
1

Organization of Records in 
Blocks

Read Sec. 4.2 Riguzzi et al. Sistemi Informativi

Slides derived from those by Hector Garcia-Molina



2

• How to lay out records on blocks

Topic



3

To represent:

• Integer (short): 2 bytes
e.g., 35 is 

00000000 00100011

• Real, floating point
n bits for mantissa, m for exponent….



4

• Characters
® various coding schemes suggested,

most popular is ascii

To represent:

Example:
A:    1000001
a:    1100001
5:    0110101
LF:   0001010



5

• Boolean

e.g., TRUE

FALSE

1111 1111

0000 0000

To represent:

• Application specific

e.g.,  RED ® 1 GREEN ® 3

BLUE ® 2    YELLOW ® 4  …

Can we use less than 1 byte/code?

Yes, but only if desperate...



6

• Dates
e.g.:  - Integer, # days since Jan 1, 1900

- 8 characters, YYYYMMDD
- 7 characters, YYYYDDD

(not YYMMDD! Why?)
• Time

e.g.   - Integer, seconds since midnight
- characters, HHMMSSFF

To represent:



7

• Fixed length characters strings 
(CHAR(n)):
– n bytes
– If the value is shorter, fill the array with a 

pad charater, whose 8-bit code is not one 
of the legal characters for SQL strings

c ta XX

To represent:

X



8

• Variable-length characters strings 
(CHAR VARYING(n)): n+1 bytes max
– Null terminated

e.g.,

– Length given
e.g.,

c ta

c ta3

To represent:



9

• BINARY VARYING(n)

To represent:

Length

$ ^#3



10

Key Point

• Fixed length items

• Variable length items
- usually length given at beginning



11

Data Items

Records

Blocks

Files

Memory

Overview



12

Types of records:

• Main choices:
– FIXED vs VARIABLE LENGTH



13

A SCHEMA (not record) contains
following information

- # fields
- type of each field
- order in record
- name of each field



14

Example: fixed length

Employee record
(1) E#, 2 byte integer
(2) E.name, 10 char. Schema
(3) Dept, 2 byte code

55 s m i  t   h 02

83 j o n  e  s 01
Records



15

Record header - data at beginning
that describes record

May contain:
- record type
- record length
- time stamp
-...



16

Next: placing records into blocks

blocks ...

a file

assume fixed
length blocks

assume a single file (for now)



17

(1) separating records
(2) spanned vs. unspanned
(3) mixed record types – clustering
(4) split records
(5) indirection

Options for storing records in blocks:



18

Block

(a) no need to separate - fixed size recs.
(b) special marker
(c) give record lengths (or offsets)

- within each record
- in block header

(1) Separating records

R2R1 R3



19

• Unspanned: records must be within one 
block

block 1 block 2
...

• Spanned
block 1 block 2

...

(2) Spanned vs. Unspanned

R1 R2

R1

R3 R4 R5

R2 R3
(a)

R3
(b) R6R5R4 R7

(a)



20

need indication need indication
of partial record of continuation
“pointer” to rest (+ from where?)

R1 R2 R3
(a)

R3
(b) R6R5R4 R7

(a)

With spanned records:



21

• Unspanned is much simpler, but may 
waste space…

• Spanned essential if 
record size > block size

Spanned vs. unspanned:



22

Example
106 records
each of size 2,050 bytes (fixed)
block size = 4096 bytes

block 1 block 2

2050 bytes wasted 2046 2050 bytes   wasted 2046
R1 R2

• Total wasted = 2 x 109 Utiliz = 50%
• Total space   = 4 x 109



23

• Mixed - records of different types
(e.g. EMPLOYEE, DEPT)
allowed in same block

e.g., a block

(3) Mixed record types

EMP e1 DEPT d1 DEPT d2



24

Why do we want to mix?

Records that are frequently 
accessed together should be
in the same block

CLUSTERING



25

Compromise:

No mixing, but keep related
records in same cylinder ...



26

Example

Q1:  select A#, C_NAME, C_CITY, …
from DEPOSIT, CUSTOMER
where DEPOSIT.C_NAME =

CUSTOMER.NAME

a block
CUSTOMER,NAME=SMITH

DEPOSIT,C_NAME=SMITH

DEPOSIT,C_NAME=SMITH



27

• If Q1 frequent, clustering good
• But if Q2 frequent

Q2:    SELECT *
FROM CUSTOMER

CLUSTERING IS COUNTER PRODUCTIVE



28

Fixed part in
one block

Typically for
Variable length 
records

Variable part in
another block

(4) Split records



29

Block with fixed parts

R1 (a)
R1 (b)

Block with variable parts

R2 (a)

R2 (b)

R2 (c)

Block with 
variable 
parts



30

• How does one refer to records?

(5) Indirection

Rx

Many options:
Physical Indirect



31

Purely Physical

Device ID
E.g.,  Record Cylinder #

Address = Track #
or ID Block #

Offset in block

Block ID



32

Fully Indirect
E.g.,  Record ID is arbitrary bit string

map
rec ID

r address
a

Physical
addr.Rec ID



33

Tipical Use logical block #’s
understood by file system

File ID
Block #
Offset in block

File ID, Physical
Block # Block ID

File Syst. 
Map



34

Block header - data at beginning that
describes block

May contain:
- File ID (or RELATION or DB ID)

- This block ID

- Record directory

- Pointer to free space

- Type of block (e.g. contains recs type 4; 

is overflow, …)

- Pointer to other blocks “like it”

- Timestamp ...



35

Insertion/Deletion

Other Topic



36

Options for deletion:

(a) Immediately reclaim space
(b) Mark deleted

– May need chain of deleted records
(for re-use)

– Need a way to mark:
• special characters
• delete field
• in map



37

As usual, many tradeoffs...

• How expensive is to move valid records 
to free space for immediate reclaim?

• How much space is wasted?
– delete fields, free space chains,...


