disattivata da altre regole meno restrittive, che vanificano il vincolo che il self-embedding vorrebbe imporre

- Identificare casi del genere non èbanale
 Riferimento: "Self-embedded context-free grammars with regular counterparts", by S.Andrei, W.Chin, S.Cavadini, Acta Informatica 40, 349-365, 2004, Springer
- · Ci limiteremo a illustrarlo tramite alcuni esempi.

"FINTO" SELF - EMBEDDING (3/4)

ESEMPIO 2

$$S \rightarrow abSba|aba$$

- In questo esempio, il self-embedding viene disattivato in un modo particolarmente subdolo esottile
- Apparentemente i due lati "sinistro" e "destro" crescono in parallelo, producendo un numero identico di gruppi á b)* e (b a)* ...
- .. ma sul più bello, nel mezzo viene piazzato una b a che spariglia le carte e "distrugge i confini" fra i due gruppi (a b)k e (b a)k rendendoli indistinguibili

- Risultato: la frase è una sequenza di una quantità dispari di gruppia b, seguiti da una a finale –un linguaggio regolare: L(G) = { (a b)²ⁿ⁺¹ a , n ≥0 }
- Grammatica di Tipo 3 equivalente: $S \rightarrow X a$ $X \rightarrow a b \mid X a b a b$

"FINTO" SELF - EMBEDDING (2/4)

ESEMPIO 1

$$S \rightarrow a S a | X$$

 $X \rightarrow a X | b X | a | b$

- Sembrerebbe che le frasi dovessero avere la forman Y an ..
- .. ma la parte centrale X si espande in una sequenza qualunque di a e b, vanificando il vincolo che lea in testa e in coda siano in egual numero.
- Risultato: L(G) è regolare, in quanto comprende qualunque sequenza di a e b

"FINTO" SELF - EMBEDDING (44)

ESEMPIO 3

$$S \rightarrow a S a | \varepsilon$$

$$L(G) = \{ (a \ a)^n : n \ge 0 \}$$

- Qui il self-embedding, più che disattivato, è inutile, perché con un alfabeto di un solo carattere si possono generare solo frasi estremamente semplici
- In effetti, è impossibile distinguere un "gruppo di sinistra" da un "gruppo di destra" se sono fatti tutti solo da ununico possibile simbold
- Grammatica di Tipo 3 equivalente : S → a a S | ε

L'osservazione precedenteè generalizzata dal seguente

TEOREMA: ogni linguaggio*context-free* di alfabeto unitario è in realtà un linguaggio regolare.

Capitolo 2 Linguaggi e Grammatiche

Riconoscibilità dei Linguaggi Backus-Naur Form Alberi di derivazione

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Anno accademico 2019/2020

Prof. MARCO GAVANELLI

Si ringrazia il Prof. Enrico Denti per aver fornito la prima versione di questi lucidi Sono vietate la riproduzione e la distribuzione non autorizzate

RICONOSCIBILITÀ DEI LINGUAGGI

- Perché il traduttore possa essere<u>realizzato in modo efficiente</u>, conviene adottare linguaggi generati da (classi speciali di) grammatiche di Tipo 2
 - Tutti i linguaggi di programmazione sono infatticontext free
 - Il riconoscitore prende il nome diPARSER
- Per ottenere <u>particolare efficienzain sotto-parti di uso</u> <u>estremamente frequente</u>, si adottano spesso per esse <u>linguaggi generati da grammatiche di Tipo 3</u>
 - · identificatori & numeri
 - Il riconoscitore prende il nome diSCANNER (o lexer)

RICONOSCIBILITÀ DEI LINGUAGGI

- I linguaggi generati da grammatiche di Tipo0 possono in generale NON essere riconoscibili(decidibili)
 - Non è garantita l'esistenza di una MdT capace di decidere se una frase appartiene o meno al linguaggio
- Al contrario, i linguaggi generati da grammatiche di Tipo 1 (e quindi di Tipo 2 e 3)sono riconoscibili
 - Esiste sempre una MdT capace di decidere se una frase appartiene o meno allinguaggio
 - L'efficienza del processo di riconoscimento, però, è un'altra faccenda...

QUALI MACCHINE PER QUALI LINGUAGGI?

Chi riconosce i diversi tipi di linguaggi?

LINGUAGGI	AUTOMI RICONOSCITORI
• Tipo 0	• <u>Se L(G) è riconoscibile</u> serve una Macchina di Turing
• Tipo 1	Macchina di Turing (con nastro di lunghezza proporzionale alla frase da riconoscere)
• Tipo 2 (context-free)	Push-Down Automaton (PDA) (cioè ASF + stack)
• Tipo 3 (regolari)	Automa a Stati Finiti (ASF)

NOTAZIONI PER **GRAMMATICHE DI TIPO 2**

- Alla luce del discorso precedente, d'ora in poi ci concentreremo sulle grammatiche di Tipo 2(e 3)
- Passando dalla teoria alla pratica, è opportuno modificare le notazioni fin qui utilizzate
 - non è pratico utilizzare lettere greche
 - non è il caso di continuare a riservare le lettere maiuscole ai metasimboli, perché vogliamo poterle usare nelle frasi (e dunque nell'alfabeto terminale)
 - → serve un nuovo modo per indicare imetasimboli
 - nelle tastiere e nei font "di base", non ci sono frecce e altri simboli particolari → sarebbe meglio farne senza

ESEMPIO 2

```
G = \langle VT, VN, P, S \rangle, dove:
VT = { il, gatto, topo, sasso, mangia, beve }
VN = { <frase>, <soggetto>, <verbo>,
        <compl-oqq>, <articolo>, <nome> }
S = <frase>
P = {
    <frase>::= <soggetto> <verbo> <compl-ogg>
    <soggetto>::= <articolo><nome>
    <articolo> ::= il
    <nome>::= gatto | topo | sasso
    <verbo> ::= mangia | beve
    <compl-ogg> ::= <articolo> <nome>
```

GRAMMATICHE Backus-Naur Form

In una Grammatica BNF

- le regole di produzione hanno la forma $\alpha := \beta$ con $\alpha \in VN$, $\beta \in V^*$
- i meta-simboli X∈ VN hanno la forma (nome)
- il meta-simbolo indica l'alternativa

Questa estensione permette di esprimere uninsieme di regole aventi la stessa parte sinistra

> X ::= A₁ $X := A_N$

in forma compatta:

 $X ::= A_1 | A_2 | ... | A_N$

ESEMPIO 2: DERIVAZIONE

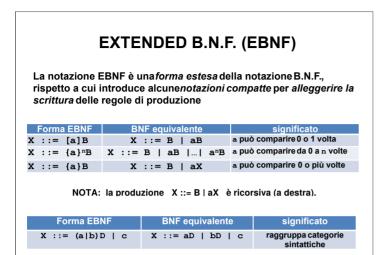
ESEMPIO: derivazione della frase

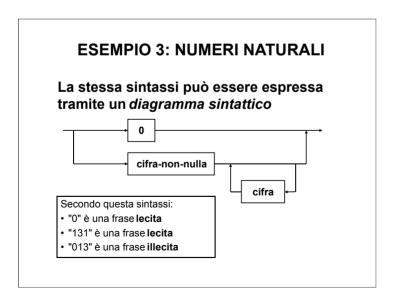
"il gatto mangia il topo"

(ammesso che tale frase sia derivabile)

<frase>

- → <soggetto> <verbo> <compl-ogg>
- → <articolo> <nome> <verbo> <compl-ogg>
- → il <nome> <verbo> <compl-ogq>
- → il gatto <verbo> <compl-ogg>
- → il gatto mangia < compl-ogg>
- → il gatto mangia <articolo><nome>
- → il gatto mangia il <nome>
- → il gatto mangia il topo





ESEMPIO 3: NUMERI NATURALI

ESEMPIO 4: NUMERI INTERI

- · Sintassi analoga alla precedente
- ma con la possibilità di mettere un segno (+,-) davanti al numero naturale

Quindi:

- stesse regole di produzione più una (al top level) per generare il segno
- stesso alfabeto terminale più i due simboli + e -

ESEMPIO 4: NUMERI INTERI

ALBERI DI DERIVAZIONE

Per le grammatiche di Tipo 2si introduce il concetto di albero di derivazione

- ogni nodo dell'albero è associato a un simbolo del vocabolario V = VT∪ VN
- la radice dell'albero coincide con loscopo S
- se a₁, a₂, ..., a_k sono i k figli ordinati di un dato nodo X
 (associato al simbolo X∈ VN), significa che la grammatica
 contiene la produzione

```
X := A_1 A_2 ... A_k dove A_i è il simbolo associato al nodoa;
```

ESEMPIO 5: IDENTIFICATORI

Nell'uso pratico si danno di solitosolo le regole di produzione, definendo VT, VN e Simplicitamente

- i non-terminali hanno la forma BNF <...>
- · il primo di essi è il simbolo iniziale

RIPRENDENDO L' ESEMPIO 2 P= {

```
<frase> ::= <soggetto> <verbo> <compl-ogg>
Derivazione della frase
                        <soggetto>::= <articolo><nome>
 "il gatto mangia il topo"
                        <articolo> ::= il
(ammesso che tale frase
                        <nome> ::= gatto | topo | sasso
  sia derivabile)
                        <verbo> ::= mangia | beve
                        <compl-ogg> ::= <articolo> <nome>
                              ⟨ frase
         ⟨ soggetto⟩
                              ⟨ verbo⟩
                                                  ⟨ compl-ogg
    ⟨ articolo⟩ ⟨ nome⟩
                              mangia
                                               ⟨ articol
                                                           ⟨ nome
                                               0
                                                             topo
                 gatto
```

ALBERI DI DERIVAZIONE

Si noti che *l'albero di derivazione non* può esistere per grammatiche di Tipo 1 e 0 perché in esse il lato sinistro delle produzioni ha più di un simbolo e dunque i nodi figli avrebberopiù di un padre

(ergo non si otterrebbe più un albero, ma un generico grafo).

S → aBC | aSBC

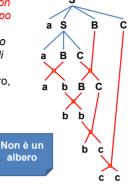
 $CB \rightarrow BC$

aB → ab

bB → bb

bC → bc

cC → cc



RIPRENDENDO L'ESEMPIO 4

- Qui una regola è scritta in EBNF(Extended BNF), che non è direttamente mappabilesu un albero.
- Occorre perciò riscriverla in BNF standard ricordando le equivalenze:

 $X := \{a\}B \longleftrightarrow X := B \mid aX$

 $X ::= B \{a\} \longleftrightarrow X ::= B \mid Xa$

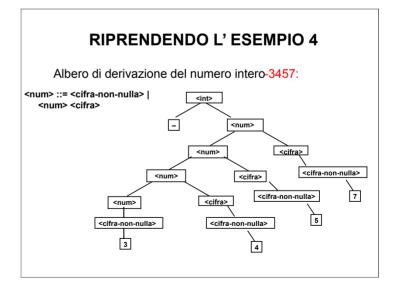
• Dunque, la regola:

<num>::= <cifra-non-nulla> {<cifra>}

va riscritta come:

<num>::= <cifra-non-nulla> | <num> <cifra>

<cifra-non-nulla> ::=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9



Capitolo 2 Linguaggi e Grammatiche

Ambiguità

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Anno accademico 2019/2020

Prof. MARCO GAVANELLI

Si ringrazia il Prof. Enrico Denti per aver fornito la prima versione di questi lucidi Sono vietate la riproduzione e la distribuzione non autorizzate

DERIVAZIONI CANONICHE

DERIVAZIONE "LEFT-MOST" (deriv. canonica sinistra)

 A partire dallo scopo della grammatica,si riscrive sempre il simbolo non-terminalepiù a sinistra.

DERIVAZIONE "RIGHT-MOST" (deriv. canonica destra)

 A partire dallo scopo della grammatica, si riscrive sempre il simbolo non-terminalepiù a destra.

 $S \rightarrow ABC$

 $A \rightarrow a \mid Aa$

 $B \rightarrow b \mid Bb$

 $C \rightarrow c \mid Cc$

DERIVAZIONI CANONICHE

• In molti casi, esistono più derivazioni per la stessa frase

 $S \rightarrow ABC$ $B \rightarrow b \mid Bb$ $A \rightarrow a \mid Aa$ $C \rightarrow c \mid Cc$

 $S \rightarrow \underline{ABC} \rightarrow Aa\underline{BC} \rightarrow Aa\underline{BbC} \rightarrow Aabb\underline{C} \rightarrow Aabb\underline{Cc} \rightarrow \underline{A}abbcc \rightarrow aabbcc \\ S \rightarrow ABC \rightarrow ABCc \rightarrow ABcc \rightarrow ABbcc \rightarrow Aabbcc \rightarrow aabbcc \\$

- in queste ho applicato le stesse regole, ma in ordine diverso: ho fatto scelte diverse nella selezione del non-terminale da riscrivere
- In una grammatica context-free, il fatto di selezionare per primo un non-terminale o un altro non cambia il fatto che la frase sia derivabile
- · Ha senso stabilire un ordine "canonico"

AMBIGUITÀ

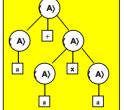
- Una grammatica è ambigua se esiste almeno una frase che ammette due o più derivazioni canoniche sinistre distinte (i.e. per cui esistono almeno due alberi sintatticidistinti).
 - Grado di ambiguità = numero di alberi sintattici distinti
- L'ambiguità può essere indesiderabile, a seconda delle applicazioni

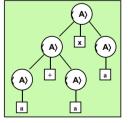
ESEMPIO

<A> ::= <A> + <A> <A> ::= <A> x <A>

<A> ::= a

La frase a+axa è ambiqua:





AMBIGUITÀ

- Purtroppo, stabilire se una grammatica di Tipo 2 sia ambigua è un problema indecidibile
 - in pratica, spesso un certo numero di derivazioni èsufficiente per "convincersi" (non per dimostrare!) dell'ambiguità di G
- Se una grammatica è ambigua, spesso se ne può trovare un'altra che non lo sia -ma non sempre.

$$L = \{ab^n \mid n \ge 0\} \cup \{a^n b^n \mid n \ge 0\}.$$

Esercizio (21 set 2016)

· Si consideri il linguaggio

$$L = \{ab^n \mid n \ge 0\} \cup \{a^nb^n \mid n \ge 0\}.$$

- Si scriva una grammatica non ambigua per il linguaggio *L*.
 - Lo studente cerchi di trovare una grammatica di livello più basso possibile nella classificazione secondo Chomsky, intendendo il livello 3 come minimo e il livello 0 come massimo.
- Si mostri poi l'albero di derivazione della stringa ab.

$$L = \{ab^n \mid n \ge 0\} \cup \{a^n b^n \mid n \ge 0\}.$$

Linguaggio Intrinsecamente Ambiguo

- Un linguaggio si dice intrinsecamente ambiguose tutte le grammatiche che lo generano sono ambigue
- Es: L = { $a^n b^n c^m d^m$ } \cup { $a^n b^m c^m d^n$ } con $n,m \ge 0$
- Si scriva una grammatica per il linguaggio L.
- Si mostrino poi due alberi di derivazione per la stringa aabbccdd.

LA STRINGA VUOTA

- La stringa vuota <u>può</u> far parte delle frasi generate da una <u>grammatica di Tipo 0</u>, poiché la generica regola di produzione α → β prevede α∈ V*, β∈ V*
 - Infatti, in un tale linguaggio accade che le formedi frase si accorcino durante la riscrittura
- La stringa vuota invecenon può far parte delle frasi generate da una grammatica di Tipo 1(e quindi neanche di tipo 2 e 3) perché lì vige la condizioneα ≠ ε e perciò la generica forma di frasenon può mai accorciarsi.

RICORDA: questo non è in contraddizione con il fatto che le produzioni di grammatiche di Tipo 2 e 3 possano "apparentemente" ammettere si sul lato destro delle produzioni, perché esiste sempre una grammatica equivalente senzasi -rules (escluso al più S).

Riassumendo

- L'ambiguità può essere indesiderabile, a seconda delle applicazioni
- Una grammatica è ambigua se esistono due derivazioni canoniche sinistre diverse per qualche frase
- Questo è equivalente a dire che esistono due alberi di derivazione diversi per quella frase
- · Esistono linguaggi intrinsecamente ambigui

LA STRINGA VUOTA

- Talora però farebbe comodo avere la stringa vuotae nel linguaggio, per esprimereparti opzionali
- È possibile farlo senza alterare il tipo della grammatica purché se ne ammetta la presenzanella sola produzione di top-level S → ε ed S non compaia altrove.
 - In questo modo, il solo caso in cuis entra in gioco è se è scelta all'inizio, al primo passo di derivazione
 - Tutte le altre stringhe sono generate da Susando regole diverse, che non contengonos: ergo, le forme di frase nonpossono comunque accorciarsi
- Questa proprietà è catturata dal seguente teorema:

LA STRINGA VUOTA

TEOREMA

- Dato un linguaggio L di tipo 0, 1, 2, o 3
- i linguaggi $L \cup \{\epsilon\}$ e $L \{\epsilon\}$ sono dello stesso tipo.

Ad esempio, le produzioni:

```
S::= \epsilon | X
X::= ab | a X b
definiscono il linguaggio (context-free) L = { a<sup>n</sup> b<sup>n</sup>, n ≥ 0}
(Vale ovviamente la convenzionea<sup>0</sup> = b^0 = \epsilon)
```

FORME NORMALI

Un linguaggio di tipo 2 non vuoto può essere sempre generato da una grammaticadi tipo 2 in cui:

- ogni simbolo, terminale o non terminale, compare nella derivazione di qualche frase di L
 - · ossia, non esistono simboli ometa-simboli inutili
- non c'è un nonterminale A che ha come unica produzione A→B con A,B∈ VN
 - ossia non esistono produzioni che "cambiano solo nome" a un meta-simbolo
- se il linguaggio non comprende la stringa vuota(ε ∉ L) allora *non ci sono* produzioni della forma A→ ε.

Capitolo 2 Linguaggi e Grammatiche

Forme Normali Trasformazioni importanti

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Anno accademico 2019/2020

Prof. MARCO GAVANELLI

Si ringrazia il Prof. Enrico Denti per aver fornito la prima versione di questi lucidi Sono vietate la riproduzione e la distribuzione non autorizzate

FORME NORMALI

In particolare si può fare in modo chetutte le produzioni abbiano una forma ben precisa:

- forma normale di Chomsky
 produzioni della forma A → B C | a
 con A,B,C∈ VN, a∈ VT ∪ ε
- forma normale di Greibach (per linguaggi privi diε)
 produzioni della forma A → a α
 con A∈ VN, a∈ VT, α ∈ VN*

La forma normale di Greibach facilita, come si vedrà, la costruzione di riconoscitori.

ESEMPIO 1

Esiste un algoritmo che trasforma ogni grammatica di tipo 2 in forma normale di Chomsky.

Qui lo vediamo solo applicato a un esempio.

Grammatica data:

 $S \rightarrow dA \mid cB$ $A \rightarrow dAA \mid cS \mid c$ $B \rightarrow cBB \mid dS \mid d$

Forma normale di Chomsky

 $S \rightarrow M A \mid N B$ $M \rightarrow d$ $N \rightarrow c$ $A \rightarrow M P \mid N S \mid c$ $P \rightarrow A A$ $B \rightarrow NQ \mid M S \mid d$ $Q \rightarrow B B$

La trasformazione in forma diGreibach richiede alcune tecniche extra.

SOSTITUZIONE

La sostituzione consiste nell'espandere un simbolo non terminale che compare nella parte destra di una regola di produzione, sfruttando a tale scopole regole in cui compare a sinistra.

Nella grammatica a lato è possibile sostituire il metasimbolo s nella seconda produzione, usando a tale scopo la prima produzione.

 $\begin{array}{c} \mathsf{ESEMPIO} \\ \mathsf{S} \to \mathsf{X} \mathsf{ a} \\ \mathsf{X} \to \mathsf{b} \mathsf{ Q} \mid \mathsf{S} \mathsf{ c} \mid \mathsf{ d} \end{array}$

Espandiamo quindi s come indicato: la nuova regola per x non contiene più alcun riferimento a s → x a x → b o

ESEMPIO $s \rightarrow x a$ $x \rightarrow b Q \mid x a c \mid d$

TRASFORMAZIONI IMPORTANTI

- Per facilitare la costruzione dei riconoscitori, è spesso rilevante poter trasformare la struttura delle regole di produzione per renderle più adatte allo scopo.
- Alcune trasformazioni particolarmente importanti sono
 - la sostituzione
 - il raccoglimento a fattor comune
 - l'eliminazione della ricorsione sinistra.

Tra gli altri usi, queste trasformazioni sono la base per trasformare una qualsiasi grammatica di tipo 2 in forma normale diGreibach.

SOSTITUZIONE

La sostituzione consiste nell'espandere un simbolo non terminale che compare nella parte destra di una regola di produzione, sfruttando a tale scopole regole in cui compare a sinistra.

Nella grammatica a lato, il metasimbolo s compare in due regole a sinistra del simbolo di produzione→ .	ESEMPIO 2 $S \rightarrow X$ a $S \rightarrow C$ X $X \rightarrow b$ Q S C d
Prima di sostituire è necessario raggrupparle in un'unica produzione	$S \rightarrow X a \mid c X$ $X \rightarrow b Q \mid S c \mid d$
A questo punto è possibile sostituire	$S \rightarrow X \ a \ \ c \ X$ $X \rightarrow b \ Q \ \ (X \ a \ \ c \ X) \ c \ \ d$
Infine si ottiene	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

IL RACCOGLIMENTO A FATTOR COMUNE Il raccoglimento a fattorcomune consiste nell'isolare il prefisso più lungo comune a due produzioni Nella grammatica a lato èpossibile isolare il ESEMPIO prefisso a S comune alle prime due produzioni. $S \rightarrow a S b \mid a S c$ Raccogliamo quindi a fattore comune ilprefis-ESEMPIO so comune a S ... $S \rightarrow a S (b | c)$...e introduciamo un nuovo meta-simbolo x **ESEMPIO** per esprimere la parte che segueil prefisso $S \rightarrow a S X$ comune. $X \rightarrow b \mid c$

ESEMPIO 2

Queste trasformazioni consentono di trasformare una grammatica in forma normale di Greibach.

Qui lo vediamo solo applicato a un esempio.

Grammatica data:

 $S \rightarrow X a$ $X \rightarrow b S | S c | d$

- Forma normale di Greibach (A \rightarrow p α , A \in VN, p \in VT, $\alpha \in$ VN*)
 - eliminazione ciclo ricorsivo a sinistra
 - eliminazione ricorsione sinistra diretta
 - sostituzione
 - ridenominazione dei terminali tramite non-terminali ausiliari

ELIMINAZIONE DELLA RICORSIONE SINISTRA E' una trasformazione sempre possibile, articolata in due passi: · Fase 1: eliminazione dei cicli ricorsivi a sinistra Fase 2: eliminazione della ricorsione sinistra diretta. Fase preliminare **ESEMPIO** · si stabilisce una relazione d'ordinefra i meta- $A \rightarrow B a$ simboli coinvolti del ciclo ricorsivo $B \rightarrow C b$ $C \rightarrow A c \mid p$ Nel nostro caso, sia dunquec > B > A Fase 1 Si ottiene guindi: $A \rightarrow B a$ si modificano tutte le produzioni del tipo $B \rightarrow C b$ $Y \rightarrow X\alpha$ in cui Y > X, sostituendo a X le forme $C \rightarrow C b a c | p$ di frase stabilite dalle produzioni relative ax Fase 2 Ergo, $c \rightarrow c b a c | p$ le produzioni ricorsive direttex → x α | p si diventa modificano introducendo un metasimbolo z e $C \rightarrow p \mid p \mid Z$ scrivendo $X \rightarrow p \mid p Z e Z \rightarrow \alpha \mid \alpha Z$ $Z \rightarrow b a c | b a c Z$

F 4	
Fase 1 relazione d'ordine fra i simboli non terminali	Grammatica data:
coinvolti del ciclo ricorsivo: x > s	$S \rightarrow X a$ $X \rightarrow b S \mid S c \mid d$
Fase 2	Si ottiene quindi:
modifica della produzionex → s c sostituendo	$S \rightarrow X$ a
a S la produzione S → X a	$X \rightarrow b S \mid X a c \mid d$
Fase 3	$S \rightarrow X$ a
Raggruppiamo per semplicità i casi base della	$X \rightarrow D \mid X a c$
ricorsione sinistra in un nuovo simbolo D	D → bS d
Fase 4	$S \rightarrow X$ a
eliminazione della ricorsione sinistra diretta	$X \rightarrow D \mid DZ$
$X \rightarrow X \alpha$ D introducendo il meta-simbolo Z	D → bS d
tale che $z \to \alpha \mid \alpha z \in x := Dz \mid D$	$Z \rightarrow a c \mid a c Z$
Fase 5 • sostituzione del simbolop in x e x in s.	$X \rightarrow bS \mid d \mid bSZ \mid dZ$ $S \rightarrow bSa \mid da \mid bSZa \mid dZa$
D non serve più	$Z \rightarrow a c \mid a c Z$
Fase 6	$S \rightarrow b S A \mid dA \mid bSZA \mid dZA$
• introduzione dei non-terminali ausiliariA e C	$Z \rightarrow aC \mid aCZ$
per rappresentare a e c dove appropriato. X	A → a
non serve più	C → c

IL "PUMPING LEMMA"

IL PUMPING LEMMA (o "lemma del pompaggio")

L'IDEA DI FONDO

- in un linguaggio infinito, ogni stringa sufficientemente lunga deve avere una parte che si ripete
- ergo, essa può essere "pompata" un qualunquenumero di volte ottenendo sempre altre stringhe del linguaggio
 - È con questo lemma che si dimostra, adesempio, che:
 L1 = {aⁿ bⁿ cⁿ} non è di Tipo 2 (quindi è almeno di Tipo 1)
 L2 = {a^p, p primo} non è di Tipo 3 (quindi è almeno di Tipo 2)(*)

La formulazione è leggermente diversaa seconda che si tratti di linguaggi di Tipo 2 o 3, ma la sostanza non cambia.

(*) in realtà non è neppure di Tipo 2, come si dimostrari-applicando il lemma.

COME CAPIRE SE UN LINGUAGGIO (NON) È DI TIPO 2 (3) ?

- Capire se un linguaggio èdi Tipo 2 (o di Tipo 3)
 "solo guardandolo" in generale non è banale
 - Non basta "immaginare come possano essere le produzioni", perché nessuno assicura che le immaginiamo "bene"...
- Il PUMPING LEMMA dà una condizionenecessaria, ma non sufficiente, perché un linguaggio siadi Tipo 2 (o 3)
 - Può quindi essere usato per dimostrare "in negativo" che un linguaggio NON SIAdi Tipo 2 (o di Tipo 3)...
 - .. ma purtroppo non per affermarlo "in positivo".

IL PUMPING LEMMA per linguaggi regolari

Se *L* è un linguaggio di Tipo 3, esiste un intero *N* tale che,

per ogni stringa z di lunghezza almeno pari aN:

• z può essere riscritta come: z = xyw

 $|z| \geq N$

• la parte centrale xy ha lunghezza limitata

 $|xy| \leq N$

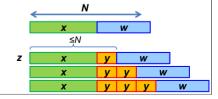
• y non è nulla:

 $|y| \ge 1$

• la parte centrale può essere pompata quanto si vuole ottenendo sempre altre frasi del linguaggio; ovvero,

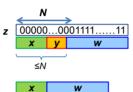
 $xy^iw \in L \ \forall \ i \geq 0$

•II numero N dipende caso per caso dallo specifico linguaggio •La dimostrazione si basa sull'automa a stati associato (cfr. Hopcroft/Motwani/Ullman, p. 135)



Esempio

- Linguaggio costituito dalle stringhe che hanno lo stesso numero di 0 e di 1
- Se fosse regolare, esisterebbe unN che soddisfa il pumping lemma
- Consideriamo la stringa z=0^N1^N
- Per il pumping lemma, z si può scomporre in z = xyw, con |xy| ≤ N e |y|>0
- Chiaramente, x e y contengono solo 0, mentre w contiene 1^N
- Per il pumping lemma, anche la stringa xw appartiene al linguaggio
- ma xw ha N simboli 1, ma meno di N simboli 0 → assurdo

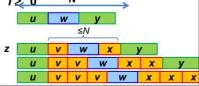


IL PUMPING LEMMA per linguaggicontext-free

Se L è un linguaggio di Tipo 2, esiste un intero N tale che.

per ogni stringa z di lunghezza almeno pari aN:

- z è decomponibile in 5 parti: z = uvwxv $|z| \ge N$
- la parte centrale vwx ha lunghezza limitata $|vwx| \le N$
- \mathbf{v} e \mathbf{x} non sono entrambe nulle: $|\mathbf{v}\mathbf{x}| \ge 1$
- la 2ª e la 4ª parte possono essere"pompate" quanto si vuole ottenendo sempre altre frasi del linguaggio; ovvero, uviwxiy ∈ L ∀ i≥ 0 N



ESEMPIO

$L = \{a^p, p \text{ primo}\}\$ non è un linguaggio regolare.

- se *L* fosse regolare, esisterebbe un intero*N* in grado di soddisfareil pumping lemma; sia allora p un primo ≥ N+2 (che esiste perché i numeri primi sono infiniti): consideriamo allora la stringa $z = a^p$
- scomponiamo ora z nei tre pezzi xyw; sia r = |y|; ne seque che |xw| = p - r

- in base al lemma, se L fosse regolare, qualunque stringa xy/w dovrebbe appartenere al linguaggio.
- In particolare, prendiamo la stringaxyo-w : la lunghezza di tale stringa sarebbe:

 $|xy^{p-r}w| = |xw| + (p-r)|y| = (p-r) + (p-r)|y| = (p-r)(1+|y|) = (p-r)(1+r)$ ovvero non un numero primo

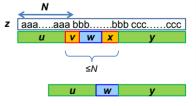
– pertanto, essa non appartiene a Le dunque L non è regolare.

ESEMPIO 2 (1)

$L = \{a^n b^n c^n\}$ non è context-free

- se L fosse context-free, esisterebbe un intero N in grado di soddisfare il pumping lemma: consideriamo allora la stringaz = a^N b^N c^N
- scomponiamo z nei cinque pezzi uvwxy, con $|vwx| \le N$
- poiché fra l'ultima "a" e la prima "c" ci sonoN posizioni, il pezzo centrale "vwx" non può contenere sia "a" sia "c", perché se contiene l'una, non contiene l'altra. Questo apre due possibilità:
- 1. "vwx" non contiene "c": allora "vx" è fatta solo di "a" e "b".

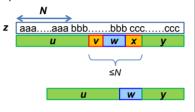
Ma allora "uwy", che in base al pumping lemma dovrebbe appartenere a L, ha tutte le "c" (che sono N) ma meno "a" o meno "b" del necessario, ergo non appartiene a $L \rightarrow$ assurdo



ESEMPIO 2 (2)

$L = \{a^n b^n c^n\}$ non è context-free

- se L fosse context-free, esisterebbe un intero N in grado di soddisfare il pumping lemma; consideriamo allora la stringa $z = a^N b^N c^N$
- -scomponiamo z nei cinque pezziuvwxy, con $|vwx| \le N$
- poiché fra l'ultima "a" e la prima "c" ci sono N posizioni, il pezzo centrale "vwx" non può contenere sia "a" sia "c", perché se contiene l'una, non contiene l'altra. Questo apre due possibilità:
- "vwx" non contiene "a": allora "vx" è fatta solo di "b" e "c", dunque "uwy" ha N "a" ma meno "b" o meno "c" del necessario, ergo non appartiene a L → assurdo.



Espressioni regolari

- Un formalismo di particolare interesse [per descrivere linguaggi] è quello delle
 - espressioni regolari
- Le espressioni regolari sono ampiamente usate in
 - editor di testo avanzati
 - comandi Unix (e.g., grep)
 - strumenti per l'analisi lessicale (e.g., lex)
 - librerie in linguaggi di programmazione (java.util.regex, Perl 5, .NET, Python, ...)

Stephen Cole Kleene Foto: Konrad Jacobs, Erlangen, Copyright is MFO Mathematische: Forschungsinstitut

Capitolo 2 Linguaggi e Grammatiche

Espressioni regolari

Corso di Laurea Magistrale in Ingegneria Informatica e dell'Automazione

Anno accademico 2019/2020

Prof. MARCO GAVANELLI

Si ringrazia il Prof. Enrico Denti per aver fornito la prima versione di questi lucidi Sono vietate la riproduzione e la distribuzione non autorizzate

Composizione di parole

- Un modo per esprimere linguaggi è definire un insieme di operazioni fra linguaggi, partendo da operazioni sulle parole.
- Un'operazione significativa sulle parole è la composizione o concatenazione:

 $W \circ W'$

giustapposizione dei simboli della prima parola alla seconda

• Es

abc • 1a2 = abc1a2

• Il simbolo o è spesso sottointeso

Operazioni regolari fra linguaggi

Unione

$$A \cup B = \{a | a \in A \lor a \in B\}$$

Composizione

$$A \circ B = \{a \circ b \mid a \in A, b \in B\}$$

Iterazione (o chiusura di Kleene)

$$\begin{array}{ll} A^* = \{a_1 \circ a_2 \circ a_3 \ldots \circ a_n | \ a_i \in A, \ n \in \mathbb{N}\} \\ \text{O anche} \\ A^* = A^0 \cup A^1 \cup A^2 \cup \ldots \\ \text{dove} \quad A^0 = \epsilon \\ \text{e} \quad A^k = A^{k+1} \circ A \end{array}$$

UN PRIMO ESEMPIO

ESEMPIO

ATTENZIONE: uno stesso linguaggio può essere descritto da molte espressioni regolari diverse!

Espressioni regolari

Definizione induttiva.

Simbolo → Linguaggio

sono espressioni regolari:

la stringa vuota ε → {ε }

 dato un alfabeto A, ogni elemento a∈ A

a **→** {a}

l'insieme vuoto

Ø → Ø

Se $A \in B$ sono espressioni regolari, lo sono anche

l'unione

 $A+B \Rightarrow A \cup B$

la composizionela chiusura

 $A \circ B \Rightarrow A \circ B$

min max

priorità

Esempi

• L'insieme delle cifre in base 10

$$digit = 0+1+2+...+9$$

 L'insieme delle stringhe che rappresentano numeri naturali

digit digit*

L'insieme di tutte le parole su un alfabeto dato A

Α*

• L'insieme delle stringhe sull'alfabeto A={0,1} che iniziano e finiscono per 1

$$1(0+1)*1 + 1$$

Esercizi

- Scrivere delle espressioni regolari che rappresentano
- il linguaggio sull'alfabeto A={0,1} delle stringhe che contengono due "1"
- Il linguaggio che contiene le stringhe in cui "0" e "1" si alternano

Linguaggi Regolari ⊆ Espressioni Regolari

· Sia data una grammatica regolare a destra

$$A_1 \rightarrow a A_1 | b A_2 | ... | w A_n | z$$

 $A_2 \rightarrow b A_1 | a A_2 | ... | k A_n | f$

qual è il linguaggio generato dalla grammatica?

• È il linguaggio denotato dall'espressione regolare ottenuta come soluzione del sistema di equazioni

$$A_1 = a A_1 + b A_2 + ... + w A_n + z$$

 $A_2 = b A_1 + a A_2 + ... + k A_n + f$

Equazioni con espressioni regolari

- Si possono anche scrivere equazioni con espressioni regolari.
- Es: se α e β sono espressioni regolari, l'equazione

$$X = \alpha X + \beta$$

è un'equazione con incognita X

• Una soluzione dell'equazione è

$$X = \alpha^* \beta$$

infatti $\alpha X + \beta = \alpha \alpha^* \beta + \beta = (\alpha \alpha^* + \epsilon)\beta = \alpha^* \beta = X$

• Si possono scrivere anche sistemi di equazioni

Proprietà operatori

commutatività + A + B = B + A

• associatività + (A+B)+C = A+(B+C)

• associatività • (AB)C = A(BC)

• distributività (A+B)C = AC + BC

• distributività A(B+C) = AB + AC

 $\bullet A + \emptyset = A$

A = A = A = A

• $A^* = A^*A^* = (A^*)^* = AA^* + \varepsilon$.

ESPRESSIONI vs LINGUAGGI REGOLARI

Per passare dalla grammatica all'espressione regolare si interpretano le produzioni comeequazioni sintattiche, in cui

- i simboli terminali sono i termini noti,
- i linguaggi generati da ogni simbolo non terminale sono le incognite

e si risolvono con le normali regole algebriche.

ESEMPIO: numeri naturali in base 2:

$$S \to 0 \mid 1N$$

 $N \to 0 \mid 1 \mid 1N \mid 0N$

La grammatica può essere letta come un sistema di equazioni con

- due termini noti: 0, 1
- due incognite: L_s, L_N

in cui si sostituisce il simbolo| delle grammatiche con il simbolo+ delle espressioni regolari

SOLUZIONE DI EQUAZIONI SINTATTICHE

- Le equazioni sintattiche si risolvono tramite unalgoritmo, che esiste in due versioni:
 - per grammatiche regolari a destra
 - per grammatiche regolari a sinistra
- Le due versioni differiscono però solo per un raccoglimento a fattor comune, in cui l'elemento raccolto:
 - nelle grammatiche regolaria destra, è raccolto a destra
 - nelle grammatiche regolari a sinistra, è raccolto a sinistra

e nella conseguente posizione dei termini nell'espressione risultante.

```
S \to 0 \mid 1 \mid 1N
N \to 0 \mid 1 \mid 1N \mid 0N
S = 0 + 1 + 1N
N = 0 + 1 + 1N + 0N
S = 0 + 1 + 1N
N = (0 + 1) + (1 + 0)N
S = 0 + 1 + 1N
N = (1 + 0)^{*} (0 + 1)
S = 0 + 1 + 1(1 + 0)^{*} (0 + 1)
S = 0 + 1 + 1(1 + 0)^{*} (0 + 1)
N = (1 + 0)^{*} (0 + 1)
```

ALGORITMO (grammatiche regolari a destra)

1. Riscrivere ogni gruppo di produzioni deltipo $X \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$ $X = \alpha_1 + \alpha_2 + \dots + \alpha_n$ 2. Poiché la grammatica è lineare adestra, ogni α μ ha la forma uXμ dove $X_{\nu} \in VN \cup \epsilon$. $u \in VT^*$ Ergo, si raccolgano adestra i simboli non-terminali dei varia 1 ... a n scrivendo X = $(u_1 + u_2 + ...) X_1 + ... + (z_1 + z_2 + ...) X_n$ dove $X_{\nu} \in VN$. $U_{\nu}, Z_{\nu} \in VT^*$ Ciò porta a un sistema di M equazioni in M incognitedove M è la cardinalità dell'alfabeto VN (cioè il numero di simboli non terminali) 3. Eliminare dalle equazioni le ricorsioni dirette, data l'equivalenza $X = u X + \delta$ \leftrightarrow X = (u)* δ Ognuna delle forme di frase oconterrà altre incognite, ma non X. 4. Risolvere il sistema rispetto a S per eliminazioni successive metodo di Gauss), eventualmente ri-applicando (2) e (3) per trasformare le equazioni via via ottenute. 5. La soluzione del sistema è il linguaggio regolare cercato.

ALGORITMO (grammatiche regolari a sinistra)

- 4. Risolvere il sistema rispetto a S per eliminazioni successive metodo di Gauss), eventualmente ri-applicando (2) e (3) per trasformare le equazioni via via ottenute.
- 5. La soluzione del sistema è il linguaggio regolare cercato.

ESEMPIO - VARIANTE

Fase 1 • scrittura di un'equazione per ogni regola:	Grammatica data: $S \rightarrow a B \mid a S$ $B \rightarrow d S \mid b$
Fase 2 • se ora eliminiamo subito B, sostituendo la 2ª equazione nella 1ª e raccogliamo S:	Equazioni: S = a B + a S B = d S + b
Fase 3 • eliminando ora la ricorsionex = $u \times + \delta$ riscrivendola come $x = u^* \delta$ (qui $\delta = a b$)	S = a (d S + b) + a S = = $(a d + a) S + a b$
che costituisce già una espressione regolare (risultato finale)	S = (a d + a)* a b
Poco fa però avevamo ottenuto:	S = (a* a d)* a* a b

non sembra affatto la stessa cosa...

ESEMPIO (grammatica lineare a destra)

Fase 1 • scrittura di un'equazione per ogni regola:	Grammatica data: $S \rightarrow a B \mid a S$ $B \rightarrow d S \mid b$
Fase 2 • eventuali raccoglimenti a fattore comune per evidenziare suffissi: qui non ce ne sono	Equazioni: S = a B + a S B = d S + b
Fase 3 • eliminare la ricorsione diretta $x = u x + \delta$ riscrivendola come $x = u^* \delta$ (qui $\delta = a B$)	S = a* a B B = d S + b
Fase 4 • sostituzione della 2ª equazione nella 1ª e sviluppo dei relativi calcoli	$S = a^* a (d S + b) =$ = $a^* a d S + a^* a b$
Fase 5 • nuova eliminazione della ricorsioneintrodotta al punto precedente: risultato finale.	$S = a^* a d S + a^* a b$ $S = (a^* a d)^* a^* a b$

RIFLESSIONE

LA PRIMA ESPRESSIONE ottenuta: $S = (a^* a d)^* a^* a b$ LA SECONDA ESPRESSIONE ottenuta: $S = (a d + a)^* a b$

Una terza espressione (deterministica) equivalente:

S = a (da + a)*b

Frasi del linguaggio:

ab, adab, aab, aadadab, ...

ossia tutte le frasi che iniziano per "a", terminano per "b", e hanno eventualmente in mezzo "a" o "da" ripetuti un numero arbitrario di volte.

In generale, uno stesso linguaggio può essere denotato da piùespressioni regolari equivalenti.

RIFLESSIONE

Come si possono ottenere espressioni equivalenti?

- manipolando algebricamente quelle dipartenza
 - la manipolazione algebrica diretta è ardua perché gli operatorhanno poche proprietà e quindi trasformare è faticoso e difficile
 - · occorre capire "con fantasia" quale trasformazioneapplicare
- · operando sulle "corrispondenti macchine"
 - lì esistono algoritmi praticiper trasformare macchine in altremacchine
 - il risultato finale può essereri-trasformato in espressione regolare

Espressioni Regolari ⊆ Linguaggi Regolari

 Un'espressione regolare è definita induttivamente, quindi basta spiegare come scrivere una grammatica basandosi sulle operazioni regolari

• Stringa vuota: S→8

• carattere a: S→a

• insieme vuoto: (nessuna produzione)

Linguaggi Regolari ⊆ Espressioni Regolari

- Data una grammatica regolare a destra, si riesce a generare una espressione regolare che denota lo stesso linguaggio
- Quindi i linguaggi generati da grammatiche regolari a destra sono un sottoinsieme dei linguaggi generati da espressioni regolari
- E data un'espressione regolare, si riesce a generare una grammatica?

Espressioni Regolari ⊆ Linguaggi Regolari

 Se A=<VN_A,VT_A,P_A,S_A> e
 B =<VN_B,VT_B,P_B,S_B> sono due grammatiche che non hanno simboli nonterminali in comune

$$P_{A} = \{S_{A} \rightarrow aC \mid c \\ C \rightarrow bD \mid d \\ D \rightarrow wC \mid c\}$$

$$P_{B} = \{S_{B} \rightarrow aK \mid c \\ K \rightarrow aF \mid c \\ F \rightarrow dK \mid a\}$$

• $L_A \cup L_B$: $U = \langle VN_U, VT_U, P_U, S' \rangle$

$$P_{II} = P_{\Delta} \cup P_{R} \cup \{S' \rightarrow S_{\Delta} \mid S_{R}\}$$

Espressioni Regolari ⊆ Linguaggi Regolari

 Se A=<VN_A,VT_A,P_A,S_A> e
 B =<VN_B,VT_B,P_B,S_B> sono due grammatiche che non hanno simboli nonterminali in comune

$$P_{A} = \{S_{A} \rightarrow aC \mid c \\ C \rightarrow bD \mid d \\ D \rightarrow wC \mid c\}$$

$$P_{B} = \{S_{B} \rightarrow aK \mid c \\ K \rightarrow aF \mid c \\ F \rightarrow dK \mid a\}$$

• $L_A \circ L_B$: $C = \langle VN_C, VT_C, P_C, S_C \rangle$

$$P_{C} = \begin{cases} S_{A} \rightarrow aC \mid c S_{B} \\ C \rightarrow bD \mid d S_{B} \\ D \rightarrow wC \mid c S_{B} \end{cases} \cup P_{B}$$

ESPRESSIONI E LINGUAGGI REGOLARI

TEOREMA

i linguaggi generati da grammatiche regolari coincidono

con i linguaggi descritti da espressioni regolari.

Grammatiche ed espressioni regolari sono quindidue rappresentazioni diverse della stessa realtà:

- una è costruttiva dice COME si fa, ma non COSA si ottiene
- · l'altra descrittiva dice COSA si ottiene, ma non COME si ottiene

Espressioni Regolari ⊆ Linguaggi Regolari

• Se A= $\langle VN_A, VT_A, P_A, S_A \rangle$

$$P_A = \{S_A \rightarrow aC \mid c$$

$$C \rightarrow bD \mid d$$

$$D \rightarrow wC \mid c\}$$

• $(L_A)^*$: $K = \langle VN_K, VT_K, P_K, S' \rangle$

$$P_{K} = \begin{cases} \{S_{A} \rightarrow aC \mid c \mid S' \\ C \rightarrow bD \mid d \mid S' \\ D \rightarrow wC \mid c \mid S' \} \end{cases} \cup \{S' \rightarrow S_{A} \mid \epsilon\}$$

Riassumendo

- Le espressioni regolari sono un metodo molto usato per rappresentare linguaggi regolari
- Vengono definite induttivamente tramite composizione di operazioni sui linguaggi
- È possibile passare da espressione regolare ad una grammatica regolare (a destra o a sinistra) e viceversa