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MATHEMATICAL CRYPTOGRAPHY Ferrara 2003
The Massey-Omura Protocol

Mohan Nair, University of Glasgow m.nair@maths.gla.ac.uk

The Massey-Omura Protocol and its application to playing
cards

Consider the following scenario:

e B wants to send A a message in a strong box. He places the message in it and
then puts a lock on the box for which only he has a key.

e The box is then sent to A who naturally cannot open it but what she does is to
put another lock on the box for which only she has a key. The box (now with
2 locks) is sent back to B.

e B then removes his original lock (with his key) and returns the box (now carrying
only A’s lock) back to A.

e Finally, A removes her lock and opens the box to receive the message.

Q/

Note that at no point is the box unlocked or there'an exchange of keys or there is
any exchange of information on how to open the box.

The Massey-Omura Protocol imitates this procedure. Initially this was described in
the context of elliptic curves and based on an idea of Shamir.

Two parties A and B want to communicate securely. They decide on a common large
prime number p (which does not need to be secret). Then each one of them, privately
and independently, chooses encryption and decryption keys e, d4 and eg, dg where

e GCD(e4q,p—1)=1 and GCD(eg,p—1) =1 and
e e4dy =1 (modp—1) and egdp =1 (modp—1).
The protocol for communicating a message M, 1 < M < p, from B to A is:
e B sends M; = M*® (modp) to A.
e A then calculates My = M;4 = M*®4°8 (mod p) and sends this to B.
e B now calculates Mz = My§? = (M*®898)°4 = M®4 (modp) and sends this to A.
e Finally, A calculates My = M4 = M®4% = M (mod p) to recover M.

The Massey-Omura Protocol can, of course, be used as a private key cryptosystem
but it is more useful as a comparitively slow but secure method of communicating a
common key between 2 individuals or entities.
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Playing cards over the telephone

Now suppose two remote parties wish, for example, to play E-poker. This consists
of dealing 5 random cards to each player from a full deck of 52 cards. Let A be the
dealer and B the shuffler. First A encripts all the cards in the deck (with E4) and
sends these to B. B now shuffles the deck and also encrypts the cards (with Ep)
and returns the twice-encrypted deck to A. A now removes 10 cards from the deck,
decrypts 5 of them (with D4) and sends these 10 cards back to B. B then decrypts
all ten (with Dp). Five will now be visible to B, those which were decrypted by A,
and this is B’s hand. The remaining five are returned to A who decrypts them and
this will be A’s hand.

For those interested, this procedure, in detail, is as follows:

The 52 cards in a full deck are each associated with 52 unique natural numbers > 1,
say {ni,---,mns2}. This is agreed by both players and visible to both who also choose
a common large prime p. All encryption and decryption are done modulo p.

e A encrypts all 52 cards with her encrypting procedure to get
Ly ={E4(n1), -, Ea(ns)} and sends L, to B.

e B shuflles the cards to get Ly = {E4s(m1), -, Ea(ms2)} where (my,---,ms) is a
- permutation of (ng, - -+, nsz). He also encrypts all the cards in L, with his encrypting
procedure to get Ly = {EgEs(my),-- -, EgFEa(ms2)}. This is sent to A.

e A now removes 10 cards from the list and since they have been shuffled by B and
invisible to both players, she might as well choose the first 10 (although this is not
necessary). She obtains Ly = {EgE4(m1), -+, EgEa(mio)}.

However, she may not trust B’s shuffle and so might prefer some other 10 arbitrary
cards Ls = {EgE4(ly), -+, EpFEa(lyo)} where (I3,---,l10) is a 10-element sublist of
(mq,---,ms2). She decrypts 5 of them and sends them all back to B. Therefore she
sends L5 = {DAEBEA(ll), e DAEBEA(lg,), EBEA(ZG), WA EBEA(lm)}. So

Ls = {EB(ll), 1es ,EB(Z5), EBEA(ZG), BE EBEA(ZIO)} is sent back to B.

e B decrypts this list to get {l1,-+,l5, DpEpFEa(ls), -, DsEpFE(l10)} which is
{li,-+ 15, Ea(ls),- -+, Ea(lyo)}. He takes {l;,---,l5} to be his cards and sends
{E4(ls), -, Ea(lip)} to A who decrypts them to get {ls,--,l10} as her cards.

Note that neither A nor B knows what cards the other person has so that this
procedure is, in general, fair.
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Tossing an e-coin
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Suppose that a protocol involving 2 people A and B requires them to choose a se-
quence of bits at random. Suppose, further, that there is an advantage for A not to
do so. For B to be sure that A does not cheat, he tosses a fair coin with A calling
“heads” or “tails”. If A calls correctly (and this must be clear to both people), the bit
is chosen to be 1 otherwise it is 0. B repeats this process until the complete sequence
of random bits is obtained. This achieves the following desired goals:

e It guarantees to B that, at each toss, A picks her bit at random.

e It guarantees to A that, at each toss, B did not know which bit he tossed to
her - that he could not interfere in the procedure.

The remote coin-tossing protocol

Two people A and B want to decide something by tossing a fair coin. There are 3
stages:

e A prepares the fair “coin”.
e B “tosses” the coin.

e A then “calls” - heads or tails.

Procedure

e A chooses 2 different large prime numbers p and ¢ ( both congruent to 3 (mod 4)).
The coin is the number n = pg. A sends n to B.

e B “tosses” the coin by choosing an a,1 < a < n, at random and computing
b= a? (modn). B sends b to A. Note that there is an extremely small chance
(approximately 2/n) that GCD(a,n) # 1. If this happens, B has accidentally
factorized n and wins. We can safely ignore this case!

e A’s “call” consists of solving the equation z? = b (modn) (there are 4 positive
solutions modulo n) which she can easily do since she knows both p and g. She
chooses one on these 4 solutions at random, say ¢, and sends ¢ to B.

If B can now announce the values of p and ¢, he wins the toss. If not, A wins.
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Explanation

Since B knows a (and so also n — a), he knows precisely 2 of the 4 solutions of the
congruence z2 = b (modn). By sending B the value t, A gives B a 50% chance of
obtaining the other 2 solutions as well. If ¢ # +a (modn) then GCD(t —a,n) will be
either p or g and hence, using n = pq, both p and ¢ will be known to B. This is not
possible if ¢ = +a (mod n).

So all B needs to do at the final step is to check if £ = a or t = n — a. If one of these
is true, he has lost. If neither is true, he calculates GCD(¢ — a,n). This is either p or
g and hence, using n = pg, he obtains both p and ¢ and wins.

Note: A can solve z? = b (modn) as follows:

z? = b (mod p) has solutions z = £r (mod p) where 7 = % (modp).
Since p = 3 (mod4), this follows immediately from

W5

(b%)? b.b"% = b (mod p).

Note that 6% = a?~! = 1 (mod p).
Similarly, z2 = b (mod q) has solutions z = +s (modp) where s = b (mod q).
Determining ¢ and d by the Euclidean Algorithm to satisfy cp+dg = 1, it is then easy

to verify that the 4 solutions of z2 = b (modn) are precisely a,n — @ and 8,n — 3,
where o = rdg+scp (modn) and S = rdg—scp (modn), and that these are distinct.
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