
What software engineers need to know about linking
and a few things about execution

(Extract from the slides by
Terrance E. Boult

http://vast.uccs.edu/~tboult/)

A Simplistic Program
Translation Scheme

Problems:
• Efficiency: small change requires complete recompilation
• Modularity: hard to share common functions (e.g. printf)

Solution:
• Static linker (or linker)

Translator

m.c

p

ASCII source file

Binary executable object file
(memory image on disk)

A Better Scheme Using a Linker

Linker (ld)

Translators

m.c

m.o

Translators

a.c

a.o

p

Separately compiled
relocatable object files

Executable object file (contains code
and data for all functions defined in m.c
and a.c)

Translating the Example
Program

 Compiler driver coordinates all steps in the translation and linking process.
– Typically included with each compilation system (e.g., gcc)
– Invokes preprocessor (cpp), compiler (cc1), assembler (as), and linker (ld).
– Passes command line arguments to appropriate phases

 Example: create executable p from m.c and a.c:

bass> gcc -O2 -v -o p m.c a.c
cpp [args] m.c /tmp/cca07630.i
cc1 /tmp/cca07630.i m.c -O2 [args] -o /tmp/cca07630.s
as [args] -o /tmp/cca076301.o /tmp/cca07630.s
<similar process for a.c>
ld -o p [system obj files] /tmp/cca076301.o /tmp/cca076302.o
bass>

What Does a Linker Do?
 Merges object files

– Merges multiple relocatable (.o) object files into a single executable object
file that can loaded and executed by the loader.

 Resolves external references
– As part of the merging process, resolves external references.

• External reference: reference to a symbol defined in another object file.

 Relocates symbols
– Relocates symbols from their relative locations in the .o files to new

absolute positions in the executable.
– Updates all references to these symbols to reflect their new positions.

• References can be in either code or data
– code: a(); /* reference to symbol a */
– data: int *xp=&x; /* reference to symbol x */

Why Linkers?
 Modularity

– Program can be written as a collection of smaller source files, rather than one
monolithic mass.

– Can build libraries of common functions (more on this later)
• e.g., Math library, standard C library

 Efficiency
– Time:

• Change one source file, compile, and then relink.
• No need to recompile other source files.

– Space:
• Libraries of common functions can be aggregated into a single file...
• Yet executable files and running memory images contain only code for the functions they

actually use.

Executable and Linkable Format
(ELF)

 Standard binary format for object files
 Derives from AT&T System V Unix

– Later adopted by BSD Unix variants and Linux

 One unified format for
– Relocatable object files (.o),
– Executable object files
– Shared object files (.so)

 Generic name: ELF binaries
 Better support for shared libraries than old a.out formats.

Linux Memory
Layout

 Stack
– Runtime stack

 Heap
– Dynamically allocated storage
– When call malloc, calloc, new

 DLLs
– Dynamically Linked Libraries
– Library routines (e.g., printf, malloc)
– Linked into object code when first executed

 Data
– Statically allocated data
– E.g., arrays & strings declared in code

 Text
– Executable machine instructions
– Read-only

Upper
2 hex
digits of
address

FF

BF

7F

3F

C0

80

40

00

Stack

DLLs

Text
Data

Heap

Heap

08

Static Libraries (archives)

Translator

p1.c

p1.o

Translator

p2.c

p2.o libc.a
static library (archive) of
relocatable object files
concatenated into one file.

executable object file (only contains code
and data for libc functions that are called
from p1.c and p2.c)

Further improves modularity and efficiency by packaging commonly
used functions [e.g., C standard library (libc), math library (libm)]

Linker selectively links only the .o files in the archive that are
actually needed by the program.

Linker (ld)

p

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

ar rs libc.a \
 atoi.o printf.o … random.o

Archiver allows incremental updates:
• Recompile function that changes and replace .o file in
archive.

C standard library

r: replace
existing or
insert new
file(s) into the
archive
s: create an
archive index

Using Static Libraries
 Linker’s algorithm for resolving external references:

– Scan .o files and .a files in the command line order.
– During the scan, keep a list of the current unresolved references.
– As each new .o or .a file obj is encountered, try to resolve each unresolved reference

in the list against the symbols in obj.
– If any entries in the unresolved list at end of scan, then error.

 Problem:
– Command line order matters!
– Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

Shared Libraries
 Static libraries have the following disadvantages:

– Potential for duplicating lots of common code in the executable files on a filesystem.
• e.g., every C program needs the standard C library

– Potential for duplicating lots of code in the virtual memory space of many processes.
– Minor bug fixes of system libraries require each application to explicitly relink

 Solution:
– Shared libraries (dynamic link libraries, DLLs) whose members are dynamically

loaded into memory and linked into an application at run-time.
• Dynamic linking can occur when executable is first loaded and run.

– Common case for Linux, handled automatically by ld-linux.so.
• Dynamic linking can also occur after program has begun.

– In Linux, this is done explicitly by user with dlopen().
– Basis for High-Performance Web Servers.

• Shared library routines can be shared by multiple processes.

Dynamically Linked
Shared Libraries

libc.so functions called by m.c
and a.c are loaded, linked, and
(potentially) shared among
processes.

Shared library of dynamically
relocatable object files

Translators
(cc1, as)

m.c

m.o

Translators
(cc1,as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

Fully linked executable
p’ (in memory)

Partially linked executable p
(on disk)

P’

The Complete Picture

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker
(ld-linux.so)

libwhatever.a

p’

libm.so

	What software engineers need to know about linking�and a few things about execution
	A Simplistic Program Translation Scheme
	A Better Scheme Using a Linker
	Translating the Example Program
	What Does a Linker Do?
	Why Linkers?
	Executable and Linkable Format (ELF)
	Linux Memory Layout
	Static Libraries (archives)
	Creating Static Libraries
	Using Static Libraries
	Shared Libraries
	Dynamically Linked Shared Libraries
	The Complete Picture

