
Ing. A. De Poli , Ing. M. Coppetta

Ferrara, December 2017

Software development for automotive

embedded non volatile memories testing

Self introduction – Angelo De Poli

› Angelo De Poli – Rovigo, 1977

– Master degree in Electronic Engineering at Ferrara University (2003)

– Internship in Ericsson AG, Aachen (Germany) with specialization in telecommunication

– Master in Business Administration, Bologna University (2009)

– 2003: Telecommunication Researcher at Ferrara University

– 2004: Application Product Engineer at Brahma, Legnago

– 2005: TAV System Engineer at Alstom,
 Bologna

– 2005: Infineon Technologies Italia,
 into Microcontroller team:

– 2005: eFlash Product Engineer

– 2006: Methodology Manager for activities support

– 2010: eFlash Test Engineering Team Manager

2 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://mysite.infineon.com/Person.aspx?accountname=EU/depoli

Self introduction - Matteo Coppetta

› Matteo Coppetta – Rome, 1981

– Master Degree in Microelectronics and Electronic Engineering at
Università degli Studi di Roma Sapienza in 2006.

3

– Working @Infineon Technologies Italia since Jan 2006, into Embedded Flash
Microcontroller team.

– In 2006: Master thesis “Flash Fault modelling”

– Since Sept 2006 Product and Test Engineer on 32bits and 8bits microcontrollers on
eFlash customer validation, test flows and test software

– Since June 2013 Technical Leader responsible for
eFlash test flow and test software (TestWare)

– Since Jan 2015 member of PTE eFLASH Champions
Team

– Since Jan 2016 Senior Staff Engineer

– In 12/2013 and 12/2014 seminars @University of Rome
“La Sapienza” about eFlash testing with sponsorship of
IEEE Electron Device Society

– In 12/2013 seminar @University of Ferrara about
Software development and test

– In 01/2017 seminar @Politecnico of Torino about eFlash
testing

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

http://mysite.infineon.com/Person.aspx?accountname=EU/coppettm

Software development for automotive embedded non volatile memories testing

Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

4 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Presentation Roadmap

5

Automotive Environment

Automotive System

Automotive SoC

Automotive Safety

Automotive Reliability

Automotive Testing

Software for Testing

Software Development

Software Development Process

Software Quality Aspects

Methods for Software Quality

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

http://neutroncontrols.com/services/infineon-pdh/

Software development for automotive embedded non volatile memories testing

Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

6 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Infineon* at a glance

* Spin off from Siemens in 1999

7 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Top positions in all major product categories

8 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Infineon
Development Centre Padova

› founded in 2001 by 12 design engineers

› located close to Padova city centre and University

› more than 150 employees, mostly electronic engineers

› in these 16 years, active on development of

– automotive power electronics

– automotive microcontrollers (eFlash, PRE)

– industrial drives

– supply systems for CPU in desktop and notebook

› more than 199 patents proposals filed

9 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Automotive Microcontrollers
Padua Team Focus

10

Product
Definition

Design
Product

Engineering
Production

Product Engineering Embedded Software Product Engineering Lab Analysis

Product Engineering Methodology

› What?

– Developing embedded software
for uC embedded flash validation
and testing (production).

› What?

– Laboratory analysis to validate
uC embedded flash

› What?

– Cross teams support to improve
productivity, efficiency and
automation.

26
Engineers

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software development for automotive embedded non volatile memories testing
Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

11 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Engine Control Unit

Automotive Microcontrollers
Application Overview

12

Transmission and Chassis Controller

Window Lift

Radar

Emergency Steer Assist

Electric Steering

ABS

Airbag

Tyre Pressure

Central Body Computer Seat Control

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Automotive Application Overview
Yesterday and today

13 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Automotive Application Overview
Tomorrow

14 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Why testing SoC

15

Safety

Reliability

Test

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Quality requirement: Why Zero PPM?

16

A modern mid-class
car has ~50

Applications inside

A typical Automotive
Application has

~300 components

Component Quality
~ 1 ppm

Application Quality
300 ppm

Car Quality
15.000 ppm = 1,5%

Car Quality
< 500 ppm

Application Quality
< 10 ppm

Component Quality
0 ppm

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software development for automotive embedded non volatile memories testing
Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

17 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

A SoC for automotive market

18

› Harvard architecture
› TriCore™ CPUs:

– RISC Load/store core
machine

– Dual MAC (Multiply
Accumulate Module)

– ALU (Arithmetic Logic
Unit)

– Floating point Unit
› Program and Data Flash

memory embedded
› Communication buses
› I/O peripherals
› Analogue/digital modules

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Product design and production

19

Idea

• Ideation of the
product

Definition

• Requirements
collection

• Project release

Implementation

• Concept

• Specification

• Design (including
synthesis and
layout)

Verification and
Validation

• Verification

• First sampling

• Validation test

• Characterization

• Qualification

Production

• Production Testing

• Analysis

• Optimization

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software for Testing Scenario 1/3

› eFlash product engineering has the aim to find the better compromise
between quality of delivery and Test Time / Yield aspects

20

Test Time
Yield

Quality
Reliability

New test algorithms studying eFlash fault models
New test solution to optimize costs and test times

TEST
R&D +

Prod

Testing

Cost of Sales

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Products

Requirements

Maturity

Software for Testing Scenario 2/3

21

SoC1

Return
from

Field

Test

Analysis

…

…

Prototype LEARNING

TEST TIME

PERFORMANCE

QUALITY

FLEXIBILITY

Product

REUSE

YIELD

STANDARDIZATION

FTR

Production

SoC13

Testing

Software

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software for Testing Scenario 3/3

› Further constraints:

– Embedded software

– HW dedicated (based on Data Sheets and schematics)

– Bit Manipulation (usage of Hex numbers, C language)

– In-circuit debug (JTAG - no GUI)

– Limited SRAM (10 .. 100KB)

– Limited calculation capabilities (8MHz  300MHz)

– Team work:

– 15 engineers working simultaneously on same code

– Tight deadline:

– few weeks to deliver «First Time Right» releases

– Traceability:

– all activities must be traced so to understand after years what happened in case of
troubles at customer (FAR)

– there must be a bilateral linking between requirements and delivery for validation

22 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software development for automotive embedded non volatile memories testing
Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

23 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software quality

› What does “software quality” mean?

– The level with which a system, component or process satisfies user
requirements and expectations

– Conformity with functional and non functional requirements,
development standard and internal characteristics of a professional
developed software.

› Definition of software quality based on international standards and
models

– ISO/IEC 9126: defines software product quality according to a
wide range of parameters and it is designed for users, developers,
system administrators and customers.

– Automotive SPICE (ASPICE): defines technical standards
documents for the software development in automotive applications

› Software quality includes product, process and producer quality

24 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

ISO 26262

› ISO 26262 is a standard focused on Automotive Electrical/Electronic
Systems for Functional Safety (adapted from IEC 61508).

– A part is dedicated to Product Development at Software Level

25 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Why a process: cost of not using a process

26

Cost of SW Bugs:

› Spills (huge cost “x100k€”)

› FARs (sizable cost “x10k€”)

› SARs (image loss at customer side)

› Increased test costs (can be sizeable for high volume products)

› Increased cost of yield (can be big for huge volume products)

WITHOUT Professional SW Dev. Model

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Why a process: Benefits on projects

27

WITH Professional SW Dev. Model

› Traceability

› Continuous Learning

› Stable systems

› Customer informed

› Focus less on human mistakes, more on
process weakness

› Better estimates

› Identify pitfalls earlier

› Backup developer approach

› “Cooking recipe” approach

› Identify pitfalls earlier

› Easy and reliable pipeline

TIME

COST QUALITY

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Definitions: Software fault, error and failure

› Definitions:

– FAULT: physical difference between the "good" system and the current one

– ERROR: an error is the state of the system differs from the state in which it
should be.

– FAILURE: a Failure is a deviation of a system from its specified behaviour. It
occurs when the system fails to do what it should do.

› Human errors lead the faults (encoding errors) which cause the
processing (executing) errors and result in software failures

› Failure are detectable but it’s the fault that must be removed (fault is
the cause and failure is the result).

28

FAULT ERROR FAILURE

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

 fault error failure

Why a Process: Software error sources

› Where errors come from?

– Bad requirements (with mistakes or incomplete)

– Design error

– Encoding error

– Fast testing process

– Documentation error

› Not all faults become errors and not all errors become failures

29

software development process

Note: A failure can appear
after year of software use
(e.g. Y2K bug).

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Why a Process: Software failure reasons

1. Software failure trend

– The theoretical behaviour follows a hyperbolic shape

– The actual behaviour includes new failures due to software changes
and update

2. Conflicts of sharing same code/functionalities

3. Redundant code functionalities: doubled solutions not aligned

4. Cross functionality bugs (based on same code library)

5. Cross applications bugs (based on same code library)

 30

time

failure
%

time

failure
%

Failure trend
(theoretical)

Failure trend
(real)

Software
changes

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Primary causes of failure in industry

31 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

ISO/IEC 9126 quality relationship

32

Processes
quality

Internal
quality

External
quality

In use
quality

influence influence influence

depends on depends on depends on

Process Product Result

ISO/IEC 9126 quality relationship

› The ISO/IEC 9126 defines 4 typologies of software quality:

1. process: focus on the development process

2. internal: focus on software internal attributes and it’s independent from
user and operative environment (static measurements)

3. external: focus on software performance and functionality (running)

4. in use: focus on efficiency and efficacy with which software satisfies user
requirements (execution in real conditions)

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software design: life cycle model

› A software development process may follow different life cycle
models. The quality evaluation could also depend on that.

› There’re many software design processes suitable for different
contest

– Waterfall model

– V-Model

– Prototyping model

– Spiral model

– RAD (Rapid Application Development)

– Agile (Incremental) model

– XP (Extreme Programming)

– ...

33 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Waterfall model
1960s - 1970s

Non-iterative development approach:

1. Requirements specification

2. Design

3. Construction (aka: implementation or coding)

4. Integration

5. Testing and debugging (aka: verification)

6. Installation

7. Maintenance

› PROs:

– time spent early on making sure that requirements and design are absolutely correct is very
useful in economic terms

– it places emphasis on documentation (such as requirements documents and design documents)
as well as source code

› CONs:

– a bad idea in practice, mainly because it is impossible to get one phase of a software product's
lifecycle "perfected" before moving on to the next phases and learning from them (“time spent
in reconnaissance is seldom wasted”).

34 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

V-Model

› V-Model is a software development process extension of Waterfall model.

– each phase of the development life cycle is associated to a related phase of testing.

35 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Overall Process

› Description: (glossary link)

– It's a set of interrelated means and activities that interact to
achieve a result.

› ASPICE reference:

– Aspice Standard

› Benefits:
– Reduce development-caused quality problems

– Improve efficiency

– Improve know-how transfer between staff members

– Versatile staffing of people

– Performance less dependent from each individual

– No improvisation

– Clear insight on project status

– No/Less “firefighting”  Time for improvement

36

Process
Identification

Process name

ENG.1 Requirements elicitation

ENG.2 System requirements analysis

ENG.3 System architectural design

ENG.4 Software requirements analysis

ENG.5 Software design

ENG.6 Software construction

ENG.7 Software integration test

ENG.8 Software testing

ENG.9 System integration test

ENG.10 System testing

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/Process
http://iweb.infineon.com/en-US/RnD/rd_div/rd_atv/rd_atv_mc/SWDEVP/ASPICE/Documents/A-SPICE_REFERENCE_MODEL2.5.pdf
http://iweb.infineon.com/en-US/RnD/rd_div/rd_atv/rd_atv_mc/SWDEVP/ASPICE/Documents/A-SPICE_REFERENCE_MODEL2.5.pdf
http://iweb.infineon.com/en-US/RnD/rd_div/rd_atv/rd_atv_mc/SWDEVP/ASPICE/Documents/A-SPICE_REFERENCE_MODEL2.5.pdf

Test SW Development Means 1/3

› Documentation (Wer Schreibt Der Bleibet – Scripta Manent)

– Each Process phase is described in details into dedicated handbooks or wiki

– Benefits:

– Team work support (reference & training)

– AUDIT

– Avoid process exceptions

› Organization

– Resource Manager, Technical Leader, Engineers, …

› Workflow manager

– All change requests are traced

– Benefits:

– Team work support (documents sharing)

– Traceability (for history reference and activities monitoring)

37 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Test SW Development Means 2/3

› Versioning System

– Source code is stored and handled into Versioning System

– Benefits:

– To keep trace of versioning (revisions)

– To manage collaboration conflicts (Team work)

– To permit prototype development (branching)

› Development tools

– IDE (Eclipse)

– Compiler (Tasking)

– Debugger (UDE/PLS)

– Debug Platform (board + SoC)

› Source code documentation and analysis

– Doxygen

– Static analysis (MisraC compliance, Sonar)

38 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Means 3/3

› Verification tools

– Automatic Nightly build (Jenkins)

– (Automatic nightly) uTest execution

– (Automatic nightly) Regression execution

– Atlassian Crucible

› Release Tool

– Each release is done automatically with a dedicated tool

– Benefits:

– Package build from clean code (downloaded from versioning)

– Configurable to keep consistent contents

– Aligned with last working and verified build

– Automatic version tagging

– Automatic release note definition

 39 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/File:CapraICON.png

Software development for automotive embedded non volatile memories testing
Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

41 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Implementation:
how to guarantee Quality Software

42

Robustness Verification

Trade-off

› Quality Software implementation methodology can focus on Robustness or
delay to Verification avoiding that BUGS will go outside within releases.

› Clean Code

› MisraC rules

› Implementation
Specification

› Developers training

› Documentation

› Syntax check

› Map file checker

› Debug on SoC

› Unit Test

› Regression Test

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Robustness: The “Clean Code” philosophy

• “Clean Code” is a coding style that consists in a set of standard
rules and best practices which drives the developer through
a more reliable, maintainable and readable software coding

43

Bjarne Stroustrup (inventor of
C++): “I like my code to be

elegant and efficient. The logic
should be straightforward to make

it hard for bugs to hide… Clean
code does one thing well”

Grady Booch: “Clean code is
simple and direct. It reads like a
well-written prose. Clean code
never obscures the designer’s

intent.”

Ward Cunningham: (inventor of
Wiki): “You know you are working
when each routine you read turns
out to be pretty much what you

expect”

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

The “Clean Code” basic principle

““Clean Code: A Handbook of Agile Software Craftsmanship (R. Martin)” 
http://books.google.it/books?id=_i6bDeoCQzsC&printsec=frontcover&dq=clean+code+online+book&hl=it&sa=X&ei=-
WICUYfDBcbzsgb7sIDIBw&ved=0CDgQ6AEwAA#v=onepage&q&f=false

 44

“Use meaningful
names”

Intention revealing names
Pronounceable names

Searchable names

“Functions”
Small!!

Do one thing
Reading code from top to bottom

Function arguments
Have no side effects

“Comments”
Explain yourself in code
Good Vs. Bad comments

“Formatting”
Vertical formatting rules

Horizontal formatting rules
Team rules

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

The “Clean Code”

› What is good for?

– Write a easily readable
source code

– without clean code the ratio
between code understanding
and code writing is 10:1

– Get a really maintainable
and debuggable source
code.

– Produce performing and
reliable source code.

– Obtain modular and
scalable functions.

› Why to use it?

– Produce long-term
supportable and
expandable software.

– Reduce the working time
needed to refactoring,
maintain and debug
software source code.

– Easily reuse functions and
algorithm in place.

– Easily introduce new
people to code already in
place (e.g. Libraries, OS,
etc…).

45 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

MISRA-C

› MISRA-C is a software development standard for the C
programming language developed by MISRA (Motor Industry
Software Reliability Association). Its aims are to facilitate code
safety, portability and reliability in the context of embedded
systems.

› MISRA has evolved as a widely accepted model for best practices
by leading developers in sectors including aerospace, telecom,
medical devices, defence, railway, and others

46

Code
compliance

time

Static code analysis
monitoring

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Sonar: rules compliance monitoring

48 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Verification:
White Box Vs. Black box testing (1/2)

White box test

White-box testing (also known as
clear box testing, glass box testing,

transparent box testing and
structural testing) tests internal

structures or workings of a program

49

SW

Back box test

Black-box testing treats the software
as a "black box", examining functionality

without any knowledge of internal
implementation. The tester is only aware
of what the software is supposed to do,

not how it does it

SW INPUT

R
E
Q

E
V

E
N

T

OUTPUT

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

White box test: dual targeting

› Embedded Code is designed to run at least two platforms:

– the final target hardware

– the development system

› Executing some tests already before real hardware integration:

– It’s a practical way to completely isolate the software under test
to avoid debugging hardware and software simultaneously.

– It allows to test code before hardware is ready, designs with
hardware independence.

51

Unit Test

1.3 3.3

Final target debug

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

White Box testing:
Unit test theory

› Unit Testing is a method by which individual units of source code are
tested to determine if they are fit for use

› A Unit is the smallest testable part of an application

– In procedural programming a unit may be an individual Function or
Procedure

› Unit tests are created by Programmers or occasionally by White Box
Testers during the development process

› Ideally, each Test Case is independent from the others

› Substitutes can be used to assist testing a module in isolation

– Method Stubs

– Mock Objects

– Fakes

– Test Harnesses

52 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Unit test: Pro and Cons

› Benefits

– Allows the programmer to Refactor code at a later date, and make
sure the module still works correctly

– May reduce uncertainty in the units themselves and can be used in a
Bottom-Up testing style approach. By testing the parts of a
program first and then testing the sum of its parts, Integration
testing becomes much easier

– Provides a sort of living Documentation of the system

– May take the place of Formal Design

› Constrains

– Not catch Integration errors or Broader System-Level errors

– functions performed across multiple units

– non-functional test areas such as performance

53 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Unit test integration

› Depending on the development process, unit test can be
developed before or after the code implementation

54

V-Model

Code
implementation

Unit test

TDD (Test driven
development test)

Waterfall
Model

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Unit test monitoring

› In order to benefit from unit test power, it is needed to
constantly monitor unit test outputs

57

Test execution results Test coverage

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

http://padwczc13253rp.eu.infineon.com:8000/uniq/attachment/wiki/WikiStart/gcov2.PNG

Black box test:
Regression

› Regression testing is any type of software testing that seeks to
uncover new software bugs, or regressions, in existing functional
and non-functional areas of a system after changes such as
enhancements, patches or configuration changes, have been
made to them

› The intent of regression testing is to ensure that a change such
as those mentioned above has not introduced new faults

59 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

How to build a good regression?

› A good regression test

– … has to look at PASS conditions

– … has to look at FAIL conditions

– … can be automatically executed

– … is independent from previous executed test

– … should return pass or fail

– … should monitor the software execution time

60 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Testing flow environment

62

Source code
download

Source
code

Source code
build

Unit test
build

Unit test
execution

Test on HW
execution

FirmWare
debug FirmWare

release

Fully
automated

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Jenkins regression output

› Jenkins provides a graphical interface to monitor the status of the
regression environment divided by product in a set of regression flow
lists.

› For each flow list there are:
– a green/red ball depending on last execution is PASS or FAIL
– a “weather” situation that monitors the last 5 executions
– time of last PASS and last FAIL
– duration of execution
– a button to execute manually the build

64 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Functional check:
Linker output file checker

› During embedded software development it is important to check
that code is allocated in the proper area to guarantee:

– Code execution performance

– Resource conflicts

– (Proper interface with production test machine)

65

Map file
Chip
memory

Memory
allocation

check

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software development for automotive embedded non volatile memories testing
Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

66 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

SW Development Model

67

REQUIREMENTS

SPECIFICATION

IMPLEMENTATION

VALIDATION

RELEASE

- Elicitation

- Acceptance

- Tagging

- Risk evaluation

- Internal Requirements

- Concept

- Design

- System

- Architecture

- Module

- Test

- Versioning

- Review vs Requirements

- Construction

- Debug (White Box)

- Review vs Specification

- Revisioning

- Review vs Concept Req.

- Buy Off Test

- Integration Test

- Flow Test

- Regression Test

- Functional Test (Black Box)

- Unit Test

- Static code check

- Clean (Nightly) Build

- Review vs Req.

- Deployment

- Release Note

- Versioning

- Packaging

ALPHA

BETA

RC

Code Style

Guidelines

KPI

Planning
Roles &

Responsibilities

Learning

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Phase: Requirements

› Description: (glossary link)

– Establishing the needs of stakeholders that are to be solved by software.

› ASPICE reference:

– ENG.1 Requirements elicitation: The purpose of the Requirements
elicitation process is to gather, process, and track evolving customer
needs and requirements throughout the life of the product and/or
service so as to establish a requirements baseline that serves as the
basis for defining the needed work products.

– ENG.2 System requirements analysis

– ENG.4 Software requirements analysis

› Benefits:
– Continuing communication with the customer;

– Continuous monitoring of customer needs;

– Customers can easily determine the status and disposition of their
requests;

– Associated risks assessed and their impact managed.

68 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/Software_Requirements

Phase: Requirements – Example

69

› Requirements are:

› Taken from JIRA tickets or collected from Stakeholders

› Frozen and Stored

› Accepted formally by engineer

› Tagged

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Phase: Specification

› Description: (glossary link)

– Written description of a software product, that a software designer writes in
order to give a software development team overall guidance to the
architecture of the software project.

› ASPICE reference:
– ENG.5 Software design: The purpose of the Software design process is to provide a

design for the software that implements and can be verified against the software
requirements..

› Benefits:

– Identifies the components of the software

– Requirements are allocated to the elements of the SW

– Internal and external interfaces are defined

– Consistency and bilateral traceability are established between software
requirements and software design

– Design of each SW unit and related test is defined

 70

without Specification

with Specification

Specification

Efforts

Implementation Maintenance

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/Design

Phase: Specification – Example

71

› Specification focuses on:

› Product Req. and SW Req.

› Technical references

› Architectural, Module,
Unit changes

› Test design

› Risk assessment

REQ TAG

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Phase: Implementation

› Description: (glossary link)

– It is the detailed creation of working meaningful software through a combination
of coding, verification, unit testing, integration testing, and debugging.

› ASPICE reference:

– ENG.6 Software construction: The purpose of the Software construction process is to
produce verified software units that properly reflect the software design.

› Benefits:

– SW units analyzed for correctness and testability

– SW units are verified according to verification strategy

– Results of unit verification are recorded

– Consistency and bilateral traceability are established between software detailed
design and software units

72 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/Construction

Phase: Implementation – Example

73

› Implementation focuses on:

› Code writing

› Code building and debug

› uTest Code development

› 4 eyes Code review

rlib_flash.c

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Phase: Validation

› Description: (glossary link)

– The process of evaluating software during or at the end of the development
process to determine whether it satisfies specified requirements. [IEEE-STD-610].

› ASPICE reference:

– ENG.8 Software testing: The purpose of the Software testing process is to confirm that
the integrated software meets the defined software requirements.

› Benefits:

– Tests are based on a strategy and on specifications

– Results of software testing are recorded

– Consistency and bilateral traceability are established between software
requirements and software test specification including test cases

– A regression test strategy is applied for re-testing the integrated software when a
change in software items occur

74 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/Software_Validation

Phase: Validation – Example

75

› Validation takes care about:

› Unit Test

› Nightly build and Static check

› Functional, Flow tests

› Regression tests

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Phase: Release

› Description: (glossary link)

– All of the activities that make a software system available for use such as Release,
Install, Activation, Update, Version tracking, Retire.

› ASPICE reference:

– SPL.2 Product release: The purpose of Product release process is to control the release
of a product to the intended customer.

› Benefits:

– Determined contents of the product release

– Easy release documentation production

– Release can be approved by process

– Approval by customer is obtained

76 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

https://wiki.intra.infineon.com/Deployment

Phase: Release – Example

77

› Release provides:

› TW application binary

› Documentation

› Release notes

› References (e.g. uCode, DEVCFG)

› Validation reports

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Close the loop: KPI and Feedback

› To keep quality in focus some KPI must be monitored.

– For Example:

– BUG over Change Requests

– Total Cycle Time

– Cycle Time by Phase

– Rework rate

– …

– Action Items must be triggered when trends are going over
specified limits

› Further feedbacks loops can come with activities like:

– 5 Why

– Lesson Learned

78

C
u

s
to

m
e
r

Testing Software Development

›
T

e
s
ti

n
g

 S
o

ft
w

a
r
e
 R

e
le

a
s
e

›

D
o

c
u

m
e
n

ta
ti

o
n

›

T
r
a
in

in
g

KPI

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Work Flow
Management

Development Validation

Release

RAM_TS

eFlash TW and TP Development
WorkFlow – Interfaces

79

RAM_TW
DB

DB

Tasking IDE

Hightec

Keil

 Editor

 Compiler

LATTE

 Editor

 Compiler

 Releaser

C.A.P.R.A.

 Releaser

DB

Build uTest REG

.hex

SVN
LATTE

 .hex

 release notes

 build log

 .tde/.tdep (IBIS)

 .tops (J750/V93K/FLEX)

 .fls (JAZZ)

 Release mail

Automatic

Manual

Trigger

Flow

TW
RELEASE

PACKAGE

SVN IBIS
(TRUNK)

SVN
J750

ClearCase
(Baseline)

Local

Debug

(PLS)

Local

uTest

(Unity)

(CMOCK)

KPI

monitor

Planner

RESPECT

DEVCFG

uCODE

Syntax

Check

JAZZ

Datalog

Check

TWE

TWE

TWE

TOP

TE

TWE

eSPEC

Jenkins

Build REGGAE uTest Static
analysis

Slave IT Slave Local

SVN NB
.hex

SONAR

SVN
.c/.h

RAM

TRACE

FOLDER

SVN IBIS

(TAG)

Jenkins

BEATS

TWE

LE

JIRA

2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software development for automotive embedded non volatile memories testing
Agenda

Infineon MicroController: a SoC for automotive

SoC Quality and Testing

Software for Testing: Complexity

Software for Testing Development: why a process

Software for Testing: Strategies for Quality assurance

Software for Testing Development: phases

Conclusions and Questions

1

2

3

4

5

6

7

80 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Conclusions

› From statistics:

– Code Quality without uTest: 1 bug every 20 LoC

– Code Quality with uTest: 1 bug every 1000 LoC / 5 KB

› Our experience :

– Quality (bugged Change Requests):

– Without Clean Code/uTest/Regression: 60%

– With Regression: 3%

– With Clean Code & uTest: 0,4%

– Expected With Clean Code + uTest + Regression: 0,2%

– Effort:

– With Regression: +30%

– With Clean Code + uTest: +20%

81 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

But…

› How long does it take?

– ~7 years* to define a process

– ~5 years* to refine to an audit compliant level

– 3 years for establishing engineers mindset

› What competences are needed?

– NOT pure HW. Not pure SW. But HW+SW competence mix required at each engineer.

› Is it for everyone?

– Right people and ecosystem are mandatory: ad-hoc HW+SW competences mix
combined to integrated toolchain (RDDF, workflow manager, Continuous Delivery and
Integration and in-system nightly regression.

* PADUA experience

82 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

Software Development Methodology
Benefits for Engineers

› FAQ:

– Is the workflow wasting my time with
bureaucracy?

– What happen if I don’t follow the
workflow?

– Which information should I put?

– I don’t see any advantage, why
should I follow the process?

84 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

› No, Workflow in the mid/long term saves time:

– information is always available for researches

– it’s easier to share information with engineers, even newbies

– tasks can be shared within team quickly (cooperative activity)

› By not following the workflow engineers lose:

– KPI indication to improve working performance and quality

– Traceability of what has been done

– Information sharing with newbies and colleagues

› By using a “Poka Yoke” concept information set is
predefined and proposed/requested to engineers. It
should be not possible to miss some information.

› Many advantages for engineers are coming with a
process:

– They can go to vacation without worries since tasks can
handover to team members

– They are not guilty, is the process that’s weak

– They don’t have to improvise

– Their work is predictable: less surprises, less worries

Software Development Methodology
Benefits for Managers

› FAQ:

– Is the workflow wasting my team’s
time? How much does it cost?

– How can I trace who’s not following
the workflow?

– Which information could I get from
workflow?

– How can I convince the team to use
the workflow? How long do I need?

85 2017-12-12 restricted Copyright © Infineon Technologies AG 2017. All rights reserved. Infineon Proprietary

› No, Workflow in the mid/long term saves time:

– In case of trouble, data are easily available for learning loops

– Easier to introduce newbies

– Project can be supported with faster handover, more flexibility

› When engineers don’t follow the workflow:

– Dashboards are showing empty tasks queues

– No KPI updates

– Missing cross links between CR and Deliverables

› Several KPI can be monitored:

– CT

– FTR (respins)

– Quality rate (Bugs over CR)

› Team must be introduced step by step to process:

– Use a tailoring approach

– Provide automation to avoid “no brain” activities

– Monitor execution together

