
Git

1
Git



Topics covered

 Introduction to Git

 Git workflows

 Git key concepts

 Hands on session

 Branching models

Git 2



Introduction to Git

Git 3



Version control systems

 The source files of a project changes over time (addition of 

functionality, error correction)

 Version control systems allow you to store and, if necessary, 

recover all significant versions of the sources in a repository

▪ Comparison with previous versions

▪ Reverting to a previous version (rollback)

Git 4



Version control systems

There are 3 types of version control systems:

 Local, repository on the local machine

▪ RCS

 Centralised, repository on a remote machine

▪ CVS

▪ Subversion (svn)

 Distributed, repository on several machines (some may act as 

servers)

▪ Git

▪ Mercurial

Git 5



What is Git?

 Distributed (Decentralized) version control system

 Users keep entire code and history on their local machines

▪ Users can make any changes without internet access

▪ (Except pushing and pulling changes from a remote server)

 Started in 2005

 Created by Linus Torvald (the creator of the Linux kernel) to aid in 

Linux kernel development

Git 6



Who uses Git

Git 7



Git workflows

Git 8



Centralised workflow 

Git 9



Centralised workflow

 One central repository can accept code, and everyone 

synchronizes their work to it. A number of developers are nodes 

and synchronize to that one place.

Git 10



Integration-Manager 

Workflow

Git 11



Integration-Manager 

Workflow

Process:

1. The project maintainer pushes to a public repository (blessed 

repository).

2. A contributor clones that repository and makes changes.

3. The contributor pushes to his own public copy.

4. The contributor sends the maintainer an email asking him to pull 

changes.

5. The maintainer adds the contributor’s repo as a remote and 

merges locally.

6. The maintainer pushes merged changes to the main repository.

Git 12



Dictator and Lieutenants

Workflow

Git 13



Dictator and Lieutenants

Workflow

Process:

1. Regular developers work on their topic branch and rebase their 

work on top of master. The master branch is that of the 

reference directory to which the dictator pushes.

2. Lieutenants merge the developers' topic branches into 

their master branches

3. The dictator merges the lieutenants‘ master branches into his 

master branch

4. The dictator pushes his master to the blessed repository so the 

other developers can rebase on it.

Git 14



Remote repositories

 "In-House"

 Hosted

▪ Github

▪ BitBucket

▪ GitLab

Git 15



Git key concept

Git 16



Snapshots

 The way Git keeps track of your code history

 Essentially records what all your files look like at a given point in 

time

 You decide when to take a snapshot, and of what files

▪ The staging area or index is a file that stores information 

about what will go into the snapshot

 Have the ability to go back to visit any snapshot

▪ Your snapshots from later on will stay around, too

Git 17



Commit

 The act of creating a snapshot

 Can be a noun or verb

▪ “I commited code”

▪ “I just made a new commit”

 A project is made up of a set of commits

 Commits contain three pieces of information:

▪ Information about how the files changed from the previous

commit

▪ A reference to the commit that came before it (called the 

parent commit)

▪ A hash code name that identifies the commit

Git 18



Repository

 A collection of all the files and the history of those files

▪ Consists of all your commits

▪ Place where all your work is stored

 Can live on a local machine or on a remote server (GitHub, 

Bitbucket, GitLab)

 The act of copying a repository from a remote server is called 

cloning

▪ Cloning from a remote server allows teams to work together

 The process of downloading commits that don’t exist on your 

machine from a remote repository is called pulling changes

 The process of adding your local changes to the remote 

repository is called pushing changes

Git 19



Branches

 All commits in git live on some branch

 But there can be many, many branches

 The main branch in a project is called the master branch

Git 20



Branches

Git 21



What is a Git project?

 A set of commits linked together that live on some branch, 

contained in a repository.

Git 22



Hands on session

Git 23



Install Git

 Linux (Debian)

▪ Command: sudo apt-get install git

 Linux (Fedora)

▪ Command: sudo yum install git

 Mac

▪ http://git-scm.com/download/mac

 Windows

▪ http://git-scm.com/download/win

Git 24

http://git-scm.com/download/mac
http://git-scm.com/download/win


Configuration

 Identity

git config --global user.name "John Doe" 
git config --global user.email johndoe@example.com 

 Creating/Initializing repository

git init

 Cloning a remote repository

git clone <url_repository>

Git 25



Common commands

 Add new file into the index (staging area)

git add README.txt

 Remove file from the index (staging area)

git rm file.c

 Commit changes

git commit –m "First commit"

 Updates files in the working tree to match a given commit

git checkout <id_commit>

Git 26



Common commands

 Show log (commit history)

git log

 Show commit changes

git show <commit_hash>

 Show diffs between the index and the previous commit (HEAD)

git diff

Git 27



Undoing things

 Unmodify modified file in the index

git checkout – file.c

 Revert a commit

git revert <commit_hash>

Git 28



Commands for remote 

repositories

 Push to remote repository

git push origin <branch_name>

 Fetch from remote repository

git fetch

 Merge fetched content

git merge origin/<branch_name>

 Fetch & Merge

git pull

Git 29



Branch management

 Create new branch

git branch <branch_name>

 Switch branch

git checkout <branch_name>

 Delete branch

git branch -d <branch_name>

 Show all branches

git branch

Git 30



Git fundamental commands

Git 31

(credit: 

http://krishnaiitd.github.io/gitcommands/

)



Additional info

 Git official site

▪ https://git-scm.com/

 Git 15 minutes tutorial

▪ https://try.github.io/levels/1/challenges/1

 Git cheat sheet

▪ https://services.github.com/on-demand/downloads/github-git-

cheat-sheet.pdf

Git 32

https://git-scm.com/
https://try.github.io/levels/1/challenges/1
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf


Branching models

Git 33



GitFlow

 GitFlow is a branching model for Git created by Vincent Driessen

 More info:

▪ https://datasift.github.io/gitflow/IntroducingGitFlow.html

▪ http://nvie.com/posts/a-successful-git-branching-model/

 (Author of the pictures: Vincent Driessen)

▪ Original blog post: http://nvie.com/

Git 34

https://datasift.github.io/gitflow/IntroducingGitFlow.html
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/


GitFlow

1. New development (new 

features, non-emergency 

bug fixes) are built in 

feature branches

Git 35



GitFlow

2. Feature branches are branched 

off of the develop branch, and 

finished features and fixes are 

merged back into the develop 

branch when they’re ready for 

release

Git 36



GitFlow

3. When it is time to make a 

release, a release branch

is created off of develop

4. Test of the release branch

Git 37



GitFlow

5. When the release is 

finished, the release 

branch is merged into 

master and into develop

Git 38



GitFlow

6. The master branch tracks 

released code only. The only 

commits to master are 

merges from release 

branches and hotfix 

branches.

▪ Hotfix branches are 

used to create emergency 

fixes

7. Hotfix branches are 

branched directly from a 

tagged release in the master 

branch, and when finished 

are merged back into both 

master and develop.

Git 39



Trunk Based Development

Git 40



Trunk Based Development

 We have two main branches: trunk and release

 Developers commit to a single trunk more or less exclusively

 Release engineers (or build-cop) create branches, and cherry-

pick to branches more or less exclusively 

▪ Only if a defect cannot be reproduced on trunk, is permission 

given to fix it on the release branch, and cherry-pick back to 

trunk.

 Trunk Based Development means regular developers don’t 

commit to a release branch.

 Trunk Based Development means you’re going to delete ‘old’ 

release branches, without merging them back to trunk

 More info: http://paulhammant.com/2013/04/05/what-is-trunk-

based-development/

Git 41

http://paulhammant.com/2013/04/05/what-is-trunk-based-development/

