TECNICHE DI CONTROLLO MULTIVARIABILE

- Feedback Linearization per sistemi in forma canonica di controllabilità

Regolazione del pendolo non smorzato

Modello considerato:

$$mR^2\ddot{\theta} + mgR\sin(\theta) = \tau$$

Legge di controllo:

$$\tau = -K_p \theta - K_d \dot{\theta} + mgR \sin(\theta)$$

Dinamica linearizzata:

$$mR^2\ddot{\theta} + K_d\dot{\theta} + K_p\theta = 0$$

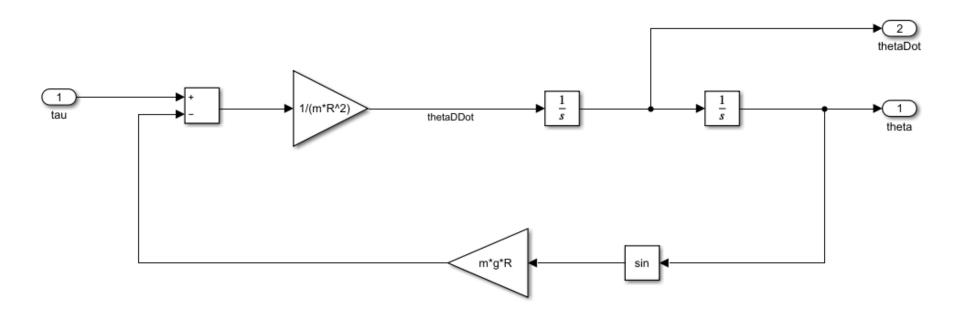
Script di inizializzazione

```
%% Parametri pendolo
m = 2;
R = 1;
g = 9.81;

x0 = [0.2;0.1]; % theta0, thetaDot0
%% Regolatore
Kp = 10;
Kd = 5;
```

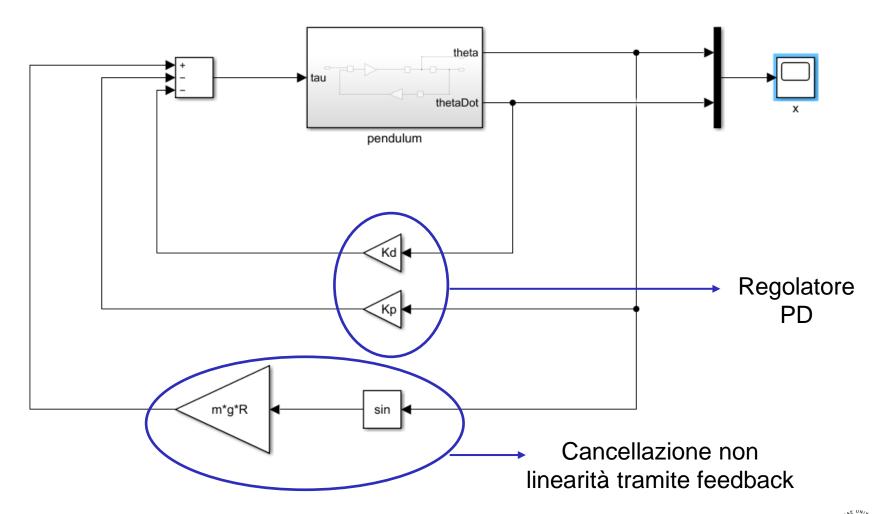

Modello Simulink del pendolo non smorzato

Modello Simulink sistema:



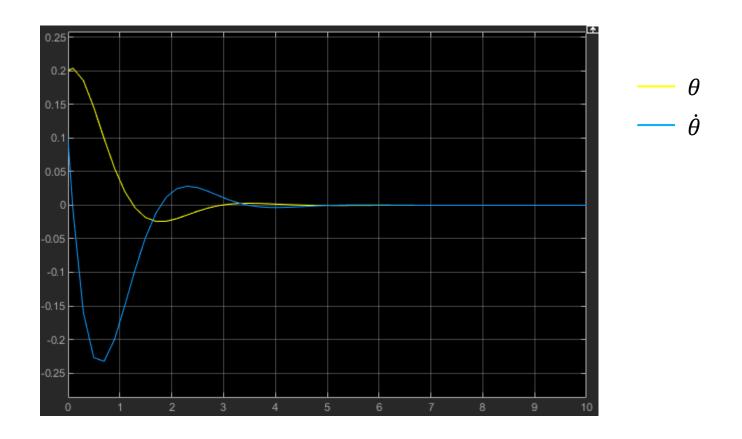
Controllo con cancellazione delle non linearità

Schema di controllo:



Risultati regolazione pendolo

Andamento dello stato



Tracking del pendolo

Modello considerato:

$$mR^2\ddot{\theta} + b\dot{\theta} + mgR\sin(\theta) = \tau$$

Legge di controllo:

$$\tau = mR^2 v + b\dot{\theta} + mgR\sin(\theta)$$
$$v = \ddot{\theta}_d - K_d(\dot{\theta} - \dot{\theta}_d) - K_p(\theta - \theta_d)$$

Dinamica linearizzata:

$$\ddot{e} + K_d \dot{e} + K_p e = 0$$

Script di inizializzazione

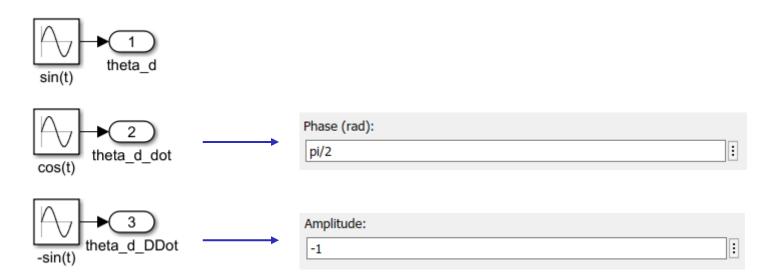
```
%% Parametri pendolo
m = 2;
R = 1;
g = 9.81;
b = 1;
x0 = [0.2; 0.1]; % theta0, thetaDot0
%% Regolatore
Kp = 10;
Kd = 5;
```


Tracking del pendolo, pianificatore traiettoria

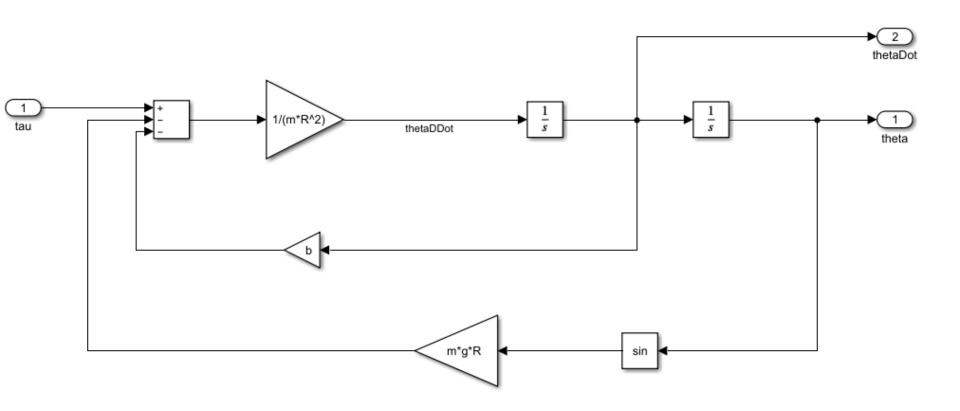
Traiettoria desiderata:

$$\theta_d = \sin t$$
$$\dot{\theta_d} = \cos t$$
$$\dot{\theta_d} = -\sin t$$

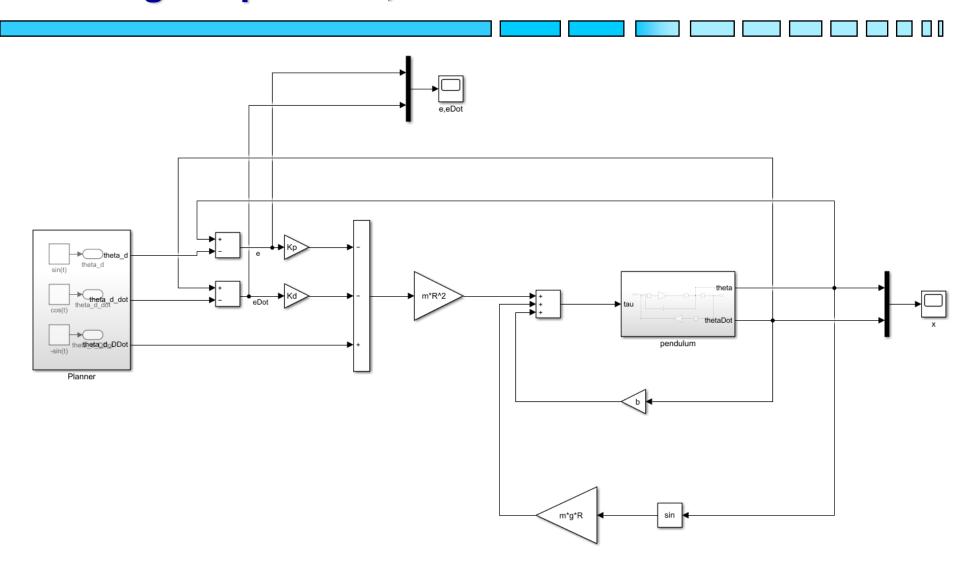
Modello Simulink pianificatore:



Tracking del pendolo, modello del sistema

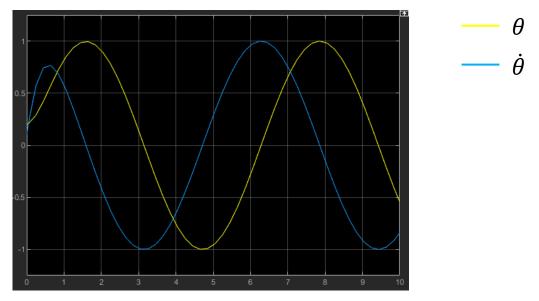


Tracking del pendolo, schema di controllo

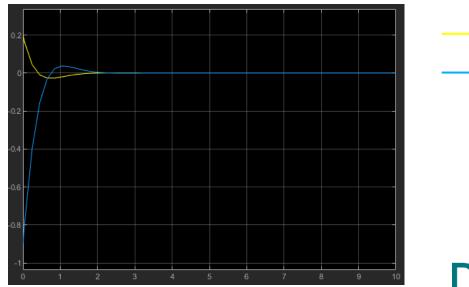


Risultati tracking

Andamento dello stato



Andamento dell'errore di tracking



Feedback Linearization per sistema in forma canonica

Dato il sistema non lineare descritto in forma canonica di controllabilità dalle seguenti equazioni:

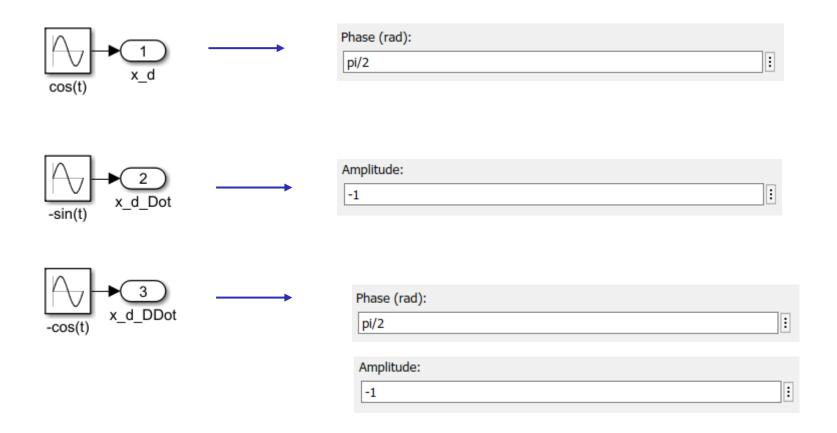
$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 - x_1 x_2 + x_2 u = f(x) + b(x) u$$

Con:
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $x = x_1$, $x_0 = \begin{bmatrix} 10 \\ -10 \end{bmatrix}$ condizioni iniziali

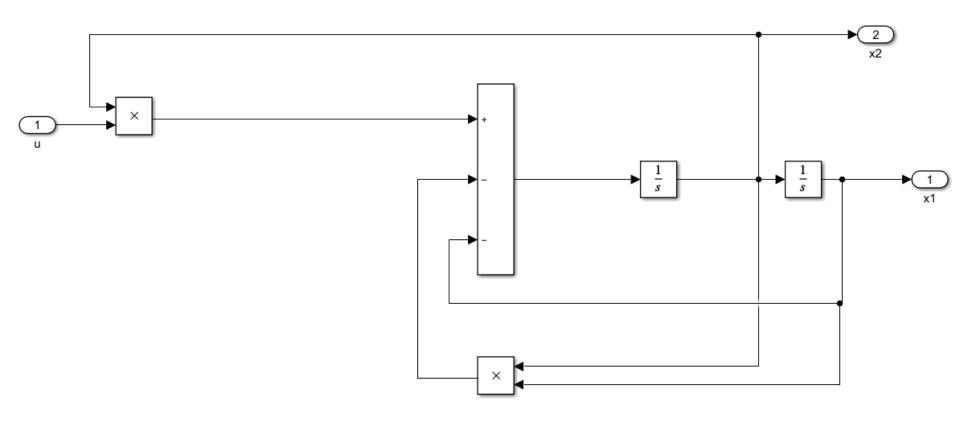
Si implementi un controllore utilizzando la tecnica feedback linearization, la cui legge di controllo $u = b(x)^{-1}(v - f(x))$ cancelli le non linearità presenti nella dinamica del sistema e risolva il problema di tracking della seguente traiettoria:

$$x_d = \cos(t)$$

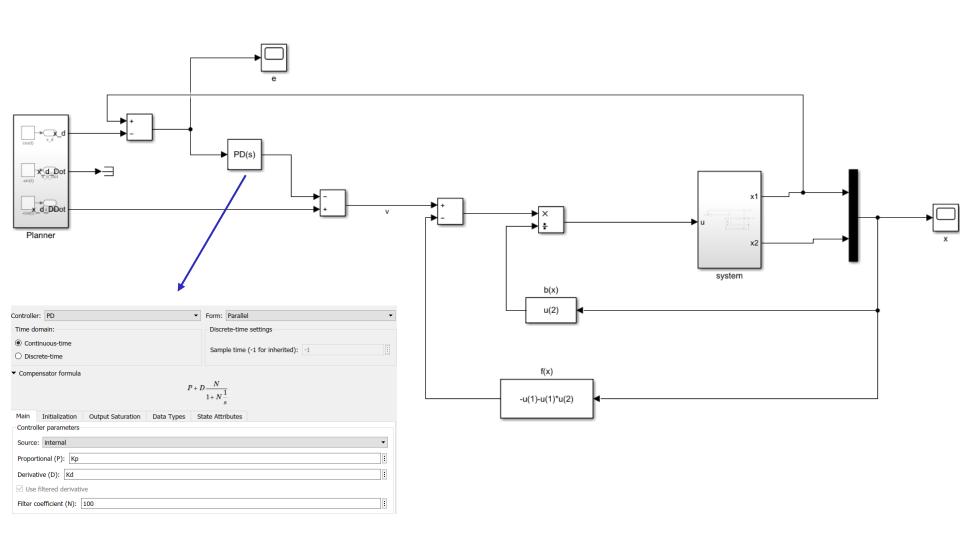
Planner traiettoria desiderata



Modello del sistema

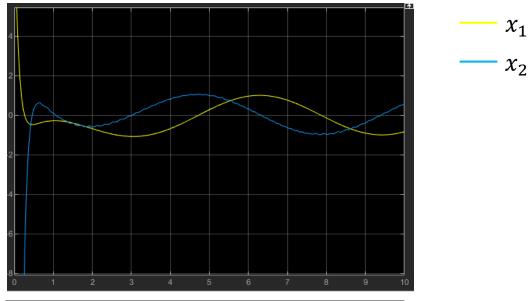


Schema di controllo

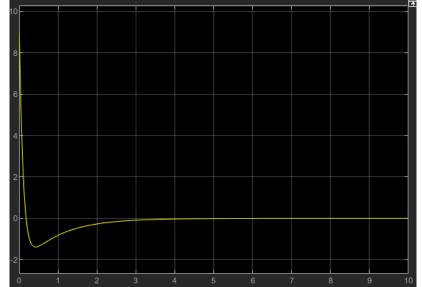


Risultati tracking

Andamento dello stato



Andamento dell'errore di tracking



TECNICHE DI CONTROLLO MULTIVARIABILE

- Feedback Linearization (ingresso-uscita) per sistemi in forma affine

Specifiche esercizio

Dato il sistema SISO non lineare descritto in forma affine dalle seguenti equazioni:

$$\dot{x}_1 = \sin x_2 + (x_2 + 1)x_3$$

$$\dot{x}_2 = x_1^5 + x_3$$

$$\dot{x}_3 = x_1^2 + u$$

$$y = x_1$$

Con:
$$x_0 = \begin{bmatrix} 0.5 \\ 0.1 \\ 0.4 \end{bmatrix}$$
 condizioni iniziali

Si implementi un controllore utilizzando la tecnica feedback linearization, la cui legge di controllo u=u(v,x) cancelli le non linearità presenti nella dinamica ingresso-uscita del sistema e risolva il problema di tracking della seguente traiettoria desiderata:

$$y_d = \sin(t)$$

Note esercizio

Si noti che tramite il seguente diffeomorfismo:

$$\mathbf{z} = \boldsymbol{\phi}(\mathbf{x}) = \begin{bmatrix} h(\mathbf{x}) \\ L_f h(\mathbf{x}) \\ \phi_3(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} x_1 \\ \sin x_2 + (x_2 + 1)x_3 \\ x_2 \end{bmatrix}$$

Si realizza una dinamica linearizzabile per l'uscita y:

$$\dot{y} = \dot{z_1} = L_f h = z_2$$

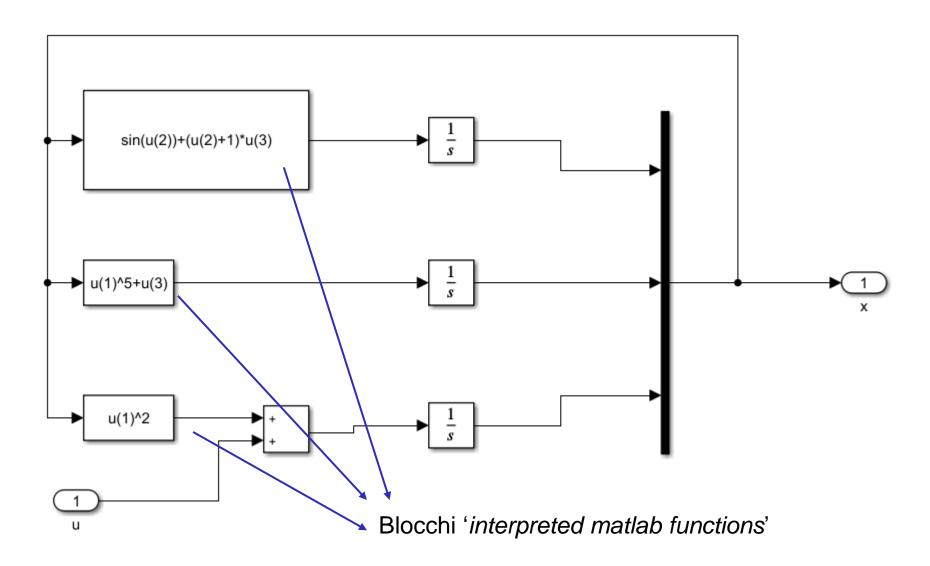
$$\ddot{y} = \dot{z_2} = L_f^2 h + L_b L_f h u =$$

$$= (\cos x_2 + x_3) (x_1^5 + x_3) + (x_2 + 1) x_1^2 + (x_2 + 1) u$$

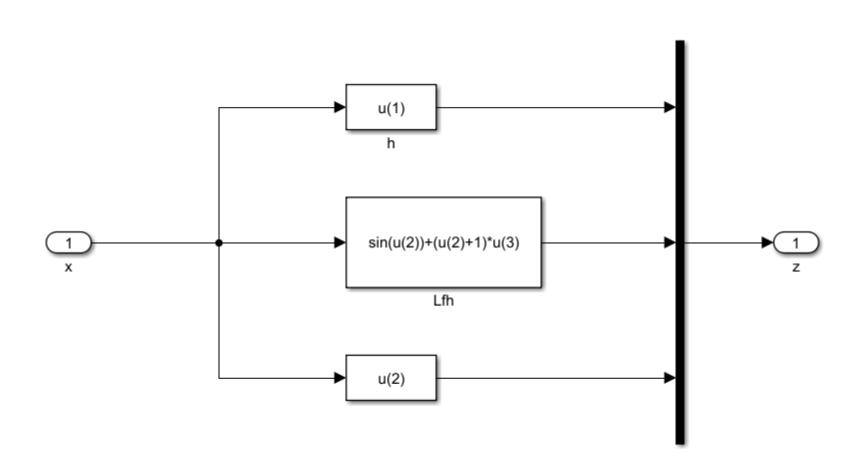
Che può essere controllata con:

$$u = u(x, v) = \frac{1}{L_b L_f h} \left(v - L_f^2 h \right)$$
$$v = \ddot{y_d} - K_d \dot{e} - K_p e$$

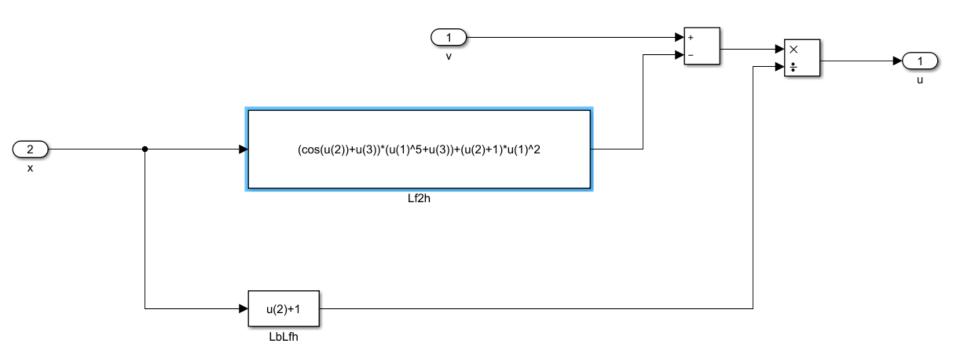
Modello sistema



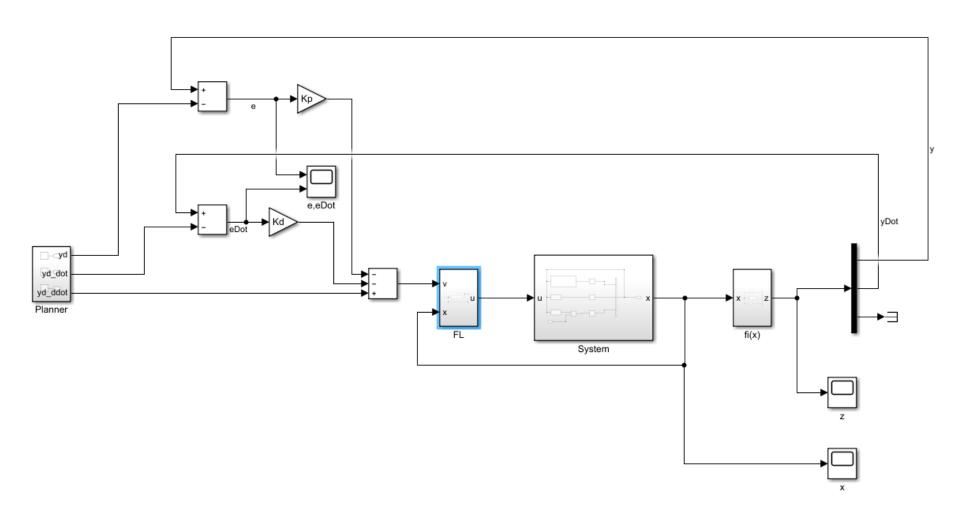
Modello diffeomorfismo



Ingresso linearizzante



Anello di controllo complessivo



Risultati tracking

