

1

Matlab e Simulink

Matlab (Matrix Laboratory)

- Ambiente di sviluppo per il calcolo numerico
- Comprende l'omonimo linguaggio di programmazione con interprete dei comandi
- Include svariati toolboxes (collezioni tematiche di funzioni)
- Efficace per analisi, elaborazione e visualizzazione dati

Simulink

- Software per la modellazione e simulazione di sistemi dinamici
- Integrazione e interazione con Matlab
- Programmazione grafica basata su schemi a blocchi

Ampiamente utilizzati nel mondo della ricerca e dell'industria

Matlab: interfaccia principale (R2018b)

Matlab: definizione di variabili, vettori e matrici

```
٦Г
  Definire variabile scalare
  >> x = 3
  Definire vettore riga (1 \times 3)
  >> x = [1 2 3]
  Idem, ma senza echo dell'output
  >> x = [1 \ 2 \ 3];
  Definire vettore colonna (3x1)
  >> x = [1; 2; 3]
  (oppure >> x = [1 2 3]')
  Definire matrice 3x4
  >> A = [1 \ 2 \ 3 \ 4; 5 \ 6 \ 7 \ 8; 9 \ 10 \ 11 \ 12]
  Accedere / modificare elemento di riga 2 e colonna 1
  >> A(2,1) = 0
                                                             DE
pag. 4
```

4

Matlab: operazioni su matrici

- - Le "solite" operazioni matematiche: +, -, *, /, ^
 - Es. >> A^3 (potenza di matrice, solo se quadrata!)
 - Precedute dal punto, sono eseguite elemento per elemento anziché in senso matriciale/vettoriale
 - Operazioni specifiche per matrici / vettori:
 - Trasposta: A'
 - Determinante: det (A)
 - Inversa: inv (A)
 - Autovalori: eig(A)
 - Rango: rank (A)
 - Polinomio caratteristico: poly (A)
 - Esponenziale di matrice: expm (A)
 - Radici di un polinomio: roots (x) (x vettore dei coeff.)

```
pag. 5
```

```
5
```

Matlab: inizializzazione di matrici standard

 Comandi che forniscono matrici caratteristiche, utili per inizializzare variabili opportune:

 Matrice m x n con tutti elementi nulli: zeros (m, n) NOTA: zeros (m) fornisce matrice quadrata
 Matrice m x n con tutti elementi unitari: ones (m, n) NOTA: ones (m) fornisce matrice quadrata
 Identità n x n: eye (n)
 Matrice quadrata diagonale (con elementi sulla diagonale nel vettore V): diag (V)

DE

Matlab: il workspace

 I risultati di tutti i comandi digitati vengono memorizzati nel cosiddetto workspace della sessione

- Il workspace viene cancellato all'uscita dal Matlab!
- Il contenuto del workspace si può salvare (anche parzialmente) e ripristinare:
 - **save nomefile** (estensione di default: .mat)
 - save nomefile variabile1 variabile2 (salva solo le variabili indicate)
 - load nomefile
 - clear: cancella il contenuto del workspace!!

pag. 7	DE
7	

Matlab: script file .m

- File testuale contenente una successione di comandi modificabile tramite l'editor window
- L'esecuzione dello script (pulsante play) consiste nell'esecuzione di un comando alla volta

Cicli Condizio		
for i=1:10	if i<1	
end	 elseif i<20	
while i<10	else	
end	end	

8

Esempio: sistema LTI tempo discreto

Creare uno script matlab che visualizzi il moto e la risposta del seguente sistema in k passi

$$\begin{cases} x(i+1) = Ax(i) + Bu(i) \\ y(i) = Cx(i) + Du(i) \end{cases}$$

Con:

$$A = \begin{bmatrix} 0.5 & 0 \\ 3 & 0.1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \end{bmatrix}, u \text{ costante}$$

DE®

10

Esempio: script

```
%% plot
   %% System
                                           plot(x(1,:), 'bo')
   A = [0.5 0; 3 0.1];
                                           hold on
   B = [1 \ 1; 1 \ 1];
                                           plot(x(2,:),'go')
   C = [1 \ 0];
                                           plot(u(1,:), 'mo')
   D = [0 \ 1];
                                           plot(u(2,:),'ro')
   k = 10; % number of steps
                                           plot(y, 'ko')
                                           title('my LTI system')
                                           legend('x1','x2','u1','u2','y')
   %% input
                                           xlabel('steps')
   u = zeros(2,k); % input
   u(1,:) = 2*ones(1,k);
                                                          my LTI system
   u(2,:) = 1*ones(1,k);
                                                                         x1
x2
u1
u2
                                                                        000
                                             20
   %% init state and output
   x = zeros(2, k);
                                             15
   y = zeros(1, k);
                                             10
   %% compute state and output
                                                                000
                                                                      00
                                                       00
                                                           00
                                                             00
                                                     00
   for i=1:k-1
                                                 00
      x(:,i+1) = A*x(:,i) + B*u(:,i);
       y(i) = C*x(:,i) + D*u(:,i);
   end
                                                                             DE
pag. 11
```

11

Matlab: Control System Toolbox

```
Calcolo delle matrici di raggiungibilità e osservabilità
   >> A = [10 \ 1 \ ; \ -1 \ 1];
   >> B = [1; 1];
   >> C = [0 \ 1];
   >> P = ctrb(A,B)
                                   Nota: in Matlab è detta matrice di
                                   controllabilità, equivale a P = [B A^*B]
   P =
        1
             11
        1
              0
                                   Nota: equivale a Q = [C; C^*A]
   >> Q = obsv(A,C)
                              →
   Q =
        0
              1
        -1
              1
                                                                   DE
pag. 12
12
```

DE

Matlab: Control System Toolbox

La funzione sys=ss (A,B,C,D) crea l'oggetto rappresentativo del modello nello spazio degli stati a partire dalle matrici A,B,C,D

Matlab: Control System Toolbox

La funzione y=lsim(sys,u,t,x0) simula l'andamento nel tempo del sistema a partire dalle condizioni iniziali e ne restituisce l'uscita

Esercizio

- Modello di un carrello elevatore a trazione elettrica in modalità di frenatura

Si determini lo spazio percorso e la velocità raggiunta in 12 secondi dal veicolo (i.e. x(t) con t=12) in modalità di frenata, considerando una velocità iniziale di 5m/s, vale a dire:

 $x(0) = \begin{bmatrix} 0 & 5 \end{bmatrix}^T$

Soluzione esercizio

%% parameters m = 1000; b = 100; Ra = 10; Rf = 90; Km = 300;	<pre>sys = ss(A,B,C,D); t = linspace(0,12,300); u = zeros(size(t)); % no input x0 = [0;5]; %% simulate LTI system lsim(sys,u,t,x0)</pre>
<pre>%% system A = [0,1; 0, -(Km^2 + Ra*b + Rf*b)/(m*(Ra + Rf))]; B = [0;0]; % velocity as output C = [0 1]; D = 0;</pre>	Linear Simulation Results
pag. 17 17	DE®

Soluzione alternativa esercizio

18

Risolvere l'esercizio in forma numerica	
>> x0 = [0;5]; >> tf = 12;	
$x_{12} = \exp(A*tf)*x0$	
x_12 =	
5.0000 0.0000	
NOTA: il risultato è arrotondato, di default Matlab mostra solo 4 cifre dopo il punto decimale. Per mostrare più cifre:	
>> format long	
$> x_{12}$	
4.999969278938233	
0.000030721061767	
pag. 18	DE®

Simulink

La simulazione di un sistema dinamico con Simulink consiste in due fasi fondamentali:

- Modellistica: Creazione di un modello grafico del sistema da simulare, inserendo e connettendo blocchi rappresentativi di sistemi multivariabile tempo continuo, tempo discreto, lineari e non lineari
- Simulazione del comportamento del sistema durante una sua evoluzione temporale su un arco di tempo definito. Simulink in questa fase utilizza le informazioni contenute nel modello grafico per generare le equazioni dinamiche ad esso associate e risolverle numericamente

pag. 19	D	E®
19		

Simulink: interfaccia principale

20

Simulink: blocchi principali

Simulink: blocchi principali

Math:						
Abs	braic Constraint	Bias Complex to Magnitude-Angle	Complex to Divise Real-Imag	ide Dot Product	Find Nonzero Elements	Magnitude-Angle to Complex
Math Function Concatenate	MinMax MinMax Running Resettable	Permute Polynomial Dimensions	Product Produ	tct of Real-Imag to Complex	Reciprocal Reshape	Rounding Function
Sign Signed Sqrt	Sine Wave Slider Function Gain	\sqrt{u} Squeeze	Subtract Su	m Sum of Elements	Sin Trigonometric Function	Vector Concatenate
Sinks:						
Display Floating Scope	♥ OutBus.signal1 Out Bus Element	V1 Out1 Scope	Stop Simulation Tr	erminator	le To Workspace	XY Graph

Simulink: blocchi principali

Esempio: Sistema LTI multivariabile

pag. 24

24

Inizializzazione parametri: >> $A = [-1 \ 0; \ -2 \ -2];$ $>> B = [1 \ 1 \ 0; 0 \ 0 \ 1];$ >> $C = [1 \ 0; \ 1 \ 1];$ $>> D = [1 \ 0 \ 0; 0 \ 0 \ 1];$ Simulink model: Γ $\dot{x} = Ax + Bu$ •□ v = Cx + DuDE®

Esemplo: 5	stema LII multivariablie	
Configuraz	one blocco state-space	
Variabili caricate dal workspace di Matlab	State Space model: dv/dt = Ax + Bu y = Cx + Du Parameters A: A: B: B: B: C: C: C: C: D: D: D: D: D: D: D: D: D: State Space model: dv/dt = Ax + Bu y = Cx + Du B: B: B: B: B: B: B: B: B: B:	
pag. 25	DE®	
25		

141 _ 2.0.20 - 1

Esempio: Sistema LTI multivariabile

Esempio: l'accelerometro

Esercizio: retroazione stato - ingresso

Dato il sistema:

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$

Con:

 $A = \begin{bmatrix} -2 & -20 & -2 \\ 0 & 0 & 1 \\ 1 & -5 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix} \qquad D = 0$

- Costruire il modello Simulink del sistema controllato tramite opportuna retroazione stato-ingresso che stabilizzi il sistema
- Simulare e visualizzare l'andamento di stato e uscita a fronte di un ingresso a gradino

DE®	
-----	--

pag. 28

28

Esercizio: retroazione stato - ingresso

Esercizio: retroazione stato - ingresso

13/10/2020

INTRODUZIONE A MATLAB e SIMULINK

FINE

pag. 31

31

DE