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ABSTRACT
A reduction of gas turbine maintenance costs, together with the increase in machine availability 
and the reduction of management costs, is usually expected by supporting gas turbine Preventive 
Maintenance with On-Condition Maintenance, which requires up-to-date knowledge of the 
machine health state.

Gas turbine health state determination can be performed by means of Gas Path Analysis 
(GPA) techniques, which allow the calculation of machine health state indices, starting from 
measurements taken on the machine. Since the GPA technique makes use of field measurements, 
the reliability of the diagnostic process also depends on measurement reliability.  

In this paper, a comprehensive approach for both measurement validation and health state 
determination of gas turbines is discussed, and its application to a 5 MW gas turbine working in 
a natural gas compression plant is presented.  

1.  INTRODUCTION 
Maintaining high levels of availability and reliability is an essential objective for all production 
units, especially for those that are subject to high costs due to loss of production. Non-scheduled 
stops due to unforeseen faults cause relevant costs related to the reduction or the interruption of 
the process, and to the consequent repairing actions. For this reason, in strategic applications, 
stand-by machines are usually required to ensure the desired level of availability.

In the last decades, gas turbines have been more and more used either for power generation or 
as mechanical drive (e.g. in natural gas compression plants), thanks to their favorable 
characteristics with respect to other technologies, such as low emissions and high availability 
and reliability. In particular, the latter issues represent winning features of gas turbine based 
power plants. Hence, in order to utilize these systems as effectively as possible, the management 
of machine maintenance must be optimized. 

The optimization of maintenance management, which should lead to cost saving and increase 
in machine availability, can be performed by supporting gas turbine Preventive Maintenance 
(which comes from manufacturer experience in terms of component life and performance 
degradation versus working hours and is performed according to a priori schedules, regardless of 
the effective gas turbine health state) with On-Condition Maintenance, which consists of “ad 
hoc” actions descending from gas turbine actual operating state [1-6]. Therefore, On-Condition 
Maintenance requires up-to-date knowledge of the machine health state in real time.  

Gas turbine health state determination can be performed by means of several approaches 
which can be found in literature. One of these approaches consists of the application of Gas Path 
Analysis (GPA) techniques [7]. A GPA based diagnostic process uses gas turbine field 
measurements to determine, by means of a gas turbine thermodynamic cycle model (Cycle 
Program - CP), the actual values of the parameters that are indices of the gas turbine health state 
(Health Indices - HIs), such as efficiencies, characteristic flow passage areas and pressure drops 
along the gas path [8-13]. By comparing the actual and the expected values of the health indices, 
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it is possible to determine (i) how far the actual machine operating condition is from the 
expected one, (ii) which components are degraded and (iii) the causes of malfunctioning. In this 
paper, a GPA technique, which calculates the HIs by solving in inverse mode the CP in order to 
reproduce the measurements taken on the gas turbine, is adopted [9].

One of the most critical problems that has to be faced when GPA techniques are applied is the 
reliability of the information that can be obtained, which depends on several factors [14,15]:  

Capability of the CP to accurately reproduce the actual gas turbine thermodynamic cycle [16].  
Accuracy of field measurements. To minimize measurement error effects, it is usually 
advisable to support GPA techniques by means of methodologies for measurement validation 
[17-22]. In this way, it is possible (i) to determine whether a measurement set is reliable and, 
if it is recognized as unreliable, (ii) to adapt the technique for the health state determination, 
for example by excluding such a measurement set from the diagnostic process. 
Limited availability of measured quantities on the gas turbine, which causes problems to 
correctly assess the actual health state. In fact, for example, a single failure can lead to the 
same effects (same measurement variations) than those that can be induced by a series of 
concurrent failures. Furthermore, some typologies of failures, as clearance increase or 
combustor malfunctioning, are usually detectable with difficulty [9]. So, only an adequate 
number of measured quantities can help to distinguish among different failures. 
Some of the HIs to be estimated have to be kept constant during the calculations. In fact, since 
the number of the available measured quantities is usually lower than the number of HIs that 
have to be determined, some of them have to be considered constant. This causes an 
estimation error on the HIs considered as problem variables, when variations due to aging or 
deterioration occur on the HIs which were considered as fixed HIs [14,15].
Thus, methodologies for the improvement in HI determination accuracy are required [17,18, 

23-26]. In particular, since the methodology makes use of field measurements, the reliability of 
the diagnostic process also depends on measurement reliability. For this reason, two techniques 
for measurement validation are presented in the paper: the first one is based on the use of 
acceptability bands [17,27], while the other uses statistical-based methods for outlier 
identification [18]. Analytical redundancy techniques for sensor fault detection and isolation can 
also be used [28]. 

In this paper, a comprehensive methodology developed by the authors for both measurement 
validation and health state determination of gas turbines is presented. The methodology is 
applied to a 5 MW gas turbine working in a natural gas compression plant. Finally, this paper 
illustrates the main features of a software, which was implemented in the considered 
compression plant to automate the presented methodology. 

2.  METHODOLOGY FOR MEASUREMENT VALIDATION AND 
HEALTH STATE DETERMINATION OF GAS TURBINES 
The methodology for measurement validation and health state determination of gas turbines 
requires the availability of a CP which should reproduce the particular gas turbine under 
consideration as accurately as possible. Two situations can occur: 
1 -The Cycle Deck developed by the manufacturer is available. This CP reproduces a gas 

turbine-type, which presents average characteristics among gas turbine units of the same 
model;

2 -A generalized CP is available. In this case, the program has to be tuned to reproduce the 
machine type under investigation, for instance by using the performance curves supplied by 
the manufacturer to the user. 
In any case, both the Cycle Deck and the generalized CP have to be tuned in order to represent 

the particular gas turbine unit under consideration. CP tuning procedure is reported in detail in 
[29].
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A low number of measured quantities is usually available on gas turbines in field operation. 
This fact limits the number of HIs which can be determined through the GPA method. Therefore, 
the optimal set of HIs, which can be determined by the set of available measurements, has to be 
identified. This requires an a priori optimized selection of the HIs which have to be considered 
as problem variables and of the ones to be kept constant during the calculation [15,17,26]. 

Once a CP is tuned on the particular gas turbine and the optimal set of HIs is identified, the 
main steps of the comprehensive methodology for measurement validation and health state 
determination are sketched in Fig. 1 and reported below: 
1 -Acquisition of field measurements and storage on a historic database, to perform off-line data 

processing.
2 -Measurement validation. This allows the identification of measurements which have a level of 

uncertainty higher than a fixed threshold. Thus, the measurement set can be excluded from the 
gas turbine diagnostic process, to avoid an incorrect evaluation of the machine health state. 

3 -Analysis of the normalized measurement trend (Trend Analysis). This analysis is required for 
measurement validation and also provides useful information for the determination of gas 
turbine health state, so improving the results obtainable by using the GPA technique alone 
[17,27].

4 -Use of acceptable data to perform gas turbine health state determination, which consists in the 
determination of gas turbine HIs by using a GPA-based technique. 

5 - Improvement of the diagnostic process through the determination of a higher number of gas 
turbine HIs by considering more than one operating point (multi-point analysis). In fact, the 
multiple operating point analysis allows the determination of a number of HIs higher than 
available measurements, since it compensates for the lack of measurements with the 
measurements taken at different operating points [10,30]. 

Qualitative information on 
gas turbine Health State

Normalized value 
Trend Analysis 

Measurement 
expected value

Normalized 
value

Measurement validation

Trend value calculation

Acceptable 
measurement??

YES

NO

Gas Path Analysis

Quantitative information 
on gas turbine Health State

Determination of HIs

Database

Measurement 
acquisition

1

2

Decisional process

3

6

4-5

Figure 1. Comprehensive methodology for measurement validation and  
health state determination of gas turbines 

6 -Decisional process, which consists of the identification of unacceptable measurements, the 
planning of the machine stop for maintenance, on the basis of the values of machine HIs, the 
possibility of on-line actions, such as compressor washing, the adaptation of the gas turbine 
control logic to its actual health state and, in the worst case, the immediate stop of the 
machine. 
A software which automates the described methodology may be very helpful as a decision 

support tool for both plant director and maintenance personnel [31]. Artificial Intelligence 
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techniques may also help in focusing on the most significant information for improving the 
diagnostic process and maintenance practices [32]. 

3.  METHODOLOGY FOR MEASUREMENT VALIDATION 
In this paper, two techniques are considered for measurement validation, both applied to the 

normalized measurement trend. Measurement normalization is performed by dividing each 
measured value by its expected value calculated in the same ambient and load conditions, in 
order to render measurements comparable each other, though collected in different ambient and 
load conditions. Such expected value can be calculated by using a CP or functional relations. 
While the CP is rarely available to gas turbine users, functional relations can be obtained by only 
using measurements taken along the gas path and thus the user can always apply this 
methodology.  
The functional relations can be obtained through identification techniques, as for instance by 
using a linear regression procedure [27], or Neural Networks [33,34]. The tuning of the models 
requires the identification of a baseline condition across gas turbine life (for example, the 
condition after overhaul maintenance). In this condition, some measurement sets taken at 
different loads and ambient conditions have to be available. Starting from these sets of 
measurements it is possible to establish relations in the form Qm=F(Qwp). The relations obtained 
relate thermodynamic measurements Qm (such as pressure and temperature at the compressor 
outlet) to ambient and load conditions Qwp (ambient pressure and temperature, relative humidity, 
rotational speeds, power output) over the entire gas turbine operating range. The identification 
procedure has to be performed once for each Qm measured quantity and has to be updated when 
the chosen baseline condition can be considered no longer representative for the engine. The 
obtained relations can be then used to normalize each measurement. 

3.1  Measurement acceptability bands. 
Once measurements are normalized, and the trend over time of each measured quantity is 
determined, measurement validation can be performed through measurement acceptability bands 
[17,27]: a measurement lying within these bands will be considered acceptable, otherwise not. 
Band amplitude can be calculated by considering the following contributions: 
a - Measurement accuracy, that can be taken into account by considering band amplitude equal to 

measurement uncertainty. 
b -An engine fault which may affect the value of the measurements along the gas path. 
c - Measurements noise along the data acquisition system. This error is usually included within 

measurement accuracy.  
d -Errors due to the CP accuracy. In fact, the CP is usually tuned on the engine type and not on 

the specific unit. This leads to an estimation error on the expected value of measurements and 
so to an error in the normalization process. 
For the calculations performed in this paper, the uncertainty “d” was not considered, since the 

CP was tuned on the specific unit and, therefore, this source of error was considered negligible. 
Two bands were instead considered: the first takes into account measurements uncertainty 
(contribution “a”), while the second considers the variation of the measurement due to an engine 
fault (contribution “b”). The total band amplitude is the sum of these two contributions.
Therefore, it is possible to identify three cases to establish whether a measurement is acceptable: 

Value beyond measurements accuracy. 
Value out of measurements accuracy, but within the maximum estimated variation of the 
measurement due to a fault. A measurement can lie in this region either because of sensor 
fault or because of an incipient engine fault. In this situation, to obtain significant 
information, it is necessary to consider the engine behavior before and after the anomalous 
value and data have to be processed by the diagnostic tool.
Value out of the maximum variation due to a fault. The measurement should not be processed 
by the diagnostic tool because of its unreliability. 
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As anticipated, the bands have to be referred to a reference value. The trend value of the 
normalized measurements seems a reasonable choice, since, in this manner, measurement 
variations due to aging can be taken into consideration. 

3.2  Statistical-based method for outlier identification. 
An alternative way for measurement validation is the analysis of the statistical distribution of the 
normalized measurement trend in order to detect outliers. A wide number of techniques for 
outlier detection exists in literature. In gas turbine applications, practical and easy-to-use 
techniques such as parametric test methodologies seem to offer a compromise solution with 
respect to simplicity and robustness [18].

A parametric test methodology is based on the definition of a test criterion. For any given 
element xi of an N-dimension sample, a test criterion can be written as  

Nik
S

xxi ,...,1,m  (1) 

where xm is the mean of the sample and S is the standard deviation. In the most general case, the 
coefficient k is a function of the sample size N and of the level of significance . The latter 
parameter has to be chosen a priori and represents the probability of rejecting a good point. For 
practical purposes, three levels of significance are usually considered, namely  = 1 %, 2 % and  
5 %. This means, for example, that if  = 5 % is considered, the odds against rejecting a good 
point are 20 to 1 (or less).

If Eq. (1) applies, xi is to be considered an outlier. Different methods, based on Eq. (1), and 
characterized by different assumptions for the coefficient k, are available in literature (e.g. the 
Thompson method, the Grubbs method, the Chauvenet criterion).  

These “traditional” methods proved only partially effective and not very robust for gas turbine 
data [18], in particular when data trends are not constant over time, such as in the case of 
measurements taken during a long period of time on a gas turbine. In order to overcome some of 
the limitations of these methods, a new method was developed [18]. The method is based on the 
application of a test criterion in the form of Eq. (1), but both the left-hand side term and the 
coefficient k are modified to meet the requirements that have been highlighted. The specificity of 
the method is that the coefficients introduced account for decreasing or increasing data trends, 
although they are also correctly defined when constant over time data trends are considered.  

In other words, the new coefficients allow the test criterion to take the behavior-in-time of the 
considered quantity into account. In the new formulation, the test criterion is defined as: 

N,...,i,kt
Sk
xx

A
B

mi 1  (2) 

The coefficient kA is defined as: 

N

t
k N

A 4

1lim
1

2

 (3) 

This coefficient is defined in such a manner as to tend to one when N tends to infinity. The 
coefficient t  represents the value of the quantile corresponding to a certain level of significance 
related to the Gaussian distribution. The coefficient kB, defined as 

iov

1

B 11 SSNk N  (4) 

allows the scatter of the considered sample to be taken into account. In fact, a relationship 
between the overall standard deviation Sov and the standard deviation calculated by considering 
the data range [1, i], namely Si, where i is the current data which is under investigation, is 
introduced in the test criterion. In this manner, the left-hand side term of Eq. (2), instead of being 
constant as in the Thompson, Grubbs and Chauvenet methods, is updated at each step and, thus, 
the behavior-in-time of the quantity is taken into account. However, this requires the availability 
of all data for the time period under examination, in order to estimate data overall standard 
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deviation Sov, and, thus, kB dependence with time can be evaluated only in the case of data off-
line processing. Otherwise, if data are processed on-line, kB only depends on sample size N,
since, in this case, Sov equals Si.

4.  METHODOLOGY FOR HEALTH STATE DETERMINATION OF GAS 
TURBINES

4.1  Single operating point analysis.
Gas turbine operating state determination consists of the assessment of the modification, due to 
deterioration and fault, of performance and geometric data characterizing the machine 
components. One of the main effects of deterioration and fault is the modification of compressor 
and turbine performance maps. Since detailed information about actual modification of 
component maps is usually unavailable, many authors simulate the effects of deterioration and 
fault by scaling the map itself, i.e. by multiplying the maps in new and clean condition by 
scaling factors F point by point [8,9,30]. Different scaling factors can be used; compressor and 
turbine maps are usually scaled by multiplying efficiency and corrected mass flow rate, at 
constant pressure ratio (or equivalent parameter, such as the ratio between isentropic enthalpy 
variation and turbine inlet temperature) and at constant corrected rotational speed [8,9,30]. The 
modification of compressor and turbine performance maps with respect to new and clean
condition due to actual deteriorations and faults can be assessed by calculating the map scaling 
factors F in order to reproduce the measurements taken on the gas turbine [8,9,30]. 

Therefore, the scale factors of efficiency and corrected mass flow of compressor and turbines 
can be assumed as characteristic parameters of compressor and turbine health state. In addition to 
these parameters, two other important parameters for representing the gas turbine health state are 
the combustor efficiency and pressure drop. In particular, the combustor efficiency accounts for 
thermal losses along the gas path, which are considered as a fixed constant percentage of the 
thermal power introduced by the fuel, while the combustor pressure drop is usually defined as a 
constant percentage of the total pressure at the combustor inlet. This type of parameters is 
sensitive to the gas turbine health state, while it is not dependent on the gas turbine operating 
point. Parameters with this characteristic are usually called Health Indices (HIs). 
The HIs can be calculated by solving in inverse mode the CP in order to reproduce the 
measurements taken on the gas turbine. In fact, the values of the measurable variables computed 
by the CP Qm,c are a function of the values assumed both by the health indices X and by the 
variables that unequivocally determine the operating point at which the gas turbine is working 
Qwp:

),f( wpcm, QXQ (5).
By inverting Eq. (5), it is possible to calculate X starting from the measured variables: 

),F( wpm QQX  (6). 
The solution of Eq. (6), usually called "inverse" solution, has been performed by the authors 

through a minimization technique which determines the values of HIs that minimize the sum of 
the square differences, between measured and computed values of the measurable variables [9]. 
This problem is solved by using a non-linear algorithm which minimizes the objective function: 

m

x
1=i

2

im

mcm,
iN1ob =),...,(F

N

Q
QQ

wXX  (7), 

where Xi (i=1,..,Nx) are the unknown values of HIs, (Qm,c)i and (Qm)i are the computed estimates 
and the measured values of the measurable quantities respectively, and wi are the weights which 
can be assigned to each term of the objective function. 

The minimization algorithm which was used is included in the IMSL math library [35] and 
was successfully utilized to solve the gas turbine mathematical model [3,9,10,15,31,36-39]. 
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Once the HIs are calculated, the gas turbine health state is determined by evaluating the 
variations of the HI values with respect to the expected values in the "new and clean condition". 
This allows the faulty component to be localized and malfunctions to be identified and 
quantified.

The diagnostic process was also carried out by the authors through black-box models [40,41]. 
This approach proved successful and robust [42]. 

From Eq. (6), the number and type of gas turbine HIs that can be determined for each 
operating point (i.e. for each set of Qwp) depend on the number and type of equations, which, in 
turn, depend on the number and type of the available measured quantities. In particular, the 
number of HIs is usually equal to the number of the Qm measured variables. Thus, since the 
number of the Qm available measured quantities is usually lower than the number of HIs to be 
estimated, some of them have to be kept constant during the calculations. Therefore, variations 
due to aging or deterioration which, in the actual machine, occur on the HIs which were 
considered as fixed HIs, will cause an estimation error on the HIs to be determined [14,15]. 

4.2  Multiple operating point analysis.
A direct consequence of Eq. (6) is that more equations can be obtained by using more than one 
Qwp set. Thus, the number of gas turbine HIs which can be determined also depends on the 
number of gas turbine operating points (i.e. number of Qwp sets) [10,30]. Therefore, by using 
multiple operating points it is possible to evaluate a number of HIs higher than the number of the 
available Qm measured quantities.  

Therefore, as made in the case of single operating point analysis, the solution of the system of 
equations obtained by using more than one Qwp set in Eq. (6) was performed through a 
minimization technique which determines the values of HIs that minimize the sum of the square 
differences, between measured and computed values of the measurable variables in all the 
operating points considered. The objective function to be minimized becomes: 

op m

x
1j

j
1=i

2

im

mcm,
i

op
N1ob

1=),...,(F
N N

Q
QQ

w
N

XX  (8), 

where Xi (i=1,..,Nx) are the unknown HIs, (Qm,c)i and (Qm)i are the computed estimates and the 
measured values of the measurable variables respectively, and wi are the weights assigned to 
each term of the objective function.  

The main steps of the multiple operating point technique are sketched in Fig. 2. The adopted 
minimization algorithm is the same as for the single point analysis [35].
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Figure 2. Multiple operating point analysis 

The different operating points have to be taken within a small time interval (for instance 
during the same day) so that the gas turbine health state can be considered the same for all the 
operating points and, thus, the solution X of Eq. (6) is the same for all the operating points. The 
most suitable choice of the operating points to be used was analyzed in [10]. 

5.  APPLICATION OF THE METHODOLOGY TO GAS TURBINES 
RUNNING IN A NATURAL GAS COMPRESSION PLANT 
The comprehensive methodology for measurement validation and health state determination of 
gas turbines was applied to two compressor-drive gas turbines working in a natural gas 
compression plant. In this plant, the pressure of the gas coming from the Adriatic Sea reservoirs 
is raised to the value required by the Italian Gas Supply Company by using four compression 
systems. Two of them are driven by 5.2 MW regenerative cycle two shaft industrial gas turbines 
with variable power turbine nozzles (VN) and two by 1.2 MW simple cycle two shaft gas 
turbines. The methodology was applied to the two 5.2 MW gas turbines, whose lay out is shown 
in Fig. 3. In any case, the methodology is completely general. In fact, it was also successfully 
applied to a single shaft gas turbine working in a cogenerative combined power plant [43].

Table 1 reports the measurements available on each 5.2 MW gas turbine system. As can be 
seen from Tab. 1, some very important measurements for a reliable diagnosis analysis are not 
available. They are the fuel mass flow rate (at present, only the total fuel mass flow feeding both 
the 5.2 MW gas turbines is measured), the pressure and temperature between the gas generator 
and the power turbine (p5, T5), the air side and exhaust side regenerator pressure drops ( p2-3,

p6-7) and the air inlet mass flow rate (M1).
The methodology was applied to a poorly instrumented plant, since it represents a selective 

test for verifying the capabilities of the proposed diagnostic system. Moreover, poor 
instrumented plants are highly widespread and, thus, the application to such cases seems 
particularly interesting. 

Before applying the methodology for gas turbine health state determination, a generalized CP 
developed by the authors was tuned to reproduce the gas turbine under consideration. This was 
made by using as reference values the performance curves provided by the gas turbine 
manufacturer 
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Table 1. Available measurements 

QWP MEASUREMENTS QM MEASUREMENTS 

T1: COMP. INLET 
TEMP.

P2: COMP. OUTLET 
PRESSURE

PA: AMBIENT 
PRESSURE

T2: COMP. OUTLET 
TEMP.

RH: RELATIVE 
HUMIDITY

T6: POWER TURB. 
OUTLET TEMP. 

PA-1: FILTER 
PRESSURE
DROP

VN: VAR. NOZZLE 
POSITION
NGGT: GAS GEN. 

TURB. ROT. 
SPEED

OTHER
MEASUREMENTS 

NPT: POWER TURBINE 
ROT. SPEED 

T3: RECUPERATOR 
OUTLET TEMP. (AIR 
SIDE)

PPT: POWER OUTPUT 
(CALCULATED FROM 
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OUTLET TEMP. (GAS 
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AND MC1)
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C GGT PT

VN

c2

F

NGGT

f

a

1

2

7

3 4
5

6

c1

NPT

Figure 3. Lay out of the 5.2 MW two-shafts 
regenerative cycle gas turbine 

to the user. These curves provide the compressor outlet pressure (p2) and temperature (T2), power 
turbine outlet temperature (T6), fuel and inlet air mass flow rates (Mf and M1) at various gas turbine 
working points. After the tuning, the program estimates manufacturer data with a maximum error 
usually lower than 1% [3]. 

The following step of the procedure requires the identification of the optimal combination 
measurements/HIs. As shown in Tab. 1, there are only three available measurements to perform the 
operating state determination: p2, T2, and T6. In fact, the other measurements are used to define the 
working point. Therefore, only three HIs can be unequivocally determined. The optimal HIs set 
(identified according to [17,26]), which can be determined by using the set of available 
measurements is composed of the following HIs: compressor efficiency ( C) and corrected mass 
flow (μC) and gas generator turbine efficiency ( GGT).

Phase 1 - Acquisition and storage of field measurements.
The available data were gathered once a day manually by an operator. This caused the presence of a 
number of wild points originating from sources such as reading errors, data taken in unstable and/or 
not representative conditions, etc., which were difficult to detect. This may be a common situation in 
practice and thus it could represent a test bed for measurement validation techniques. The results 
reported refer to data acquired in the period from 2nd Nov. 1999 to 16th Jan. 2000 on one of the two 
gas turbines under investigation. 

Phase 2 - Measurement validation. 
Measurement validation was performed by means of the two previously described techniques, both 
applied to the normalized measurement trend. Measurement normalization was performed by 
dividing each measured value by its expected value calculated in the same ambient and load 
conditions, by using the CP tuned on the machine under consideration.  
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Measurement acceptability bands were applied to the normalized measurement trend and take into 
account both measurement uncertainty and maximum variations of measurements due to faults, 
according to Tab. 2 [17,27].  

Measurement uncertainty bands (second column in Tab. 2) were set according to the sensor 
accuracy reported in [44] and by considering the case in which the measurements were taken in the 
field with standard machine instrumentation during normal operation and not when conducting an 
acceptance test. In order to establish the amplitude of the bands deriving from measurement 
variation due to faults, the CP tuned on the considered machine was used to simulate some of the 
most common faults that can occur on a gas turbine (compressor fouling, compressor mechanical 
damage, gas generator turbine mechanical damage, gas generator turbine erosion and power turbine 
erosion) [17]. Faults are to be considered as sudden faults, since measurement variations due to 
aging or deterioration are considered through the normalization process. 

Table 2. Band amplitude: measurements accuracy and total band amplitude 

Measured 
Quantities 

Measurements accuracy 
[% of reference value] 

Confidence band 
[% of trend value] 

T2 ±0.85 [-1 ; + 5.5] 

p2 ±1.00 [-4; + 3] 

T6 ±0.75 [-1 ; + 5.5] 

Figure 4 reports the normalized values of the compressor outlet pressure (p2) and temperature (T2)
and of the power turbine outlet temperature (T6) versus time. The solid line indicates measurement 
trend over time, while the dashed lines are the acceptability bands. The figure highlights: 
- the decreasing trend of the outlet compressor pressure and the slightly increasing trend of the 

compressor outlet temperature. These symptoms may be attributed to compressor fouling The 
increasing trend of the power turbine outlet temperature can be also observed.  

- the measurement scattering due to the uncertainties in field measurement readings;  
- the unacceptable measurements according to the use of acceptability bands (white symbols). 

Moreover, the application of the statistical-based method for outlier identification reveals that 
only one measurement set (i.e. the one at day #20) can be considered unacceptable also by using 
this second method. Thus, the use of the statistical-based method reveals less restrictive than the 
use of acceptability bands.  

Phase 3 – Analysis of the normalized measurement trend (Trend Analysis). 
The analysis is aimed at establishing relations among performance drops and normalized 
measurement trends of compressor outlet pressure (p2) and temperature (T2) and the power turbine 
outlet temperature (T6) reported in Fig. 4.

Form Fig. 4, a reduction of about 2 % in 70 days on the trend of normalized compressor outlet 
pressure can be noticed, while compressor outlet temperature remains almost constant. These trends 
highlight a normal compressor fouling. The analysis of T6

* alone, whose trend is slightly increasing, 
does not provide additional diagnostic information about the two turbines.  

Phase 4 – Gas turbine health state determination. 
The percentage variation E between computed and reference values of compressor efficiency ( C)
and corrected mass flow (μC) HIs and of gas generator turbine efficiency HI ( GGT) versus time are 
reported in Fig. 5. The black and white symbols indicate the HIs evaluated by using the acceptable 
and unacceptable measurement sets, respectively.  
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Figure 5 highlights the decreasing trends of both compressor efficiency and mass flow function 
HIs, which can be attributed to compressor fouling, as already highlighted by the Trend Analysis in 
the previous section. Over a period of two months, the trend values of C and μC HIs were reduced 
by 1.0 % and 2.5 % respectively, showing that fouling is not severe [45,46]. The trend of gas 
generator turbine efficiency HI is instead almost constant, indicating that this component is not 
suffering from significant changes in its health state. Figure 5 also highlights the remarkable 
reduction of the scattering of HI trends, obtainable by using the acceptable measurement sets only. 
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Phase 5 – Gas turbine health state determination on multiple operating points. 
A multi-point analysis was also applied to the gas turbine unit considered by using measurements 
taken during special operating conditions, immediately before and after a maintenance stop. In these 
cases, measurements at different gas turbine loads were performed, so that it was possible to 
perform the multi-point analysis. 

Two different calculations were performed by using different sets of variable HIs. In Fig. 6a, the 
normalized values of C, C, GGT and GGT, calculated by using the multi-point analysis with three 
HIs ( C, C, GGT) as problem variables, are reported. In Fig. 6b, the normalized values of C, C,

GGT, GGT, PT and PT, calculated by using the multi-point analysis with five HIs ( C, C, GGT,
GGT, PT) as problem variables, are shown. Black and white symbols refer to the measurements 

taken before and after the maintenance stop respectively. It can be highlighted how the multi-point 
analysis allows the determination of a number of HIs higher than available measured quantities, 
since it compensates for the lack of measured quantities with the measurements taken at different 
operating points. 

The results obtained by using five HIs as problem variables (Fig. 6b) seem more convincing than 
the ones obtained in the case of three variable HIs (Fig. 6a). In this last case, in fact, it seems that 
there are no improvements due to maintenance, while, in the case of five variable HIs, an increase in 
the compressor and gas generator turbine corrected mass flows HIs can be noticed. 
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6.  SOFTWARE TOOL FOR GAS TURBINE ON-CONDITION 
MONITORING AND DIAGNOSTICS 
For the considered natural gas compression plant, a software tool was developed and implemented 
[31], to allow the prompt visualization of the required information by means of a  
user-friendly interface, so allowing gas turbine health state analysis and supporting the decision for 
maintenance actions. 
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Figure 6. Normalized values of HIs in case of (a) three problem variables ( C C, GGT) and
(b) five problem variables ( C C, GGT, GGT, PT, PT) (multiple operating point analysis) 

The developed software, whose structure is sketched in Fig. 7, allows: 
- the measurement normalization; 
- the calculation of HIs for the evaluation of gas turbine health state; 
- the comparison of the measured delivery of compressed natural gas compared with the 

calculated maximum possible delivery. This latter value is estimated by assuming the gas 
turbine in new and clean conditions. 

Moreover, the software system stores all data in a database and calculates the trend line in order 
to perform the trend analysis for all the parameters.  

The kernel of the software system consists of the subroutines which allow the manual insertion of 
data, data direct acquisition from the control system, the visualization of the results and the 
modification of calculation parameters. The user interface is provided by means of floating toolbars 
(buttons and/or text), as shown in Fig. 8. 

Results can be displayed in form of graphs and tables which allows a user-friendly interpretation 
of the results. The graphical form shows plots of calculated values and the corresponding trend lines 
versus time; acceptability bands are visualized around the trend line to evidence unacceptable data. 

The program also determines the net power output of the gas turbine starting from measurements 
acquired on the centrifugal compressor, the overall gas turbine efficiency and the turbine inlet 
temperature. The ratio between the actual and the nominal value for both the net power output and 
the turbine inlet temperature can be used as indices of the gas turbine overall health state. 

Moreover, starting from the indices of the gas turbine health state, the software calculates the 
value of the production losses due to the actual health state. In fact, if MgasM is the measurement of 
the natural gas flow rate processed by the centrifugal compressor and MgasC the flow rate that the 
centrifugal compressor could process when the driving gas turbine is in new and clean conditions, a 
lost production index LPI can be calculated as: 

gasC

gasMgasCLPI
M

MM   (10) 
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In Fig. 9 a sample trend of LPI is reported. The trend is increasing due to gas turbine ageing: in 
fact, the more the gas turbine deterioration increases (and, thus, its performances decrease), the more 
the gas flow rate which the centrifugal compressor can process (MgasM) reduces. 

In conclusion, the software can actually represent a helpful support tool for the plant operation 
management. The persons which can take advantage from these analyses can be:  
- the plant manager. In fact LPI evaluation allows useful information on the actual economical 

benefit of keeping the plant in operation rather than stop it to perform maintenance actions; 
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Fig. 7. Software system architecture 

Fig. 8. Dialog box for manual data insertion  

Fig. 9. Lost production index trend 

- the maintenance manager, which, through the analysis of the normalized measurement and of the 
HIs trends, can obtain information on overall performance deterioration, on the components that 
are responsible of the deterioration, on the type and on the quantification of the deterioration; 

- the maintenance chief engineer, which, still through the analysis of the normalized measurement 
and of HIs trends, can obtain information on the performance recovery after maintenance actions. 

7.  CONCLUSIONS 
In this paper, a comprehensive methodology for both measurement validation and health state 
determination of gas turbines was presented, discussed and applied to a 5 MW gas turbine working 
in a natural gas compression plant.  

The methodology demonstrated to be effective in supporting plant operation and maintenance 
management and some interesting results were presented. In particular: 
- The application of the methodologies for measurement validation allowed the identification of 

unreliable measurements sets, with a remarkable reduction of the scattering of the  
trend-over-time of the measurements. The measurement sets identified as unreliable were not 
used for estimating machine health indices.  

- Gas turbine health state determination, performed by applying the developed Gas Path Analysis 
technique over a working period of two months, highlighted that compressor fouling (though not 
severe) was occurring, while gas generator turbine was not suffering from significant changes in 
health state.

- The application of the multi-point analysis to measurements taken immediately before and after a 
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maintenance stop allowed a more detailed analysis of the health state of the main gas turbine 
components.  
Finally, the main features of a software, which was implemented in the considered compression 

plant to automate the diagnostic process and to support plant operation and management, were 
presented. As a sample application, the loss of production, due to gas turbine deterioration, was 
reported.
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Nomenclature

E variation  
F map scaling factors 
Fob objective function 
k,kA,kB test criterion coefficients  
LPI  Loss of Production Index 
M mass flow rate 
N  sample size, rotational speed 
Nm dimension of Qm vector
Nop number of operating points 
Nx dimension of X vector
p  total pressure 
P  power 
Qm vector of measured variables  
Qm,c vector of computed estimates of the 

measured variables 
Qwp vector of measured variables 

necessary to define the working 
point

RH relative humidity 
S standard deviation of the sample 
T  total temperature 
t  t-Student distribution quantile 
VN  variable nozzle angular position 
w weight 
x element of the sample 
X [X1, …, XNx]T vector of Health 
Indices

 level of significance 
 variation

 efficiency 

 = 
p

TM  mass flow function 

* normalized value 

Subscripts
a  ambient 
C compressor  
f fuel 
m mean value  
GGT  gas generator turbine 
gasC  compressed gas (calculated) 
gasM  compressed gas (measured)  
ov overall 
PT  power turbine 

Acronyms
C Compressor 
CC Combustion chamber 
CP Cycle Program 
F Filter 
GGT Gas generator turbine 
GPA Gas Path Analysis 
HI Health Index  
PT Power turbine 
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