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Organization of Records in 
Blocks

Read Sec. 4.2 Riguzzi et al. Sistemi Informativi

Slides derived from those by Hector Garcia-Molina



2

• How to lay out records on blocks

Topic
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To represent:

• Integer (short): 2 bytes
e.g., 35 is 

00000000 00100011

• Real, floating point
n bits for mantissa, m for exponent….



4

• Characters
® various coding schemes suggested,

most popular is ascii

To represent:

Example:
A:    1000001
a:    1100001
5:    0110101
LF:   0001010
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• Boolean

e.g., TRUE

FALSE

1111 1111

0000 0000

To represent:

• Application specific

e.g.,  RED ® 1 GREEN ® 3

BLUE ® 2    YELLOW ® 4  …

Can we use less than 1 byte/code?

Yes, but only if desperate...
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• Dates
e.g.:  - Integer, # days since Jan 1, 1900

- 8 characters, YYYYMMDD
- 7 characters, YYYYDDD

(not YYMMDD! Why?)
• Time

e.g.   - Integer, seconds since midnight
- characters, HHMMSSFF

To represent:
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• Fixed length characters strings 
(CHAR(n)):
– n bytes
– If the value is shorter, fill the array with a 

pad charater, whose 8-bit code is not one 
of the legal characters for SQL strings

c ta XX

To represent:

X
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• Variable-length characters strings 
(CHAR VARYING(n)): n+1 bytes max
– Null terminated

e.g.,

– Length given
e.g.,

c ta

c ta3

To represent:
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• BINARY VARYING(n)

To represent:

Length

$ ^#3
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Key Point

• Fixed length items

• Variable length items
- usually length given at beginning
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Data Items

Records

Blocks

Files

Memory

Overview
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Types of records:

• Main choices:
– FIXED vs VARIABLE LENGTH
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A SCHEMA (not record) contains
following information

- # fields
- type of each field
- order in record
- name of each field
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Example: fixed length

Employee record
(1) E#, 2 byte integer
(2) E.name, 10 char. Schema
(3) Dept, 2 byte code

55 s m i  t   h 02

83 j o n  e  s 01
Records
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Record header - data at beginning
that describes record

May contain:
- record type
- record length
- time stamp
-...



16

Next: placing records into blocks

blocks ...

a file

assume fixed
length blocks

assume a single file (for now)
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(1) separating records
(2) spanned vs. unspanned
(3) mixed record types – clustering
(4) split records
(5) indirection

Options for storing records in blocks:



18

Block

(a) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)

- within each record
- in block header

(1) Separating records

R2R1 R3
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• Unspanned: records must be within one 
block

block 1 block 2
...

• Spanned
block 1 block 2

...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2 R3
(a)

R3
(b) R6R5R4 R7

(a)
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need indication need indication
of partial record of continuation
“pointer” to rest (+ from where?)

R1 R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

With spanned records:
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• Unspanned is much simpler, but may 
waste space…

• Spanned essential if 
record size > block size

Spanned vs. unspanned:
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Example
106 records
each of size 2,050 bytes (fixed)
block size = 4096 bytes

block 1 block 2

2050 bytes wasted 2046 2050 bytes   wasted 2046
R1 R2

• Total wasted = 2 x 109 Utiliz = 50%
• Total space   = 4 x 109
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• Mixed - records of different types
(e.g. EMPLOYEE, DEPT)
allowed in same block

e.g., a block

(3) Mixed record types

EMP e1 DEPT d1 DEPT d2
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Why do we want to mix?

Records that are frequently 
accessed together should be
in the same block

CLUSTERING
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Compromise:

No mixing, but keep related
records in same cylinder ...
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Example

Q1:  select A#, C_NAME, C_CITY, …
from DEPOSIT, CUSTOMER
where DEPOSIT.C_NAME =

CUSTOMER.NAME

a block
CUSTOMER,NAME=SMITH

DEPOSIT,C_NAME=SMITH

DEPOSIT,C_NAME=SMITH
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• If Q1 frequent, clustering good
• But if Q2 frequent

Q2:    SELECT *
FROM CUSTOMER

CLUSTERING IS COUNTER PRODUCTIVE
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Fixed part in
one block

Typically for
Variable length 
records

Variable part in
another block

(4) Split records
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Block with fixed parts

R1 (a)
R1 (b)

Block with variable parts

R2 (a)

R2 (b)

R2 (c)

Block with 
variable 
parts
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• How does one refer to records?

(5) Indirection

Rx

Many options:
Physical Indirect
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Purely Physical

Device ID
E.g.,  Record Cylinder #

Address = Track #
or ID Block #

Offset in block

Block ID
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Fully Indirect
E.g.,  Record ID is arbitrary bit string

map
rec ID

r address
a

Physical
addr.Rec ID



33

Tipical Use logical block #’s
understood by file system

File ID
Block #
Offset in block

File ID, Physical
Block # Block ID

File Syst. 
Map
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Block header - data at beginning that
describes block

May contain:
- File ID (or RELATION or DB ID)

- This block ID

- Record directory

- Pointer to free space

- Type of block (e.g. contains recs type 4; 

is overflow, …)

- Pointer to other blocks “like it”

- Timestamp ...
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Insertion/Deletion

Other Topic
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Options for deletion:

(a) Immediately reclaim space
(b) Mark deleted

– May need chain of deleted records
(for re-use)

– Need a way to mark:
• special characters
• delete field
• in map
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As usual, many tradeoffs...

• How expensive is to move valid records 
to free space for immediate reclaim?

• How much space is wasted?
– delete fields, free space chains,...


